51
|
Patmawati, Minamihata K, Tatsuke T, Lee JM, Kusakabe T, Kamiya N. Functional horseradish peroxidase-streptavidin chimeric proteins prepared using a silkworm-baculovirus expression system for diagnostic purposes. J Biotechnol 2019; 297:28-31. [PMID: 30885655 DOI: 10.1016/j.jbiotec.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/12/2023]
Abstract
Rapid, convenient, sensitive detection methods are of the utmost importance in analytical tools. Enzyme-based signal amplification using horseradish peroxidase (HRP) is commonly implemented in clinical diagnostics kits based on enzyme-linked immunosorbent assay (ELISA), by which the limit of detection is greatly improved. Herein we report the design and preparation of recombinant fusion proteins comprising HRP and streptavidin (Stav), in which HRP was fused to either the N- or C-terminus of Stav ((HRP)4-Stav or Stav-(HRP)4, respectively) using a baculovirus-silkworm expression system. Both (HRP)4-Stav and Stav-(HRP)4 were secreted in the apo form but they were easily converted to the holo form and activated by simple incubation with hemin overnight at 4 °C. The activated (HRP)4-Stav and Stav-(HRP)4 could be combined with a commercial biotinylated anti-OVA IgG antibody to detect ovalbumin (OVA) as the antigen in ELISA. The enzymatic activity of (HRP)4-Stav was twofold higher than that of Stav-(HRP)4, and the sensitivity of (HRP)4-Stav in ELISA was higher than that of a commercial HRP-Stav chemical conjugate. The successful use of (HRP)4-Stav chimeric protein as a molecular probe in ELISA shows that the baculovirus-silkworm expression system is promising to produce enzyme-Stav conjugates to substitute for those prepared by chemical methods.
Collapse
Affiliation(s)
- Patmawati
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuneyuki Tatsuke
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
52
|
Ling XD, Dong WT, Zhang Y, Hu JJ, Zhang WD, Wu JT, Liu JX, Zhao XX. Baculoviral infection reduces the expression of four allergen proteins of silkworm pupa. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21539. [PMID: 30790339 DOI: 10.1002/arch.21539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug-loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27-kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa-based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.
Collapse
Affiliation(s)
- Xiao-Dong Ling
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wei-Tao Dong
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun-Jie Hu
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wang-Dong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jin-Tang Wu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Ji-Xing Liu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Xing-Xu Zhao
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
53
|
Kobayashi C, Kato M, Nagaya H, Shimizu N, Ishibashi K, Ishikawa M, Katoh E. Purification and functional characterization of tomato mosaic virus 130K protein expressed in silkworm pupae using a baculovirus vector. Protein Expr Purif 2018; 154:85-90. [PMID: 30291968 DOI: 10.1016/j.pep.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 01/21/2023]
Abstract
Tomato mosaic virus (ToMV; genus, Tobamovirus) is a member of the alpha-like virus superfamily of positive-strand RNA viruses, which includes many plant and animal viruses of agronomical and clinical importance. The genomes of alpha-like viruses encode replication-associated proteins that contain methyltransferase, helicase and/or polymerase domains. The three-dimensional structure of the helicase domain fragment of ToMV has been determined, but the structures of the other domains of alpha-like virus replication proteins are not available. In this study, we expressed full-length ToMV replication-associated protein 130 K, which contains the methyltransferase and helicase domains, using the baculovirus-silkworm expression system and purified the recombinant protein to near homogeneity. Purified 130 K, which was stable in phosphate buffer containing magnesium ions and ATP, formed a dimer in solution and hydrolyzed nucleoside 5'-triphosphates.
Collapse
Affiliation(s)
- Chihoko Kobayashi
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masahiko Kato
- Business Development, Research and Industry Business, Sysmex Corporation, Kobe, Hyogo, 651-2241, Japan
| | - Hidekazu Nagaya
- Business Development, Research and Industry Business, Sysmex Corporation, Kobe, Hyogo, 651-2241, Japan
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazuhiro Ishibashi
- Plant and Microbial Research Unit, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masayuki Ishikawa
- Plant and Microbial Research Unit, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| | - Etsuko Katoh
- Structural Biology Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
54
|
Muneoka S, Nakamura R, Hoshino M, Utsugisawa K, Makino T. Development of a novel immunoassay to select antibodies against intact membrane antigens by using the homogeneous AlphaLISA system. J Biosci Bioeng 2018; 126:522-526. [DOI: 10.1016/j.jbiosc.2018.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
|
55
|
Baculovirus as a Tool for Gene Delivery and Gene Therapy. Viruses 2018; 10:v10090510. [PMID: 30235841 PMCID: PMC6164903 DOI: 10.3390/v10090510] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Based on its ability to express high levels of protein, baculovirus has been widely used for recombinant protein production in insect cells for more than thirty years with continued technical improvements. In addition, baculovirus has been successfully applied for foreign gene delivery into mammalian cells without any viral replication. However, several CpG motifs are present throughout baculoviral DNA and induce an antiviral response in mammalian cells, resulting in the production of pro-inflammatory cytokines and type I interferon through a Toll-like receptor (TLR)-dependent or -independent signaling pathway, and ultimately limiting the efficiency of transgene expression. On the other hand, by taking advantage of this strong adjuvant activity, recombinant baculoviruses encoding neutralization epitopes can elicit protective immunity in mice. Moreover, immunodeficient cells, such as hepatitis C virus (HCV)- or human immunodeficiency virus (HIV)-infected cells, are more susceptible to baculovirus infection than normal cells and are selectively eliminated by the apoptosis-inducible recombinant baculovirus. Here, we summarize the application of baculovirus as a gene expression vector and the mechanism of the host innate immune response induced by baculovirus in mammalian cells. We also discuss the future prospects of baculovirus vectors.
Collapse
|
56
|
Minagawa S, Nakaso Y, Tomita M, Igarashi T, Miura Y, Yasuda H, Sekiguchi S. Novel recombinant feline interferon carrying N-glycans with reduced allergy risk produced by a transgenic silkworm system. BMC Vet Res 2018; 14:260. [PMID: 30170576 PMCID: PMC6119277 DOI: 10.1186/s12917-018-1584-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background The generation of recombinant proteins for commercialisation must be cost-effective. Despite the cost-effective production of recombinant feline interferon (rFeIFN) by a baculovirus expression system, this rFeIFN carries insect-type N-glycans, with core α 1,3 fucosyl residues that act as potential allergens. An alternative method of production may yield recombinant glycoproteins with reduced antigenicity. Results A cDNA clone encoding the fifteenth subtype of FeIFN-α (FeIFN-α15) was isolated from a Japanese domestic cat. This clone encoded a protein of 189 amino acids with a molecular mass of 21.1 kDa. The rFeIFN-α15 was expressed using a transgenic silkworm system, which was expected to yield an N-glycan structure with reduced antigenicity compared with the protein produced by the baculovirus system. The resulting rFeIFN-α15 accumulated in the sericin layer of silk fibres and was easily extracted and purified by column chromatography. The N-terminal amino acid sequence of purified rFeIFN-α15 was identical to the mature form of natural sequence. Moreover, its N-glycans did not include detectable core α 1,3 fucosyl residues. Its anti-vesicular stomatitis virus activity (2.6 × 108 units/mg protein) was comparable to that of the baculovirus-expressed rFeIFN. Conclusions The lower allergy risk of rFeIFN produced by the transgenic silkworm system than by the baculovirus expression system is due to the former lacking core α 1,3 fucosyl residues in its N-glycans. The rFeIFN-α15 produced by the transgenic silkworm system may be a prospective candidate for the next generation of rFeIFN in veterinary medicine.
Collapse
Affiliation(s)
- Sachi Minagawa
- Innovation Center, Nippon Flour Mills Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa, 243-0041, Japan.
| | - Yuzuru Nakaso
- Innovation Center, Nippon Flour Mills Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa, 243-0041, Japan
| | - Masahiro Tomita
- Transgenic Silkworm Department, Immuno-Biological Laboratories Co., Ltd., 1091-1 Naka, Fujioka, Gunma, 375-0005, Japan
| | - Takenori Igarashi
- Transgenic Silkworm Department, Immuno-Biological Laboratories Co., Ltd., 1091-1 Naka, Fujioka, Gunma, 375-0005, Japan
| | - Yoshio Miura
- Innovation Center, Nippon Flour Mills Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa, 243-0041, Japan
| | - Hideyo Yasuda
- Innovation Center, Nippon Flour Mills Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa, 243-0041, Japan
| | - Satoshi Sekiguchi
- Innovation Center, Nippon Flour Mills Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa, 243-0041, Japan
| |
Collapse
|
57
|
Production of biologically active feline interferon beta in insect larvae using a recombinant baculovirus. 3 Biotech 2018; 8:341. [PMID: 30073126 DOI: 10.1007/s13205-018-1369-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022] Open
Abstract
Feline interferon beta is a cytokine that belongs to the type I IFN family, with antitumor, antiviral and immunomodulatory functions. In this work, recombinant feline interferon beta (rFeIFNβ) was expressed in insect larvae that constitute important agronomic plagues. rFeIFNβ accumulated in the hemolymph of Spodoptera frugiperda larvae infected with recombinant baculovirus and was purified by Blue-Sepharose chromatography directly from larval homogenates on day 4 post-infection. rFeIFNβ was recovered after purification with a specific activity of 1 × 106 IU mg-1. By this method, we obtained 8.9 × 104 IU of purified rFeIFNβ per larva. The product was biologically active in vitro, with an antiviral activity of 9.5 × 104 IU mL-1, as well as a potent antitumor activity comparable to that of the commercial FeIFNω. The glycosylation of rFeIFNβ was confirmed by peptide-N-glycosidase F digestion. Our findings provide a cost-effective platform for large-scale rFeIFNβ production in laboratory research or veterinary medicine applications.
Collapse
|
58
|
Wu Y, Jiang L, Geng H, Yang T, Han Z, He X, Lin K, Xu F. A Recombinant Baculovirus Efficiently Generates Recombinant Adeno-Associated Virus Vectors in Cultured Insect Cells and Larvae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:38-47. [PMID: 29988889 PMCID: PMC6034586 DOI: 10.1016/j.omtm.2018.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Current large-scale recombinant adeno-associated virus (rAAV) production systems based on the baculovirus expression vector (BEV) remain complicated and cost-intensive, and they lack versatility and flexibility. Here we present a novel recombinant baculovirus integrated with all packaging elements for the production of rAAV. To optimize BEV construction, ribosome leaky-scanning mechanism was used to express AAV Rep and Cap proteins downstream of the PH and P10 promoters in the pFast.Bac.Dual vector, respectively, and the rAAV genome was inserted between the two promoters. The yields of rAAV2, rAAV8, and rAAV9 derived from the BEV-infected Sf9 cells exceeded 105 vector genomes (VG) per cell. The BEV was shown to be stable and showed no apparent decrease of rAAV yield after at least four serial passages. The rAAVs derived from the new Bac system displayed high-quality and high-transduction activity. Additionally, rAAV2 could be efficiently generated from BEV-infected beet armyworm larvae at a per-larvae yield of 2.75 ± 1.66 × 1010 VG. The rAAV2 derived from larvae showed a structure similar to the rAAV2 derived from HEK293 cells, and it also displayed high-transduction activity. In summary, the novel BEV is ideally suitable for large-scale rAAV production. Further, this study exploits a potential cost-efficient platform for rAAV production in insect larvae.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hao Geng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tian Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaobing He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kunzhang Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
59
|
Suganuma M, Nomura T, Higa Y, Kataoka Y, Funaguma S, Okazaki H, Suzuki T, Fujiyama K, Sezutsu H, Tatematsu KI, Tamura T. N-glycan sialylation in a silkworm-baculovirus expression system. J Biosci Bioeng 2018; 126:9-14. [DOI: 10.1016/j.jbiosc.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
|
60
|
Sezutsu H, Sumitani M, Kondo M, Kobayashi I, Takasu Y, Suzuki T, Yonemura N, Iizuka T, Uchino K, Tamura T, Tsubota T, Tatematsu KI. Construction of a Platform for the Development of Pharmaceutical and Medical Applications Using Transgenic Silkworms. YAKUGAKU ZASSHI 2018; 138:863-874. [DOI: 10.1248/yakushi.17-00202-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
- Graduate School of Frontier Sciences, The University of Tokyo
| | - Megumi Sumitani
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Mari Kondo
- Graduate School of Frontier Sciences, The University of Tokyo
| | - Isao Kobayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Yoko Takasu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Takao Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Naoyuki Yonemura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Toshiki Tamura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Takuya Tsubota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| | - Ken-ichiro Tatematsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization
| |
Collapse
|
61
|
Hsieh MS, He JL, Wu TY, Juang RH. A secretary bi-cistronic baculovirus expression system with improved production of the HA1 protein of H6 influenza virus in insect cells and Spodoptera litura larvae. J Immunol Methods 2018; 459:81-89. [PMID: 29894745 PMCID: PMC7094261 DOI: 10.1016/j.jim.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
A bi-cistronic baculovirus expression vector was constructed to facilitate the expression, detection, and isolation of the hemagglutinin (HA) fragment HA1 of H6N1 avian influenza virus (AIV) in an insect and a culture of its cells. In this construct, the GP67sp signal peptide promoted the secretion of the recombinant protein into the culture medium, and improved protein expression and purification. Enhanced green fluorescent protein, co-expressed through an internal ribosome entry site, served as a visible reporter for protein expression detection. The hemolymph of Spodoptera litura larvae infected with the bi-cistronic baculovirus was collected for the purification of the recombinant HA1, which was found to be glycosylated, and monomeric and trimeric forms of the recombinant HA1 were identified. Proteins expressed in both the cell culture and larvae served as effective subunit vaccines for the production of antiserum against HA. The antiserum recognized the H6 subtype of AIV but not the H5 subtype. HA1 of H6N1 influenza virus was expressed in insect and cell culture. The expressed HA1 was glycosylated, and estimated as monomeric and trimeric forms. The expressed HA1 served as an effective subunit vaccine for producing antisera. The antisera specifically recognized influenza H6 subtype but not the H5 subtype.
Collapse
Affiliation(s)
- Ming-Shou Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Jie-Long He
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413, Taiwan
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli 320, Taiwan
| | - Rong-Huay Juang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
62
|
Production of highly immunogenic virus-like particles of bovine papillomavirus type 6 in silkworm pupae. Vaccine 2017; 35:5878-5882. [DOI: 10.1016/j.vaccine.2017.08.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/19/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
|
63
|
Hara C, Morishita K, Takayanagi-Kiya S, Mikami A, Uchino K, Sakurai T, Kanzaki R, Sezutsu H, Iwami M, Kiya T. Refinement of ectopic protein expression through the GAL4/UAS system in Bombyx mori: application to behavioral and developmental studies. Sci Rep 2017; 7:11795. [PMID: 28924263 PMCID: PMC5603595 DOI: 10.1038/s41598-017-12102-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022] Open
Abstract
Silkmoth, Bombyx mori, is one of the important model insects in which transgenic techniques and the GAL4/UAS system are applicable. However, due to cytotoxicity and low transactivation activity of GAL4, effectiveness of the GAL4/UAS system and its application in B. mori are still limited. In the present study, we refined the previously reported UAS vector by exploiting transcriptional and translational enhancers, and achieved 200-fold enhancement of reporter GFP fluorescence in the GAL4/UAS system. Enhanced protein expression of membrane-targeted GFP and calcium indicator protein (GCaMP5G) drastically improved visualization of fine neurite structures and neural activity, respectively. Also, with the refined system, we generated a transgenic strain that expresses tetanus toxin light chain (TeTxLC), which blocks synaptic transmission, under the control of GAL4. Ectopic TeTxLC expression in the sex pheromone receptor neurons inhibited male courtship behavior, proving effectiveness of TeTxLC on loss-of-function analyses of neural circuits. In addition, suppression of prothoracicotropic hormone (PTTH) or insulin-like peptide (bombyxin) secretion impaired developmental timing and growth rate, respectively. Furthermore, we revealed that larval growth is sex-differentially regulated by these peptide hormones. The present study provides important technical underpinnings of transgenic approaches in silkmoths and insights into mechanisms of postembryonic development in insects.
Collapse
Affiliation(s)
- Chiho Hara
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Koudai Morishita
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Akihisa Mikami
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Keiro Uchino
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takeshi Sakurai
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Ryohei Kanzaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
64
|
Ma S, Xia X, Li Y, Sun L, Liu Y, Liu Y, Wang X, Shi R, Chang J, Zhao P, Xia Q. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1. Mol Genet Genomics 2017; 292:823-831. [PMID: 28357595 DOI: 10.1007/s00438-017-1311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022]
Abstract
Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.
Collapse
Affiliation(s)
- Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Xiaojuan Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yufeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Yuanyuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400716, China.
| |
Collapse
|
65
|
Gardiner C, Kohama K, Patel I, Lane P, Dwyer S, Machin SJ, Mackie IJ. A performance evaluation of a novel human recombinant tissue factor prothrombin time reagent (Revohem™PT). Int J Lab Hematol 2017; 39:532-538. [DOI: 10.1111/ijlh.12691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - I. Patel
- University College London; London UK
- Sysmex UK; Milton Keynes UK
| | - P. Lane
- University College London; London UK
| | - S. Dwyer
- Sidra Medical and Research Center; Doha Qatar
| | | | | |
Collapse
|
66
|
Using internal ribosome entry sites to facilitate engineering of insect cells and used in secretion proteins production. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
67
|
Abstract
Silk is a protein-based material which is predominantly produced by insects and spiders. Hundreds of millions of years of evolution have enabled these animals to utilize different, highly adapted silk types in a broad variety of applications. Silk occurs in several morphologies, such as sticky glue or in the shape of fibers and can, depending on the application by the respective animal, dissipate a high mechanical energy, resist heat and radiation, maintain functionality when submerged in water and withstand microbial settling. Hence, it's unsurprising that silk piqued human interest a long time ago, which catalyzed the domestication of silkworms for the production of silk to be used in textiles. Recently, scientific progress has enabled the development of analytic tools to gain profound insights into the characteristics of silk proteins. Based on these investigations, the biotechnological production of artificial and engineered silk has been accomplished, which allows the production of a sufficient amount of silk materials for several industrial applications. This chapter provides a review on the biotechnological production of various silk proteins from different species, as well as on the processing techniques to fabricate application-oriented material morphologies.
Collapse
Affiliation(s)
- Gregor Lang
- Research Group Biopolymer Processing, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Heike Herold
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.
| |
Collapse
|
68
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
69
|
Kokusho R, Koh Y, Fujimoto M, Shimada T, Katsuma S. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression. Virology 2016; 498:240-249. [PMID: 27614700 DOI: 10.1016/j.virol.2016.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| | - Yoshikazu Koh
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Masaru Fujimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| |
Collapse
|
70
|
Wang Q, Zhou Y, Chen K, Ju X. Suppression of Bm-Caspase-1 Expression in BmN Cells Enhances Recombinant Protein Production in a Baculovirus Expression Vector System. Mol Biotechnol 2016; 58:319-27. [DOI: 10.1007/s12033-016-9931-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
71
|
Rosales-Mendoza S, Angulo C, Meza B. Food-Grade Organisms as Vaccine Biofactories and Oral Delivery Vehicles. Trends Biotechnol 2016; 34:124-136. [DOI: 10.1016/j.tibtech.2015.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|
72
|
Abstract
The production of a recombinant baculovirus expression vector normally involves mixing infectious virus DNA with a plasmid-based transfer vector and then co-transfecting insect cells to initiate virus infection. The aim of this chapter is to provide an update on the range of baculovirus transfer vectors currently available. Some of the original transfer vectors developed are now difficult to obtain but generally have been replaced by superior reagents. We focus on those that are available commercially and should be easy to locate. These vectors permit the insertion of single or multiple genes for expression, or the production of proteins with specific peptide tags that aid subsequent protein purification. Others have signal peptide coding regions permitting protein secretion or plasma membrane localization. A table listing the transfer vectors also includes information on the parental virus that should be used with each one. Methods are described for the direct insertion of a recombinant gene into the virus genome without the requirement for a transfer vector. The information provided should enable new users of the system to choose those reagents most suitable for their purposes.
Collapse
Affiliation(s)
- Robert D Possee
- NERC CEH (Oxford), Mansfield Road, Oxford, OX1, UK. .,Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Linda A King
- School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
73
|
Abstract
The development of baculovirus expression vector systems has accompanied a rapid expansion of our knowledge about the genes, their function and regulation in insect cells. Classification of these viruses has also been refined as we learn more about differences in gene content between isolates, how this affects virus structure and their replication in insect larvae. Baculovirus gene expression occurs in an ordered cascade, regulated by early, late and very late gene promoters. There is now a detailed knowledge of these promoter elements and how they interact first with host cell-encoded RNA polymerases and later with virus-encoded enzymes. The composition of this virus RNA polymerase is known. The virus replication process culminates in the very high level expression of both polyhedrin and p10 gene products in the latter stages of infection. It has also been realized that the insect host cell has innate defenses against baculoviruses in the form of an apoptotic response to virus invasion. Baculoviruses counter this by encoding apoptotic-suppressors, which also appear to have a role in determining the host range of the virus. Also of importance to our understanding of baculovirus expression systems is how the virus can accumulate mutations within genes that affect recombinant protein yield in cell culture. The summary in this chapter is not exhaustive, but should provide a good preparation to those wishing to use this highly successful gene expression system.
Collapse
Affiliation(s)
- Barbara J Kelly
- The Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Linda A King
- School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, UK
| | - Robert D Possee
- NERC CEH (Oxford), Mansfield Road, Oxford, OX1, UK.
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
74
|
Abstract
With an increasing need for functional analysis of proteins, there is a growing demand for fast and cost-effective production of biologically active eukaryotic proteins. The baculovirus expression vector system (BEVS) is widely used, and in the vast majority of cases cultured insect cells have been the host of choice. A low cost alternative to bioreactor-based protein production exists in the use of live insect larvae as "mini bioreactors." In this chapter we focus on Trichoplusia ni as the host insect for recombinant protein production, and explore three different methods of virus administration to the larvae. The first method is labor-intensive, as extracellular virus is injected into each larva, whereas the second lends itself to infection of large numbers of larvae via oral inoculation. While these first two methods require cultured insect cells for the generation of recombinant virus, the third relies on transfection of larvae with recombinant viral DNA and does not require cultured insect cells as an intermediate stage. We suggest that small- to mid-scale recombinant protein production (mg-g level) can be achieved in T. ni larvae with relative ease.
Collapse
|
75
|
El-Baky NA, Uversky VN, Redwan EM. Human consensus interferons: Bridging the natural and artificial cytokines with intrinsic disorder. Cytokine Growth Factor Rev 2015; 26:637-45. [DOI: 10.1016/j.cytogfr.2015.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
|
76
|
Mabashi-Asazuma H, Sohn BH, Kim YS, Kuo CW, Khoo KH, Kucharski CA, Fraser MJ, Jarvis DL. Targeted glycoengineering extends the protein N-glycosylation pathway in the silkworm silk gland. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:20-7. [PMID: 26163436 PMCID: PMC4628589 DOI: 10.1016/j.ibmb.2015.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/12/2023]
Abstract
The silkworm silk glands are powerful secretory organs that can produce and secrete proteins at high levels. As such, it has been suggested that the biosynthetic and secretory power of the silk gland can be harnessed to produce and secrete recombinant proteins in tight or loose association with silk fibers. However, the utility of the silkworm platform is constrained by the fact that it has a relatively primitive protein N-glycosylation pathway, which produces relatively simple insect-type, rather than mammalian-type N-glycans. In this study, we demonstrate for the first time that the silk gland protein N-glycosylation pathway can be glycoengineered. We accomplished this by using a dual piggyBac vector encoding two distinct mammalian glycosyltransferases under the transcriptional control of a posterior silk gland (PSG)-specific promoter. Both mammalian transgenes were expressed and each mammalian N-glycan processing activity was induced in transformed silkworm PSGs. In addition, the transgenic animals produced endogenous glycoproteins containing significant proportions of mammalian-type, terminally galactosylated N-glycans, while the parental animals produced none. This demonstration of the ability to glycoengineer the silkworm extends its potential utility as a recombinant protein production platform.
Collapse
Affiliation(s)
| | - Bong-Hee Sohn
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Young-Soo Kim
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica 128, Nankang, Taipei 115, Taiwan
| | - Cheryl A Kucharski
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
77
|
Zabelina V, Klymenko V, Tamura T, Doroshenko K, Liang H, Sezutsu H, Sehnal F. Genome engineering and parthenocloning in the silkworm, Bombyx mori. J Biosci 2015; 40:645-55. [DOI: 10.1007/s12038-015-9548-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
78
|
El-Baky NA, Redwan EM. Therapeutic alpha-interferons protein: structure, production, and biosimilar. Prep Biochem Biotechnol 2015; 45:109-27. [PMID: 24785737 DOI: 10.1080/10826068.2014.907175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 2007, the world solemnized the golden jubilee of the discovery of interferon (IFN). Interferon is a small protein messenger called a pluripotent cytokine, produced by several cells of the host in response to various biological as well as synthetic stimuli. There are three major classes of interferons in humans: IFN-alpha, IFN-beta, and IFN-gamma. As a treatment option, interferon-alpha (IFN-α) is the most effective one. IFN-α has proved to be effective as an antiviral therapy and tumor-fighting drug in the past two decades. Meanwhile, great progress has been achieved in establishing IFN-α as the first choice of antiviral therapy for chronic hepatitis C virus (HCV) patients. Recently, novel pegylated IFN-α2 products with extended in vivo half-lives and consensus interferon, an artificially engineered type I interferon, have been developed to substantially improve treatment regimes for HCV patients. Undesirable acute and chronic side effects in addition to immunogenicity of therapeutic IFN products remain constraints to conquer for further improvements in clinical applications of IFN. It is certainly expected that more research will be conducted in the future, not only to face these challenges but also to extend the range of IFN products and their clinical targets. The objective herein is to review the current therapeutic alpha-interferons production, formulation technologies, and prospective future for the original entity and its biogeneric version.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- a Biological Sciences Department, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia
| | | |
Collapse
|
79
|
Promoter analysis and RNA interference of CYP6ab4 in the silkworm Bombyx mori. Mol Genet Genomics 2015; 290:1943-53. [DOI: 10.1007/s00438-015-1050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
80
|
Kokusho R, Kawamoto M, Koyano Y, Sugano S, Suzuki Y, Shimada T, Katsuma S. Bombyx mori nucleopolyhedrovirus actin rearrangement-inducing factor 1 enhances systemic infection in B. mori larvae. J Gen Virol 2015; 96:1938-46. [PMID: 25809914 DOI: 10.1099/vir.0.000130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The actin rearrangement-inducing factor 1 (arif-1) gene is a baculoviral early gene conserved in most alphabaculoviruses. Previous studies reported that Autographa californica nucleopolyhedrovirus ARIF-1 protein induces filamentous actin concentration on the plasma membrane during the early stage of infection in Trichoplusia ni TN-368 cells, but its role in larval infection remains unknown. In this study, we performed behavioural screening using Bombyx mori larvae infected with Bombyx mori nucleopolyhedrovirus (BmNPV) mutants and found that larvae infected with arif-1-mutated BmNPVs did not show locomotor hyperactivity that was normally observed in BmNPV-infected larvae. arif-1-deficient BmNPVs also showed reduced pathogenicity and total viral propagation in B. mori larvae, whereas viral propagation of arif-1-deficient viruses was comparable with that of control viruses in B. mori cultured cells. An arif-1-defective BmNPV expressing the GFP gene (gfp) was used to monitor the progression of infection in B. mori larvae. GFP expression and quantitative reverse transcription-PCR analyses revealed that infection by the arif-1-disrupted virus was significantly delayed in trachea, fat body, suboesophageal ganglion and brain. These results indicated that BmNPV ARIF-1 enhanced systemic infection in B. mori larvae.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Munetaka Kawamoto
- 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasue Koyano
- 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sumio Sugano
- 2Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Suzuki
- 3Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Toru Shimada
- 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
81
|
van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus–insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 2015; 96:6-23. [DOI: 10.1099/vir.0.067108-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
82
|
A novel polysaccharide in insects activates the innate immune system in mouse macrophage RAW264 cells. PLoS One 2014; 9:e114823. [PMID: 25490773 PMCID: PMC4260955 DOI: 10.1371/journal.pone.0114823] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022] Open
Abstract
A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named “dipterose”, with a molecular weight of 1.01×106 and comprising nine monosaccharides. Dipterose was synthesized in the melon fly itself at the pupal stage. The NO-producing activity of dipterose was approximately equal to that of lipopolysaccharide, a potent immunostimulator. Inhibition of Toll-like receptor 4 (TLR4) led to the suppression of NO production by dipterose. Furthermore, dipterose induced the expression of proinflammatory cytokines and interferon β (IFNβ) and promoted the activation of nuclear factor kappa B (NF-κB) in macrophages, indicating that it stimulates the induction of various cytokines in RAW264 cells via the TLR4 signaling pathway. Our results thus suggest that dipterose activates the innate immune response against various pathogenic microorganisms and viral infections. This is the first identification of an innate immune-activating polysaccharide from an animal.
Collapse
|
83
|
Zhao G, Wang B, Liu Y, Du J, Li B, Chen Y, Xu Y, Shen W, Xia Q, Wei Z. Activation of BmGSTd1 promoter and regulation by transcription factor Krüppel (Kr) in silkworm, Bombyx mori. Gene 2014; 551:152-9. [DOI: 10.1016/j.gene.2014.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 11/28/2022]
|
84
|
Entry of Bombyx mori nucleopolyhedrovirus into BmN cells by cholesterol-dependent macropinocytic endocytosis. Biochem Biophys Res Commun 2014; 453:166-71. [PMID: 25264104 DOI: 10.1016/j.bbrc.2014.09.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious viral pathogen of silkworm, and no drug or specific protection against BmNPV infection is available at present time. Although functions of most BmNPV genes were depicted in recent years, knowledge on the mechanism of BmNPV entry into insect cells is still limited. Here BmNPV cell entry mechanism is investigated by different endocytic inhibitor application and subcellular analysis. Results indicated that BmNPV enters BmN cells by clathrin-independent macropinocytic endocytosis, which is mediated by cholesterol in a dose-dependent manner, and cholesterol replenishment rescued the BmNPV infection partially.
Collapse
|
85
|
Iwanaga M, Tsukui K, Uchiyama K, Katsuma S, Imanishi S, Kawasaki H. Expression of recombinant proteins by BEVS in a macula-like virus-free silkworm cell line. J Invertebr Pathol 2014; 123:34-7. [PMID: 25229420 DOI: 10.1016/j.jip.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/01/2014] [Accepted: 09/07/2014] [Indexed: 11/25/2022]
Abstract
We previously established the first Bombyx mori macula-like virus (BmMLV)-free cell line (BmVF cells) from a B. mori embryo. In this study, we evaluated the expression of recombinant proteins in BmVF cells using a B. mori nucleopolyhedrovirus (BmNPV)-derived expression vector. Our results showed that BmVF cells are susceptible to BmNPV, and both the promoter activity of the polyhedrin gene and the post-translated modifications of a recombinant protein are equivalent between BmMLV-negative BmVF and -positive BmN4 cells. These findings indicate that persistent infection with BmMLV has no discernible effect on BmNPV-mediated protein production in B. mori cells.
Collapse
Affiliation(s)
- Masashi Iwanaga
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan.
| | - Keita Tsukui
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Koudai Uchiyama
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeo Imanishi
- Genebank, National Institute of Agrobiological Science, Kannondai 2-1-2, Tsukuba-shi, Ibaraki 305-8602, Japan
| | - Hideki Kawasaki
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan
| |
Collapse
|
86
|
He Y, Wang K, Yan N. The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell 2014; 5:658-72. [PMID: 25119489 PMCID: PMC4145085 DOI: 10.1007/s13238-014-0086-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/16/2014] [Indexed: 01/17/2023] Open
Abstract
Eukaryotic membrane proteins, many of which are key players in various biological processes, constitute more than half of the drug targets and represent important candidates for structural studies. In contrast to their physiological significance, only very limited number of eukaryotic membrane protein structures have been obtained due to the technical challenges in the generation of recombinant proteins. In this review, we examine the major recombinant expression systems for eukaryotic membrane proteins and compare their relative advantages and disadvantages. We also attempted to summarize the recent technical strategies in the advancement of eukaryotic membrane protein purification and crystallization.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Tsinghua university, Beijing, 100084, China
| | | | | |
Collapse
|
87
|
The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori. Transgenic Res 2014; 23:697-706. [PMID: 25113390 DOI: 10.1007/s11248-014-9826-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/29/2014] [Indexed: 12/23/2022]
Abstract
The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.
Collapse
|
88
|
Park S, Hwang IW, Makishima Y, Perales-Clemente E, Kato T, Niederländer NJ, Park EY, Terzic A. Spot14/Mig12 heterocomplex sequesters polymerization and restrains catalytic function of human acetyl-CoA carboxylase 2. J Mol Recognit 2014; 26:679-88. [PMID: 24277613 PMCID: PMC4283044 DOI: 10.1002/jmr.2313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/17/2023]
Abstract
Acetyl-CoA carboxylase 2 (ACC2) is an isoform of ACC functioning as a negative regulator of fatty acid β-oxidation. Spot14, a thyroid hormone responsive protein, and Mig12, a Spot14 paralog, have recently been identified as regulators of fatty acid synthesis targeting ACC1, a distinctive subtype of ACC. Here, we examined whether Spot14/Mig12 modulates ACC2. Nanoscale protein topography mapped putative protein-protein interactions between purified human Spot14/Mig12 and ACC2, validated by functional assays. Human ACC2 displayed consistent enzymatic activity, and homogeneous particle distribution was probed by atomic force microscopy. Citrate-induced polymerization and enzymatic activity of ACC2 were restrained by the addition of the recombinant Spot14/Mig12 heterocomplex but only partially by the oligo-heterocomplex, demonstrating that the heterocomplex is a designated metabolic inhibitor of human ACC2. Moreover, Spot14/Mig12 demonstrated a sequestering role preventing an initial ACC2 nucleation step during filamentous polymer formation. Thus, the Spot14/Mig12 heterocomplex controls human ACC2 polymerization and catalytic function, emerging as a previously unrecognized molecular regulator in catalytic lipid metabolism.
Collapse
Affiliation(s)
- Sungjo Park
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA; Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Targovnik AM, Villaverde MS, Arregui MB, Fogar M, Taboga O, Glikin GC, Finocchiaro LM, Cascone O, Miranda MV. Expression and purification of recombinant feline interferon in the baculovirus-insect larvae system. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
90
|
Wöltje M, Böbel M, Rheinnecker M, Tettamanti G, Franzetti E, Saviane A, Cappellozza S. Transgenic protein production in silkworm silk glands requires cathepsin and chitinase of Autographa californica multicapsid nucleopolyhedrovirus. Appl Microbiol Biotechnol 2014; 98:4571-80. [DOI: 10.1007/s00253-014-5543-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/30/2022]
|
91
|
Zhang J, He Q, Zhang CD, Chen XY, Chen XM, Dong ZQ, Li N, Kuang XX, Cao MY, Lu C, Pan MH. Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene lef-11. Antiviral Res 2014; 104:143-52. [PMID: 24486953 DOI: 10.1016/j.antiviral.2014.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/05/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major silkworm pathogen, causing substantial economic losses to the sericulture industry annually. We demonstrate a novel anti-BmNPV system expressing mature artificial microRNAs (amiRNAs) targeting the viral lef-11 gene. The mature amiRNAs inhibited the lef-11 gene in silkworm BmN-SWU1 cells. Antiviral assays demonstrated that mature amiRNAs silenced the gene and inhibited BmNPV proliferation efficiently. As constitutive overexpression of mature amiRNAs may induce acute cellular toxicity, we further developed a novel virus-induced amiRNA expression system. The amiRNA cassette is regulated by a baculovirus-induced fusion promoter. This baculovirus-induced RNA interference system is strictly regulated by virus infection, which functions in a negative feedback loop to activate the expression of mature amiRNAs against lef-11 and subsequently control inhibition of BmNPV replication. Our study advances the use of a regulatable amiRNA cassette as a safe and effective tool for research of basic insect biology and antiviral application.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qian He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Chun-Dong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xiang-Yun Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xue-Mei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Na Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiu-Xiu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ming-Ya Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
92
|
Uemura N, Tabunoki H, Suzuki T, Ishikawa K, Nojima Y, Katsuma S, Sato R, Satoh JI. Production of wild-type and mutant-type human DAP12 proteins by Bombyx mori nucleopolyhedrovirus vector. Biosci Biotechnol Biochem 2014; 78:71-4. [DOI: 10.1080/09168451.2014.877824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
A Japanese patient with Nasu-Hakola disease was found to have a serine-to-asparagine (S39N) substitution in human DNAX-activation protein 12 (DAP12). To elucidate the functional abnormalities of mutant-type DAP12, we expressed wild-type and mutant-type recombinant DAP12 protein with Bombyx mori nucleopolyhedrovirus (BmNPV) vector, and successfully purified the respective proteins from the hemolymph of recombinant BmNPV infected B. mori larvae.
Collapse
Affiliation(s)
- Nozomi Uemura
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroko Tabunoki
- Faculty of Agriculture, Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Taiki Suzuki
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kazuhiro Ishikawa
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yosui Nojima
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryoichi Sato
- Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
93
|
Wu D, Murakami K, Liu N, Konishi M, Muneta Y, Inumaru S, Kokuho T, Sentsui H. Expression of Equine Interleukin-18 by Baculovirus Expression System and Its Biologic Activity. Microbiol Immunol 2013; 48:471-6. [PMID: 15215621 DOI: 10.1111/j.1348-0421.2004.tb03538.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The equine interleukin-18 (IL-18) cDNA that contains the coding sequence was cloned and a recombinant baculovirus, named AcEIL-18, was constructed. The recombinant protein of the equine IL-18 was expressed by AcEIL-18 and its expression was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Insect cells infected with AcEIL-18 secreted a precursor IL-18 with 24 kilo dalton (kDa) into the culture supernatant. Western blot analysis showed that mature equine IL-18 about 18 kDa was also confirmed without co-expression of caspase-1. Culture supernatant from AcEIL-18 infected cells showed a synergistic effect with recombinant human interleukin-12 for induction of interferon-gamma gene expression in equine peripheral mononuclear cells, indicating that the recombinant equine IL-18 expressed in this study also has biological activity without any treatment.
Collapse
Affiliation(s)
- Donglai Wu
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Purification and biological characterization of soluble, recombinant mouse IFNβ expressed in insect cells. Protein Expr Purif 2013; 94:7-14. [PMID: 24211771 DOI: 10.1016/j.pep.2013.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
Abstract
Interferon β (IFNβ) is a member of the type I interferon family of cytokines widely recognised for their anti-viral, anti-proliferative and immunomodulatory properties. Recombinant, biologically active forms of this cytokine are used clinically for the treatment of multiple sclerosis and in laboratories to study the role of this cytokine in health and disease. Established methods for expression of IFNβ utilise either bacterial systems from which the insoluble recombinant proteins must be refolded, or mammalian expression systems in which large volumes of cell culture are required for recovery of acceptable yields. Utilising the baculovirus expression system and Trichoplusia ni (Cabbage Looper) BTI-TN-5B1-4 cell line, we report a reproducible method for production and purification of milligram/litre quantities of biologically active murine IFNβ. Due to the design of our construct and the eukaryotic nature of insect cells, the resulting soluble protein is secreted allowing purification of the Histidine-tagged natively-folded protein from the culture supernatant. The IFNβ purification method described is a two-step process employing immobilised metal-ion affinity chromatography (IMAC) and reverse-phase high performance liquid chromatography (RP-HPLC) that results in production of significantly more purified IFNβ than any other reported eukaryotic-based expression system. Recombinant murine IFNβ produced by this method was natively folded and demonstrated hallmark type I interferon biological effects including antiviral and anti-proliferative activities, and induced genes characteristic of IFNβ activity in vivo. Recombinant IFNβ also had specific activity levels exceeding that of the commercially available equivalent. Together, our findings provide a method for production of highly pure, biologically active murine IFNβ.
Collapse
|
95
|
Uporova EV, Alimukhamedov SS, Lebedev AD, Ionova YÉ, Tashpulatov AS, Azimova SS. Synthesis of recombinant DNA with the β-galactosidase gene placed under the control of the baculovirus promoter of the polyhedrin gene. Chem Nat Compd 2013. [DOI: 10.1007/bf02319289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
96
|
Mos1 transposon-based transformation of fish cell lines using baculoviral vectors. Biochem Biophys Res Commun 2013; 439:18-22. [PMID: 23958306 DOI: 10.1016/j.bbrc.2013.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/10/2013] [Indexed: 11/24/2022]
Abstract
Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.
Collapse
|
97
|
Liu Y, Chen Y, Chen J, Zhang W, Sheng Q, Chen J, Yu W, Nie Z, Zhang Y, Wu W, Wang L, Indran IR, Li J, Qian L, Lv Z. A shark liver gene-derived active peptide expressed in the silkworm, Bombyx mori: preliminary studies for oral administration of the recombinant protein. Mar Drugs 2013; 11:1492-505. [PMID: 23652883 PMCID: PMC3707157 DOI: 10.3390/md11051492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 11/16/2022] Open
Abstract
Active peptide from shark liver (APSL) is a cytokine from Chiloscyllium plagiosum that can stimulate liver regeneration and protects the pancreas. To study the effect of orally administered recombinant APSL (rAPSL) on an animal model of type 2 diabetes mellitus, the APSL gene was cloned, and APSL was expressed in Bombyx mori N cells (BmN cells), silkworm larvae and silkworm pupae using the silkworm baculovirus expression vector system (BEVS). It was demonstrated that rAPSL was able to significantly reduce the blood glucose level in mice with type 2 diabetes induced by streptozotocin. The analysis of paraffin sections of mouse pancreatic tissues revealed that rAPSL could effectively protect mouse islets from streptozotocin-induced lesions. Compared with the powder prepared from normal silkworm pupae, the powder prepared from pupae expressing rAPSL exhibited greater protective effects, and these results suggest that rAPSL has potential uses as an oral drug for the treatment of diabetes mellitus in the future.
Collapse
Affiliation(s)
- Yunlong Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Ying Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Jianqing Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Qing Sheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Jian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Wei Yu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Zuoming Nie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Yaozhou Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Wutong Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| | - Lisha Wang
- School of Pharmacy, Xuzhou Medical College, Xuzhou 221004, China; E-Mail:
| | - Inthrani Raja Indran
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228, Singapore; E-Mails: (I.R.I.); (J.L.)
| | - Jun Li
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore 119228, Singapore; E-Mails: (I.R.I.); (J.L.)
| | - Lian Qian
- Agilent Technologies Singapore Pte Ltd., Singapore 117681, Singapore; E-Mail:
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Institute of Biochemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China; E-Mails: (Y.L.); (Y.C.); (J.C.); (W.Z.); (Q.S.); (J.C.); (W.Y.); (Z.N.); (Y.Z.); (W.W.)
| |
Collapse
|
98
|
Watanabe S, Kakudo A, Ohta M, Mita K, Fujiyama K, Inumaru S. Molecular cloning and characterization of the α-glucosidase II from Bombyx mori and Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:319-327. [PMID: 23376632 DOI: 10.1016/j.ibmb.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 06/01/2023]
Abstract
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.
Collapse
Affiliation(s)
- Satoko Watanabe
- Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
99
|
Heidebrecht A, Scheibel T. Recombinant production of spider silk proteins. ADVANCES IN APPLIED MICROBIOLOGY 2013; 82:115-53. [PMID: 23415154 DOI: 10.1016/b978-0-12-407679-2.00004-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Natural spider silk fibers combine extraordinary properties such as stability and flexibility which results in a toughness superseding that of all other fiber materials. As the spider's aggressive territorial behavior renders their farming not feasible, the biotechnological production of spider silk proteins (spidroins) is essential in order to investigate and employ them for applications. In order to accomplish this task, two approaches have been tested: firstly, the expression of partial cDNAs, and secondly, the expression of synthetic genes in several host organisms, including bacteria, yeast, plants, insect cells, mammalian cells, and transgenic animals. The experienced problems include genetic instability, limitations of the translational and transcriptional machinery, and low solubility of the produced proteins. Here, an overview of attempts to recombinantly produce spidroins will be given, and advantages and disadvantages of the different approaches and host organisms will be discussed.
Collapse
|
100
|
Development of a novel baculovirus titration method using the Enzyme-linked immunosorbent spot (ELISPOT) assay. J Virol Methods 2012; 188:114-20. [PMID: 23274754 DOI: 10.1016/j.jviromet.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The baculovirus expression vector system (BEVS) is one of the most powerful methods for production of recombinant proteins for research or commercial purposes. Titration of viable virus in insect cell culture is often required when BEVS is used for basic research or bioprocessing. An enzyme-linked immunosorbent spot (ELISPOT) assay using monoclonal antibodies against the major capsid protein VP39 of both Autographa californica nuclear polyhedrosis virus (AcMNPV) and Bombyx mori nuclear polyhedrosis virus (BmNPV) was developed for baculovirus quantitation at 48h post-infection. The titer was determined by visualizing infected insect cells as blue spots and automated spot counting was achieved with ELISPOT hardware and software. Log-scale comparison of the results between the ELISPOT assay and a conventional end point dilution assay using a fluorescent marker showed a good correlation for both AcMNPV (R(2)=0.9980, p<0.05) and BmNPV (R(2)=0.9834, p<0.05). In conclusion, a novel, rapid and semi-automated procedure for titrating baculovirus was developed based on the specific immunostaining of infected cells followed by automated spot counting.
Collapse
|