51
|
Igawa H, Takahashi M, Shirasaki M, Kakegawa K, Kina A, Ikoma M, Aida J, Yasuma T, Okuda S, Kawata Y, Noguchi T, Yamamoto S, Fujioka Y, Kundu M, Khamrai U, Nakayama M, Nagisa Y, Kasai S, Maekawa T. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition. Bioorg Med Chem 2016; 24:2486-2503. [PMID: 27112449 DOI: 10.1016/j.bmc.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
Abstract
Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats.
Collapse
Affiliation(s)
- Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mikio Shirasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Asato Kina
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuneo Yasuma
- CMC Center, Takeda Pharmaceutical Co., Ltd., 17-85, Jusohonmachi 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Shoki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshihiro Noguchi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasushi Fujioka
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mrinalkanti Kundu
- TCG Lifesciences Ltd., Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Uttam Khamrai
- TCG Lifesciences Ltd., Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Co., Ltd., 12-10, Nihonbashi 2-Chome, Chuo-ku, Tokyo 103-8686, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
52
|
Hamamoto A, Yamato S, Katoh Y, Nakayama K, Yoshimura K, Takeda S, Kobayashi Y, Saito Y. Modulation of primary cilia length by melanin-concentrating hormone receptor 1. Cell Signal 2016; 28:572-84. [PMID: 26946173 DOI: 10.1016/j.cellsig.2016.02.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
Melanin-concentrating hormone (MCH) receptor 1 (MCHR1) is a class A G-protein-coupled receptor (GPCR). The MCH-MCHR1 system has been implicated in the regulation of feeding, emotional processing, and sleep in rodents. Recent work revealed that MCHR1 is selectively expressed in neuronal primary cilia of the central nervous system. Cilia have various chemosensory functions in many types of cell, and ciliary dysfunction is associated with ciliopathies such as polycystic kidney disease and obesity. Although dynamic modulation of neuronal cilia length is observed in obese mice, the functional interaction of neuronal ciliary GPCR and its endogenous ligand has not yet been elucidated. We report here that MCH treatment significantly reduced cilia length in hTERT-RPE1 cells (hRPE1 cells) transfected with MCHR1. Quantitative analyses indicated that MCH-induced cilia shortening progressed in a dose-dependent manner with an EC50 lower than 1nM when cells were treated for 6h. Although the assembly and disassembly of primary cilia are tightly coupled to the cell cycle, cell cycle reentry was not a determinant of MCH-induced cilia shortening. We confirmed that MCH elicited receptor internalization, Ca(2+) mobilization, ERK and Akt phosphorylation, and inhibition of cyclic AMP accumulation in MCHR1-expressing hRPE1 cells. Among these diverse pathways, we revealed that Gi/o-dependent Akt phosphorylation was an important component in the initial stage of MCH-induced cilia length shortening. Furthermore, induction of fewer cilia by Kif3A siRNA treatment significantly decreased the MCH-mediated phosphorylation of Akt, indicating the functional importance of the MCHR1-Akt pathway in primary cilia. Taken together, the present data suggest that the MCH-MCHR1 axis may modulate the sensitivity of cells to external environments by controlling the cilia length. Therefore, further characterization of MCHR1 as a ciliary GPCR will provide a potential molecular mechanism to link cilia length control with obesity.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Shogo Yamato
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| |
Collapse
|
53
|
Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:321-9. [PMID: 25689818 PMCID: PMC4537397 DOI: 10.1016/j.pnpbp.2015.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
The hypothalamus is now known to regulate alcohol intake in addition to its established role in food intake, in part through neuromodulatory neurochemicals termed neuropeptides. Certain orexigenic neuropeptides act in the hypothalamus to promote alcohol drinking, although they affect different aspects of the drinking response. These neuropeptides, which include galanin, the endogenous opioid enkephalin, and orexin/hypocretin, appear to stimulate alcohol intake not only through mechanisms that promote food intake but also by enhancing reward and reinforcement from alcohol. Moreover, these neuropeptides participate in a positive feedback relationship with alcohol, whereby they are upregulated by alcohol intake to promote even further consumption. They contrast with other orexigenic neuropeptides, such as melanin-concentrating hormone and neuropeptide Y, which promote alcohol intake under limited circumstances, are not consistently stimulated by alcohol, and do not enhance reward. They also contrast with neuropeptides that can be anorexigenic, including the endogenous opioid dynorphin, corticotropin-releasing factor, and melanocortins, which act in the hypothalamus to inhibit alcohol drinking as well as reward and therefore counter the ingestive drive promoted by orexigenic neuropeptides. Thus, while multiple hypothalamic neuropeptides may work together to regulate different aspects of the alcohol drinking response, excessive signaling from orexigenic neuropeptides or inadequate signaling from anorexigenic neuropeptides can therefore allow alcohol drinking to become dysregulated.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
,Corresponding author at: Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA. Tel.: +1 212 327 8378; fax: +1 212 327 8447
| |
Collapse
|
54
|
Igawa H, Takahashi M, Kakegawa K, Kina A, Ikoma M, Aida J, Yasuma T, Kawata Y, Ashina S, Yamamoto S, Kundu M, Khamrai U, Hirabayashi H, Nakayama M, Nagisa Y, Kasai S, Maekawa T. Melanin-Concentrating Hormone Receptor 1 Antagonists Lacking an Aliphatic Amine: Synthesis and Structure-Activity Relationships of Novel 1-(Imidazo[1,2-a]pyridin-6-yl)pyridin-2(1H)-one Derivatives. J Med Chem 2016; 59:1116-39. [PMID: 26736071 DOI: 10.1021/acs.jmedchem.5b01704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aiming to discover melanin-concentrating hormone receptor 1 (MCHR1) antagonists with improved safety profiles, we hypothesized that the aliphatic amine employed in most antagonists reported to date could be removed if the bicyclic motif of the compound scaffold interacted with Asp123 and/or Tyr272 of MCHR1. We excluded aliphatic amines from our compound designs, with a cutoff value of pK(a) < 8, and explored aliphatic amine-free MCHR1 antagonists in a CNS-oriented chemical space limited by four descriptors (TPSA, ClogP, MW, and HBD count). Screening of novel bicyclic motifs with high intrinsic binding affinity for MCHR1 identified the imidazo[1,2-a]pyridine ring (represented in compounds 6a and 6b), and subsequent cyclization of the central aliphatic amide linkage led to the discovery of a potent, orally bioavailable MCHR1 antagonist 4-[(4-chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-a]pyridin-6-yl)pyridin-2(1H)-one 10a. It exhibited low potential for hERG inhibition and phospholipidosis induction as well as sufficient brain concentration to exert antiobesity effects in diet-induced obese rats.
Collapse
Affiliation(s)
- Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keiko Kakegawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Asato Kina
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jumpei Aida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuneo Yasuma
- CMC Center, Takeda Pharmaceutical Co., Ltd. , 17-85, Jusohonmachi 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shuntaro Ashina
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mrinalkanti Kundu
- TCG Lifesciences Ltd. , Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Uttam Khamrai
- TCG Lifesciences Ltd. , Block BN, Plot 7, Saltlake Electronics Complex, Sector V, Kolkata 700091, India
| | - Hideki Hirabayashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Co., Ltd. 12-10, Nihonbashi 2-Chome, Chuo-ku, Tokyo 103-8686, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Maekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Shonan Research Center , 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
55
|
Skrapits K, Kanti V, Savanyú Z, Maurnyi C, Szenci O, Horváth A, Borsay BÁ, Herczeg L, Liposits Z, Hrabovszky E. Lateral hypothalamic orexin and melanin-concentrating hormone neurons provide direct input to gonadotropin-releasing hormone neurons in the human. Front Cell Neurosci 2015; 9:348. [PMID: 26388735 PMCID: PMC4559643 DOI: 10.3389/fncel.2015.00348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/20/2015] [Indexed: 12/03/2022] Open
Abstract
Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections.
Collapse
Affiliation(s)
- Katalin Skrapits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Vivien Kanti
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Zsófia Savanyú
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Csilla Maurnyi
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Ottó Szenci
- Department and Clinic for Production Animals, Faculty of Veterinary Science, Szent István University Üllő, Hungary ; MTA-SZIE Large Animal Clinical Research Group, Dóra major Üllő, Hungary
| | - András Horváth
- Department and Clinic for Production Animals, Faculty of Veterinary Science, Szent István University Üllő, Hungary
| | - Beáta Á Borsay
- Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen Debrecen, Hungary
| | - László Herczeg
- Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen Debrecen, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
56
|
Understanding the comparative molecular field analysis (CoMFA) in terms of molecular quantum similarity and DFT-based reactivity descriptors. J Mol Model 2015; 21:156. [DOI: 10.1007/s00894-015-2690-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
|
57
|
Mohammed GF, Gomaa AHA, Al-Dhubaibi MS. Highlights in pathogenesis of vitiligo. World J Clin Cases 2015; 3:221-30. [PMID: 25789295 PMCID: PMC4360494 DOI: 10.12998/wjcc.v3.i3.221] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/27/2014] [Accepted: 01/09/2015] [Indexed: 02/05/2023] Open
Abstract
Vitiligo is a common pigmentary disorder. Many studies across decades and all over the world have attempted to illustrate the pathogenesis behind it; however, the pathogenesis of vitiligo remains elusive. This review article, we present the findings behind the most and updated theories behind this psychologically debilitating and disfiguring disease. The discussion begun with the role of genetic predisposition followed by neural theory first proposed in the 1950s. We highlight the autoimmune hypothesis, followed by the reactive oxygen species model, zinc-α2-glycoprotein deficiency hypothesis, viral theory, intrinsic theory and biochemical, molecular and cellular alterations accounting for loss of functioning melanocytes in vitiligo. Many theories were elaborated to clarify vitiligo pathogenesis. It is a multifactorial disease involving the interplay of several factors. Future research is needed to clarify the interaction of these factors for better understanding of vitiligo pathogenesis and subsequent successful treatment.
Collapse
|
58
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
59
|
Kobayashi Y, Hamamoto A, Hirayama T, Saito Y. Molecular cloning, expression, and signaling pathway of four melanin-concentrating hormone receptors from Xenopus tropicalis. Gen Comp Endocrinol 2015; 212:114-23. [PMID: 24662390 DOI: 10.1016/j.ygcen.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/15/2022]
Abstract
Melanin-concentrating hormone (MCH) mainly regulates feeding in mammals and pigmentation in teleosts. It acts via two G-protein-coupled receptors, MCH receptor 1 (MCHR1) and MCHR2. Although many studies exploring the MCH system in teleosts and mammals have been carried out, studies on other organisms are limited. In this study, we cloned and characterized four MCHR subtypes from the diploid species Xenopus tropicalis (X-MCHRs; X-MCHR1a, R1b, R2a, and R2b). According to a phylogenetic tree of the X-MCHRs, X-MCHR1a and R2a are close to mammalian MCHRs, while X-MCHR1b and R2b are close to teleostean MCHRs. We previously reported that the G-protein coupling capacity of the MCHR subtypes differed between mammals (R1: Gαi/o and Gαq; R2: Gαq) and teleosts (R1: Gαq; R2: Gαi/o and Gαq) in mammalian cell-based assays. By using Ca(2+) mobilization assays with pertussis toxin in CHO dhfr(-) cells, we found that X-MCHR1a promiscuously coupled to both Gαi/o and Gαq, while X-MCHR1b and R2a exclusively coupled to Gαq. However, no Ca(2+) influx was detected in cells transfected with X-MCHR2b. Reverse transcription-PCR showed that the X-MCHR mRNAs were expressed in various tissues. In particular, both X-MCHR1b and R2b were exclusively found in melanophores of the dorsal skin. In skin pigment migration assays, melanophores were weakly aggregated at low concentrations but dispersed at high concentrations of MCH, suggesting possible interactions between X-MCHR1b and R2b for the regulation of body color. These findings demonstrate that X. tropicalis has four characteristic MCHRs and will be useful for elucidating the nature of MCHR evolution among vertebrates.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Tomo Hirayama
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|
60
|
Hamamoto A, Kobayashi Y, Saito Y. Identification of amino acids that are selectively involved in Gi/o activation by rat melanin-concentrating hormone receptor 1. Cell Signal 2015; 27:818-27. [PMID: 25617691 DOI: 10.1016/j.cellsig.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 02/01/2023]
Abstract
Many G-protein-coupled receptors (GPCRs) are known to functionally couple to multiple G-protein subfamily members. Although promiscuous G-protein coupling enables GPCRs to mediate diverse signals, only a few GPCRs have been identified with differential determinants for coupling to distinct Gα proteins. Mammalian melanin-concentrating hormone receptor 1 (MCHR1) couples to dual G-protein subfamilies. However, the selectivity mechanisms between MCHR1 and different subtypes of Gα proteins are unclear. Our previous studies demonstrated that mammalian MCHR1 couples to both Gi/o and Gq, whereas goldfish MCHR1 exclusively couples to Gq. In this study, we analyzed multiple sequence alignments between rat and goldfish MCHR1s, and designed three multisubstituted mutants of rat MCHR1 by replacing corresponding residues with those in goldfish MCHR1, focusing on regions around the cytosolic intracellular loops. By measurement of intracellular Ca(2+) mobilization, we found that two MCHR1 mutants, i2_6sub and i3_6sub, which contained six simultaneously substituted residues in the second intracellular loop or a combination of substituted residues in the third intracellular loop and fifth transmembrane domain, respectively, significantly reduced Gi/o-sensitive pertussis toxin responsiveness without altering Gq-mediated activity. Analyses of 10 other substitutions revealed that the multiple substitutions in i2_6sub and i3_6sub were necessary for Gi/o-selective responses. As judged by Gi/o-dependent GTPγS binding and cyclic AMP assays, i2_6sub and i3_6sub elicited phenotypes for impaired Gi/o-mediated signaling. We also monitored the dynamic mass redistribution (DMR) in living cells, which reveals receptor activity as an optical trace containing activation of all GPCR coupling classes. Cells transfected with i2_6sub or i3_6sub exhibited reduced Gi/o-mediated DMR responses compared with those transfected with MCHR1. These data suggest that two different regions independently affect the Gi/o-protein preference, and that multiple residues comprise a conformation favoring Gi/o-protein coupling and subsequently result in Gi/o-selective signaling.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
61
|
Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2015; 8:244. [PMID: 25620917 PMCID: PMC4287014 DOI: 10.3389/fnsys.2014.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/12/2014] [Indexed: 01/22/2023] Open
Abstract
Neurons containing orexin (hypocretin), or melanin concentrating hormone (MCH) are intermingled with each other in the perifornical and lateral hypothalamus. Each is a separate and distinct neuronal population, but they project to similar target areas in the brain. Orexin has been implicated in regulating arousal since loss of orexin neurons is associated with the sleep disorder narcolepsy. Microinjections of orexin into the brain or optogenetic stimulation of orexin neurons increase waking. Orexin neurons are active in waking and quiescent in sleep, which is consistent with their role in promoting waking. On the other hand, the MCH neurons are quiet in waking but active in sleep, suggesting that they could initiate sleep. Recently, for the first time the MCH neurons were stimulated optogenetically and it increased sleep. Indeed, optogenetic activation of MCH neurons induced sleep in both mice and rats at a circadian time when they should be awake, indicating the powerful effect that MCH neurons have in suppressing the wake-promoting effect of not only orexin but also of all of the other arousal neurotransmitters. Gamma-Aminobutyric acid (GABA) is coexpressed with MCH in the MCH neurons, although MCH is also inhibitory. The inhibitory tone of the MCH neurons is opposite to the excitatory tone of the orexin neurons. We hypothesize that strength in activity of each determines wake vs. sleep.
Collapse
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Dheeraj Pelluru
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Priyattam J Shiromani
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA ; Ralph H. Johnson VA Medical Center, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
62
|
|
63
|
Sakurai T, Ogawa K, Ishihara Y, Kasai S, Nakayama M. The MCH(1) receptor, an anti-obesity target, is allosterically inhibited by 8-methylquinoline derivatives possessing subnanomolar binding and long residence times. Br J Pharmacol 2014; 171:1287-98. [PMID: 24670150 DOI: 10.1111/bph.12529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/16/2013] [Accepted: 11/14/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanin-concentrating hormone receptor 1 (MCH1 receptor) antagonists are being considered as anti-obesity agents. The present study reports a new class of MCH1 receptor antagonists with an 8-methylquinoline scaffold. The molecular mechanism of MCH1 receptor blockade by these antagonists was examined. EXPERIMENTAL APPROACH The pharmacological properties of the 8-methylquinolines as exemplified by MQ1 were evaluated by use of multiple biophysical and cell-based functional assays. KEY RESULTS Multiple signalling pathways for Gαi and Gαq , and β-arrestin were inhibited by MQ1. Furthermore, MQ1 produced an insurmountable antagonism, causing a rightward shift of the curve for concentration-dependent binding of MCH along with a progressive reduction of the maximal response. The dissociation kinetics for MQ1 were determined from washout experiments as well as by affinity selection-MS. In short, MQ1 was shown to be a slowly dissociating reversible MCH1 receptor blocker with a low Koff value. CONCLUSION AND IMPLICATIONS This is the first time that a slowly dissociating negative allosteric modulator of the MCH1 receptor has been demonstrated to inhibit the numerous signalling pathways of this receptor. The characteristics of MQ1 are superior and distinct from previously reported MCH1 receptor antagonists, making members of this chemotype attractive as drug candidates.
Collapse
Affiliation(s)
- T Sakurai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
64
|
Wu M, Li Y, Fu X, Wang J, Zhang S, Yang L. Profiling the interaction mechanism of quinoline/quinazoline derivatives as MCHR1 antagonists: an in silico method. Int J Mol Sci 2014; 15:15475-502. [PMID: 25257526 PMCID: PMC4200842 DOI: 10.3390/ijms150915475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/30/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022] Open
Abstract
Melanin concentrating hormone receptor 1 (MCHR1), a crucial regulator of energy homeostasis involved in the control of feeding and energy metabolism, is a promising target for treatment of obesity. In the present work, the up-to-date largest set of 181 quinoline/quinazoline derivatives as MCHR1 antagonists was subjected to both ligand- and receptor-based three-dimensional quantitative structure–activity (3D-QSAR) analysis applying comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The optimal predictable CoMSIA model exhibited significant validity with the cross-validated correlation coefficient (Q2) = 0.509, non-cross-validated correlation coefficient (R2ncv) = 0.841 and the predicted correlation coefficient (R2pred) = 0.745. In addition, docking studies and molecular dynamics (MD) simulations were carried out for further elucidation of the binding modes of MCHR1 antagonists. MD simulations in both water and lipid bilayer systems were performed. We hope that the obtained models and information may help to provide an insight into the interaction mechanism of MCHR1 antagonists and facilitate the design and optimization of novel antagonists as anti-obesity agents.
Collapse
Affiliation(s)
- Mingwei Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Jinghui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
65
|
Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014; 34:6896-909. [PMID: 24828644 DOI: 10.1523/jneurosci.5344-13.2014] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide produced in neurons sparsely distributed in the lateral hypothalamic area. Recent studies have reported that MCH neurons are active during rapid eye movement (REM) sleep, but their physiological role in the regulation of sleep/wakefulness is not fully understood. To determine the physiological role of MCH neurons, newly developed transgenic mouse strains that enable manipulation of the activity and fate of MCH neurons in vivo were generated using the recently developed knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction system. The activity of these cells was controlled by optogenetics by expressing channelrhodopsin2 (E123T/T159C) or archaerhodopsin-T in MCH neurons. Acute optogenetic activation of MCH neurons at 10 Hz induced transitions from non-REM (NREM) to REM sleep and increased REM sleep time in conjunction with decreased NREM sleep. Activation of MCH neurons while mice were in NREM sleep induced REM sleep, but activation during wakefulness was ineffective. Acute optogenetic silencing of MCH neurons using archaerhodopsin-T had no effect on any vigilance states. Temporally controlled ablation of MCH neurons by cell-specific expression of diphtheria toxin A increased wakefulness and decreased NREM sleep duration without affecting REM sleep. Together, these results indicate that acute activation of MCH neurons is sufficient, but not necessary, to trigger the transition from NREM to REM sleep and that MCH neurons also play a role in the initiation and maintenance of NREM sleep.
Collapse
|
66
|
Orlando T, Paolini A, Pineider F, Clementi E, Pasi F, Guari Y, Larionova J, Sacchi L, Nano R, Corti M, Lascialfari A. NMR as evaluation strategy for cellular uptake of nanoparticles. NANO LETTERS 2014; 14:3959-3965. [PMID: 24913622 DOI: 10.1021/nl501282x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Advanced nanostructured materials, such as gold nanoparticles, magnetic nanoparticles, and multifunctional materials, are nowadays used in many state-of-the-art biomedical application. However, although the engineering in this field is very advanced, there remain some fundamental problems involving the interaction mechanisms between nanostructures and cells or tissues. Here we show the potential of (1)H NMR in the investigation of the uptake of two different kinds of nanostructures, that is, maghemite and gold nanoparticles, and of a chemotherapy drug (Temozolomide) in glioblastoma tumor cells. The proposed experimental protocol provides a new way to investigate the general problem of cellular uptake for a variety of biocompatible nanostructures and drugs.
Collapse
Affiliation(s)
- Tomas Orlando
- Department of Physics and INSTM Unit, University of Pavia , Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
The melanin-concentrating hormone receptors: neuronal and non-neuronal functions. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S31-6. [PMID: 27152164 DOI: 10.1038/ijosup.2014.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide highly conserved in vertebrates and was originally identified as a skin-paling factor in Teleosts. In fishes, MCH also participates in the regulation of the stress-response and feeding behaviour. Mammalian MCH is a hypothalamic neuropeptide that displays multiple functions, mostly controlling feeding behaviour and energy homeostasis. Transgenic mouse models and pharmacological studies have shown the importance of the MCH system as a potential target in the treatment of appetite disorders and obesity as well as anxiety and psychiatric diseases. Two G-protein-coupled receptors (GPCRs) binding MCH have been characterized so far. The first, named MCH-R1 and also called SLC1, was identified through reverse pharmacology strategies by several groups as a cognate receptor of MCH. This receptor is expressed at high levels in many brain areas of rodents and primates and is also expressed in peripheral organs, albeit at a lower rate. A second receptor, designated MCH-R2, exhibited 38% identity to MCH-R1 and was identified by sequence analysis of the human genome. Interestingly, although MCH-R2 orthologues were also found in fishes, dogs, ferrets and non-human primates, this MCH receptor gene appeared either lacking or non-functional in rodents and lagomorphs. Both receptors are class I GPCRs, whose main roles are to mediate the actions of peptides and neurotransmitters in the central nervous system. However, examples of action of MCH on neuronal and non-neuronal cells are emerging that illustrate novel MCH functions. In particular, the functionality of endogenously expressed MCH-R1 has been explored in human neuroblastoma cells, SK-N-SH and SH-SY5Y cells, and in non-neuronal cell types such as the ependymocytes. Indeed, we have identified mitogen-activated protein kinase (MAPK)-dependent or calcium-dependent signalling cascades that ultimately contributed to neurite outgrowth in neuroblastoma cells or to modulation of ciliary beating in ependymal cells. The putative role of MCH on cellular shaping and plasticity on one side and volume transmission on the other must be now considered.
Collapse
|
68
|
Philippe C, Haeusler D, Fuchshuber F, Spreitzer H, Viernstein H, Hacker M, Wadsak W, Mitterhauser M. Comparative autoradiographic in vitro investigation of melanin concentrating hormone receptor 1 ligands in the central nervous system. Eur J Pharmacol 2014; 735:177-83. [PMID: 24780646 DOI: 10.1016/j.ejphar.2014.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
The MCHR1 is an interesting pharmacological and pharmaceutical target, due to its involvement in pathologies as diabetes, gut inflammation and adiposity. in vivo PET-studies of the MCHR1 in energy homeostasis and diabetes could be of great value for deeper understanding of endocrinological hormone status and consequential pharmacological interactions. Furthermore, PET-tracers would facilitate compound dose selection of MCHR1 antagonists for treatment. Therefore, we developed two potential PET-tracers, [(11)C]SNAP-7941 and [(18)F]FE@SNAP, for the in vivo visualization of this receptor. Aim of this study was a preclinical in vitro evaluation of both unlabeled ligands. Therefore, a comparative autoradiographic investigation on CNS (coronal rat brain and 4 different human brain regions) and peripheral tissues (rat tongue as target and rat testes as non-target region) was conducted. Competition experiments, using the two radioligands [(125)I]-MCH and [(125)I]-S36057, were performed with selective and specific MCHR1 ligands as PMC-3886, a MCHR1 agonist, SNAP-7941 and FE@SNAP, two MCHR1 antagonists. Additionally, immunohistochemical staining with a specific MCHR1 antibody was performed. Specific binding was found in all tissues known to express the MCHR1 as human and rat CNS and peripheral rat tongue tissue. No specific binding was found in the non-target region of rat testes. MCHR1 antibody staining complemented the outcome of the autoradiographic experiments. The compounds SNAP-7941 and FE@SNAP were generally comparable with PMC-3886. Hence, the in vitro autoradiographic study of the unlabeled compounds SNAP-7941 and FE@SNAP further qualifies the potential of the PET-tracers [(11)C]SNAP-7941 and [(18)F]FE@SNAP as useful MCHR1 PET-tracers.
Collapse
Affiliation(s)
- Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Fuchshuber
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Helmut Spreitzer
- Department of Drug and Natural Product Synthesis, University of Vienna, 1090 Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Divison of Nuclear Medicine, Radiopharmacy and Experimental Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
69
|
Calu DJ, Chen YW, Kawa AB, Nair SG, Shaham Y. The use of the reinstatement model to study relapse to palatable food seeking during dieting. Neuropharmacology 2014; 76 Pt B:395-406. [PMID: 23660229 PMCID: PMC3785569 DOI: 10.1016/j.neuropharm.2013.04.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/29/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Abstract
Excessive consumption of unhealthy foods is a major public health problem. While many people attempt to control their food intake through dieting, many relapse to unhealthy eating habits within a few months. We have begun to study this clinical condition in rats by adapting the reinstatement model, which has been used extensively to study relapse to drug seeking. In our adaptation of the relapse model, reinstatement of palatable food seeking by exposure to food-pellet priming, food-associated cues, or stress is assessed in food-restricted (to mimic dieting) rats after operant food-pellet self-administration training and subsequent extinction of the food-reinforced responding. In this review, we first outline the clinical problem and discuss a recent study in which we assessed the predictive validity of the reinstatement model for studying relapse to food seeking during dieting by using the anorexigenic drug fenfluramine. Next, we summarize results from our initial studies on the role of several stress- and feeding-related peptides (corticotropin-releasing factor, hypocretin, melanin-concentrating hormone, peptide YY3-36) in reinstatement of palatable food seeking. We then present results from our studies on the role of dopamine and medial prefrontal cortex in stress-induced reinstatement of food seeking. We conclude by discussing potential clinical implications. We offer two main conclusions: (1) the food reinstatement model is a simple, reliable, and valid model to study mechanisms of relapse to palatable food seeking during dieting, and to identify medications to prevent this relapse; (2) mechanisms of relapse to food seeking are often dissociable from mechanisms of ongoing food intake. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Donna J Calu
- Behavioral Neuroscience Branch, Intramural Research Program, NIDA/NIH, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
70
|
Chee MJS, Pissios P, Prasad D, Maratos-Flier E. Expression of melanin-concentrating hormone receptor 2 protects against diet-induced obesity in male mice. Endocrinology 2014; 155:81-8. [PMID: 24169555 PMCID: PMC3868808 DOI: 10.1210/en.2013-1738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide that is a ligand for two subtypes of MCH receptors, MCHR1 and MCHR2. MCHR1 is universally expressed in mammals ranging from rodents to humans, but the expression of MCHR2 is substantially restricted. In mammals, MCHR2 has been defined in primates as well as other species such as cats and dogs but is not seen in rodents. Although the role of MCHR1 in mediating the actions of MCH on energy balance is clearly defined using mouse models, the role of MCHR2 is harder to characterize because of its limited expression. To determine any potential role of MCHR2 in energy balance, we generated a transgenic MCHR1R2 mouse model, where human MCHR2 is coexpressed in MCHR1-expressing neurons. As shown previously, control wild-type mice expressing only native MCHR1 developed diet-induced obesity when fed a high-fat diet. In contrast, MCHR1R2 mice had lower food intake, leading to their resistance to diet-induced obesity. Furthermore, we showed that MCH action is altered in MCHR1R2 mice. MCH treatment in wild-type mice inhibited the activation of the immediate-early gene c-fos, and coexpression of MCHR2 reduced the inhibitory actions of MCHR1 on this pathway. In conclusion, we developed an experimental animal model that can provide insight into the action of MCHR2 in the central nervous system and suggest that some actions of MCHR2 oppose the endogenous actions of MCHR1.
Collapse
Affiliation(s)
- Melissa J S Chee
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | | | | | | |
Collapse
|
71
|
Lim CJ, Lee HI, Kim N, Lee BH, Oh KS, Yi KY. 4-Aminophthalazin-1(2H)-one Derivatives as Melanin Concentrating Hormone Receptor 1 (MCH-R1) Antagonists. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
72
|
Chee MJS, Pissios P, Maratos-Flier E. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J Comp Neurol 2013; 521:2208-34. [PMID: 23605441 DOI: 10.1002/cne.23273] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 01/16/2023]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance; thus, mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expresses cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin, but neither orexin nor MCH neurons, expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons.
Collapse
Affiliation(s)
- Melissa J S Chee
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
73
|
Saito Y, Hamamoto A, Kobayashi Y. Regulated Control of Melanin-Concentrating Hormone Receptor 1 through Posttranslational Modifications. Front Endocrinol (Lausanne) 2013; 4:154. [PMID: 24155742 PMCID: PMC3800845 DOI: 10.3389/fendo.2013.00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/07/2013] [Indexed: 12/19/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that plays an important role in feeding behavior. It activates two G-protein-coupled receptors, MCHR1 and MCHR2, of which MCHR1 is the primary regulator of food intake and energy homeostasis in rodents. In mammalian cells transfected with MCHR1, MCH is able to activate multiple signaling pathways including calcium mobilization, extracellular signal-regulated kinase activation, and inhibition of cyclic AMP generation through Gi/o- and Gq-coupled pathways. Further evidence suggests that MCHR1 is regulated through posttranslational modifications, which control its intracellular localization and provide appropriate cellular responses involving G-protein signaling. This review summarizes the current data on the control of MCHR1 function through glycosylation and phosphorylation, as related to cell function. Especially, a series of mutagenesis study highlights the importance of complete glycosylation of MCHR1 for efficient trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Yumiko Saito, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan e-mail:
| | - Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
74
|
Preclinical in vitro & in vivo evaluation of [11C]SNAP-7941 – the first PET tracer for the melanin concentrating hormone receptor 1. Nucl Med Biol 2013; 40:919-25. [DOI: 10.1016/j.nucmedbio.2013.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/16/2013] [Accepted: 05/28/2013] [Indexed: 11/22/2022]
|
75
|
Abstract
Many molecules are involved in the regulation of feeding behavior, and they and their receptors are located in the brain hypothalamus and adipocytes. On the basis of evidence suggesting an association between the brain and adipose tissue, we propose the concept of the brain-adipose axis. This model consists of (l) the expression of endogenous molecules and/or their receptors in the hypothalamus and peripheral adipose tissue, (2) the function of these molecules as appetite regulators in the brain, (3) their existence in the general circulation as secreted proteins and (4) the physiological affects of these molecules on fat cell size and number. These molecules can be divided into two anorexigenic and orexigenic classes. In adipose tissue, all orexigenic molecules possess adipogenic activity, and almost all anorexigenic molecules suppress fat cell proliferation. Although the manner, in which they present in the circulating blood connect the brain and peripheral adipocytes, remains to be well-organized, these observations suggest the positive feedback axis affecting molecules in the hypothalamus and adipose tissue. Analysis of the disturbance and dysregulation of this axis might promote the development of new anti-obesity drugs useful in treating the metabolic syndrome.
Collapse
Affiliation(s)
- Hiroyuki Shimizu
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | |
Collapse
|
76
|
Role of melanin-concentrating hormone in the nucleus accumbens shell in rats behaviourally sensitized to methamphetamine. Int J Neuropsychopharmacol 2013; 16:1767-80. [PMID: 23449013 DOI: 10.1017/s1461145713000072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide and its receptor is extensively expressed throughout the brain. MCH has been suggested to regulate the rewarding and reinforcing effects of psychostimulants by potentiating the dopaminergic system within the midbrain. Moreover, MCH and its receptor can regulate ERK activity. The present study investigated the role of MCH in the nucleus accumbens (NAc) in rats behaviourally sensitized to methamphetamine (Meth). We found that the development of Meth-induced locomotor sensitization was attenuated by MCH infused into the NAc shell but not core. Moreover, the elevation of ERK phosphorylation in the NAc shell induced by Meth was inhibited by locally infused MCH. Infusion of the MCH receptor 1 (MCHR1) antagonist SNAP 94847 into the NAc shell but not core augmented the initiation of locomotor sensitization and amplitude of elevated phosphorylated ERK levels induced by Meth. The expression of Meth-induced locomotor sensitization and ERK alterations after 1 wk withdrawal were not affected by either MCH or SNAP 94847 infused into the NAc shell or core. These results indicate that MCH in the NAc shell plays a critical role in the development but not expression of Meth-induced locomotor sensitization in rats, which might be mediated by the ERK signalling pathway. Our study suggests that MCH might be a potential target for the treatment of Meth addiction.
Collapse
|
77
|
Lim CJ, Kim JY, Lee BH, Oh KS, Yi KY. 2-Heteroaryl Benzimidazole Derivatives as Melanin Concentrating Hormone Receptor 1 (MCH-R1) Antagonists. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
78
|
Abstract
BACKGROUND Vitiligo is a commonly encountered pigmentary disorder. Numerous studies and investigations from all over the world have attempted to determine the mechanisms behind this disease; however, the pathogenesis of vitiligo remains elusive. OBJECTIVE n this comprehensive review article, we present the findings behind the five overarching theories of what causes this disfiguring and psychologically debilitating disease. METHOD We begin our discussion with the role of genetic predisposition and move onward to the neural theory first proposed in the 1950s. Next we discuss the autoimmune hypothesis, followed by the reactive oxygen species model, and conclude by describing the findings of the more recent melanocytorrhagy hypothesis. CONCLUSION Although the exact pathogenesis of vitiligo is uncertain, each of these theories likely plays a role. Understanding each theory would pave the way for therapeutic advances for this disease.
Collapse
Affiliation(s)
- Neel Malhotra
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
79
|
Nagata A, Hamamoto A, Horikawa M, Yoshimura K, Takeda S, Saito Y. Characterization of ciliary targeting sequence of rat melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 2013; 188:159-65. [PMID: 23467069 DOI: 10.1016/j.ygcen.2013.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Melanin-concentrating hormone (MCH) is the natural peptide ligand for MCHR1 and MCHR2, which belong to the G protein-coupled receptor (GPCR) superfamily. The MCH-MCHR1 system is involved in the regulation of feeding, energy homeostasis and emotional processing in rodents. Recently, MCHR1 expression was discovered in neuronal immotile primary cilia of the central nervous system in mice. The cilium has an important chemosensory function in many types of cell and ciliary dysfunction is associated with cliopathies such as polycystic kidney disease, retinal dystrophy, and obesity. The targeting sequence of ciliary membrane proteins is thought to be unique. Although these sequences have been predicted in the cytoplasmic third loop and/or C-terminus of GPCRs, little is known about the characteristics of MCHR1. We thus explored the molecular mechanisms of MCHR1 targeting by transiently expressing a series of MCHR1 mutants into ciliated hRPE1 cells and evaluated the effects of these mutations on the ciliary localization of the heterologous receptor. This approach demonstrated that an Ala-to-Gly mutation (A242G) within the third intracellular loop induced a significant reduction in ciliary localization of the receptor without affecting the ciliogenesis. In contrast, no C-terminal truncation mutant had any effect on ciliary localization or cilia length. This study provides a potential molecular link between defective cilia and clinical manifestations such as obesity.
Collapse
Affiliation(s)
- Asami Nagata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama, Hiroshima 739-8521, Japan
| | | | | | | | | | | |
Collapse
|
80
|
Qian Y, Conde-Knape K, Erickson SD, Falcioni F, Gillespie P, Hakimi I, Mennona F, Ren Y, Salari H, So SS, Tilley JW. Potent MCH-1 receptor antagonists from cis-1,4-diaminocyclohexane-derived indane analogs. Bioorg Med Chem Lett 2013; 23:4216-20. [DOI: 10.1016/j.bmcl.2013.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 11/15/2022]
|
81
|
Philippe C, Nics L, Zeilinger M, Schirmer E, Spreitzer H, Karanikas G, Lanzenberger R, Viernstein H, Wadsak W, Mitterhauser M. Preparation and First Preclinical Evaluation of [(18)F]FE@SNAP: A Potential PET Tracer for the Melanin-Concentrating Hormone Receptor-1 (MCHR1). Sci Pharm 2013; 81:625-39. [PMID: 24106662 PMCID: PMC3791928 DOI: 10.3797/scipharm.1306-02] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
The melanin-concentrating hormone (MCH) system is a new target for the treatment of human disorders. Since the knowledge of the MCH system’s involvement in a variety of pathologies (obesity, diabetes, and deregulation of metabolic feedback mechanism) is based on in vitro or preclinical studies, a suitable positron emission tomography (PET) tracer needs to be developed. We herein present the preparation and first preclinical evaluation of [18F]FE@SNAP – a new PET tracer for MCH receptor-1 (MCHR1). The synthesis was performed using a microfluidic device. Preclinical evaluation included binding affinity, plasma stability, plasma free fraction, stability against the cytochrome P-450 (CYP450) system using liver microsomes, stability against carboxyl-esterase, and methods to assess the penetration of the blood-brain barrier (BBB) such as logD analysis and immobilized artificial membrane (IAM) chromatography. Levels at 374 ± 202 MBq [18F]FE@SNAP were obtained after purification. The obtained Kd value of [18F]FE@SNAP was 2.9 nM. [18F]FE@SNAP evinced high stability against carboxylesterase, CYP450 enzymes, and in human plasma. LogD (3.83) and IAM chromatography results (Pm=0.51) were in the same range as for known BBB-penetrating compounds. The synthesis of [18F]FE@SNAP was reliable and successful. Due to high binding affinity and stability, [18F]FE@SNAP is a promising tracer for MCHR1.
Collapse
Affiliation(s)
- Cécile Philippe
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. ; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mul JD, O’Duibhir E, Shrestha YB, Koppen A, Vargoviç P, Toonen PW, Zarebidaki E, Kvetnansky R, Kalkhoven E, Cuppen E, Bartness TJ. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive. PLoS One 2013; 8:e60214. [PMID: 23555928 PMCID: PMC3608591 DOI: 10.1371/journal.pone.0060214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/22/2013] [Indexed: 02/01/2023] Open
Abstract
The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.
Collapse
Affiliation(s)
- Joram D. Mul
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eoghan O’Duibhir
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yogendra B. Shrestha
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Arjen Koppen
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Vargoviç
- Laboratory for Stress Research, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - Pim W. Toonen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleen Zarebidaki
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard Kvetnansky
- Laboratory for Stress Research, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timothy J. Bartness
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
83
|
Egawa T, Hirabayashi K, Koide Y, Kobayashi C, Takahashi N, Mineno T, Terai T, Ueno T, Komatsu T, Ikegaya Y, Matsuki N, Nagano T, Hanaoka K. Red Fluorescent Probe for Monitoring the Dynamics of Cytoplasmic Calcium Ions. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201210279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Egawa T, Hirabayashi K, Koide Y, Kobayashi C, Takahashi N, Mineno T, Terai T, Ueno T, Komatsu T, Ikegaya Y, Matsuki N, Nagano T, Hanaoka K. Red Fluorescent Probe for Monitoring the Dynamics of Cytoplasmic Calcium Ions. Angew Chem Int Ed Engl 2013; 52:3874-7. [DOI: 10.1002/anie.201210279] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/26/2013] [Indexed: 01/20/2023]
|
85
|
Lim CJ, Kim JY, Lee BH, Oh KS, Yi KY. Synthesis and SAR study of pyrrolo[3,4-b]pyridin-7(6H)-one derivatives as melanin concentrating hormone receptor 1 (MCH-R1) antagonists. Bioorg Med Chem Lett 2013; 23:1736-9. [PMID: 23411080 DOI: 10.1016/j.bmcl.2013.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/04/2013] [Accepted: 01/16/2013] [Indexed: 11/28/2022]
Abstract
The discovery and optimization of novel pyrrolo[3,4-b]pyridin-7(6H)-one MCH-R1 antagonists are described. A systematic SAR study probing the effects of aryl-, benzyl- and arylthio-substituents at the 2-position of the pyrrolo[3,4-b]pyridin-7(6H)-ones led to identification of the 2-[(4-fluorophenyl)thio] derivative 7b as a highly potent MCH-R1 antagonist. This compound also has favorable pharmacokinetic properties along with a high metabolic stability and a minimal impact on CYP isoforms and hERG.
Collapse
Affiliation(s)
- Chae Jo Lim
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | | | | | | | | |
Collapse
|
86
|
Lim CJ, Choi JY, Lee BH, Oh KS, Yi KY. Synthesis and Structure–Activity Relationship of Naphtho[1,2- b]furan-2-carboxamide Derivatives as Melanin Concentrating Hormone Receptor 1 Antagonists. Chem Pharm Bull (Tokyo) 2013; 61:1239-47. [DOI: 10.1248/cpb.c13-00486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chae Jo Lim
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Jun Young Choi
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| | - Byung Ho Lee
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology
| | - Kwang-Seok Oh
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology
| | - Kyu Yang Yi
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology
| |
Collapse
|
87
|
Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013; 2013:983964. [PMID: 23935621 PMCID: PMC3727095 DOI: 10.1155/2013/983964] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022] Open
Abstract
Transcribed within the lateral hypothalamus, the neuropeptides orexin/hypocretin (OX) and melanin-concentrating hormone (MCH) both promote palatable food intake and are stimulated by palatable food. While these two neuropeptides share this similar positive relationship with food, recent evidence suggests that this occurs through different albeit complementary effects on behavior, with OX promoting food seeking and motivation for palatable food and MCH functioning during ongoing food intake, reinforcing the consumption of calorically dense foods. Further differences are evident in their effects on physiological processes, which are largely opposite in nature. For example, activation of OX receptors, which is neuronally excitatory, promotes waking, increases energy expenditure, and enhances limbic dopamine levels and reward. In contrast, activation of MCH receptors, which is neuronally inhibitory, promotes paradoxical sleep, enhances energy conservation, reduces limbic dopamine, and increases depressive behavior. This review describes these different effects of the neuropeptides, developing the hypothesis that they stimulate the consumption of palatable food through excessive seeking in the case of OX and through excessive energy conservation in the case of MCH. It proposes that OX initiates food intake and subsequently stimulates MCH which then acts to prolong the consumption of palatable, energy-dense food.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Irene Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- *Sarah F. Leibowitz:
| |
Collapse
|
88
|
Conductier G, Martin AO, Risold PY, Jego S, Lavoie R, Lafont C, Mollard P, Adamantidis A, Nahon JL. Control of ventricular ciliary beating by the melanin concentrating hormone-expressing neurons of the lateral hypothalamus: a functional imaging survey. Front Endocrinol (Lausanne) 2013; 4:182. [PMID: 24324458 PMCID: PMC3839296 DOI: 10.3389/fendo.2013.00182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022] Open
Abstract
The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large number of brain functions in mammals such as food intake and metabolism, stress response, anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and electrophysiological studies these functions were attributed to neuronal circuits expressing MCHR1, the single MCH receptor in rodents. In complement to our recently published work (1) we provided here new data regarding the action of MCH on ependymocytes in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependymal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics. Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and could contribute to maintain cerebro-spinal fluid homeostasis.
Collapse
Affiliation(s)
- Grégory Conductier
- UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice Sophia Antipolis, Nice, France
| | - Agnès O. Martin
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | - Pierre-Yves Risold
- Laboratoire d’Histologie, IFR 133, Faculté de Médecine et de Pharmacie, Besançon, France
| | - Sonia Jego
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Raphaël Lavoie
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Chrystel Lafont
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | - Patrice Mollard
- UMR5203, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Montpellier, France
- U661, INSERM, Montpellier, France
- UMR-5203, Universités de Montpellier 1 & 2, Montpellier, France
| | | | - Jean-Louis Nahon
- UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Valbonne, France
- University of Nice Sophia Antipolis, Nice, France
- Station de Primatologie, UPS 846, Centre National de la Recherche Scientifique, Rousset sur Arc, France
- *Correspondence: Jean-Louis Nahon, UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, 660 Route des Lucioles, Sophia Antipolis, Valbonne, France e-mail:
| |
Collapse
|
89
|
Tao YX, Yuan ZH, Xie J. G Protein-Coupled Receptors as Regulators of Energy Homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:1-43. [DOI: 10.1016/b978-0-12-386933-3.00001-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
90
|
Philippe C, Ungersboeck J, Schirmer E, Zdravkovic M, Nics L, Zeilinger M, Shanab K, Lanzenberger R, Karanikas G, Spreitzer H, Viernstein H, Mitterhauser M, Wadsak W. [¹⁸F]FE@SNAP-A new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): microfluidic and vessel-based approaches. Bioorg Med Chem 2012; 20:5936-40. [PMID: 22921745 PMCID: PMC3460236 DOI: 10.1016/j.bmc.2012.07.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Abstract
Changes in the expression of the melanin concentrating hormone receptor 1 (MCHR1) are involved in a variety of pathologies, especially obesity and anxiety disorders. To monitor these pathologies in-vivo positron emission tomography (PET) is a suitable method. After the successful radiosynthesis of [(11)C]SNAP-7941-the first PET-Tracer for the MCHR1, we aimed to synthesize its [(18)F]fluoroethylated analogue: [(18)F]FE@SNAP. Therefore, microfluidic and vessel-based approaches were tested. [(18)F]fluoroethylation was conducted via various [(18)F]fluoroalkylated synthons and direct [(18)F]fluorination. Only the direct [(18)F]fluorination of a tosylated precursor using a flow-through microreactor was successful, affording [(18)F]FE@SNAP in 44.3 ± 2.6%.
Collapse
Affiliation(s)
- Cécile Philippe
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Johanna Ungersboeck
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Eva Schirmer
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Milica Zdravkovic
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Lukas Nics
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Nutritional Sciences, University of Vienna, Vienna 1090, Austria
| | - Markus Zeilinger
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Karem Shanab
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Georgios Karanikas
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Helmut Spreitzer
- Department of Drug and Natural Product Synthesis, University of Vienna, Vienna 1090, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
| | - Markus Mitterhauser
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna 1090, Austria
- Hospital Pharmacy of the General Hospital of Vienna, 1090 Vienna, Austria
| | - Wolfgang Wadsak
- Radiochemistry and Biomarker Development Unit, Department of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
91
|
Egwuenu EJ, Fong AY, Pilowsky PM. Intrathecal melanin-concentrating hormone reduces sympathetic tone and blocks cardiovascular reflexes. Am J Physiol Regul Integr Comp Physiol 2012; 303:R624-32. [DOI: 10.1152/ajpregu.00215.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide that acts to increase feeding behavior and decrease energy expenditure. The role of MCH in central cardiorespiratory regulation is still poorly understood. Experiments were conducted on urethane-anesthetized, vagotomized, and artificially ventilated male Sprague-Dawley rats ( n = 22) to ascertain whether MCH modulates sympathetic vasomotor tone, as well as barosympathetic, chemosympathetic, and somatosympathetic reflexes at the level of the spinal cord. Intrathecal injection of 10 μl of MCH produced a dose-dependent hypotension, bradycardia, and sympathoinhibition. Peak response was observed following administration of 1 mM MCH, causing a decrease in mean arterial pressure of 39 ± 2 mmHg ( P < 0.001), splanchnic sympathetic nerve activity of 78 ± 11% ( P < 0.001), and heart rate of 87 ± 11 beats per minute (bpm) ( P < 0.01). The two peaks of the somatosympathetic reflex were decreased by intrathecal MCH, 7 ± 3% ( P < 0.01) and 31 ± 6% ( P < 0.01), respectively, and the spinal component of the reflex was accentuated 96 ± 23% ( P < 0.05), with respect to the baseline for MCH, compared with the two peaks and spinal component of the somatosympathetic reflex elicited following saline injection with respect to the baseline for saline. MCH decreased the sympathetic gain to 120 s of hyperoxic hypercapnea (10% CO2 in 90% O2) and to 10–12 s poikilocapneic anoxia (100% N2) from 0.74 ± 0.14%/s to 0.23 ± 0.04%/s ( P < 0.05) and 16.47 ± 3.2% to 4.35 ± 1.56% ( P < 0.05), respectively. There was a 34% decrease in gain and a 62% decrease in range of the sympathetic baroreflex with intrathecal MCH. These data demonstrate that spinal MCH blunts the central regulation of sympathetic tone and adaptive sympathetic reflexes.
Collapse
|
92
|
Radiosynthesis of [11C]SNAP-7941--the first PET-tracer for the melanin concentrating hormone receptor 1 (MCHR1). Appl Radiat Isot 2012; 70:2287-94. [PMID: 22858577 PMCID: PMC3439630 DOI: 10.1016/j.apradiso.2012.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/05/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022]
Abstract
The melanin concentrating hormone (MCH) system is a new target to treat human disorders. Our aim was the preparation of the first PET-tracer for the MCHR1. [(11)C]SNAP-7941 is a carbon-11 labeled analog of the published MCHR1 antagonist SNAP-7941. The optimum reaction conditions were 2 min reaction time, ≤25°C reaction temperature, and 2 mg/mL precursor (SNAP-acid) in acetonitrile, using [(11)C]CH(3)OTf as methylation agent. [(11)C]SNAP-7941 was prepared in a reliable and feasible manner with high radiochemical yields (2.9±1.6 GBq; 11.5±6.4% EOB, n=15).
Collapse
|
93
|
Lim CJ, Lee KE, Lee BH, Oh KS, Yi KY. 4-Heteroaryl Phthalazin-1(2H)-one Derivatives as Potent Melanin Concentrating Hormone Receptor 1 (MCH-R1) Antagonists. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.7.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
94
|
Abstract
Despite remarkable progress in the elucidation of energy balance and regulation, the development of new antiobesity drugs is still at the stage of infancy. This review describes the MCH and MCH receptor system with regard to its involvement in energy homeostasis and summarizes the pharmacological profiles of selected small molecule MCH-R1 antagonists that are relevant for their development as antiobesity drugs. Although their clinical value still has to be demonstrated, and challenges with regard to unwanted side effects remain to be resolved, MCH-R1 antagonists may provide an effective pharmacotherapy for the treatment of obesity in the near future.
Collapse
|
95
|
Kasai S, Kamata M, Masada S, Kunitomo J, Kamaura M, Okawa T, Takami K, Ogino H, Nakano Y, Ashina S, Watanabe K, Kaisho T, Imai YN, Ryu S, Nakayama M, Nagisa Y, Takekawa S, Kato K, Murata T, Suzuki N, Ishihara Y. Synthesis, structure-activity relationship, and pharmacological studies of novel melanin-concentrating hormone receptor 1 antagonists 3-aminomethylquinolines: reducing human ether-a-go-go-related gene (hERG) associated liabilities. J Med Chem 2012; 55:4336-51. [PMID: 22490048 DOI: 10.1021/jm300167z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, we discovered 3-aminomethylquinoline derivative 1, a selective, highly potent, centrally acting, and orally bioavailable human MCH receptor 1 (hMCHR1) antagonist, that inhibited food intake in F344 rats with diet-induced obesity (DIO). Subsequent investigation of 1 was discontinued because 1 showed potent hERG K(+) channel inhibition in a patch-clamp study. To decrease hERG K(+) channel inhibition, experiments with ligand-based drug designs based on 1 and a docking study were conducted. Replacement of the terminal p-fluorophenyl group with a cyclopropylmethoxy group, methyl group introduction on the benzylic carbon at the 3-position of the quinoline core, and employment of a [2-(acetylamino)ethyl]amino group as the amine portion eliminated hERG K(+) channel inhibitory activity in a patch-clamp study, leading to the discovery of N-{3-[(1R)-1-{[2-(acetylamino)ethyl]amino}ethyl]-8-methylquinolin-7-yl}-4-(cyclopropylmethoxy)benzamide (R)-10h. The compound (R)-10h showed potent inhibitory activity against hMCHR1 and dose-dependently suppressed food intake in a 2-day study on DIO-F344 rats. Furthermore, practical chiral synthesis of (R)-10h was performed to determine the molecule's absolute configuration.
Collapse
Affiliation(s)
- Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Hypothalamic neuropeptides and the regulation of appetite. Neuropharmacology 2012; 63:18-30. [PMID: 22369786 DOI: 10.1016/j.neuropharm.2012.02.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/23/2011] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Neuropeptides released by hypothalamic neurons play a major role in the regulation of feeding, acting both within the hypothalamus, and at other appetite regulating centres throughout the brain. Where classical neurotransmitters signal only within synapses, neuropeptides diffuse over greater distances affecting both nearby and distant neurons expressing the relevant receptors, which are often extrasynaptic. As well as triggering a behavioural output, neuropeptides also act as neuromodulators: altering the response of neurons to both neurotransmitters and circulating signals of nutrient status. The mechanisms of action of hypothalamic neuropeptides with established roles in feeding, including melanin-concentrating hormone (MCH), the orexins, α-melanocyte stimulating hormone (α-MSH), agouti-gene related protein (AgRP), neuropeptide Y, and oxytocin, are reviewed in this article, with emphasis laid on both their effects on appetite regulating centres throughout the brain, and on examining the evidence for their physiological roles. In addition, evidence for the involvement of several putative appetite regulating hypothalamic neuropeptides is assessed including, ghrelin, cocaine and amphetamine-regulated transcript (CART), neuropeptide W and the galanin-like peptides. This article is part of a Special Issue entitled 'Central control of Food Intake'.
Collapse
|
97
|
Della-Zuana O, Audinot V, Levenez V, Ktorza A, Presse F, Nahon JL, Boutin JA. Peripheral injections of melanin-concentrating hormone receptor 1 antagonist S38151 decrease food intake and body weight in rodent obesity models. Front Endocrinol (Lausanne) 2012; 3:160. [PMID: 23267345 PMCID: PMC3527734 DOI: 10.3389/fendo.2012.00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/26/2012] [Indexed: 12/02/2022] Open
Abstract
The compound S38151 is a nanomolar antagonist that acts at the melanin-concentrating hormone receptor 1 (MCH(1)). S38151 is more stable than its purely peptide counterpart, essentially because of the blockade of its N-terminus. Therefore, its action on various models of obesity was studied. Acute intra-cerebroventricular (i.c.v.) administration of S38151 in wild-type rats counteracted the effect of the stable precursor of melanin-concentrating hormone (MCH), NEI-MCH, in a dose-dependent manner (from 0.5 to 50 nmol/kg). In genetically obese Zucker fa/fa rats, daily i.c.v. administration of S38151 induced dose-dependent (5, 10, and 20 nmol/kg) inhibition of food intake, water intake, and body weight gain, as well as increased motility (maximal effect observed at 20 nmol/kg). In Zucker fa/fa rats, intraperitoneal injection of S38151 (30 mg/kg) induced complete inhibition of food consumption within 1 h. Daily intraperitoneal injection of S38151 (10 and 30 mg/kg) into genetically obese ob/ob mice or diet-induced obese mice is able to limit body weight gain. Furthermore, S38151 administration (10 and 30 mg/kg) does not affect food intake, water intake, or body weight gain in MCHR1-deleted mice, demonstrating that its effects are linked to its interaction with MCH(1). These results validate MCH(1) as a target of interest in obesity. S38151 cannot progress to the clinical phase because it is still too poorly stable in vivo.
Collapse
Affiliation(s)
- Odile Della-Zuana
- Maladies Métaboliques, Institut de Recherches SERVIERSuresnes, France
| | - Valérie Audinot
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIERCroissy-sur-Seine, France
| | - Viviane Levenez
- Maladies Métaboliques, Institut de Recherches SERVIERSuresnes, France
| | - Alain Ktorza
- Maladies Métaboliques, Institut de Recherches SERVIERSuresnes, France
| | - Françoise Presse
- Genomics and Evolution in Neuroendocrinology, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche ScientifiqueValbonne, France
- Genomics and Evolution in Neuroendocrinology, Université de Nice Sophia AntipolisNice, France
| | - Jean-Louis Nahon
- Genomics and Evolution in Neuroendocrinology, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche ScientifiqueValbonne, France
- Genomics and Evolution in Neuroendocrinology, Université de Nice Sophia AntipolisNice, France
| | - Jean A. Boutin
- Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIERCroissy-sur-Seine, France
- *Correspondence: Jean A. Boutin, Biotechnologie, Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER, 125 chemin de Ronde, 78290 Croissy-sur-Seine, France. e-mail:
| |
Collapse
|
98
|
Hamamoto A, Horikawa M, Saho T, Saito Y. Mutation of Phe318 within the NPxxY(x)(5,6)F motif in melanin-concentrating hormone receptor 1 results in an efficient signaling activity. Front Endocrinol (Lausanne) 2012; 3:147. [PMID: 23233849 PMCID: PMC3515998 DOI: 10.3389/fendo.2012.00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/08/2012] [Indexed: 11/13/2022] Open
Abstract
Melanin-concentrating hormone receptor 1 (MCHR1) is a G-protein-coupled receptor (GPCR) that plays an important role in feeding by coupling to Gα(q)- and Gα(i)-mediated signal transduction pathways. To interrogate the molecular basis for MCHR1 activation, we analyzed the effect of a series of site-directed mutations on rat MCHR1 function. In the highly conserved NPxxY(x)(5,6)F domain of GPCRs, the phenylalanine residue is involved in structural constraints; replacement with alanine generally leads to impaired/lost GPCR function. However, Phe-to-Ala (F318A) mutation in MCHR1 had no significant effect on the level of cell surface expression and receptor signaling. By analyzing a further series of mutants, we found that Phe-to-Lys substitution (F318K) caused the most significant reduction in the EC(50) value of MCH for calcium mobilization without affecting receptor expression at the cell surface. Interestingly, GTPγS-binding, which monitors Gα(i) activation, was not modulated by F318K. Our results, combined with computer modeling, provide new insight into the role of Phe in the NPxxY(x)(5,6)F motif as a structurally critical site for receptor dynamics and a determinant of Gα protein interaction.
Collapse
Affiliation(s)
- Akie Hamamoto
- Graduate School of Integrated Arts and Sciences, Hiroshima UniversityHiroshima, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life SciencesOsaka, Japan
| | - Tomoko Saho
- Graduate School of Integrated Arts and Sciences, Hiroshima UniversityHiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima UniversityHiroshima, Japan
- *Correspondence: Yumiko Saito, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8521, Japan. e-mail:
| |
Collapse
|
99
|
Lim CJ, Kim SH, Lee BH, Oh KS, Yi KY. 4-Arylphthalazin-1(2H)-one derivatives as potent antagonists of the melanin concentrating hormone receptor 1 (MCH-R1). Bioorg Med Chem Lett 2012; 22:427-30. [DOI: 10.1016/j.bmcl.2011.10.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022]
|
100
|
Chen X, Mihalic J, Fan P, Liang L, Lindstrom M, Wong S, Ye Q, Fu Y, Jaen J, Chen JL, Dai K, Li L. Discovery and characterization of a potent and selective antagonist of melanin-concentrating hormone receptor 2. Bioorg Med Chem Lett 2012; 22:363-6. [DOI: 10.1016/j.bmcl.2011.10.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
|