51
|
Halper J. Basic Components of Vascular Connective Tissue and Extracellular Matrix. ADVANCES IN PHARMACOLOGY 2017; 81:95-127. [PMID: 29310805 DOI: 10.1016/bs.apha.2017.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy.
Collapse
Affiliation(s)
- Jaroslava Halper
- College of Veterinary Medicine and AU/UGA Medical Partnership, The University of Georgia, Athens, GA, United States.
| |
Collapse
|
52
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
53
|
Jackson S, ElAli A, Virgintino D, Gilbert MR. Blood-brain barrier pericyte importance in malignant gliomas: what we can learn from stroke and Alzheimer's disease. Neuro Oncol 2017; 19:1173-1182. [PMID: 28541444 PMCID: PMC5570196 DOI: 10.1093/neuonc/nox058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pericyte, a constitutive component of the central nervous system, is a poorly understood cell type that envelops the endothelial cell with the intended purpose of regulating vascular flow and endothelial cell permeability. Previous studies of pericyte function have been limited to a small number of disease processes such as ischemic stroke and Alzheimer's disease. Recently, publications have postulated a link between glioma stem cell differentiation and pericyte function. These studies suggest that there may be an important interaction of pericytes with tumor cells and other components of the tumor microenvironment in malignant primary glial neoplasms, most notably glioblastoma. This potential cellular interaction underscores the need to pursue more investigations of pericytes in malignant brain tumor biology. In this review, we summarize the functional roles of pericytes, particularly focusing on changes in pericyte biology during response to immune cells, inflammation, and hypoxic conditions. The information presented is based on the available data from studies of pericyte function in other central nervous system diseases but will serve as a foundation for research investigations to further understand the role of pericytes in malignant gliomas.
Collapse
Affiliation(s)
- Sadhana Jackson
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Ayman ElAli
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Mark R Gilbert
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
54
|
Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery. Cancer Lett 2017; 403:339-353. [PMID: 28688971 DOI: 10.1016/j.canlet.2017.06.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
Tumor vessels are leaky and immature, which causes poor oxygen and nutrient supply to tumor vessels and results in cancer cell metastasis to distant organs. This instability of tumor blood vessels also makes it difficult for anticancer drugs to penetrate and reach tumors. Numerous tumor vessel normalization approaches have been investigated for improving drug delivery into tumors. In this study, we investigated whether phosphoinositide 3-kinase (PI3K) inhibitors are able to improve vascular structure and function over the prolonged period necessary to achieve effective vessel normalization. The PI3K inhibitors, HS-173 and BEZ235 potently suppressed tumor growth and hypoxia, and increased tumor apoptosis in animal models. PI3K inhibitors also induced a regular, flat monolayer of endothelial cells (ECs) in vessels, improving stability of vessel structure, and normalized tumor vessels by increasing vascular maturity, pericyte coverage, basement membrane thickness, and tight-junctions. These effects resulted in a decrease in tumor vessel tortuosity and vessel thinning, and improved vessel function and blood flow. The tumor vessel stabilization effect of the PI3K inhibitor HS-173 also decreased the number of metastatic lung nodules in vivo metastasis model. Furthermore, HS-173 improved the delivery of doxorubicin into the tumor region, enhancing its anticancer effects. Mechanistic studies suggested that PI3K inhibitor HS-173-induced vessel normalization reflected changes in endothelial Notch signaling. Taken together, our findings indicate that vessel normalization by PI3K inhibitors restrained tumor growth and metastasis while improving chemotherapy by enhancing drug delivery into the tumor, suggesting that HS-173 may have a therapeutic value as an enhancer or an anticancer drug.
Collapse
|
55
|
Hosono J, Morikawa S, Ezaki T, Kawamata T, Okada Y. Pericytes promote abnormal tumor angiogenesis in a rat RG2 glioma model. Brain Tumor Pathol 2017. [PMID: 28646266 DOI: 10.1007/s10014-017-0291-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In glioma angiogenesis, tumor vessels cause morphological and functional abnormalities associated with malignancy and tumor progression. We hypothesized that certain structural changes or scantiness of functional pericytes may be involved in the formation of dysfunctional blood vessels in gliomas. In this study, we performed morphological examinations to elucidate the possible involvement of pericytes in brain tumor vessel abnormalities using a rat RG2 glioma model. After implantation of RG2 glioma cells in the syngeneic rat brain, gliomas were formed as early as day 7. In immunohistochemical examinations, desmin-positive pericytes, characterized by morphological abnormalities, were abundantly found on leaky vessels, as assessed by extravasation of lectin and high-molecular-weight dextrans. Interestingly, desmin-positive pericytes seemed to be characteristic of gliomas in rats. These pericytes were also found to express heat-shock protein 47, which plays an important role in the formation of the basement membrane, suggesting that RG2 pericytes promoted angiogenesis by producing basement membrane as a scaffold for newly forming blood vessels and caused functional abnormalities. We concluded that RG2 pericytes may be responsible for abnormal tumor angiogenesis lacking the functional ability to maintain the blood-brain barrier.
Collapse
Affiliation(s)
- Junji Hosono
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan.,Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shunichi Morikawa
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Taichi Ezaki
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshikazu Okada
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1, Kawada-cho Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
56
|
Shi X, Zhang W, Yin L, Chilian WM, Krieger J, Zhang P. Vascular precursor cells in tissue injury repair. Transl Res 2017; 184:77-100. [PMID: 28284670 PMCID: PMC5429880 DOI: 10.1016/j.trsl.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/25/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Vascular precursor cells include stem cells and progenitor cells giving rise to all mature cell types in the wall of blood vessels. When tissue injury occurs, local hypoxia and inflammation result in the generation of vasculogenic mediators which orchestrate migration of vascular precursor cells from their niche environment to the site of tissue injury. The intricate crosstalk among signaling pathways coordinates vascular precursor cell proliferation and differentiation during neovascularization. Establishment of normal blood perfusion plays an essential role in the effective repair of the injured tissue. In recent years, studies on molecular mechanisms underlying the regulation of vascular precursor cell function have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches to treat chronic wounds and ischemic diseases in vital organ systems. Verification of safety and establishment of specific guidelines for the clinical application of vascular precursor cell-based therapy remain major challenges in the field.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Weihong Zhang
- Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Liya Yin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica Krieger
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
57
|
Gaskill CF, Carrier EJ, Kropski JA, Bloodworth NC, Menon S, Foronjy RF, Taketo MM, Hong CC, Austin ED, West JD, Means AL, Loyd JE, Merryman WD, Hemnes AR, De Langhe S, Blackwell TS, Klemm DJ, Majka SM. Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 2017; 127:2262-2276. [PMID: 28463231 DOI: 10.1172/jci88629] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023] Open
Abstract
Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/β-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/β-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.
Collapse
Affiliation(s)
- Christa F Gaskill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Erica J Carrier
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Jonathan A Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Swapna Menon
- Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India
| | - Robert F Foronjy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | | | - Charles C Hong
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Department of Pathology and Laboratory Medicine or Department of Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | | - James D West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Anna L Means
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Loyd
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee USA
| | - Anna R Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | | | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA
| | - Dwight J Klemm
- Department of Medicine, Pulmonary and Critical Care Medicine, Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA.,Geriatric Research Education and Clinical Center, Eastern Colorado Health Care System, Denver, Colorado, USA
| | - Susan M Majka
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine or Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
58
|
NG2 Proteoglycan Enhances Brain Tumor Progression by Promoting Beta-1 Integrin Activation in both Cis and Trans Orientations. Cancers (Basel) 2017; 9:cancers9040031. [PMID: 28362324 PMCID: PMC5406706 DOI: 10.3390/cancers9040031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
By physically interacting with beta-1 integrins, the NG2 proteoglycan enhances activation of the integrin heterodimers. In glioma cells, co-localization of NG2 and 31 integrin in individual cells (cis interaction) can be demonstrated by immunolabeling, and the NG2-integrin interaction can be confirmed by co-immunoprecipitation. NG2-dependent integrin activation is detected via use of conformationally sensitive monoclonal antibodies that reveal the activated state of the beta-1 subunit in NG2-positive versus NG2-negative cells. NG2-dependent activation of beta-1 integrins triggers downstream activation of FAK and PI3K/Akt signaling, resulting in increased glioma cell proliferation, motility, and survival. Similar NG2-dependent cis activation of beta-1 integrins occurs in microvascular pericytes, leading to enhanced proliferation and motility of these vascular cells. Surprisingly, pericyte NG2 is also able to promote beta-1 integrin activation in closely apposed endothelial cells (trans interaction). Enhanced beta-1 signaling in endothelial cells promotes endothelial maturation by inducing the formation of endothelial junctions, resulting in increased barrier function of the endothelium and increased basal lamina assembly. NG2-dependent beta-1 integrin signaling is therefore important for tumor progression by virtue of its affects not only on the tumor cells themselves, but also on the maturation and function of tumor blood vessels.
Collapse
|
59
|
Weng L, Hu X, Kumar B, Garcia M, Todorov I, Jung X, Marcucci G, Forman SJ, Chen CC. Identification of a CD133-CD55- population functions as a fetal common skeletal progenitor. Sci Rep 2016; 6:38632. [PMID: 27929130 PMCID: PMC5144148 DOI: 10.1038/srep38632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023] Open
Abstract
In this study, we identified a CD105+CD90.1−CD133−CD55− (CD133−CD55−) population in the fetal skeletal element that can generate bone and bone marrow. Besides osteoblasts and chondrocytes, the CD133−CD55− common progenitors can give rise to marrow reticular stromal cells and perivascular mesenchymal progenitors suggesting they function as the fetal common skeletal progenitor. Suppression of CXCL12 and Kitl expression in CD133−CD55− common progenitors severely disrupted the BM niche formation but not bone generation. Thus, CD133−CD55− common progenitors are the main source of CXCL12 and Kitl producing cells in the developing marrow.
Collapse
Affiliation(s)
- Lihong Weng
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Departments of Cancer Immunotherapeutic and Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xingbin Hu
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 7100032, P.R. China
| | - Bijender Kumar
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Mayra Garcia
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Ivan Todorov
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiaoman Jung
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Departments of Cancer Immunotherapeutic and Immunology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Ching-Cheng Chen
- Divison of Hematopoietic Stem Cell and Leukemia Research, Gehr Family Center for Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.,Irell &Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
60
|
Khatami M. Is cancer a severe delayed hypersensitivity reaction and histamine a blueprint? Clin Transl Med 2016; 5:35. [PMID: 27558401 PMCID: PMC4996813 DOI: 10.1186/s40169-016-0108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Longevity and accumulation of multiple context-dependent signaling pathways of long-standing inflammation (antigen-load or oxidative stress) are the results of decreased/altered regulation of immunity and loss of control switch mechanisms that we defined as Yin and Yang of acute inflammation or immune surveillance. Chronic inflammation is initiated by immune disruptors-induced progressive changes in physiology and function of susceptible host tissues that lead to increased immune suppression and multistep disease processes including carcinogenesis. The interrelated multiple hypotheses that are presented for the first time in this article are extension of author's earlier series of 'accidental' discoveries on the role of inflammation in developmental stages of immune dysfunction toward tumorigenesis and angiogenesis. Detailed analyses of data on chronic diseases suggest that nearly all age-associated illnesses, generally categorized as 'mild' (e.g., increased allergies), 'moderate' (e.g., hypertension, colitis, gastritis, pancreatitis, emphysema) or 'severe' (e.g., accelerated neurodegenerative and autoimmune diseases or site-specific cancers and metastasis) are variations of hypersensitivity responses of tissues that are manifested as different diseases in immune-responsive or immune-privileged tissues. Continuous release/presence of low level histamine (subclinical) in circulation could contribute to sustained oxidative stress and induction of 'mild' or 'moderate' or 'severe' (immune tsunami) immune disorders in susceptible tissues. Site-specific cancers are proposed to be 'severe' (irreversible) forms of cumulative delayed hypersensitivity responses that would induce immunological chaos in favor of tissue growth in target tissues. Shared or special features of growth from fetus development into adulthood and aging processes and carcinogenesis are briefly compared with regard to energy requirements of highly complex function of Yin and Yang. Features of Yang (growth-promoting) arm of acute inflammation during fetus and cancer growth will be compared for consuming low energy from glycolysis (Warburg effect). Growth of fetus and cancer cells under hypoxic conditions and impaired mitochondrial energy requirements of tissues including metabolism of essential branched amino acids (e.g., val, leu, isoleu) will be compared for proposing a working model for future systematic research on cancer biology, prevention and therapy. Presentation of a working model provides insightful clues into bioenergetics that are required for fetus growth (absence of external threat and lack of high energy-demands of Yin events and parasite-like survival in host), normal growth in adulthood (balance in Yin and Yang processes) or disease processes and carcinogenesis (loss of balance in Yin-Yang). Future studies require focusing on dynamics and promotion of natural/inherent balance between Yin (tumoricidal) and Yang (tumorigenic) of effective immunity that develop after birth. Lawless growth of cancerous cells and loss of cell contact inhibition could partially be due to impaired mitochondria (mitophagy) that influence metabolism of branched chain amino acids for biosynthesis of structural proteins. The author invites interested scientists with diverse expertise to provide comments, confirm, dispute and question and/or expand and collaborate on many components of the proposed working model with the goal to better understand cancer biology for future designs of cost-effective research and clinical trials and prevention of cancer. Initial events during oxidative stress-induced damages to DNA/RNA repair mechanisms and inappropriate expression of inflammatory mediators are potentially correctable, preventable or druggable, if future studies were to focus on systematic understanding of early altered immune response dynamics toward multistep chronic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Mahin Khatami
- National Cancer Institute (NCI), the National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
61
|
Navarro R, Compte M, Álvarez-Vallina L, Sanz L. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity. Front Immunol 2016; 7:480. [PMID: 27867386 PMCID: PMC5095456 DOI: 10.3389/fimmu.2016.00480] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023] Open
Abstract
Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. PC have traditionally been credited with structural functions, being essential for vessel maturation and stabilization. However, an accumulating body of evidence suggests that PC also display immune properties. They can respond to a series of pro-inflammatory stimuli and are able to sense different types of danger due to their expression of functional pattern-recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines but also overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, PC are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. As components of the tumor microenvironment, PC can also modulate the antitumor immune response. However, their role is complex, and further studies will be required to better understand the crosstalk of PC with immune cells in order to consider them as potential therapeutic targets. In any case, PC will be looked at with new eyes by immunologists from now on.
Collapse
Affiliation(s)
- Rocío Navarro
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| | - Luis Álvarez-Vallina
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain; Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda , Madrid , Spain
| |
Collapse
|
62
|
Kim TH, Kim SH, Jung Y. The effects of nanotopography and coculture systems to promote angiogenesis for wound repair. Nanomedicine (Lond) 2016; 11:2997-3007. [DOI: 10.2217/nnm-2016-0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Insufficient angiogenesis in severe wounds delays wound repair because of a lack of blood supply to the wound site. Therefore, pro-angiogenic therapeutics may enhance wound repair. Many studies have investigated various physical and biochemical cues to improve angiogenesis, such as biocompatible materials, surface modifications, angiogenic factors and coculture systems using various cell types. However, the present capability to mimic the micro- and nanostructure of the natural microenvironment, particularly its porous, fibrous features, is limited. Nanotopography may represent a promising tool to overcome these limitations. Here, we discuss various approaches to the use of nanotopography to enhance angiogenesis and consider the combination of coculture systems with nanotopography to mimic the native environment for promotion of angiogenesis in wound healing and repair.
Collapse
Affiliation(s)
- Tae Hee Kim
- Biomaterials Research Center, Korea Institute of Science & Technology, 5, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science & Technology, 5, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science & Technology, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science & Technology, 5, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science & Technology, Hwanrangno 14 Gil, Seoungbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
63
|
Stallcup WB, You WK, Kucharova K, Cejudo-Martin P, Yotsumoto F. NG2 Proteoglycan-Dependent Contributions of Pericytes and Macrophages to Brain Tumor Vascularization and Progression. Microcirculation 2016; 23:122-33. [PMID: 26465118 DOI: 10.1111/micc.12251] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
The NG2 proteoglycan promotes tumor growth as a component of both tumor and stromal cells. Using intracranial, NG2-negative B16F10 melanomas, we have investigated the importance of PC and Mac NG2 in brain tumor progression. Reduced melanoma growth in Mac-NG2ko and PC-NG2ko mice demonstrates the importance of NG2 in both stromal compartments. In each genotype, the loss of PC-endothelial cell interaction diminishes the formation of endothelial junctions and assembly of the basal lamina. Tumor vessels in Mac-NG2ko mice have smaller diameters, reduced patency, and increased leakiness compared to PC-NG2ko mice, thus decreasing tumor blood supply and increasing hypoxia. While the reduced PC interaction with endothelial cells in PC-NG2ko mice results from the loss of PC activation of β1 integrin signaling in endothelial cells, reduced PC-endothelial cell interaction in Mac-NG2ko mice results from 90% reduced Mac recruitment. The absence of Mac-derived signals in Mac-NG2ko mice causes the loss of PC association with endothelial cells. Reduced Mac recruitment may be due to diminished activation of integrins in the absence of NG2, causing decreased Mac interaction with endothelial adhesion molecules that are needed for extravasation. These results reflect the complex interplay that occurs between Mac, PC, and endothelial cells during tumor vascularization.
Collapse
Affiliation(s)
- William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Weon-Kyoo You
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Biologics Business, Research and Development Center, Hanwha Chemical, Daejon, South Korea
| | - Karolina Kucharova
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Pilar Cejudo-Martin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Fusanori Yotsumoto
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
64
|
Baily JE, Chen WCW, Khan N, Murray IR, González Galofre ZN, Huard J, Péault B. Isolation of Perivascular Multipotent Precursor Cell Populations from Human Cardiac Tissue. J Vis Exp 2016:54252. [PMID: 27768039 PMCID: PMC5092175 DOI: 10.3791/54252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) were conventionally isolated, through their plastic adherence, from primary tissue digests whilst their anatomical tissue location remained unclear. The recent discovery of defined perivascular and MSC cell marker expression by perivascular cells in multiple tissues by our group and other researchers has provided an opportunity to prospectively isolate and purify specific homogenous subpopulations of multipotent perivascular precursor cells. We have previously demonstrated the use of fluorescent activated cell sorting (FACS) to purify microvascular CD146+CD34- pericytes and vascular CD34+CD146- adventitial cells from human skeletal muscle. Herein we describe a method to simultaneously isolate these two perivascular cell subsets from human myocardium by FACS, based on the expression of a defined set of cell surface markers for positive and negative selections. This method thus makes available two specific subpopulations of multipotent cardiac MSC-like precursor cells for use in basic research and/or therapeutic investigations.
Collapse
Affiliation(s)
- James E Baily
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh
| | - William C W Chen
- Department of Bioengineering and Orthopaedic Surgery, University of Pittsburgh; Research Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology;
| | - Nusrat Khan
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | - Iain R Murray
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | | | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh; Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston
| | - Bruno Péault
- MRC Centre for Regenerative Medicine, University of Edinburgh; Department of Orthopaedic Surgery, UCLA Orthopaedic Hospital, David Geffen School of Medicine, University of California at Los Angeles;
| |
Collapse
|
65
|
Murray IR, Baily JE, Chen WCW, Dar A, Gonzalez ZN, Jensen AR, Petrigliano FA, Deb A, Henderson NC. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential. Pharmacol Ther 2016; 171:65-74. [PMID: 27595928 DOI: 10.1016/j.pharmthera.2016.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease.
Collapse
Affiliation(s)
- Iain R Murray
- BHF Center for Vascular Regeneration and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, UK
| | - James E Baily
- BHF Center for Vascular Regeneration and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - William C W Chen
- Reseach Laboratory of Electronics and Department of Biological Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Ayelet Dar
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Zaniah N Gonzalez
- BHF Center for Vascular Regeneration and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew R Jensen
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Frank A Petrigliano
- Orthopedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine & Molecular Cell and Developmental Biology, and Eli and Edythe Broad Institute of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, CA, USA.
| | - Neil C Henderson
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
66
|
Ferrara G, Errede M, Girolamo F, Morando S, Ivaldi F, Panini N, Bendotti C, Perris R, Furlan R, Virgintino D, Kerlero de Rosbo N, Uccelli A. NG2, a common denominator for neuroinflammation, blood-brain barrier alteration, and oligodendrocyte precursor response in EAE, plays a role in dendritic cell activation. Acta Neuropathol 2016; 132:23-42. [PMID: 27026411 PMCID: PMC4911384 DOI: 10.1007/s00401-016-1563-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
In adult CNS, nerve/glial-antigen 2 (NG2) is expressed by oligodendrocyte progenitor cells (OPCs) and is an early marker of pericyte activation in pathological conditions. NG2 could, therefore, play a role in experimental autoimmune encephalomyelitis (EAE), a disease associated with increased blood–brain barrier (BBB) permeability, inflammatory infiltrates, and CNS damage. We induced EAE in NG2 knock-out (NG2KO) mice and used laser confocal microscopy immunofluorescence and morphometry to dissect the effect of NG2 KO on CNS pathology. NG2KO mice developed milder EAE than their wild-type (WT) counterparts, with less intense neuropathology associated with a significant improvement in BBB stability. In contrast to WT mice, OPC numbers did not change in NG2KO mice during EAE. Through FACS and confocal microscopy, we found that NG2 was also expressed by immune cells, including T cells, macrophages, and dendritic cells (DCs). Assessment of recall T cell responses to the encephalitogen by proliferation assays and ELISA showed that, while WT and NG2KO T cells proliferated equally to the encephalitogenic peptide MOG35-55, NG2KO T cells were skewed towards a Th2-type response. Because DCs could be responsible for this effect, we assessed their expression of IL-12 by PCR and intracellular FACS. IL-12-expressing CD11c+ cells were significantly decreased in MOG35-55-primed NG2KO lymph node cells. Importantly, in WT mice, the proportion of IL-12-expressing cells was significantly lower in CD11c+ NG2- cells than in CD11c+ NG2+ cells. To assess the relevance of NG2 at immune system and CNS levels, we induced EAE in bone-marrow chimeric mice, generated with WT recipients of NG2KO bone-marrow cells and vice versa. Regardless of their original phenotype, mice receiving NG2KO bone marrow developed milder EAE than those receiving WT bone marrow. Our data suggest that NG2 plays a role in EAE not only at CNS/BBB level, but also at immune response level, impacting on DC activation and thereby their stimulation of reactive T cells, through controlling IL-12 expression.
Collapse
|
67
|
Pombero A, Garcia-Lopez R, Martinez S. Brain mesenchymal stem cells: physiology and pathological implications. Dev Growth Differ 2016; 58:469-80. [PMID: 27273235 DOI: 10.1111/dgd.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine.
Collapse
Affiliation(s)
- Ana Pombero
- Intituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, University of Murcia, Murcia, Spain
| | - Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| | - Salvador Martinez
- Instituto de Neurociencias, Universidad Miguel Hernandez-Consejo Superior de Investigaciones, Av Ramon y Cajal s/n, San Juan de Alicante, 03550, Spain
| |
Collapse
|
68
|
Kim TH, Kim SH, Leong KW, Jung Y. Nanografted Substrata and Triculture of Human Pericytes, Fibroblasts, and Endothelial Cells for Studying the Effects on Angiogenesis. Tissue Eng Part A 2016; 22:698-706. [DOI: 10.1089/ten.tea.2015.0461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tae Hee Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
69
|
Bodnar RJ, Satish L, Yates CC, Wells A. Pericytes: A newly recognized player in wound healing. Wound Repair Regen 2016; 24:204-14. [PMID: 26969517 DOI: 10.1111/wrr.12415] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
Pericytes have generally been considered in the context of stabilizing vessels, ensuring the blood barriers, and regulating the flow through capillaries. However, new reports suggest that pericytes may function at critical times to either drive healing with minimal scarring or, perversely, contribute to fibrosis and ongoing scar formation. Beneficially, pericytes probably drive much of the vascular involution that occurs during the transition from the regenerative to the resolution phases of healing. Pathologically, pericytes can assume a fibrotic phenotype and promote scarring. This perspective will discuss pericyte involvement in wound repair and the relationship pericytes form with the parenchymal cells of the skin. We will further evaluate the role pericytes may have in disease progression in relation to chronic wounds and fibrosis.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| | - Latha Satish
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Health Promotions and Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
70
|
Aguirre JA, Lucchinetti E, Clanachan AS, Plane F, Zaugg M. Unraveling Interactions Between Anesthetics and the Endothelium. Anesth Analg 2016; 122:330-48. [DOI: 10.1213/ane.0000000000001053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
71
|
Nozawa-Inoue K, Harada F, Magara J, Ohazama A, Maeda T. Contribution of synovial lining cells to synovial vascularization of the rat temporomandibular joint. J Anat 2015; 228:520-9. [PMID: 26642772 DOI: 10.1111/joa.12426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 01/10/2023] Open
Abstract
The lining layer of the synovial membrane in the temporomandibular joint (TMJ) contains two types of lining cells: macrophage-like type A and fibroblast-like type B cells. The type B cells are particularly heterogeneous in their morphology and immunoreactivity, so that details of their functions remain unclear. Some of the type B cells exhibit certain resemblances in their ultrastructure to those of an activated capillary pericyte at the initial stage of the angiogenesis. The articular surface, composed of cartilage and the disc in the TMJ, has few vasculatures, whereas the synovial lining layer is richly equipped with blood capillaries to produce the constituent of synovial fluid. The present study investigated at both the light and electron microscopic levels the immunocytochemical characteristics of the synovial lining cells in the adult rat TMJ, focusing on their contribution to the synovial vascularization. It also employed an intravascular perfusion with Lycopersicon esculentum (tomato) lectin to identify functional vessels in vivo. Results showed that several type B cells expressed desmin, a muscle-specific intermediate filament which is known as the earliest protein to appear during myogenesis as well as being a marker for the immature capillary pericyte. These desmin-positive type B cells showed immunoreactions for vimentin and pericyte markers (neuron-glial 2; NG2 and PDGFRβ) but not for the other markers of myogenic cells (MyoD and myogenin) or a contractile apparatus (αSMA and caldesmon). Immunoreactivity for RECA-1, an endothelial marker, was observed in the macrophage-like type A cells. The arterioles and venules inside the synovial folds extended numerous capillaries with RECA-1-positive endothelial cells and desmin-positive pericytes to distribute densely in the lining layer. The distal portion of these capillaries showing RECA-1-immunoreactivity lacked lectin-staining, indicating a loss of blood-circulation due to sprouting or termination in the lining layer. The desmin-positive type B and RECA-1-positive type A cells attached to this portion of the capillaries. Some capillaries in the lining layer also expressed ninein, a marker for sprouting endothelial cells, called tip cells. Since an activated pericyte, macrophage and tip cell are known to act together at the forefront of the vessel sprout during angiogenesis, the desmin-positive type B cell and RECA-1-positive type A cell might serve as these angiogenic cells in the synovial lining layer. Tomato lectin perfusion following decalcification would be a highly useful tool for research on the vasculature of the mineralized tissue. Use of this technique combined with immunohistochemistry should permit future extensive investigations on the presence of the physiological angiogenesis and on the function of the lining cells in the synovial membrane.
Collapse
Affiliation(s)
- Kayoko Nozawa-Inoue
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiko Harada
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
72
|
Khan MA, Hsu JL, Assiri AM, Broering DC. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective. Clin Exp Immunol 2015; 183:175-86. [PMID: 26404106 DOI: 10.1111/cei.12713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/18/2022] Open
Abstract
Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ.
Collapse
Affiliation(s)
- M A Khan
- Organ Transplant Centre, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - J L Hsu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - A M Assiri
- Organ Transplant Centre, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - D C Broering
- Organ Transplant Centre, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
73
|
Ergul A, Valenzuela JP, Fouda AY, Fagan SC. Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period. Brain Res 2015; 1623:81-96. [PMID: 25749094 PMCID: PMC4743654 DOI: 10.1016/j.brainres.2015.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - John Paul Valenzuela
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA
| | - Abdelrahman Y Fouda
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
74
|
Choi H, Jeong BC, Hur SW, Kim JW, Lee KB, Koh JT. The Angiopoietin-1 Variant COMP-Ang1 Enhances BMP2-Induced Bone Regeneration with Recruiting Pericytes in Critical Sized Calvarial Defects. PLoS One 2015; 10:e0140502. [PMID: 26465321 PMCID: PMC4605622 DOI: 10.1371/journal.pone.0140502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022] Open
Abstract
Craniofacial bone defects are observed in a variety of clinical situations, and their reconstructions require coordinated coupling between angiogenesis and osteogenesis. In this study, we explored the effects of cartilage oligomeric matrix protein-angiopoietin 1 (COMP-Ang1), a synthetic and soluble variant of angiopoietin 1, on bone morphogenetic protein 2 (BMP2)-induced cranial bone regeneration, and recruitment and osteogenic differentiation of perivascular pericytes. A critical-size calvarial defect was created in the C57BL/6 mouse and COMP-Ang1 and/or BMP2 proteins were delivered into the defects with absorbable collagen sponges. After 3 weeks, bone regeneration was evaluated using micro-computed tomography and histologic examination. Pericyte recruitment into the defects was examined using immunofluorescence staining with anti-NG2 and anti-CD31 antibodies. In vitro recruitment and osteoblastic differentiation of pericyte cells were assessed with Boyden chamber assay, staining of calcified nodules, RT-PCR and Western blot analyses. Combined administration of COMP-Ang1 and BMP2 synergistically enhanced bone repair along with the increased population of CD31 (an endothelial cell marker) and NG2 (a specific marker of pericyte) positive cells. In vitro cultures of pericytes consistently showed that pericyte infiltration into the membrane pore of Boyden chamber was more enhanced by the combination treatment. In addition, the combination further increased the osteoblast-specific gene expression, including bone sialoprotein (BSP), osteocalcin (OCN) and osterix (OSX), phosphorylation of Smad/1/5/8, and mineralized nodule formation. COMP-Ang1 can enhance BMP2-induced cranial bone regeneration with increased pericyte recruitment. Combined delivery of the proteins might be a therapeutic strategy to repair cranial bone damage.
Collapse
Affiliation(s)
- Hyuck Choi
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Byung-Chul Jeong
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Woong Hur
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jung-Woo Kim
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Keun-Bae Lee
- Department of Orthopedic Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
75
|
Dalkara T, Alarcon-Martinez L. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 2015; 1623:3-17. [DOI: 10.1016/j.brainres.2015.03.047] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/10/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023]
|
76
|
Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer's disease? Brain Pathol 2015; 24:371-86. [PMID: 24946075 DOI: 10.1111/bpa.12152] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
Pericytes are cells in the blood-brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by-products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular-mediated Aβ-independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.
Collapse
Affiliation(s)
- Ethan A Winkler
- Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
77
|
Wang Y, Geldres C, Ferrone S, Dotti G. Chondroitin sulfate proteoglycan 4 as a target for chimeric antigen receptor-based T-cell immunotherapy of solid tumors. Expert Opin Ther Targets 2015; 19:1339-50. [DOI: 10.1517/14728222.2015.1068759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
78
|
Applicable advances in the molecular pathology of glioblastoma. Brain Tumor Pathol 2015; 32:153-62. [PMID: 26078107 DOI: 10.1007/s10014-015-0224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022]
Abstract
Comprising more than 80% of malignant brain tumors, glioma has proven to be a daunting cause of mortality in a vast majority of the human population. Progressive and extensive research on malignant glioma has substantially enhanced our understanding of glioma cell biology and molecular pathology. Subtypes of glioma such as astrocytoma and oligodendroglioma are currently grouped together into one pathological class, where they show many differences in histology and molecular etiology. This indicates that it may be beneficial to consider a new and radical subclassification. Thus, we summarize recent developments in glioblastoma multiforme (GBM) subtypes, immunohistochemical analyses useful for diagnoses and the biological evaluation and therapeutic implications of gliomas in this review.
Collapse
|
79
|
Combined effects of pericytes in the tumor microenvironment. Stem Cells Int 2015; 2015:868475. [PMID: 26000022 PMCID: PMC4427118 DOI: 10.1155/2015/868475] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022] Open
Abstract
Pericytes are multipotent perivascular cells whose involvement in vasculature development is well established. Evidences in the literature also suggest that pericytes display immune properties and that these cells may serve as an in vivo reservoir of stem cells, contributing to the regeneration of diverse tissues. Pericytes are also capable of tumor homing and are important cellular components of the tumor microenvironment (TME). In this review, we highlight the contribution of pericytes to some classical hallmarks of cancer, namely, tumor angiogenesis, growth, metastasis, and evasion of immune destruction, and discuss how collectively these hallmarks could be tackled by therapies targeting pericytes, providing a rationale for cancer drugs aiming at the TME.
Collapse
|
80
|
Wong SP, Rowley JE, Redpath AN, Tilman JD, Fellous TG, Johnson JR. Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol Ther 2015; 151:107-20. [PMID: 25827580 DOI: 10.1016/j.pharmthera.2015.03.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Regenerative medicine using mesenchymal stem cells for the purposes of tissue repair has garnered considerable public attention due to the potential of returning tissues and organs to a normal, healthy state after injury or damage has occurred. To achieve this, progenitor cells such as pericytes and bone marrow-derived mesenchymal stem cells can be delivered exogenously, mobilised and recruited from within the body or transplanted in the form organs and tissues grown in the laboratory from stem cells. In this review, we summarise the recent evidence supporting the use of endogenously mobilised stem cell populations to enhance tissue repair along with the use of mesenchymal stem cells and pericytes in the development of engineered tissues. Finally, we conclude with an overview of currently available therapeutic options to manipulate endogenous stem cells to promote tissue repair.
Collapse
Affiliation(s)
- Suet-Ping Wong
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jessica E Rowley
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andia N Redpath
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jessica D Tilman
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Tariq G Fellous
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jill R Johnson
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
81
|
van Dijk CGM, Nieuweboer FE, Pei JY, Xu YJ, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ, Verhaar MC, Cheng C. The complex mural cell: pericyte function in health and disease. Int J Cardiol 2015; 190:75-89. [PMID: 25918055 DOI: 10.1016/j.ijcard.2015.03.258] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
Abstract
Pericytes are perivascular cells that can be distinguished from vascular smooth muscle cells by their specific morphology and expression of distinct molecular markers. Found in the microvascular beds distributed throughout the body, they are well known for their regulation of a healthy vasculature. In this review, we examine the mechanism of pericyte support to vasomotion, and the known pathways that regulate pericyte response in angiogenesis and neovascular stabilization. We will also discuss the role of pericytes in vascular basement membrane and endothelial barrier function regulation. In contrast, recent findings have indicated that pericyte dysfunction, characterized by changes in pericyte contractility or pericyte loss of microvascular coverage, plays an important role in onset and progression of vascular-related and fibrogenic diseases. From a therapeutic point of view, pericytes have recently been identified as a putative pool of endogenous mesenchymal stem cells that could be activated in response to tissue injury to contribute to the regenerative process on multiple levels. We will discuss the mechanisms via which pericytes are involved in disease onset and development in a number of pathophysiological conditions, as well as present the evidence that supports a role for multipotent pericytes in tissue regeneration. The emerging field of pericyte research will not only contribute to the identification of new drug targets in pericyte dysfunction associated diseases, but may also boost the use of this cell type in future cell-based regenerative strategies.
Collapse
Affiliation(s)
- Christian G M van Dijk
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Frederieke E Nieuweboer
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Jia Yi Pei
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Yan Juan Xu
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Petra Burgisser
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
| | - Elise van Mulligen
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Hamid el Azzouzi
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Cardiovascular Research School COEUR, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Caroline Cheng
- Laboratory of Renal and Vascular Biology, Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands; Department of Cardiology, Cardiovascular Research School COEUR, Erasmus University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
82
|
Nicolosi PA, Dallatomasina A, Perris R. Theranostic impact of NG2/CSPG4 proteoglycan in cancer. Theranostics 2015; 5:530-44. [PMID: 25767619 PMCID: PMC4350014 DOI: 10.7150/thno.10824] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
NG2/CSPG4 is an unusual cell-membrane integral proteoglycan widely recognized to be a prognostic factor, a valuable tool for ex vivo and non-invasive molecular diagnostics and, by virtue of its tight association with malignancy, a tantalizing therapeutic target in several tumour types. Although the biology behind its involvement in cancer progression needs to be better understood, implementation of NG2/CSPG4 in the routine clinical practice is attainable and has the potential to contribute to an improved individualized management of cancer patients. In this context, its polymorphic nature seems to be particularly valuable in the effort to standardize informative diagnostic procedures and consolidate forcible immunotherapeutic treatment strategies. We discuss here the underpinnings for this potential and highlight the benefits of taking advantage of the intra-tumour and inter-patient variability in the regulation of NG2/CSPG4 expression. We envision that NG2/CSPG4 may effectively be exploited in therapeutic interventions aimed at averting resistance to target therapy agents and at interfering with secondary lesion formation and/or tumour recurrence.
Collapse
|
83
|
Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation 2015; 21:345-57. [PMID: 24267154 DOI: 10.1111/micc.12107] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
In pathological scenarios, such as tumor growth and diabetic retinopathy, blocking angiogenesis would be beneficial. In others, such as myocardial infarction and hypertension, promoting angiogenesis might be desirable. Due to their putative influence on endothelial cells, vascular pericytes have become a topic of growing interest and are increasingly being evaluated as a potential target for angioregulatory therapies. The strategy of manipulating pericyte recruitment to capillaries could result in anti- or proangiogenic effects. Our current understanding of pericytes, however, is limited by knowledge gaps regarding pericyte identity and lineage. To use a music analogy, this review is a "mash-up" that attempts to integrate what we know about pericyte functionality and expression with what is beginning to be elucidated regarding their regenerative potential. We explore the lingering questions regarding pericyte phenotypic identity and lineage. The expression of different pericyte markers (e.g., SMA, Desmin, NG2, and PDGFR-β) varies for different subpopulations and tissues. Previous use of these markers to identify pericytes has suggested potential phenotypic overlaps and plasticity toward other cell phenotypes. Our review chronicles the state of the literature, identifies critical unanswered questions, and motivates future research aimed at understanding this intriguing cell type and harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Molly R Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
84
|
Song N, Kou L, Lu XW, Sugawara A, Shimizu Y, Wu MK, Du L, Wang H, Sato S, Shen JF. The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes. Biochem Biophys Res Commun 2015; 457:479-84. [DOI: 10.1016/j.bbrc.2015.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/10/2015] [Indexed: 01/29/2023]
|
85
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015; 128:81-93. [PMID: 25236972 PMCID: PMC4200531 DOI: 10.1042/cs20140278] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perivascular multipotent cells, pericytes, contribute to the generation and repair of various tissues in response to injury. They are heterogeneous in their morphology, distribution, origin and markers, and elucidating their molecular and cellular differences may inform novel treatments for disorders in which tissue regeneration is either impaired or excessive. Moreover, these discoveries offer novel cellular targets for therapeutic approaches to many diseases. This review discusses recent studies that support the concept that pericyte subtypes play a distinctive role in myogenesis, neurogenesis, adipogenesis, fibrogenesis and angiogenesis.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
- Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina, Medical Center Boulevard, Winston Salem, NC 27157, U.S.A
| |
Collapse
|
86
|
Ortiz G, Salica JP, Chuluyan EH, Gallo JE. Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option? Biol Res 2014; 47:58. [PMID: 25723058 PMCID: PMC4335423 DOI: 10.1186/0717-6287-47-58] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is one of the most important causes of blindness. The underlying mechanisms of this disease include inflammatory changes and remodeling processes of the extracellular-matrix (ECM) leading to pericyte and vascular endothelial cell damage that affects the retinal circulation. In turn, this causes hypoxia leading to release of vascular endothelial growth factor (VEGF) to induce the angiogenesis process. Alpha-1 antitrypsin (AAT) is the most important circulating inhibitor of serine proteases (SERPIN). Its targets include elastase, plasmin, thrombin, trypsin, chymotrypsin, proteinase 3 (PR-3) and plasminogen activator (PAI). AAT modulates the effect of protease-activated receptors (PARs) during inflammatory responses. Plasma levels of AAT can increase 4-fold during acute inflammation then is so-called acute phase protein (APPs). Individuals with low serum levels of AAT could develop disease in lung, liver and pancreas. AAT is involved in extracellular matrix remodeling and inflammation, particularly migration and chemotaxis of neutrophils. It can also suppress nitric oxide (NO) by nitric oxide sintase (NOS) inhibition. AAT binds their targets in an irreversible way resulting in product degradation. The aim of this review is to focus on the points of contact between multiple factors involved in diabetic retinopathy and AAT resembling pleiotropic effects that might be beneficial.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Nanomedicine and Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires Pilar, Argentina. .,Ciudad Autónoma de Buenos Aires, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina.
| | - Juan P Salica
- Nanomedicine and Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires Pilar, Argentina.
| | - Eduardo H Chuluyan
- Departamento de Farmacología,Ciudad Autónoma de Buenos Aires, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Ciudad Autónoma de Buenos Aires, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina.
| | - Juan E Gallo
- Nanomedicine and Vision Group, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires Pilar, Argentina. .,Ciudad Autónoma de Buenos Aires, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina.
| |
Collapse
|
87
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 2014; 6:245. [PMID: 25278877 PMCID: PMC4166895 DOI: 10.3389/fnagi.2014.00245] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Maria L Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine Winston-Salem, NC, USA ; Neuroscience Program, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
88
|
Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res 2014; 51:247-58. [PMID: 25195856 DOI: 10.1159/000365149] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 06/07/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pericytes surround endothelial cells at the perivascular interface. Signaling between endothelial cells and pericytes is crucial for capillary homeostasis, as pericytes stabilize vessels and regulate many microvascular functions. Recently it has been shown that pericytes are able to detach from the vascular wall and contribute to fibrosis by becoming scar-forming myofibroblasts in many organs including the kidney. At the same time, the loss of pericytes within the perivascular compartment results in vulnerable capillaries which are prone to instability, pathological angiogenesis, and, ultimately, rarefaction. AIMS This review will give an overview of pericyte-endothelial cell interactions, summarize the signaling pathways that have been identified to be involved in pericyte detachment from the vascular wall, and present pathological endothelial responses in the context of disease of the kidney.
Collapse
Affiliation(s)
- Claudia Schrimpf
- Division of Vascular and Endovascular Surgery, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
89
|
Liu G, Meng C, Pan M, Chen M, Deng R, Lin L, Zhao L, Liu X. Isolation, Purification, and Cultivation of Primary Retinal Microvascular Pericytes: A Novel Model Using Rats. Microcirculation 2014; 21:478-89. [PMID: 24495210 DOI: 10.1111/micc.12121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Guanghui Liu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
- Department of Ophthalmology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Chun Meng
- Department of Bioengineering; College of Biological Science and Biotechnology; Fuzhou University; Fuzhou China
| | - Mingdong Pan
- Department of Ophthalmology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Meng Chen
- Department of Ophthalmology; Baylor College of Medicine; Houston Texas USA
| | - Ruzhi Deng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
| | - Ling Lin
- Department of Bioengineering; College of Biological Science and Biotechnology; Fuzhou University; Fuzhou China
| | - Li Zhao
- Department of Cardiology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Xiaoling Liu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
| |
Collapse
|
90
|
Endothelial PKCα-MAPK/ERK-phospholipase A2 pathway activation as a response of glioma in a triple culture model. A new role for pericytes? Biochimie 2014; 99:77-87. [DOI: 10.1016/j.biochi.2013.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
|
91
|
Muramatsu R, Yamashita T. Pericyte function in the physiological central nervous system. Neurosci Res 2014; 81-82:38-41. [PMID: 24486400 DOI: 10.1016/j.neures.2014.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/27/2013] [Accepted: 01/15/2014] [Indexed: 01/16/2023]
Abstract
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function.
Collapse
Affiliation(s)
- Rieko Muramatsu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
92
|
Yuan G, Zhang L, Yang G, Yang J, Wan C, Zhang L, Song G, Chen S, Chen Z. The distribution and ultrastructure of the forming blood capillaries and the effect of apoptosis on vascularization in mouse embryonic molar mesenchyme. Cell Tissue Res 2014; 356:137-45. [PMID: 24477797 DOI: 10.1007/s00441-013-1785-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
Vascularization is essential for organ and tissue development. Teeth develop through interactions between epithelium and mesenchyme. The developing capillaries in the enamel organ, the dental epithelial structure, occur simultaneously by mechanisms of vasculogenesis and angiogenesis at the onset of dentinogenesis. The vascular neoformation in the dental mesenchyme has been reported to start from the cap stage. However, the mechanisms of vascularization in the dental mesenchyme remain unknown. In the hope of understanding the mechanisms of the formation of dental mesenchymal vasculature, mouse lower molar germs from embryonic day (E) 13.5 to E16.5 were processed for immunostaining of CD31 and CD34, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and transmission electron microscopy (TEM). In addition, the role of apoptosis for the vascularization in dental mesenchyme was examined by in vitro culture of E14.0 lower molars in the presence of the apoptosis inhibitor (z-VAD-fmk) and a subsequent subrenal culture. Our results showed that CD31- and CD34-positive cells progressively entered the central part of the dental papilla from the peridental mesenchyme. For TEM, angioblasts, young capillaries with thick endothelium and endothelial cells containing vacuoles were observed in peripheral dental mesenchyme, suggesting vasculogenesis was taking place. The presence of lateral sprouting, cytoplasmic filopodia and transluminal bridges in the dental papilla suggested angiogenesis was also occurring. Inhibition of apoptosis delayed the angiogenic vascularization of the dental papilla. Therefore, these data demonstrated that molar mesenchyme is progressively vascularized by mechanisms of both vasculogenesis and angiogenesis and apoptosis partially contributes to the vascularization of the dental papilla.
Collapse
Affiliation(s)
- Guohua Yuan
- Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China, 430079
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Dore-Duffy P. Pericytes and adaptive angioplasticity: the role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK). Methods Mol Biol 2014; 1135:35-52. [PMID: 24510853 DOI: 10.1007/978-1-4939-0320-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The TNF superfamily member TWEAK has emerged as a pleiotropic cytokine that regulates many cellular functions that include immune/inflammatory activity, angiogenesis, cell proliferation, and fate. TWEAK through its inducible receptor, FGF-inducible molecule 14 (Fn14), can induce both beneficial and deleterious activity that has a profound effect on cell survival. Thus it is highly likely that TWEAK and Fn14 expressed by cells of the neurovascular unit help regulate and maintain vascular and tissue homeostasis. In this chapter we discuss the expression of TWEAK and Fn14 signaling in the cerebral microvascular pericyte. Pericytes are a highly enigmatic population of microvascular cells that are important in regulatory pathways that modulate physiological angiogenesis in response to chronic mild hypoxic stress. A brief introduction will identify the microvascular pericyte. A more detailed discussion of pericyte TWEAK signaling during adaptive angioplasticity will follow.
Collapse
Affiliation(s)
- Paula Dore-Duffy
- Division of Neuroimmunology, Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
94
|
Girolamo F, Dallatomasina A, Rizzi M, Errede M, Wälchli T, Mucignat MT, Frei K, Roncali L, Perris R, Virgintino D. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS One 2013; 8:e84883. [PMID: 24386429 PMCID: PMC3873429 DOI: 10.1371/journal.pone.0084883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/19/2013] [Indexed: 01/16/2023] Open
Abstract
NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating between phenotype-specific and neoplastic versus non-neoplastic variants of the PG, thus opening up vistas for more selective immunotherapeutic targeting of brain tumours.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Alice Dallatomasina
- COMT – Centre for Molecular and Translational Oncology and Department of Biosciences, University of Parma, Parma, Italy
| | - Marco Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Thomas Wälchli
- Brain Research Institute, University of Zurich, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Maria Teresa Mucignat
- S.O.C. for Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Aviano, Italy
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Luisa Roncali
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Roberto Perris
- COMT – Centre for Molecular and Translational Oncology and Department of Biosciences, University of Parma, Parma, Italy
- S.O.C. for Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Aviano, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail:
| |
Collapse
|
95
|
Rat choroidal pericytes as a target of the autonomic nervous system. Cell Tissue Res 2013; 356:1-8. [DOI: 10.1007/s00441-013-1769-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/11/2013] [Indexed: 02/04/2023]
|
96
|
Cellular kinetics of perivascular MSC precursors. Stem Cells Int 2013; 2013:983059. [PMID: 24023546 PMCID: PMC3760099 DOI: 10.1155/2013/983059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/13/2013] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.
Collapse
|
97
|
Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O. Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 2013; 22:2298-314. [PMID: 23517218 PMCID: PMC3730538 DOI: 10.1089/scd.2012.0647] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/20/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells ensure tissue regeneration, while overgrowth of adipogenic cells may compromise organ recovery and impair function. In myopathies and muscle atrophy associated with aging, fat accumulation increases dysfunction, and after chronic injury, the process of fatty degeneration, in which muscle is replaced by white adipocytes, further compromises tissue function and environment. Some studies suggest that pericytes may contribute to muscle regeneration as well as fat formation. This work reports the presence of two pericyte subpopulations in the skeletal muscle and characterizes their specific roles. Skeletal muscle from Nestin-GFP/NG2-DsRed mice show two types of pericytes, Nestin-GFP-/NG2-DsRed+ (type-1) and Nestin-GFP+/NG2-DsRed+ (type-2), in close proximity to endothelial cells. We also found that both Nestin-GFP-/NG2-DsRed+ and Nestin-GFP+/NG2-DsRed+ cells colocalize with staining of two pericyte markers, PDGFRβ and CD146, but only type-1 pericyte express the adipogenic progenitor marker PDGFRα. Type-2 pericytes participate in muscle regeneration, while type-1 contribute to fat accumulation. Transplantation studies indicate that type-1 pericytes do not form muscle in vivo, but contribute to fat deposition in the skeletal muscle, while type-2 pericytes contribute only to the new muscle formation after injury, but not to the fat accumulation. Our results suggest that type-1 and type-2 pericytes contribute to successful muscle regeneration which results from a balance of myogenic and nonmyogenic cells activation.
Collapse
MESH Headings
- Adipogenesis/genetics
- Animals
- Antigens/genetics
- Antigens/metabolism
- CD146 Antigen/genetics
- CD146 Antigen/metabolism
- Cell Lineage/genetics
- Endothelial Cells/cytology
- Female
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Nude
- Mice, Transgenic
- Muscle, Skeletal/cytology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/metabolism
- Nestin/genetics
- Nestin/metabolism
- Pericytes/cytology
- Pericytes/metabolism
- Pericytes/transplantation
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Regeneration/genetics
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Alexander Birbrair
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grigori N. Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- NBIC, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Akiva Mintz
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Department of Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
98
|
Angiogenic endothelial cell invasion into fibrin is stimulated by proliferating smooth muscle cells. Microvasc Res 2013; 90:40-7. [PMID: 23886898 DOI: 10.1016/j.mvr.2013.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/28/2013] [Indexed: 11/21/2022]
Abstract
These studies aimed to determine the effect of smooth muscle cells (SMCs) on angiogenic behavior of endothelial cells (ECs) within fibrin hydrogels, an extracellular matrix (ECM) commonly used in tissue engineering. We developed a 3-D, fibrin-based co-culture assay of angiogenesis consisting of aggregates of SMCs with ECs seeded onto the aggregates' surface. Using digital fluorescence micrography, EC matrix invasion was quantified by average length of sprouts (ALS) and density of sprout formation (DSF). We demonstrated that ECs and SMCs co-invade into the ECM in close proximity to one another. ECs that were co-cultured with SMCs demonstrated increased invasion compared to ECs that were cultured alone at all time points. At Day 19, the ALS of ECs in co-culture was 327+/-58μm versus 70+/-11μm of ECs cultured alone (p=.01). The DSF of co-cultured ECs was also significantly greater than that of ECs cultured alone (p=.007 on Day 19). This appeared to be a function of both increased EC invasion as well as improved persistence of EC sprout networks. At 7days, ECs in co-culture with proliferation-inhibited SMCs previously treated with Mitomycin-C (MMC) demonstrated significantly attenuated sprouting compared to ECs co-cultured with SMCs that were untreated with MMC (82+/-14μm versus 205+/-32μm; p<.05). In assays in which multiple co-culture aggregates were cultured within a single hydrogel, we observed directional invasion of sprouts preferentially towards the other aggregates within the hydrogel. In co-culture assays without early EC/SMC contact, the ALS of ECs cultured in the presence of SMCs was significantly greater than those cultured in the absence of SMCs by Day 3 (320+/-21μm versus 187+/-16μm; p<.005). We conclude that SMCs augment EC matrix invasion into 3-D fibrin hydrogels, at least in part resulting from SMC proliferative and invasive activities. Directed invasion between co-culture aggregates and augmented angiogenesis in the absence of early contact suggests a paracrine mechanism for the observed results.
Collapse
|
99
|
Ozerdem U, Wojcik EM, Duan X, Erşahin Ç, Barkan GA. Prognostic utility of quantitative image analysis of microvascular density in prostate cancer. Pathol Int 2013; 63:277-82. [DOI: 10.1111/pin.12056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/12/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Ugur Ozerdem
- Department of Pathology; Loyola University Medical Center; Chicago; Illinois; USA
| | - Eva M. Wojcik
- Department of Pathology; Loyola University Medical Center; Chicago; Illinois; USA
| | - Xiuzhen Duan
- Department of Pathology; Loyola University Medical Center; Chicago; Illinois; USA
| | - Çağatay Erşahin
- Department of Pathology; Loyola University Medical Center; Chicago; Illinois; USA
| | - Güliz A. Barkan
- Department of Pathology; Loyola University Medical Center; Chicago; Illinois; USA
| |
Collapse
|
100
|
Arjaans M, Oude Munnink TH, Oosting SF, Terwisscha van Scheltinga AGT, Gietema JA, Garbacik ET, Timmer-Bosscha H, Lub-de Hooge MN, Schröder CP, de Vries EGE. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res 2013; 73:3347-55. [PMID: 23580572 DOI: 10.1158/0008-5472.can-12-3518] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In solid tumors, angiogenesis occurs in the setting of a defective vasculature and impaired lymphatic drainage that is associated with increased vascular permeability and enhanced tumor permeability. These universal aspects of the tumor microenvironment can have a marked influence on intratumoral drug delivery that may often be underappreciated. In this study, we investigated the effect of blood vessel normalization in tumors by the antiangiogenic drug bevacizumab on antibody uptake by tumors. In mouse xenograft models of human ovarian and esophageal cancer (SKOV-3 and OE19), we evaluated antibody uptake in tumors by positron emission tomographic imaging 24 and 144 hours after injection of (89)Zr-trastuzumab (SKOV-3 and OE19), (89)Zr-bevacizumab (SKOV-3), or (89)Zr-IgG (SKOV-3) before or after treatment with bevacizumab. Intratumor distribution was assessed by fluorescence microscopy along with mean vessel density (MVD) and vessel normalization. Notably, bevacizumab treatment decreased tumor uptake and intratumoral accumulation compared with baseline in the tumor models relative to controls. Bevacizumab treatment also reduced MVD in tumors and increased vessel pericyte coverage. These findings are clinically important, suggesting caution in designing combinatorial trials with therapeutic antibodies due to a possible reduction in tumoral accumulation that may be caused by bevacizumab cotreatment.
Collapse
Affiliation(s)
- Marlous Arjaans
- Department of Medical Oncology, University Medical Center Groningen, P.O. Box 30.001, 9700RB Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|