51
|
Flach CF, Qadri F, Bhuiyan TR, Alam NH, Jennische E, Holmgren J, Lönnroth I. Differential expression of intestinal membrane transporters in cholera patients. FEBS Lett 2007; 581:3183-8. [PMID: 17575980 DOI: 10.1016/j.febslet.2007.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/28/2007] [Accepted: 06/01/2007] [Indexed: 01/03/2023]
Abstract
Vibrio cholerae causes the cholera disease through secretion of cholera toxin (CT), resulting in severe diarrhoea by modulation of membrane transporters in the intestinal epithelium. Genes encoding membrane-spanning transporters identified as being differentially expressed during cholera disease in a microarray screening were studied by real-time PCR, immunohistochemistry and in a CaCo-2 cell model. Two amino acid transporters, SLC7A11 and SLC6A14, were upregulated in acute cholera patients compared to convalescence. Five other transporters were downregulated; aquaporin 10, SLC6A4, TRPM6, SLC23A1 and SLC30A4, which have specificity for water, serotonin (5-HT), magnesium, vitamin C and zinc, respectively. The majority of these changes appear to be attempts of the host to counteract the secretory response. Our results also support the concept that epithelial cells are involved in 5-HT signalling during acute cholera.
Collapse
Affiliation(s)
- Carl-Fredrik Flach
- Institute of Biomedicine, Department of Microbiology and Immunology, and Göteborg University Vaccine Research Institute (GUVAX), Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
52
|
Lorrot M, Vasseur M. How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J 2007; 4:31. [PMID: 17376232 PMCID: PMC1839081 DOI: 10.1186/1743-422x-4-31] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 03/21/2007] [Indexed: 01/02/2023] Open
Abstract
Rotavirus is the major cause of infantile gastroenteritis and each year causes 611,000 deaths worldwide. The virus infects the mature enterocytes of the villus tip of the small intestine and induces a watery diarrhea. Diarrhea can occur with no visible tissue damage and, conversely, the histological lesions can be asymptomatic. Rotavirus impairs activities of intestinal disaccharidases and Na+-solute symports coupled with water transport. Maldigestion of carbohydrates and their accumulation in the intestinal lumen as well as malabsorption of nutrients and a concomitant inhibition of water reabsorption can lead to a malabsorption component of diarrhea. Since the discovery of the NSP4 enterotoxin, diverse hypotheses have been proposed in favor of an additional secretion component in the pathogenesis of diarrhea. Rotavirus induces a moderate net chloride secretion at the onset of diarrhea, but the mechanisms appear to be quite different from those used by bacterial enterotoxins that cause pure secretory diarrhea. Rotavirus failed to stimulate Cl- secretion in crypt, whereas it stimulated Cl- reabsorption in villi, questioning, therefore, the origin of net Cl- secretion. A solution to this riddle was that intestinal villi do in fact secrete chloride as a result of rotavirus infection. Also, the overall chloride secretory response is regulated by a phospholipase C-dependent calcium signaling pathway induced by NSP4. However, the overall response is weak, suggesting that NSP4 may exert both secretory and subsequent anti-secretory actions, as did carbachol, hence limiting Cl- secretion. All these characteristics provide the means to make the necessary functional distinction between viral NSP4 and bacterial enterotoxins.
Collapse
Affiliation(s)
- Mathie Lorrot
- Hôpital Robert Debré, Service de Pédiatrie Générale, Paris, F-75019, France
| | - Monique Vasseur
- INSERM, UMR-S756, Université Paris-Sud 11, Faculté de Pharmacie, Châtenay-Malabry, F-92296, France
| |
Collapse
|
53
|
Feng Z, Carlson D, Poulsen HD. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets. Comp Biochem Physiol A Mol Integr Physiol 2006; 145:328-33. [PMID: 16962349 DOI: 10.1016/j.cbpa.2006.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 06/26/2006] [Accepted: 07/06/2006] [Indexed: 01/06/2023]
Abstract
In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.
Collapse
Affiliation(s)
- Zike Feng
- Ministry of Agriculture Feed Industry Centre, No.2 Yuanmingyuan West Road, Beijing, Post Code 100094, PR China
| | | | | |
Collapse
|
54
|
Thacker M, Zhang FL, Jungnickel SR, Furness JB. Binding of isolectin IB4 to neurons of the mouse enteric nervous system. J Mol Histol 2006; 37:61-8. [PMID: 16773225 DOI: 10.1007/s10735-006-9033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
The plant lectin, IB4, binds to primary afferent neurons of dorsal root and trigeminal ganglia, where it is selective for nociceptive neurons. In the enteric nervous system of the guinea-pig IB4 labels intrinsic primary afferent neurons, which are believed to have roles as nociceptors. Here we investigate whether IB4 binding is also a marker of intrinsic primary afferent neurons in the mouse. Neurons that bound IB4 were common in the enteric plexuses of the small intestine and colon. Labeled neurons were rare in the stomach, and absent from the esophagus and gallbladder. Binding was to the cell surface, initial parts of axons and to clumps in the cytoplasm. Similar binding occurred on small and medium sized neurons of dorsal root, nodose and trigeminal ganglia. In the enteric nervous system, IB4 revealed large round or oval (type II) neurons, type I neurons with prominent laminar dendrites and small neurons of myenteric ganglia. The type II neurons were immunoreactive for calretinin, and some type I neurons were immunoreactive for nitric oxide synthase. Most neurons in the submucosal ganglia bound IB4, and some of these were vasoactive intestinal peptide immunoreactive. Thus IB4 binds to specific subgroups of enteric neurons in the mouse. These include intrinsic primary afferent neurons, but other neurons, including secretomotor neurons, are labeled. The results suggest that IB4 is not a specific label for enteric nociceptive neurons.
Collapse
Affiliation(s)
- Michelle Thacker
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
55
|
Furness JB. Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. Auton Neurosci 2006; 125:81-5. [PMID: 16476573 DOI: 10.1016/j.autneu.2006.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 01/14/2006] [Accepted: 01/14/2006] [Indexed: 01/23/2023]
Abstract
Information about the conditions of all tissues in the body is conveyed to the central nervous system through afferent neurons. Uniquely amongst peripheral organs, the intestine has numerous additional afferent neurons, intrinsic primary afferent neurons that have their cell bodies and processes in the enteric plexuses and do not project to the central nervous system. They detect conditions within the gut and convey that information to intrinsic reflex pathways that are also entirely contained inside the gut wall. Intrinsic primary afferent neurons respond both to the presence of material in the gut lumen and to distension of the gut wall and initiate reflex changes in contractile activity, fluid transport across the mucosa and local blood flow. They also function as nociceptors that initiate tissue-protective propulsive and secretory reflexes to rid the gut of pathogens. The regulation of excitability of intrinsic primary afferent neurons is through multiple ion channels and ion channel regulators, and their excitability is critical to setting the strength of enteric reflexes. The intestine also provides afferent signals to sympathetic pre-vertebral ganglia. The signals are conveyed from the gut by intestinofugal neurons that have their cell bodies within enteric ganglia and form synapses in the sympathetic ganglia. Intestinofugal neurons form parts of the afferent limbs of entero-enteric inhibitory reflexes. Because the unusual afferent neurons of the small intestine and colon make their synaptic connections outside the central nervous system, the neurons and the reflex centres that they affect are potential targets for non-central penetrant therapeutic compounds.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
56
|
Sánchez J, Holmgren J. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Curr Opin Immunol 2005; 17:388-98. [PMID: 15963708 DOI: 10.1016/j.coi.2005.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/03/2005] [Indexed: 11/18/2022]
Abstract
Recent work has provided new insights into the pathogenesis of the potentially life-threatening diarrheas caused by Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC): a new mechanism (post-translational degradation), which is involved in the control of cholera toxin expression, has been discovered. Recent evidence also suggests that vibrios upregulate cholera toxin expression in response to intestinal fluid components, and enterotoxin-carrying bacterial outer membrane vesicles might have a function in ETEC pathogenesis. An important role of the environment is supported by the correlation between cholera incidence and elevated sea surface temperature, which supports the notion that the zooplankton is a V. cholerae reservoir. Additionally, environmental lytic cholera phages could influence cholera seasonality by 'terminating' the seasonal epidemic. Finally, the strong herd immunity elicited by an oral cholera vaccine indicates that cholera vaccination could have a significant public health impact.
Collapse
Affiliation(s)
- Joaquín Sánchez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP62210, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
57
|
Linard C, Marquette C, Clarençon D, Galonnier M, Mathieu J, Pennequin A, Benderitter M, Gourmelon P. Acute ileal inflammatory cytokine response induced by irradiation is modulated by subdiaphragmatic vagotomy. J Neuroimmunol 2005; 168:83-95. [PMID: 16095725 DOI: 10.1016/j.jneuroim.2005.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/11/2005] [Indexed: 12/22/2022]
Abstract
Neural involvement plays a role in the genesis of the peripheral inflammatory process that contributes to the irradiation intestinal disorders. However, little is known about the role of vagus nerve in modulating inflammatory process in rat. Here, we have shown that the NF-kappaB activation was consistent with the acute overexpression of pro-inflammatory cytokines (IL- 1beta, TNF-alpha, IL-6) at 3, 6, and 12 h induced by whole-body irradiation (8 Gy). Subdiaphragmatic vagotomy reduced NF-kappaB activation and cytokine transcription in the early period post-irradiation. In contrast, vagotomy amplified overexpression of irradiation-induced anti-cytokines (IL-10, IL-1Ra) and of receptors involved in anti-inflammatory effects (IL- 1RII, TNFRII). These results show that the vagus nerve is a pro-inflammatory pathway in early irradiation-induced intestinal inflammation.
Collapse
Affiliation(s)
- Christine Linard
- Institute for Radioprotection and Nuclear Safety, IRSN, B.P. no17, F-92262 Fontenay-aux- Roses Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Sagar L, Sehgal R, Ojha S. Evaluation of antimotility effect of Lantana camara L. var. acuelata constituents on neostigmine induced gastrointestinal transit in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2005; 5:18. [PMID: 16168064 PMCID: PMC1249555 DOI: 10.1186/1472-6882-5-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 09/17/2005] [Indexed: 11/29/2022]
Abstract
Background Lantana camara L. (Verbenaceae), a widely growing shrub which is toxic to some animal species, has been used in the traditional medicine for treating many ailments. The purpose of the present study was to evaluate the antimotility effects of Lantana camara leaf constituents in mice intestine. Methods Evaluation of antimotility activity was done in intestine of mice treated with Lantana camara leaf powder, Lantana camara methanolic extract (LCME), lantadene A, neostigmine and neostigmine + LCME. Neostigmine was used as a promotility agent. Intestinal motility was assessed by charcoal meal test and gastrointestinal transit rate was expressed as the percentage of the distance traversed by the charcoal divided by the total length of the small intestine. The antidiarrheal effect of LCME was studied against castor oil induced diarrhea model in mice. Results The intestinal transit with LCME at a dose of 500 mg/kg was 26.46% whereas the higher dose (1 g/kg) completely inhibited the transit of charcoal in normal mice. The % intestinal transit in the neostigmine pretreated groups was 24 and 11 at the same doses respectively. When the plant extracts at 125 and 250 mg/kg doses were administered intraperitonealy, there was significant reduction in fecal output compared with castor oil treated mice. At higher doses (500 and 1000 mg/kg), the fecal output was almost completely stopped. Conclusion The remarkable antimotility effect of Lantana camara methanolic extract against neostigmine as promotility agent points towards an anticholinergic effect due to Lantana camara constituents and attests to its possible utility in secretory and functional diarrheas and other gastrointestinal disorders. This effect was further confirmed by significant inhibition of castor oil induced diarrhea in mice by various doses of LCME.
Collapse
Affiliation(s)
- Lenika Sagar
- Department of Biochemistry, Panjab University, Chandigarh – 160 014 India
| | - Rajesh Sehgal
- Department of Biochemistry, Panjab University, Chandigarh – 160 014 India
| | - Sudarshan Ojha
- Department of Biochemistry, Panjab University, Chandigarh – 160 014 India
| |
Collapse
|
59
|
Kim M, Wasling P, Xiao MY, Jennische E, Lange S, Hanse E. Antisecretory factor modulates GABAergic transmission in the rat hippocampus. ACTA ACUST UNITED AC 2005; 129:109-18. [PMID: 15927705 DOI: 10.1016/j.regpep.2005.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 01/12/2005] [Accepted: 01/27/2005] [Indexed: 11/16/2022]
Abstract
Antisecretory Factor (AF) is a protein that has been implicated in the suppression of intestinal hypersecretion and inflammation. Intestinal secretion and inflammation are partly under local and central neural control raising the possibility that AF might exert its action by modulating neural signaling. In the present study we have investigated whether AF can modulate central synaptic transmission. Evoked glutamatergic and GABAergic synaptic transmissions were investigated using extracellular recordings in the CA1 region of hippocampal slices from adult rats. AF (0.5 microg/ml) suppressed GABA(A)-mediated synaptic transmission by about 40% while having no effect on glutamatergic transmission. Per oral administration of cholera toxin as well as feeding of rats with a diet containing hydrothermally processed cereals, known to upregulate endogenous AF plasma activity, mimicked the effect of exogenously administered AF on hippocampal GABAergic transmission. Our results identify AF as a neuromodulator and further raise the possibility that the hippocampus and AF are involved in a gut-brain loop controlling intestinal secretion and inflammation.
Collapse
Affiliation(s)
- Malin Kim
- Institute of Physiology and Pharmacology, Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
60
|
Hind A, Migliori M, Thacker M, Staikopoulos V, Nurgali K, Chiocchetti R, Furness JB. Primary afferent neurons intrinsic to the guinea-pig intestine, like primary afferent neurons of spinal and cranial sensory ganglia, bind the lectin, IB4. Cell Tissue Res 2005; 321:151-7. [PMID: 15912404 DOI: 10.1007/s00441-005-1129-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 03/30/2005] [Indexed: 11/26/2022]
Abstract
The plant lectin, IB4, binds to the surfaces of primary afferent neurons of the dorsal root and trigeminal ganglia and is documented to be selective for nociceptive neurons. Physiological data suggest that the intrinsic primary afferent neurons within the intestine are also nociceptors. In this study, we have compared IB4 binding to each of these neuron types in the guinea-pig. The only neurons in the intestine to be readily revealed by IB4 binding have Dogiel-type-II morphology; these neurons have been previously identified as intrinsic primary afferent neurons. Most of the neurons that are IB4-positive in the myenteric plexus are calbindin-immunoreactive, whereas those in the submucosal ganglia are immunoreactive for NeuN. The neurons that bind IB4 strongly have a similar appearance in enteric, dorsal root and trigeminal ganglia. Binding is to the cell surface, to the first part of axons and to cytoplasmic organelles. A low level of binding was found in the extracellular matrix. A few other neurons in all ganglia exhibit faint staining with IB4. Strongly reactive neurons are absent from the gastric corpus. Thus, IB4 binding reveals primary afferent neurons with similar morphologies, patterns of binding and physiological roles in enteric, dorsal root and trigeminal ganglia.
Collapse
Affiliation(s)
- Anderson Hind
- Department of Anatomy & Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
61
|
Chambers JD, Bornstein JC, Sjövall H, Thomas EA. Recurrent networks of submucous neurons controlling intestinal secretion: a modeling study. Am J Physiol Gastrointest Liver Physiol 2005; 288:G887-96. [PMID: 15637177 DOI: 10.1152/ajpgi.00491.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Secretomotor neurons, immunoreactive for vasoactive intestinal peptide (VIP), are important in controlling chloride secretion in the small intestine. These neurons form functional synapses with other submucosal VIP neurons and transmit via slow excitatory postsynaptic potentials (EPSPs). Thus they form a recurrent network with positive feedback. Intrinsic sensory neurons within the submucosa are also likely to form recurrent networks with positive feedback, provide substantial output to VIP neurons, and receive input from VIP neurons. If positive feedback within recurrent networks is sufficiently large, then neurons in the network respond to even small stimuli by firing at their maximum possible rate, even after the stimulus is removed. However, it is not clear whether such a mechanism operates within the recurrent networks of submucous neurons. We investigated this question by performing computer simulations of realistic models of VIP and intrinsic sensory neuron networks. In the expected range of electrophysiological properties, we found that activity in the VIP neuron network decayed slowly after cessation of a stimulus, indicating that positive feedback is not strong enough to support the uncontrolled firing state. The addition of intrinsic sensory neurons produced a low stable firing rate consistent with the common finding that basal secretory activity is, in part, neurogenic. Changing electrophysiological properties enables these recurrent networks to support the uncontrolled firing state, which may have implications with hypersecretion in the presence of enterotoxins such as cholera-toxin.
Collapse
Affiliation(s)
- Jordan D Chambers
- Deptartment of Physiology, University of Melbourne, Parkville Victoria 3010, Australia.
| | | | | | | |
Collapse
|
62
|
Abstract
Visceral hypersensitivity is considered one of the causes of functional gastrointestinal disorders. The objectives of this review are to provide a practical description of neuroanatomy and physiology of gut sensation, to describe the diverse tests of visceral sensation and the potential role of brain imaging to further our understanding of visceral sensitivity in health and disease. Changes in motor function in the gut may influence sensory levels, eg, during contractions or as a result of changes in viscus compliance. New insights on sensory end organs, such as intraganglionic laminar endings, and basic neurophysiologic studies showing afferent firing during changes in stretch rather than tension illustrate the importance of different types of stimuli, not just tension, to stimulate afferent sensation. These insights provide the basis for understanding visceral sensation in health and disease, which will be extensively discussed in subsequent articles.
Collapse
Affiliation(s)
- Silvia Delgado-Aros
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
63
|
Khan WI, Collins SM. Immune-mediated alteration in gut physiology and its role in host defence in nematode infection. Parasite Immunol 2005; 26:319-26. [PMID: 15679628 DOI: 10.1111/j.0141-9838.2004.00715.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the mucosal immune system of the gastrointestinal tract in nematode infection results in altered intestinal physiology, which includes changes in intestinal motility and mucus production. These changes are considered to be under direct immunological control rather than a non-specific consequence of the inflammatory reaction to the infective agent. However, little is known about the immunological basis for the changes in intestinal physiology accompanying nematode infection, or the precise role of these changes in host defence, which remains an important area to explore. In this review we describe the mechanisms by which the immune response to nematode infection influences the changes in two major cells of intestinal physiology, namely smooth muscle and goblet cells, and how these changes in intestinal physiology contribute to the host defence. Data clearly demonstrate that the T helper (Th) 2 type immune response generated by nematode infection plays an important role in the development of infection-induced intestinal muscle hypercontractility and goblet cell hyperplasia and that these immune-mediated changes in intestinal physiology are associated with worm expulsion. These observations strongly suggest that intestinal muscle contractility, goblet cell hyperplasia and worm expulsion share a common immunological basis and may be causally related. These data not only provide insights into host defence in nematode infection in the context of muscle function and goblet cell response, but also have broad implications in elucidating the pathophysiology of a wide range of gastrointestinal disorders associated with altered gut physiology.
Collapse
Affiliation(s)
- W I Khan
- Intestinal Disease Research Program, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
64
|
Schultz-Cherry S. Guest Editorial:Update on Enteric Viruses. Viral Immunol 2005; 18:2-3. [PMID: 15802948 DOI: 10.1089/vim.2005.18.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
65
|
Abstract
In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors. Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.
Collapse
Affiliation(s)
- A A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, via D Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
66
|
Berberov EM, Zhou Y, Francis DH, Scott MA, Kachman SD, Moxley RA. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 2004; 72:3914-24. [PMID: 15213135 PMCID: PMC427467 DOI: 10.1128/iai.72.7.3914-3924.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains that produce multiple enterotoxins are important causes of severe dehydrating diarrhea in human beings and animals, but the relative importance of these enterotoxins in the pathogenesis is poorly understood. Gnotobiotic piglets were used to study the importance of heat-labile enterotoxin (LT) in infection with an ETEC strain that produces multiple enterotoxins. LT(-) (DeltaeltAB) and complemented mutants of an F4(+) LT(+) STb(+) EAST1(+) ETEC strain were constructed, and the virulence of these strains was compared in gnotobiotic piglets expressing receptors for F4(+) fimbria. Sixty percent of the piglets inoculated with the LT(-) mutant developed severe dehydrating diarrhea and septicemia compared to 100% of those inoculated with the nalidixic acid-resistant (Nal(r)) parent and 100% of those inoculated with the complemented mutant strain. Compared to piglets inoculated with the Nal(r) parent, the mean rate of weight loss (percent per hour) of those inoculated with the LT(-) mutant was 67% lower (P < 0.05) and that of those inoculated with the complemented strain was 36% higher (P < 0.001). Similarly, piglets inoculated with the LT(-) mutant had significant reductions in the mean bacterial colony count (CFU per gram) in the ileum; bacterial colonization scores (square millimeters) in the jejunum and ileum; and clinical pathology parameters of dehydration, electrolyte imbalance, and metabolic acidosis (P < 0.05). These results indicate the significance of LT to the development of severe dehydrating diarrhea and postdiarrheal septicemia in ETEC infections of swine and demonstrate that EAST1, LT, and STb may be concurrently expressed by porcine ETEC strains.
Collapse
Affiliation(s)
- Emil M Berberov
- 111 Veterinary Basic Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
67
|
Furness JB, Jones C, Nurgali K, Clerc N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 2004; 72:143-64. [PMID: 15063530 DOI: 10.1016/j.pneurobio.2003.12.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Accepted: 12/03/2003] [Indexed: 02/08/2023]
Abstract
Intrinsic primary afferent neurons (IPANs) of the enteric nervous system are quite different from all other peripheral neurons. The IPANs are transducers of physiological stimuli, including movement of the villi or distortion of the mucosa, contraction of intestinal muscle and changes in the chemistry of the contents of the gut lumen. They are the first neurons in intrinsic reflexes that influence the patterns of motility, secretion of fluid across the mucosal epithelium and local blood flow in the small and large intestines. In the guinea pig small intestine, where they have been characterized in detail, IPANs have Dogiel type II morphology, that is they are large round or oval neurons with multiple processes, some of which end close to the luminal surface of the intestine, and some of which form synapses with enteric interneurons, motor neurons and with other IPANs. The IPANs have well-defined ionic currents through which their excitability, and their functions in enteric nerve circuits, is determined. These include voltage-gated Na(+) and Ca(2+) currents, a long lasting calcium-activated K(+) current, and a hyperpolarization-activated cationic current. The IPANs exhibit long-term changes in their states of excitation that can be induced by extended periods of low frequency activity in synaptic inputs and by inflammatory mediators, either applied directly or released during an inflammatory challenge. The IPANs may be involved in pathological changes in enteric function following inflammation.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Vic. 3010, Australia.
| | | | | | | |
Collapse
|
68
|
Abstract
Diarrheal diseases are among the most devastating illnesses globally, but the introduction of oral rehydration therapy has reduced mortality due to diarrhea from >5 million children, under the age of 5, in 1978 to 1.3 million in 2002. Variations of this simple therapy of salts and sugars are prevalent in traditional remedies in cultures world-wide, but only in the past four decades have the scientific bases for these remedies begun to be elucidated. This review aims to provide a broad understanding of the cellular basis of oral rehydration therapy. The features integral to the success of oral rehydration therapy are active glucose transport in the small intestine, commensal bacteria, and short-chain fatty acid transport in the colon. The review examines these processes and their regulation and considers new approaches that might supplement oral rehydration therapy in controlling diarrheal diseases.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| |
Collapse
|
69
|
Abstract
Intrinsic primary afferent neurones of the intestine are specialized neurones that encode information about the state of the intestine by transducing mechanical and chemical stimuli that reflect tension in the gut wall and the chemical nature of its contents. They connect with interneurones and motor neurones in the gut to form the circuits of intrinsic muscle motor, secretomotor and vasomotor reflexes. A large range of ionic currents occur in these neurones. The neurones have voltage-activated inward sodium currents (both tetrodotoxin-sensitive and tetrodotoxin-insensitive) and inward calcium currents. Calcium entering during the action potential activates a slow after hyperpolarizing potassium current that has a profound influence on subsequent action potential firing. They also exhibit a prominent hyperpolarization-activated nonspecific cation current. The excitability of these neurones and sensory transduction are altered when the gut is inflamed. Changed excitability can persist after the inflammatory state has subsided. Intrinsic primary afferent neurones are thus important, both to the normal physiology and to pathophysiology of the small and large intestines.
Collapse
Affiliation(s)
- N Clerc
- Laboratory ITIS, UMR CNRS-University Méditerranée, Marseille, France.
| | | |
Collapse
|
70
|
Abstract
Despite much progress in the understanding of pathogenesis and of management, diarrhoeal illnesses remain one of the most important causes of global childhood mortality and morbidity. Infections account for most illnesses, with pathogens employing ingenious mechanisms to establish disease. In the developed world, an upsurge in immune-mediated gut disorders might have resulted from a disruption of normal bacterial-epithelial cross-talk and impaired maturation of the gut's immune system. Oral rehydration therapies are the mainstay of management of gastroenteritis, and their composition continues to improve. Malnutrition remains the major adverse prognostic indicator for diarrhoea-related mortality, emphasising the importance of nutrition in early management. Drugs are of little use, except for specific indications although new agents that target mechanisms of secretory diarrhoea show promise, as do probiotics. However, preventive strategies on a global scale might ultimately hold the greatest potential to reduce the burden of diarrhoeal disease. These strategies include vaccines and, most importantly, policies to address persisting inequalities between the developed and developing worlds with respect to nutrition, sanitation, and access to safe drinking water.
Collapse
Affiliation(s)
- Nikhil Thapar
- Centre for Adult and Paediatric Gastroenterology, Institute of Cell and Molecular Science, Barts and the London, Queen Mary School of Medicine and Dentistry, University of London, London, UK.
| | | |
Collapse
|
71
|
Abstract
The enteric nervous system is involved in most of the physiological and pathophysiological processes in the gastrointestinal tract. This Minireview is part two of three and describes the role of the enteric nervous system in gastrointestinal functions (motility, exocrine and endocrine secretions, blood flow, and immune processes) in health and some disease states. In this context, the functional importance of the enteric nervous system for food intake, the gall bladder, and pancreas will be addressed. In specific, dysmotility, diarrhoea, constipation, non-occlusive intestinal ischaemia (intestinal angina), inflammation, cholelithiasis, cholecystitis, postcholecystectomy syndrome, and pancreatitis can be treated with neuroactive pharmacological agents. For example, serotonin receptor type four agonists can be used for the treatment of constipation, while nitric oxide synthesis inhibitors can be employed for the treatment of intestinal angina.
Collapse
Affiliation(s)
- Mark Berner Hansen
- Department of Gastrointestinal Surgery K, H:S Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| |
Collapse
|
72
|
Affiliation(s)
- Michael Field
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| |
Collapse
|
73
|
Field M. Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 2003; 111:931-43. [PMID: 12671039 PMCID: PMC152597 DOI: 10.1172/jci18326] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael Field
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| |
Collapse
|