51
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
52
|
Glasgow SD, Ruthazer ES, Kennedy TE. Guiding synaptic plasticity: Novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. J Physiol 2020; 599:493-505. [PMID: 32017127 DOI: 10.1113/jp278704] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Adult neural plasticity engages mechanisms that change synapse structure and function, yet many of the underlying events bear a striking similarity to processes that occur during the initial establishment of neural circuits during development. It is a long-standing hypothesis that the molecular mechanisms critical for neural development may also regulate synaptic plasticity related to learning and memory in adults. Netrins were initially described as chemoattractant guidance cues that direct cell and axon migration during embryonic development, yet they continue to be expressed by neurons in the adult brain. Recent findings have identified roles for netrin-1 in synaptogenesis during postnatal maturation, and in synaptic plasticity in the adult mammalian brain, regulating AMPA glutamate receptor trafficking at excitatory synapses. These findings provide an example of a conserved developmental guidance cue that is expressed by neurons in the adult brain and functions as a key regulator of activity-dependent synaptic plasticity. Notably, in humans, genetic polymorphisms in netrin-1 and its receptors have been linked to neurodevelopmental and neurodegenerative disorders. The molecular mechanisms associated with the synaptic function of netrin-1 therefore present new therapeutic targets for neuropathologies associated with memory dysfunction. Here, we summarize recent findings that link netrin-1 signalling to synaptic plasticity, and discuss the implications of these discoveries for the neurobiological basis of memory consolidation.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
| |
Collapse
|
53
|
Pang IH, Clark AF. Inducible rodent models of glaucoma. Prog Retin Eye Res 2020; 75:100799. [PMID: 31557521 PMCID: PMC7085984 DOI: 10.1016/j.preteyeres.2019.100799] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/23/2022]
Abstract
Glaucoma is one of the leading causes of vision impairment worldwide. In order to further understand the molecular pathobiology of this disease and to develop better therapies, clinically relevant animal models are necessary. In recent years, both the rat and mouse have become popular models in glaucoma research. Key reasons are: many important biological similarities shared among rodent eyes and the human eye; development of improved methods to induce glaucoma and to evaluate glaucomatous damage; availability of genetic tools in the mouse; as well as the relatively low cost of rodent studies. Commonly studied rat and mouse glaucoma models include intraocular pressure (IOP)-dependent and pressure-independent models. The pressure-dependent models address the most important risk factor of elevated IOP, whereas the pressure-independent models assess "normal tension" glaucoma and other "non-IOP" related factors associated with glaucomatous damage. The current article provides descriptions of these models, their characterizations, specific techniques to induce glaucoma, mechanisms of injury, advantages, and limitations.
Collapse
Affiliation(s)
- Iok-Hou Pang
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, USA; Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
54
|
Gharami K, Biswas SC. Glutamate treatment mimics LTP- and LTD-like biochemical activity in viable synaptosome preparation. Neurochem Int 2020; 134:104655. [PMID: 31899196 DOI: 10.1016/j.neuint.2019.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 01/28/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are considered to be the cellular mechanisms behind the increase or decrease of synaptic strength respectively. Electrophysiologically induced LTP/LTD is associated with the activation of glutamate receptors in the synaptic terminals resulting in the initiation of biochemical processes in the postsynaptic terminals and thus propagation of synaptic activity. Isolated nerve endings i.e. synaptosome preparation was used to study here, the biochemical phenotypes of LTP and LTD, and glutamate treatment in varying concentration for different time was used to induce those biochemical phenomena. Treatment with 200 μM glutamate showed increased GluA1 phosphorylation at serine 831 and activation of CaMKIIα by phosphorylation at threonine 286 like LTP, whereas 100 μM glutamate treatment showed decrease in GluA1 phosphorylation level at both pGluA1(S831) and pGluA1(S845), and activation of GSK3β by de-phosphorylating pGSK3β at serine 9 like LTD. The 200 μM glutamate treatment was associated with an increase in the local translation of Arc, BDNF, CaMKIIα and Homer1, whereas 100 μM glutamate treatments resulted in decrease in the level of the said synaptic proteins and the effect was blocked by the proteasomal inhibitor, Lactasystin. Both, the local translation and local degradation was sensitive to the Ca2+ chellator, Bapta-AM, indicating that both the phenomena were dependent on the rise in intra-synaptosomal Ca2+, like LTP and LTD. Overall the results of the present study suggest that synaptosomal preparations can be a viable alternative to study mechanisms underlying the biochemical activities of LTP/LTD in short term.
Collapse
Affiliation(s)
- Kusumika Gharami
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Subhas C Biswas
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
55
|
Blaikie L, Kay G, Kong Thoo Lin P. Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MEDCHEMCOMM 2019; 10:2052-2072. [PMID: 32206241 PMCID: PMC7069509 DOI: 10.1039/c9md00337a] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, and a major cause of death worldwide. The number of people suffering from this debilitating disorder is rising at an unprecedented rate, with a subsequent surge in healthcare costs. Only four drugs are clinically available for the treatment of AD symptoms, but they are not disease-modifying. Consequently, there is an urgent need for a cure. Although the cause of this debilitating condition remains poorly understood, it is believed that several factors may be involved in combination - including, health and lifestyle, environmental, and genetic factors. In recent years, a number of hallmarks of the disease have also been discovered, and it is believed that these factors may play an important role in the development of AD. Amyloid aggregation is one such factor which has been highly investigated, in addition to cholinesterase enzymes and tau aggregation. In the last decade, multi-target drugs have been increasingly investigated for their application to AD treatment. By combining two or more pharmacophores in a single compound, it is possible to synthesise a drug which can target several factors that are involved in AD development. This is a particularly attractive approach as it would avoid the use of combination therapies. As a result, it could reduce the burden on carers and families, and decrease healthcare and social care costs. Many active pharmacophores have been employed for the development of hybrid drugs, due to their abilities to inhibit the factors currently widely recognised to be involved in AD. These compounds have demonstrated promising results; however, research is still required to optimise the pharmacological profiles of the drugs, in addition to their potencies. Meanwhile, extensive research is continuously being performed into other potential targets for the treatment of AD. Based on the results obtained thus far, it is likely that multi-target compounds will continue to be increasingly studied in the future as potential treatments for AD.
Collapse
Affiliation(s)
- Laura Blaikie
- School of Pharmacy and Life Sciences , Robert Gordon University , Aberdeen , Scotland , UK .
| | - Graeme Kay
- School of Pharmacy and Life Sciences , Robert Gordon University , Aberdeen , Scotland , UK .
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences , Robert Gordon University , Aberdeen , Scotland , UK .
| |
Collapse
|
56
|
Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 2019; 8:F1000 Faculty Rev-1940. [PMID: 31807283 PMCID: PMC6871362 DOI: 10.12688/f1000research.18949.1] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Rapid advances in sequencing technology have led to an explosive increase in the number of genetic variants identified in patients with neurological disease and have also enabled the assembly of a robust database of variants in healthy individuals. A surprising number of variants in the GRIN genes that encode N-methyl-D-aspartate (NMDA) glutamatergic receptor subunits have been found in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. This review compares and contrasts the available information describing the clinical and functional consequences of genetic variations in GRIN2A and GRIN2B. Comparison of clinical phenotypes shows that GRIN2A variants are commonly associated with an epileptic phenotype but that GRIN2B variants are commonly found in patients with neurodevelopmental disorders. These observations emphasize the distinct roles that the gene products serve in circuit function and suggest that functional analysis of GRIN2A and GRIN2B variation may provide insight into the molecular mechanisms, which will allow more accurate subclassification of clinical phenotypes. Furthermore, characterization of the pharmacological properties of variant receptors could provide the first opportunity for translational therapeutic strategies for these GRIN-related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Scott J Myers
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Hongjie Yuan
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN, USA
| | - Francis Chee Kuan Tan
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen F Traynelis
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Chian-Ming Low
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
57
|
Černý J, Božíková P, Balík A, Marques SM, Vyklický L. NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics. Biomolecules 2019; 9:biom9100546. [PMID: 31569344 PMCID: PMC6843686 DOI: 10.3390/biom9100546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Abstract
We report the first complete description of the molecular mechanisms behind the transition of the N-methyl-d-aspartate (NMDA) receptor from the state where the transmembrane domain (TMD) and the ion channel are in the open configuration to the relaxed unliganded state where the channel is closed. Using an aggregate of nearly 1 µs of unbiased all-atom implicit membrane and solvent molecular dynamics (MD) simulations we identified distinct structural states of the NMDA receptor and revealed functionally important residues (GluN1/Glu522, GluN1/Arg695, and GluN2B/Asp786). The role of the "clamshell" motion of the ligand binding domain (LBD) lobes in the structural transition is supplemented by the observed structural similarity at the level of protein domains during the structural transition, combined with the overall large rearrangement necessary for the opening and closing of the receptor. The activated and open states of the receptor are structurally similar to the liganded crystal structure, while in the unliganded receptor the extracellular domains perform rearrangements leading to a clockwise rotation of up to 45 degrees around the longitudinal axis of the receptor, which closes the ion channel. The ligand-induced rotation of extracellular domains transferred by LBD-TMD linkers to the membrane-anchored ion channel is responsible for the opening and closing of the transmembrane ion channel, revealing the properties of NMDA receptor as a finely tuned molecular machine.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Paulína Božíková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Aleš Balík
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
- International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
| | - Ladislav Vyklický
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
58
|
Kinoshita H, Maki T, Yasuda K, Kishida N, Sasaoka N, Takagi Y, Kakizuka A, Takahashi R. KUS121, a valosin-containing protein modulator, attenuates ischemic stroke via preventing ATP depletion. Sci Rep 2019; 9:11519. [PMID: 31395936 PMCID: PMC6687885 DOI: 10.1038/s41598-019-47993-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Reduced adenosine triphosphate (ATP) levels in ischemic stroke constitute an upstream contributor to neuronal cell death. We have recently created a small chemical, named Kyoto University Substance 121 (KUS121), which can reduce cellular ATP consumption. In this study, we examined whether KUS121 has neuroprotective effects in rodent cerebral ischemia models. We evaluated cell viability and ATP levels in vitro after oxygen glucose deprivation (OGD) in rat cortical primary neuronal cultures incubated with or without KUS121. We found that KUS121 protected neurons from cell death under OGD by preventing ATP depletion. We also used in vivo ischemic stroke models of transient distal middle cerebral artery occlusion in C57BL/6 and B-17 mice. Administration of KUS121 in these models improved functional deficits and reduced brain infarction volume after transient focal cerebral ischemia in both C57BL/6 and B-17 mice. These results indicate that KUS121 could be a novel type of neuroprotective drug for ischemic stroke.
Collapse
Affiliation(s)
- Hisanori Kinoshita
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Ken Yasuda
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Natsue Kishida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norio Sasaoka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
59
|
Rodríguez-Soacha DA, Scheiner M, Decker M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur J Med Chem 2019; 180:690-706. [PMID: 31401465 DOI: 10.1016/j.ejmech.2019.07.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
In this review, we present the latest advances in the field of multi-target-directed ligand (MTDL) design for the treatment of various complex pathologies of multifactorial origin. In particular, latest findings in the field of MTDL design targeting both an enzyme and a receptor are presented for different diseases such as Alzheimer's disease (AD), depression, addiction, glaucoma, non-alcoholic steatohepatitis and pain and inflammation. The ethology of the diseases is briefly described, with special emphasis on how the MTDL can evolve into novel therapies that replace the classic pharmacological dogma "one target one disease". Considering the current needs for therapy adherence improvement, it is exposed as from the medicinal chemistry, different molecular scaffolds are studied. With the use of structure activity relationship studies and molecular optimization, new hybrid molecules are generated with improved biological properties acting at two biologically very distinct targets.
Collapse
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
60
|
Isoform-specific Inhibition of N-methyl-D-aspartate Receptors by Bile Salts. Sci Rep 2019; 9:10068. [PMID: 31296930 PMCID: PMC6624251 DOI: 10.1038/s41598-019-46496-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
The N-methyl-D-aspartate subfamily of ionotropic glutamate receptors (NMDARs) is well known for its important roles in the central nervous system (CNS), e.g. learning and memory formation. Besides the CNS, NMDARs are also expressed in numerous peripheral tissues including the pancreas, kidney, stomach, and blood cells, where an understanding of their physiological and pathophysiological roles is only evolving. Whereas subunit composition increases functional diversity of NMDARs, a great number of endogenous cues tune receptor signaling. Here, we characterized the effects of the steroid bile salts cholate and chenodeoxycholate (CDC) on recombinantly expressed NMDARs of defined molecular composition. CDC inhibited NMDARs in an isoform-dependent manner, preferring GluN2D and GluN3B over GluN2A and GluN2B receptors. Determined IC50 values were in the range of bile salt serum concentrations in severe cholestatic disease states, pointing at a putative pathophysiological significance of the identified receptor modulation. Both pharmacological and molecular simulation analyses indicate that CDC acts allosterically on GluN2D, whereas it competes with agonist binding on GluN3B receptors. Such differential modes of inhibition may allow isoform-specific targeted interference with the NMDAR/bile salt interaction. In summary, our study provides further molecular insight into the modulation of NMDARs by endogenous steroids and points at a putative pathophysiological role of the receptors in cholestatic disease.
Collapse
|
61
|
Metzbower SR, Joo Y, Benavides DR, Blanpied TA. Properties of Individual Hippocampal Synapses Influencing NMDA-Receptor Activation by Spontaneous Neurotransmission. eNeuro 2019; 6:ENEURO.0419-18.2019. [PMID: 31110134 PMCID: PMC6541874 DOI: 10.1523/eneuro.0419-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
NMDA receptor (NMDAR) activation is critical for maintenance and modification of synapse strength. Specifically, NMDAR activation by spontaneous glutamate release has been shown to mediate some forms of synaptic plasticity as well as synaptic development. Interestingly, there is evidence that within individual synapses each release mode may be segregated such that postsynaptically there are distinct pools of responsive receptors. To examine potential regulators of NMDAR activation because of spontaneous glutamate release in cultured hippocampal neurons, we used GCaMP6f imaging at single synapses in concert with confocal and super-resolution imaging. Using these single-spine approaches, we found that Ca2+ entry activated by spontaneous release tends to be carried by GluN2B-NMDARs. Additionally, the amount of NMDAR activation varies greatly both between synapses and within synapses, and is unrelated to spine and synapse size, but does correlate loosely with synapse distance from the soma. Despite the critical role of spontaneous activation of NMDARs in maintaining synaptic function, their activation seems to be controlled factors other than synapse size or synapse distance from the soma. It is most likely that NMDAR activation by spontaneous release influenced variability in subsynaptic receptor position, release site position, vesicle content, and channel properties. Therefore, spontaneous activation of NMDARs appears to be regulated distinctly from other receptor types, notably AMPARs, within individual synapses.
Collapse
Affiliation(s)
| | - Yuyoung Joo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | |
Collapse
|
62
|
Kim JE, Choi HC, Song HK, Kang TC. Blockade of AMPA Receptor Regulates Mitochondrial Dynamics by Modulating ERK1/2 and PP1/PP2A-Mediated DRP1-S616 Phosphorylations in the Normal Rat Hippocampus. Front Cell Neurosci 2019; 13:179. [PMID: 31118889 PMCID: PMC6504797 DOI: 10.3389/fncel.2019.00179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
N-Methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activations induce fast and transient mitochondrial fragmentation under pathophysiological conditions. However, it is still unknown whether NMDAR or AMPAR activity contributes to mitochondrial dynamics under physiological conditions. In the present study, MK801 (a non-competitive NMDAR antagonist) did not affect mitochondrial length in hippocampal neurons as well as phosphorylation levels of dynamin-related protein 1 (DRP1)-serine (S) 616, extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and AMPAR. In contrast, perampanel (a non-competitive AMPAR antagonist) elongated mitochondrial length in neurons concomitant with diminishing phosphorylations of DRP1-S616, ERK1/2, and JNK, but not p38 MAPK. Perampanel also reduced protein phosphatase (PP) 1, PP2A and PP2B phosphorylations, indicating activations of these PPs which were unaffected by MK801. U0126 (an ERK1/2 inhibitor) elongated mitochondrial length, accompanied by the reduced DRP1-S616 phosphorylation. SP600125 (a JNK inhibitor) did not influence mitochondrial length and DRP1 phosphorylations. Okadaic acid (a PP1/PP2A inhibitor) reduced mitochondrial length with the up-regulated DRP1-S616 phosphorylation, while CsA (a PP2B inhibitor) increased it with the elevated DRP1-S637 phosphorylation. Co-treatment of okadaic acid or CsA with perampanel attenuated the reductions in DRP1-S616 and -S637 phosphorylation without changing DRP1 expression level, respectively. GYKI 52466 (another non-competitive AMPAR antagonist) showed the similar effects of perampanel on phosphorylations of DRP1, ERK1/2, JNK, PPs, and GluR1 AMPAR subunits. Taken together, our findings suggest that a blockade of AMPAR may regulate the cooperation of ERK1/2- and PP1/PP2A for the modulation of DRP1 phosphorylations, which facilitate mitochondrial fusion.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hui-Chul Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hong-Ki Song
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
63
|
Smidkova M, Hajek M, Adla SK, Slavikova B, Chodounska H, Matousova M, Mertlikova-Kaiserova H, Kudova E. Screening of novel 3α5β-neurosteroids for neuroprotective activity against glutamate- or NMDA-induced excitotoxicity. J Steroid Biochem Mol Biol 2019; 189:195-203. [PMID: 30872014 DOI: 10.1016/j.jsbmb.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
A broad variety of central nervous system diseases have been associated with glutamate induced excitotoxicity under pathological conditions. The neuroprotective effects of neurosteroids can combat this excitotoxicity. Herein, we have demonstrated the neuroprotective effect of novel steroidal N-methyl-D-aspartate receptor inhibitors against glutamate- or NMDA- induced excitotoxicity. Pretreatment with neurosteroids significantly reduced acute L-glutamic acid or NMDA excitotoxicity mediated by Ca2+ entry and consequent ROS (reactive oxygen species) release and caspase-3 activation. Compounds 6 (IC50 = 5.8 μM), 7 (IC50 = 12.2 μM), 9 (IC50 = 7.8 μM), 13 (IC50 = 1.1 μM) and 16 (IC50 = 8.2 μM) attenuated glutamate-induced Ca2+ entry more effectively than memantine (IC50 = 18.9 μM). Moreover, compound 13 shows comparable effect with MK-801 (IC50 = 1.2 μM) and also afforded significant protection without any adverse effect upon prolonged exposure. This drop in Ca2+ level resulted in corresponding ROS suppression and prevented glutamate-induced caspase-3 activation. Therefore, compound 13 has great potential for development into a therapeutic agent for improving glutamate-related nervous system diseases.
Collapse
Affiliation(s)
- Marketa Smidkova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic.
| | - Miroslav Hajek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Santosh Kumar Adla
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Marika Matousova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Helena Mertlikova-Kaiserova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| |
Collapse
|
64
|
Role of NADPH oxidase-2 in the progression of the inflammatory response secondary to striatum excitotoxic damage. J Neuroinflammation 2019; 16:91. [PMID: 30995916 PMCID: PMC6471795 DOI: 10.1186/s12974-019-1478-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/03/2019] [Indexed: 01/11/2023] Open
Abstract
Background During excitotoxic damage, neuronal death results from the increase in intracellular calcium, the induction of oxidative stress, and a subsequent inflammatory response. NADPH oxidases (NOX) are relevant sources of reactive oxygen species (ROS) during excitotoxic damage. NADPH oxidase-2 (NOX-2) has been particularly related to neuronal damage and death, as well as to the resolution of the subsequent inflammatory response. As ROS are crucial components of the regulation of inflammatory response, in this work, we evaluated the role of NOX-2 in the progression of inflammation resulting from glutamate-induced excitotoxic damage of the striatum in an in vivo model. Methods The striata of wild-type C57BL/6 J and NOX-2 KO mice (gp91Cybbtm1Din/J) were stereotactically injected with monosodium glutamate either alone or in combination with IL-4 or IL-10. The damage was evaluated in histological sections stained with cresyl violet and Fluoro-Jade B. The enzymatic activity of caspase-3 and NOX were also measured. Additionally, the cytokine profile was identified by ELISA and motor activity was verified by the tests of the cylinder, the adhesive tape removal, and the inverted grid. Results Our results show a neuroprotective effect in mice with a genetic inhibition of NOX-2, which is partially due to a differential response to excitotoxic damage, characterized by the production of anti-inflammatory cytokines. In NOX-2 KO animals, the excitotoxic condition increased the production of interleukin-4, which could contribute to the production of interleukin-10 that decreased neuronal apoptotic death and the magnitude of striatal injury. Treatment with interleukin-4 and interleukin-10 protected from excitotoxic damage in wild-type animals. Conclusions The release of proinflammatory cytokines during the excitotoxic event promotes an additional apoptotic death of neurons that survived the initial damage. During the subsequent inflammatory response to excitotoxic damage, ROS generated by NOX-2 play a decisive role in the extension of the lesion and consequently in the severity of the functional compromise, probably by regulating the anti-inflammatory cytokines production. Electronic supplementary material The online version of this article (10.1186/s12974-019-1478-4) contains supplementary material, which is available to authorized users.
Collapse
|
65
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 767] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
66
|
Marwick KFM, Hansen KB, Skehel PA, Hardingham GE, Wyllie DJA. Functional assessment of triheteromeric NMDA receptors containing a human variant associated with epilepsy. J Physiol 2019; 597:1691-1704. [PMID: 30604514 PMCID: PMC6418762 DOI: 10.1113/jp277292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/02/2019] [Indexed: 11/30/2022] Open
Abstract
KEY POINTS NMDA receptors are neurotransmitter-gated ion channels that are critically involved in brain cell communication Variations in genes encoding NMDA receptor subunits have been found in a range of neurodevelopmental disorders. We investigated a de novo genetic variant found in patients with epileptic encephalopathy that changes a residue located in the ion channel pore of the GluN2A NMDA receptor subunit. We found that this variant (GluN2AN615K ) impairs physiologically important receptor properties: it markedly reduces Mg2+ blockade and channel conductance, even for receptors in which one GluN2AN615K is co-assembled with one wild-type GluN2A subunit. Our findings are consistent with the GluN2AN615K mutation being the primary cause of the severe neurodevelopmental disorder in carriers. ABSTRACT NMDA receptors are ionotropic calcium-permeable glutamate receptors with a voltage-dependence mediated by blockade by Mg2+ . Their activation is important in signal transduction, as well as synapse formation and maintenance. Two unrelated individuals with epileptic encephalopathy carry a de novo variant in the gene encoding the GluN2A NMDA receptor subunit: a N615K missense variant in the M2 pore helix (GRIN2AC1845A ). We hypothesized that this variant underlies the neurodevelopmental disorders in carriers and explored its functional consequences by electrophysiological analysis in heterologous systems. We focused on GluN2AN615K co-expressed with wild-type GluN2 subunits in physiologically relevant triheteromeric NMDA receptors containing two GluN1 and two distinct GluN2 subunits, whereas previous studies have investigated the impact of the variant in diheteromeric NMDA receptors with two GluN1 and two identical GluN2 subunits. We found that GluN2AN615K -containing triheteromers showed markedly reduced Mg2+ blockade, with a value intermediate between GluN2AN615K diheteromers and wild-type NMDA receptors. Single-channel conductance was reduced by four-fold in GluN2AN615K diheteromers, again with an intermediate value in GluN2AN615K -containing triheteromers. Glutamate deactivation rates were unaffected. Furthermore, we expressed GluN2AN615K in cultured primary mouse cortical neurons, observing a decrease in Mg2+ blockade and reduction in current density, confirming that the variant continues to have significant functional impact in neuronal systems. Our results demonstrate that the GluN2AN615K variant has substantial effects on NMDA receptor properties fundamental to the roles of the receptor in synaptic plasticity, even when expressed alongside wild-type subunits. This work strengthens the evidence indicating that the GluN2AN615K variant underlies the disabling neurodevelopmental phenotype in carriers.
Collapse
Affiliation(s)
- Katie F M Marwick
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, USA
| | - Paul A Skehel
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
67
|
Duan W, Hu J, Liu Y. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor. Exp Mol Pathol 2019; 107:171-178. [PMID: 30817910 DOI: 10.1016/j.yexmp.2019.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/19/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Ketamine, a common N-methyl-d-aspartate receptor (NMDAR) antagonist, is an option for cancer pain treatment in clinical practice. Ketamine has been shown to have the capacity to attenuate cancer cells malignancy. However, the underlying mechanism remains elusive. In the present study, we reported that ketamine inhibited the malignant potential of colorectal cancer cells and investigated the possible mechanisms involved. Ketamine suppressed the expression of VEGF, HIF-1α, p-AKT, p-ERK, and p-CaMK II, and reduced intracellular Ca2+ level in a concentration dependent manner (1, 5, 10 μg/ml). Furthermore, AP5 and MK801 (NMDAR inhibitors), and KN93 (CaMK II inhibitor), decreased the expression of VEGF, HIF-1a, p-AKT, p-ERK, and p-CaMK II, which were similar to the effect of ketamine. Further, the anti-tumor effect of ketamine was reversed by d-serine (NMDAR activator). Ketamine did not affect NMDA receptor expression, however knockdown of NMDA receptor using siRNA attenuated the effect of ketamine on cell migration. Collectively, these findings demonstrated that ketamine attenuated the expression of VEGF and cell migration ability in colorectal cancer cells, probably via blockage of NMDA receptor.
Collapse
Affiliation(s)
- Wenming Duan
- Department of Anaesthesiology, Xinjiang Medical University, Affiliated Tumour Hospital, Xinjiang, PR China
| | - Jianjun Hu
- Department of Anaesthesiology, Xinjiang Medical University, Affiliated Tumour Hospital, Xinjiang, PR China
| | - Yahua Liu
- Department of Anaesthesiology, Xinjiang Medical University, Affiliated Tumour Hospital, Xinjiang, PR China.
| |
Collapse
|
68
|
Fujikawa DG. Starting ketamine for neuroprotection earlier than its current use as an anesthetic/antiepileptic drug late in refractory status epilepticus. Epilepsia 2019; 60:373-380. [PMID: 30785224 DOI: 10.1111/epi.14676] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Abstract
Ketamine is currently being used as an anesthetic/antiepileptic drug in refractory status epilepticus. To validate its use, 2 clinical trials are recruiting patients. However, preclinical studies of its use in chemically induced status epilepticus in rodents have shown that it is remarkably neuroprotective, through N-methyl-d-aspartate-receptor blockade, even when given after the onset of status epilepticus. Human studies have shown that status epilepticus-induced brain damage can be caused by a glutamate analogue and that it occurs in the same brain regions as in the animal studies. We therefore propose that ketamine be started early in the course of human status epilepticus as a neuroprotectant and that it be continued until epileptic discharges are eliminated. Using it as an anesthetic/antiepileptic drug late in the course of refractory status epilepticus only ensures that it is given after widespread brain damage has occurred.
Collapse
Affiliation(s)
- Denson G Fujikawa
- Neurology Department, VA Greater Los Angeles Healthcare System, Sepulveda Ambulatory Care Center and Nursing Home, North Hills, California.,Department of Neurology and Brain Research Institute, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
69
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
70
|
Viganò A, Toscano M, Puledda F, Di Piero V. Treating Chronic Migraine With Neuromodulation: The Role of Neurophysiological Abnormalities and Maladaptive Plasticity. Front Pharmacol 2019; 10:32. [PMID: 30804782 PMCID: PMC6370938 DOI: 10.3389/fphar.2019.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic migraine (CM) is the most disabling form of migraine, because pharmacological treatments have low efficacy and cumbersome side effects. New evidence has shown that migraine is primarily a disorder of brain plasticity and migraine chronification depends on a maladaptive process favoring the development of a brain state of hyperexcitability. Due to the ability to induce plastic changes in the brain, researchers started to look at Non-Invasive Brain Stimulation (NIBS) as a possible therapeutic option in migraine field. On one side, NIBS techniques induce changes of neural plasticity that outlast the period of the stimulation (a fundamental prerequisite of a prophylactic migraine treatment, concurrently they allow targeting neurophysiological abnormalities that contribute to the transition from episodic to CM. The action may thus influence not only the cortex but also brainstem and diencephalic structures. Plus, NIBS is not burdened by serious medication side effects and drug–drug interactions. Although the majority of the studies reported somewhat beneficial effects in migraine patients, no standard intervention has been defined. This may be due to methodological differences regarding the used techniques (e.g., transcranial magnetic stimulation, transcranial direct current stimulation), the brain regions chosen as targets, and the stimulation types (e.g., the use of inhibitory and excitatory stimulations on the basis of opposite rationales), and an intrinsic variability of stimulation effect. Hence, it is difficult to draw a conclusion on the real effect of neuromodulation in migraine. In this article, we first will review the definition and mechanisms of brain plasticity, some neurophysiological hallmarks of migraine, and migraine chronification-related (dys)plasticity. Secondly, we will review available results from therapeutic and physiological studies using neuromodulation in CM. Lastly we will discuss the results obtained in these preventive trials in the light of a possible effect on brain plasticity.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Molecular and Cellular Networks Lab, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Toscano
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Rome, Italy
| | - Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, King's College Hospital, King's College London, London, United Kingdom
| | - Vittorio Di Piero
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,University Consortium for Adaptive Disorders and Head Pain - UCADH, Pavia, Italy
| |
Collapse
|
71
|
Sun W, Wong JM, Gray JA, Carter BC. Incomplete block of NMDA receptors by intracellular MK-801. Neuropharmacology 2018; 143:122-129. [PMID: 30227149 PMCID: PMC8920045 DOI: 10.1016/j.neuropharm.2018.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
NMDA receptors (NMDARs) are essential components in glutamatergic synaptic signaling. The NMDAR antagonist MK-801 has been a valuable pharmacological tool in evaluating NMDAR function because it binds with high affinity to the NMDAR ion channel pore and is non-competitive with ligand binding. MK-801 has also been used to selectively inhibit NMDAR current in only the cell being recorded by including the drug in the intracellular recording solution. Here, we report that intracellular MK-801 (iMK-801) only partially inhibits synaptic NMDAR currents at +40 mV at both cortical layer 4 to layer 2/3 and hippocampal Schaffer collateral to CA1 synapses. Furthermore, iMK-801 incompletely inhibits heterologously expressed NMDAR currents at -60 mV, consistent with a model of iMK-801 having a very slow binding rate and consequently ∼30,000 times lower affinity than MK-801 applied to the extracellular side of the receptor. While iMK-801 can be used as a qualitative tool to study reduced postsynaptic NMDAR function, it cannot be assumed to completely block NMDARs at concentrations typically used in experiments.
Collapse
Affiliation(s)
- Weinan Sun
- Vollum Institute, Oregon Health & Science University, Portland, USA
| | - Jonathan M. Wong
- Center for Neuroscience, University of California, Davis, USA,Neuroscience Graduate Program, University of California, Davis, USA
| | - John A. Gray
- Center for Neuroscience, University of California, Davis, USA,Neurology Department, University of California, Davis, USA
| | - Brett C. Carter
- Vollum Institute, Oregon Health & Science University, Portland, USA,European Neuroscience Institute Göttingen, Germany,Corresponding author: Corresponding author: Brett C. Carter, European Neuroscience Institute Gőttingen, Grisebachstrasse 5, Gőttingen Germany 37077, Phone: +49 51 39 13898,
| |
Collapse
|
72
|
Sidhu A, Diwan V, Kaur H, Bhateja D, Singh CK, Sharma S, Padi SSV. Nicotinamide reverses behavioral impairments and provides neuroprotection in 3-nitropropionic acid induced animal model ofHuntington's disease: implication of oxidative stress- poly(ADP- ribose) polymerase pathway. Metab Brain Dis 2018; 33:1911-1921. [PMID: 30054774 DOI: 10.1007/s11011-018-0297-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022]
Abstract
Huntington's disease (HD) is characterized by cognitive and psychiatric impairment caused by neuronal degeneration in the brain. Several studies have supported the hypothesis that oxidative stress is the main pathogenic factor in HD. The current study aims to determine the possible neuroprotective effects of nicotinamide on 3-nitropropionic acid (3-NP) induced HD. Male Wistar albino rats were divided into six groups. Group I was the vehicle-treated control, group II received 3-NP (20 mg/kg, intraperitoneally (i.p.) for 4 days, group III received nicotinamide (500 mg/kg, i.p.). The remaining groups received a combination of 3-NP plus nicotinamide 100, 300 or 500 mg/kg, i.p. respectively for 8 days. Afterward, the motor function and hind paw activity in the limb withdrawal were tested; rats were then euthanized for biochemical and histopathological analyses. Treatment of rats with 3-NP altered the motor function, elevated oxidative stress and caused significant histopathological changes in the brain. The treatment of rats with nicotinamide (100, 300 and 500 mg/kg) improved the motor function tested by locomotor activity test, movement analysis, and limb withdrawal test, which was associated with decreased oxidative stress markers (malondialdehyde, nitrites) and increased antioxidant enzyme (glutathione) levels. In addition, nicotinamide treatment decreased lactate dehydrogenase and prevented neuronal death in the striatal region. Our study, therefore, concludes that antioxidant drugs like nicotinamide might slow progression of clinical HD and may improve the motor functions in HD patients. To the best of our knowledge, this study is the first to explore the neuroprotective effects of nicotinamide on 3-NP-induced HD.
Collapse
Affiliation(s)
- Akram Sidhu
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India.
| | - Vishal Diwan
- UQ Diamantina Institute, Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Harsimran Kaur
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| | - Deepak Bhateja
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| | - Charan K Singh
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141012, India
| | - Saurabh Sharma
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| | - Satyanarayana S V Padi
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| |
Collapse
|
73
|
Prenylated quinolinecarboxylic acid derivative prevents neuronal cell death through inhibition of MKK4. Biochem Pharmacol 2018; 162:109-122. [PMID: 30316820 DOI: 10.1016/j.bcp.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
Abstract
The development of neuroprotective agents is necessary for the treatment of neurodegenerative diseases. Here, we report PQA-11, a prenylated quinolinecarboxylic acid (PQA) derivative, as a potent neuroprotectant. PQA-11 inhibits glutamate-induced cell death and caspase-3 activation in hippocampal cultures, as well as inhibits N-Methyl-4-phenylpyridinium iodide- and amyloid β1-42-induced cell death in SH-SY5Y cells. PQA-11 also suppresses mitogen-activated protein kinase kinase 4 (MKK4) and c-jun N-terminal kinase (JNK) signaling activated by these neurotoxins. Quartz crystal microbalance analysis and in vitro kinase assay reveal that PQA-11 interacts with MKK4, and inhibits its sphingosine-induced activation. The administration of PQA-11 by intraperitoneal injection alleviates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of nigrostriatal dopaminergic neurons in mice. These results suggest that PQA-11 is a unique MKK4 inhibitor with potent neuroprotective effects in vitro and in vivo. PQA-11 may be a valuable lead for the development of novel neuroprotectants.
Collapse
|
74
|
Lodge D, Watkins JC, Bortolotto ZA, Jane DE, Volianskis A. The 1980s: D-AP5, LTP and a Decade of NMDA Receptor Discoveries. Neurochem Res 2018; 44:516-530. [PMID: 30284673 PMCID: PMC6420420 DOI: 10.1007/s11064-018-2640-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
In the 1960s and 70s, biochemical and pharmacological evidence was pointing toward glutamate as a synaptic transmitter at a number of distinct receptor classes, known as NMDA and non-NMDA receptors. The field, however, lacked a potent and highly selective antagonist to block these putative postsynaptic receptors. So, the discoveries in the early 1980s of d-AP5 as a selective NMDA receptor antagonist and of its ability to block synaptic events and plasticity were a major breakthrough leading to an explosion of knowledge about this receptor subtype. During the next 10 years, the role of NMDA receptors was established in synaptic transmission, long-term potentiation, learning and memory, epilepsy, pain, among others. Hints at pharmacological heterogeneity among NMDA receptors were followed by the cloning of separate subunits. The purpose of this review is to recognize the important contributions made in the 1980s by Graham L. Collingridge and other key scientists to the advances in our understanding of the functions of NMDA receptors throughout the central nervous system.
Collapse
Affiliation(s)
- D Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - J C Watkins
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Z A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - A Volianskis
- School of Clinical Sciences, University of Bristol, Bristol, UK.
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
75
|
Abstract
Comparative and cognitive psychologists interpret performance in different ways. Animal researchers invoke a dominant construct of associative learning. Human researchers acknowledge humans' capacity for explicit-declarative cognition. This article offers a way to bridge a divide that defeats productive cross-talk. We show that animals often challenge the associative-learning construct, and that it does not work to try to stretch the associative-learning construct to encompass these performances. This approach thins and impoverishes that important construct. We describe an alternative approach that restrains the construct of associative learning by giving it a clear operational definition. We apply this approach in several comparative domains to show that different task variants change-in concert-the level of awareness, the declarative nature of knowledge, the dimensional breadth of knowledge, and the brain systems that organize learning. These changes reveal dissociable learning processes that a unitary associative construct cannot explain but a neural-systems framework can explain. These changes define the limit of associative learning and the threshold of explicit cognition. The neural-systems framework can broaden empirical horizons in comparative psychology. It can offer animal models of explicit cognition to cognitive researchers and neuroscientists. It can offer simple behavioral paradigms for exploring explicit cognition to developmental researchers. It can enliven the synergy between human and animal research, promising a productive future for both.
Collapse
Affiliation(s)
- J David Smith
- Department of Psychology, Georgia State University, Atlanta, GA, 30303-5010, USA.
| | - Barbara A Church
- Language Research Center, Georgia State University, Atlanta, GA, 30303-5010, USA
| |
Collapse
|
76
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
77
|
NMDA Receptor Dependent Long-term Potentiation in Chronic Pain. Neurochem Res 2018; 44:531-538. [PMID: 30109556 PMCID: PMC6420414 DOI: 10.1007/s11064-018-2614-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
Since the discovery of NMDA receptor (NMDAR) dependent long-term potentiation (LTP) in the hippocampus, many studies have demonstrated that NMDAR dependent LTP exists throughout central synapses, including those involved in sensory transmission and perception. NMDAR LTP has been reported in spinal cord dorsal horn synapses, anterior cingulate cortex and insular cortex. Behavioral, genetic and pharmacological studies show that inhibiting or reducing NMDAR LTP produced analgesic effects in animal models of chronic pain. Investigation of signalling mechanisms for NMDAR LTP may provide novel targets for future treatment of chronic pain.
Collapse
|
78
|
Turovskaya MV, Zinchenko VP, Babaev AA, Epifanova EA, Tarabykin VS, Turovsky EA. Mutation in the Sip1 transcription factor leads to a disturbance of the preconditioning of AMPA receptors by episodes of hypoxia in neurons of the cerebral cortex due to changes in their activity and subunit composition. The protective effects of interleukin-10. Arch Biochem Biophys 2018; 654:126-135. [PMID: 30056076 DOI: 10.1016/j.abb.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
The Sip1 mutation plays the main role in pathogenesis of the Mowat-Wilson syndrome, which is characterized by the pronounced epileptic symptoms. Cortical neurons of homozygous mice with Sip1 mutation are resistant to AMPA receptor activators. Disturbances of the excitatory signaling components are also observed on such a phenomenon of neuroplasticity as hypoxic preconditioning. In this work, the mechanisms of loss of the AMPA receptor's ability to precondition by episodes of short-term hypoxia were investigated on cortical neurons derived from the Sip1 homozygous mice. The preconditioning effect was estimated by the level of suppression of the AMPA receptors activity with hypoxia episodes. Using fluorescence microscopy, we have shown that cortical neurons from the Sip1fl/fl mice are characterized by the absence of hypoxic preconditioning effect, whereas the amplitude of Ca2+-responses to the application of the AMPA receptor agonist, 5-Fluorowillardiine, in neurons from the Sip1 mice brainstem is suppressed by brief episodes of hypoxia. The mechanism responsible for this process is hypoxia-induced desensitization of the AMPA receptors, which is absent in the cortex neurons possessing the Sip1 mutation. However, the appearance of preconditioning in these neurons can be induced by phosphoinositide-3-kinase activation with a selective activator or an anti-inflammatory cytokine interleukin-10.
Collapse
Affiliation(s)
| | | | - Alexei A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Ekaterina A Epifanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Victor S Tarabykin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhniy Novgorod, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Russia.
| |
Collapse
|
79
|
Yu A, Lau AY. Glutamate and Glycine Binding to the NMDA Receptor. Structure 2018; 26:1035-1043.e2. [PMID: 29887499 DOI: 10.1016/j.str.2018.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/29/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
At central nervous system synapses, agonist binding to postsynaptic ionotropic glutamate receptors (iGluRs) results in signaling between neurons. N-Methyl-D-aspartic acid (NMDA) receptors are a unique family of iGluRs that activate in response to the concurrent binding of glutamate and glycine. Here, we investigate the process of agonist binding to the GluN2A (glutamate binding) and GluN1 (glycine binding) NMDA receptor subtypes using long-timescale unbiased molecular dynamics simulations. We find that positively charged residues on the surface of the GluN2A ligand-binding domain (LBD) assist glutamate binding via a "guided-diffusion" mechanism, similar in fashion to glutamate binding to the GluA2 LBD of AMPA receptors. Glutamate can also bind in an inverted orientation. Glycine, on the other hand, binds to the GluN1 LBD via an "unguided-diffusion" mechanism, whereby glycine finds its binding site primarily by random thermal fluctuations. Free energy calculations quantify the glutamate- and glycine-binding processes.
Collapse
Affiliation(s)
- Alvin Yu
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Albert Y Lau
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
80
|
Wang H, Wang X, Li Y, Yu H, Wang C, Feng C, Xu G, Chen J, You J, Wang P, Wu X, Zhao R, Zhang G. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium. Exp Ther Med 2018; 15:3791-3800. [PMID: 29581737 PMCID: PMC5863573 DOI: 10.3892/etm.2018.5902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 01/26/2023] Open
Abstract
It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yan Li
- No.1 English Department, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
81
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 771] [Impact Index Per Article: 110.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
82
|
Pan X, Chen J, Wang W, Chen L, Wang L, Ma Q, Zhang J, Chen L, Wang G, Zhang M, Wu H, Cheng R. Resveratrol-induced antinociception is involved in calcium channels and calcium/caffeine-sensitive pools. Oncotarget 2018; 8:9399-9409. [PMID: 28030799 PMCID: PMC5354740 DOI: 10.18632/oncotarget.14090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Resveratrol has been widely investigated for its potential health properties, although little is known about its mechanism in vivo. Previous studies have indicated that resveratrol produces antinociceptive effects in mice. Calcium channels and calcium/caffeine-sensitive pools are reported to be associated with analgesic effect. The present study was to explore the involvement of Ca2+ channel and calcium/caffeine-sensitive pools in the antinociceptive response of resveratrol. Tail-flick test was used to assess antinociception in mice treated with resveratrol or the combinations of resveratrol with MK 801, nimodipine, CaCl2, ryanodine and ethylene glycol tetraacetic acid (EGTA), respectively. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) levels in the spinal cord were also investigated when treated with the above drugs. The results showed that resveratrol increased the tail flick latency in the tail-flick test, in dose-dependent manner. N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK 801 potentiated the antinociceptive effects of sub-threshold dose of resveratrol at 10 mg/kg. Ca2+ channel blocker, however, abolished the antinociceptive effects of resveratrol. In contrast to these results, EGTA or ryanodine treatment (i.c.v.) potentiated resveratrol-induced antinociception. There was a significant decrease in p-CaMKII and an increase in BDNF expression in the spinal cord when combined with MK 801, nimodipine, ryanodine and EGTA. While an increase in p-CaMKII level and a decrease in BDNF expression were observed when high dose of resveratrol combined with CaCl2. These findings suggest that resveratrol exhibits the antinociceptive effects by inhibition of calcium channels and calcium/caffeine-sensitive pools.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Thyroid Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiechun Chen
- Department of Neurology, Lianyungang second people's Hospital, Lianyungang, Jiangsu Province, China
| | - Weijie Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Ling Chen
- Department of Clinical Pharmacy, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
| | - Lin Wang
- Department of Clinical Pharmacy, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
| | - Quan Ma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Jianbo Zhang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lichao Chen
- Pingyang Hospital of Traditional Chinese Medicine, Pingyang, Zhejiang Province, China
| | - Gang Wang
- Department of Clinical Pharmacy, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
| | - Meixi Zhang
- Pingyang Hospital of Traditional Chinese Medicine, Pingyang, Zhejiang Province, China
| | - Hao Wu
- Department of Neurology, Wenzhou People's Hospital, Wenzhou, Zhejiang Province, China
| | - Ruochuan Cheng
- Department of Thyroid Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
83
|
Affiliation(s)
- Katalin Tóth
- Quebec Mental Health Institute, Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
84
|
Rubio-Casillas A, Fernández-Guasti A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci 2018; 27:599-622. [PMID: 27096778 DOI: 10.1515/revneuro-2015-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.
Collapse
|
85
|
Opere CA, Heruye S, Njie-Mbye YF, Ohia SE, Sharif NA. Regulation of Excitatory Amino Acid Transmission in the Retina: Studies on Neuroprotection. J Ocul Pharmacol Ther 2017; 34:107-118. [PMID: 29267132 DOI: 10.1089/jop.2017.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Excitotoxicity occurs in neurons due to the accumulation of excitatory amino acids such as glutamate in the synaptic and extrasynaptic locations. In the retina, excessive glutamate concentrations trigger a neurotoxic cascade involving several mechanisms, including the elevation of intracellular calcium (Ca2+) and the activation of α-amino-3-hydroxy 5-methyl-4-iso-xazole-propionic acid/kainate (AMPA/KA) and N-methyl-d-aspartate (NMDA) receptors leading to retinal degeneration. Both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are present in the mammalian retina. Indeed, due to the abundant expression of GluRs, the mammalian retina is highly susceptible to excitotoxic neurodegeneration. Excitotoxicity has been postulated to present a common downstream mechanism for several stimuli, including hypoglycemia, hypoxia, ischemia, and chronic neurodegenerative diseases. Experimental approaches to the study of neuroprotection in the retina have utilized insults that trigger hypoxia, hypoglycemia, or excitotoxicity. Using these experimental approaches, the neuroprotective potential of GluR agents, including the NMDA receptor modulators (MK801, ifenprodil, memantine); AMPA/KA receptor antagonist (CNQX); Group II and III mGluR agonists (LY354740, quisqualate); and Ca2+-channel blockers (diltiazem, lomerizine, verapamil, ω-conotoxin), and others (pituitary adenylate cyclase activating polypeptide, neuropeptide Y, acetylcholine receptor agonists) have been elucidated. In addition to corroborating the exocytotic role of excitatory amino acids in retinal degeneration, these studies affirm that multiple mechanism/s contribute to the prevention of damage caused by excitotoxicity in the retina. Therefore, it is feasible that several pathways are involved in protecting the retina from toxic insults in ocular neurodegenerative conditions such as glaucoma and retinal ischemia. Furthermore, these experimental models are viable tools for evaluating therapeutic candidates in ocular neuropathies.
Collapse
Affiliation(s)
- Catherine A Opere
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Segewkal Heruye
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Ya-Fatou Njie-Mbye
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Sunny E Ohia
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Najam A Sharif
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas.,3 Santen Incorporated , Emeryville, California
| |
Collapse
|
86
|
Formal models in animal-metacognition research: the problem of interpreting animals' behavior. Psychon Bull Rev 2017; 23:1341-1353. [PMID: 26669600 DOI: 10.3758/s13423-015-0985-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ongoing research explores whether animals have precursors to metacognition-that is, the capacity to monitor mental states or cognitive processes. Comparative psychologists have tested apes, monkeys, rats, pigeons, and a dolphin using perceptual, memory, foraging, and information-seeking paradigms. The consensus is that some species have a functional analog to human metacognition. Recently, though, associative modelers have used formal-mathematical models hoping to describe animals' "metacognitive" performances in associative-behaviorist ways. We evaluate these attempts to reify formal models as proof of particular explanations of animal cognition. These attempts misunderstand the content and proper application of models. They embody mistakes of scientific reasoning. They blur fundamental distinctions in understanding animal cognition. They impede theoretical development. In contrast, an energetic empirical enterprise is achieving strong success in describing the psychology underlying animals' metacognitive performances. We argue that this careful empirical work is the clear path to useful theoretical development. The issues raised here about formal modeling-in the domain of animal metacognition-potentially extend to biobehavioral research more broadly.
Collapse
|
87
|
Turovsky EA, Babaev AA, Tarabykin VS, Turovskaya MV. Sip1 mutation suppresses the resistance of cerebral cortex neurons to hypoxia through the disturbance of mechanisms of hypoxic preconditioning. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
88
|
Turner AL, Perry MS. Outside the box: Medications worth considering when traditional antiepileptic drugs have failed. Seizure 2017; 50:173-185. [PMID: 28704741 DOI: 10.1016/j.seizure.2017.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Review and discuss medications efficacious for seizure control, despite primary indications for other diseases, as treatment options in patients who have failed therapy with traditional antiepileptic drugs (AEDs). METHODS Literature searches were conducted utilizing PubMed and MEDLINE databases employing combinations of search terms including, but not limited to, "epilepsy", "refractory", "seizure", and the following medications: acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants. RESULTS Data from relevant case studies, retrospective reviews, and available clinical trials were gathered, analyzed, and reported. Experience with acetazolamide, amantadine, bumetanide, imipramine, lidocaine, verapamil, and various stimulants show promise for cases of refractory epilepsy in both adults and children. Many medications lack large scale, randomized clinical trials, but the available data is informative when choosing treatment for patients that have failed traditional epilepsy therapies. CONCLUSIONS All neurologists have encountered a patient that failed nearly every AED, diet, and surgical option. For these patients, we often seek fortuitous discoveries within small series and case reports, hoping to find a treatment that might help the patient. In the present review, we describe medications for which antiepileptic effect has been ascribed after they were introduced for other indications.
Collapse
Affiliation(s)
- Adrian L Turner
- Department of Pharmacy, Cook Children's Medical Center, 1500 Cooper Street, 4th Floor, Fort Worth, TX, 76104, USA
| | - M Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, TX, USA.
| |
Collapse
|
89
|
Strong KL, Epplin MP, Bacsa J, Butch CJ, Burger PB, Menaldino DS, Traynelis SF, Liotta DC. The Structure-Activity Relationship of a Tetrahydroisoquinoline Class of N-Methyl-d-Aspartate Receptor Modulators that Potentiates GluN2B-Containing N-Methyl-d-Aspartate Receptors. J Med Chem 2017; 60:5556-5585. [PMID: 28586221 DOI: 10.1021/acs.jmedchem.7b00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have identified a series of positive allosteric NMDA receptor (NMDAR) modulators derived from a known class of GluN2C/D-selective tetrahydroisoquinoline analogues that includes CIQ. The prototypical compound of this series contains a single isopropoxy moiety in place of the two methoxy substituents present in CIQ. Modifications of this isopropoxy-containing scaffold led to the identification of analogues with enhanced activity at the GluN2B subunit. We identified molecules that potentiate the response of GluN2B/GluN2C/GluN2D, GluN2B/GluN2C, and GluN2C/GluN2D-containing NMDARs to maximally effective concentrations of agonist. Multiple compounds potentiate the response of NMDARs with submicromolar EC50 values. Analysis of enantiomeric pairs revealed that the S-(-) enantiomer is active at the GluN2B, GluN2C, and/or GluN2D subunits, whereas the R-(+) enantiomer is only active at GluN2C/D subunits. These results provide a starting point for the development of selective positive allosteric modulators for GluN2B-containing receptors.
Collapse
Affiliation(s)
- Katie L Strong
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew P Epplin
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher J Butch
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Earth-Life Science Institute, Tokyo Institute of Technology , Meguro-ku, Tokyo Japan
| | - Pieter B Burger
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David S Menaldino
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University , 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Pharmacology, Emory University , 1510 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
90
|
Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion 2017; 35:70-79. [PMID: 28533168 DOI: 10.1016/j.mito.2017.05.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/31/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023]
Abstract
Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome.
Collapse
Affiliation(s)
- Jenna L Gollihue
- University of Kentucky, Department of Physiology and Spinal Cord & Brain Injury Research Center, Lexington, KY 40536-0509, United States
| | - Alexander G Rabchevsky
- University of Kentucky, Department of Physiology and Spinal Cord & Brain Injury Research Center, Lexington, KY 40536-0509, United States.
| |
Collapse
|
91
|
Colnaghi S, Colagiorgio P, Versino M, Koch G, D'Angelo E, Ramat S. A role for NMDAR-dependent cerebellar plasticity in adaptive control of saccades in humans. Brain Stimul 2017; 10:817-827. [PMID: 28501325 DOI: 10.1016/j.brs.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Saccade pulse amplitude adaptation is mediated by the dorsal cerebellar vermis and fastigial nucleus. Long-term depression at the parallel fibre-Purkinjie cell synapses has been suggested to provide a cellular mechanism for the corresponding learning process. The mechanisms and sites of this plasticity, however, are still debated. OBJECTIVE To test the role of cerebellar plasticity phenomena on adaptive saccade control. METHODS We evaluated the effect of continuous theta burst stimulation (cTBS) over the posterior vermis on saccade amplitude adaptation and spontaneous recovery of the initial response. To further identify the substrate of synaptic plasticity responsible for the observed adaptation impairment, subjects were pre-treated with memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist. RESULTS Amplitude adaptation was altered by cTBS, suggesting that cTBS interferes with cerebellar plasticity involved in saccade adaptation. Amplitude adaptation and spontaneous recovery were not affected by cTBS when recordings were preceded by memantine administration. CONCLUSION The effects of cTBS are NMDAR-dependent and are likely to involve long-term potentiation or long-term depression at specific synaptic connections of the granular and molecular layer, which could effectively take part in cerebellar motor learning.
Collapse
Affiliation(s)
- S Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy; Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy.
| | - P Colagiorgio
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - M Versino
- Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - G Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione S. Lucia IRCCS, via Ardeatina 306, 00179 Rome, Italy; Dipartimento di Neurologia, Policlinico Tor Vergata, viale Oxford 81, 00133 Rome, Italy
| | - E D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy
| | - S Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
92
|
Marwick KFM, Parker P, Skehel P, Hardingham G, Wyllie DJA. Functional assessment of the NMDA receptor variant GluN2A R586K. Wellcome Open Res 2017; 2:20. [PMID: 28459106 PMCID: PMC5407442 DOI: 10.12688/wellcomeopenres.10985.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor that has important roles in synaptogenesis, synaptic transmission, and synaptic plasticity. Recently, a large number of rare genetic variants have been found in NMDAR subunits in people with neurodevelopmental disorders, and also in healthy individuals. One such is the GluN2AR586K variant, found in a person with intellectual disability. Identifying the functional consequences, if any, of such variants allows their potential contribution to pathogenesis to be assessed. Here, we assessed the effect of the GluN2AR586K variant on NMDAR pore properties. Methods: We expressed recombinant NMDARs with and without the GluN2AR586K variant in Xenopus laevis oocytes and in primary cultured mouse neurons, and made electrophysiological recordings assessing Mg2+ block, single-channel conductance, mean open time and current density. Results: The GluN2AR586K variant was not found to influence any of the properties assessed. Conclusions: Our findings suggest it is unlikely that the GluN2AR586K variant contributes to the pathogenesis of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Katie F M Marwick
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Peter Parker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Paul Skehel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Giles Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - David J A Wyllie
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
93
|
Marwick KF, Parker P, Skehel P, Hardingham G, Wyllie DJ. Functional assessment of the NMDA receptor variant GluN2AR586K. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.10985.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor that has important roles in synaptogenesis, synaptic transmission, and synaptic plasticity. Recently, a large number of rare genetic variants have been found in NMDAR subunits in people with neurodevelopmental disorders, and also in healthy individuals. One such is the GluN2AR586K variant, found in a person with intellectual disability. Identifying the functional consequences, if any, of such variants allows their potential contribution to pathogenesis to be assessed. Here, we assessed the effect of the GluN2AR586K variant on NMDAR pore properties. Methods: We expressed recombinant NMDARs with and without the GluN2AR586K variant in Xenopus laevis oocytes and in primary cultured mouse neurons, and made electrophysiological recordings assessing Mg2+ block, single-channel conductance, mean open time and current density. Results: The GluN2AR586K variant was not found to influence any of the properties assessed. Conclusions: Our findings suggest it is unlikely that the GluN2AR586K variant contributes to the pathogenesis of neurodevelopmental disorder.
Collapse
|
94
|
Lü W, Du J, Goehring A, Gouaux E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 2017; 355:science.aal3729. [PMID: 28232581 DOI: 10.1126/science.aal3729] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/02/2017] [Indexed: 11/02/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are heterotetrameric ion channels assembled as diheteromeric or triheteromeric complexes. Here, we report structures of the triheteromeric GluN1/GluN2A/GluN2B receptor in the absence or presence of the GluN2B-specific allosteric modulator Ro 25-6981 (Ro), determined by cryogenic electron microscopy (cryo-EM). In the absence of Ro, the GluN2A and GluN2B amino-terminal domains (ATDs) adopt "closed" and "open" clefts, respectively. Upon binding Ro, the GluN2B ATD clamshell transitions from an open to a closed conformation. Consistent with a predominance of the GluN2A subunit in ion channel gating, the GluN2A subunit interacts more extensively with GluN1 subunits throughout the receptor, in comparison with the GluN2B subunit. Differences in the conformation of the pseudo-2-fold-related GluN1 subunits further reflect receptor asymmetry. The triheteromeric NMDAR structures provide the first view of the most common NMDA receptor assembly and show how incorporation of two different GluN2 subunits modifies receptor symmetry and subunit interactions, allowing each subunit to uniquely influence receptor structure and function, thus increasing receptor complexity.
Collapse
Affiliation(s)
- Wei Lü
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Juan Du
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. .,Howard Hughes Medical Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
95
|
Wu Q, Zhao Y, Duan W, Liu Y, Chen X, Zhu M. Propofol inhibits high glucose-induced PP2A expression in human umbilical vein endothelial cells. Vascul Pharmacol 2017; 91:18-25. [PMID: 28188886 DOI: 10.1016/j.vph.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 02/05/2017] [Indexed: 01/04/2023]
Abstract
Perioperative hyperglycemia is a common clinical metabolic disorder. Hyperglycemia could induce endothelial apoptosis, dysfunction and inflammation, resulting in endothelial injury. Propofol is a widely used anesthetic drug in clinical settings. Our previous studies indicated that propofol, via inhibiting high glucose-induced phosphatase A2 (PP2A) expression, attenuated high glucose-induced reactive oxygen species (ROS) accumulation, thus improving endothelial apoptosis, dysfunction and inflammation. However, the mechanisms by which propofol attenuated high glucose-induced PP2A expression is still obscure. In the present study, we examined how propofol attenuates high glucose-induced endothelial PP2A expression. Compared with 5mM glucose treatment, 15mM glucose up-regulated expression and activity of PP2A, increased cAMP response element binding protein (CREB), Ca2+-calmodulin dependent kinase II (CaMK II) phosphorylation and Ca2+ accumulation. More importantly, propofol decreased PP2A expression and activity, attenuated CREB, CaMK II phosphorylation and Ca2+ accumulation in a concentration-dependent manner. Moreover, we demonstrated that the effect of propofol was similar to that of MK801, an inhibitor of NMDA receptor. In contrast, rapastinel, an activator of NMDA receptor, antagonized the effect of propofol. Also, the effect of KN93, an inhibitor of CaMK II, was similar to that of propofol, except KN93 had no effect on 15mM glucose-mediated Ca2+ accumulation. Our data indicated that propofol, via inhibiting NMDA receptor, attenuated 15mM glucose-induced Ca2+ accumulation, CaMK II and CREB phosphorylation, thus inhibiting PP2A expression and improving 15mM glucose-induced endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- Qichao Wu
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Yanjun Zhao
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Wenming Duan
- Department of Anaesthesiology, Xinjiang Medical University, Affiliated Tumour Hospital, Xinjiang, PR China
| | - Yi Liu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xiangyuan Chen
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Minmin Zhu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
96
|
Nicoll RA. A Brief History of Long-Term Potentiation. Neuron 2017; 93:281-290. [DOI: 10.1016/j.neuron.2016.12.015] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
97
|
Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor. Eur J Pharmacol 2016; 795:150-159. [PMID: 27986626 DOI: 10.1016/j.ejphar.2016.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022]
Abstract
Propofol is a commonly used intravenous anesthetic, and could attenuate cancer cells malignant potential via inhibiting hypoxia-inducible factor-1α (HIF-1α) expression. However, the mechanism is still inclusive. In the present study, we mainly focus on the mechanism by which propofol down-regulated HIF-1α expression and malignant potential in pancreatic cancer cells. Human pancreatic cancer cells (Miapaca-2 and Panc-1) in vitro and murine pancreatic cancer cell (Panc02) in vivo were used to assess the effect of propofol on vascular endothelial growth factor (VEGF) expression and migration of pancreatic cancer cells. Propofol inhibited cells migration, expression of VEGF and HIF-1α, phosphorylation of extracellular regulated protein kinases (ERK), AKT, Ca2+/calmodulin dependent protein kinases II (CaMK II), and Ca2+ concentration in a concentration-dependent manner (5, 25, 50, 100μM). Furthermore, MK801, an inhibitor of NMDA receptor, and KN93, an inhibitor of CaMK II, could inhibit the expression of VEGF, HIF-1a, p-AKT, p-ERK, p-CaMK II in vitro, growth of tumor and VEGF expression in vivo, which were similar to the effect of propofol. In addition, the anti-tumor effect of propofol could be counteracted by rapastinel, an activator of NMDA receptor. Our study indicated that propofol suppressed VEGF expression and migration ability of pancreatic cancer cells in vitro and in vivo, probably via inhibiting NMDA receptor.
Collapse
|
98
|
Aird SD, Villar Briones A, Roy MC, Mikheyev AS. Polyamines as Snake Toxins and Their Probable Pharmacological Functions in Envenomation. Toxins (Basel) 2016; 8:toxins8100279. [PMID: 27681740 PMCID: PMC5086639 DOI: 10.3390/toxins8100279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
While decades of research have focused on snake venom proteins, far less attention has been paid to small organic venom constituents. Using mostly pooled samples, we surveyed 31 venoms (six elapid, six viperid, and 19 crotalid) for spermine, spermidine, putrescine, and cadaverine. Most venoms contained all four polyamines, although some in essentially trace quantities. Spermine is a potentially significant component of many viperid and crotalid venoms (≤0.16% by mass, or 7.9 µmol/g); however, it is almost completely absent from elapid venoms assayed. All elapid venoms contained larger molar quantities of putrescine and cadaverine than spermine, but still at levels that are likely to be biologically insignificant. As with venom purines, polyamines impact numerous physiological targets in ways that are consistent with the objectives of prey envenomation, prey immobilization via hypotension and paralysis. Most venoms probably do not contain sufficient quantities of polyamines to induce systemic effects in prey; however, local effects seem probable. A review of the pharmacological literature suggests that spermine could contribute to prey hypotension and paralysis by interacting with N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, nicotinic and muscarinic acetylcholine receptors, γ-Aminobutyric acid (GABA) receptors, blood platelets, ryanodine receptors, and Ca2+-ATPase. It also blocks many types of cation-permeable channels by interacting with negatively charged amino acid residues in the channel mouths. The site of envenomation probably determines which physiological targets assume the greatest importance; however, venom-induced liberation of endogenous, intracellular stores of polyamines could potentially have systemic implications and may contribute significantly to envenomation sequelae.
Collapse
Affiliation(s)
- Steven D Aird
- Division of Faculty Affairs, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alejandro Villar Briones
- Division of Research Support, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Michael C Roy
- Division of Research Support, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| |
Collapse
|
99
|
|
100
|
Sasmal DK, Yadav R, Lu HP. Single-Molecule Patch-Clamp FRET Anisotropy Microscopy Studies of NMDA Receptor Ion Channel Activation and Deactivation under Agonist Ligand Binding in Living Cells. J Am Chem Soc 2016; 138:8789-801. [DOI: 10.1021/jacs.6b03496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dibyendu Kumar Sasmal
- Center for Photochemical
Sciences, Department of Chemistry, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Rajeev Yadav
- Center for Photochemical
Sciences, Department of Chemistry, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Center for Photochemical
Sciences, Department of Chemistry, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|