51
|
Vermeire K, Schols D. Specific CD4 down-modulating compounds with potent anti-HIV activity. J Leukoc Biol 2003; 74:667-75. [PMID: 12960237 DOI: 10.1189/jlb.0403177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the availability of the current clinically approved anti-HIV drugs, new classes of effective antiviral agents are still urgently needed to combat AIDS. A promising approach for drug development and vaccine design involves targeting research on HIV-1 entry, a multistep process that comprises viral attachment, coreceptor interactions, and fusion. Determination of the viral entry process in detail has enabled the design of specific agents that can inhibit each step in the HIV entry process. Therapeutic agents that interfere with the binding of the HIV envelope glycoprotein gp120 to the CD4 receptor (e.g., PRO 542, PRO 2000, and CV-N) or the coreceptors CCR5 and CXCR4 (e.g., SCH-C and AMD3100) are briefly outlined in this review. The anti-HIV activity of cyclotriazadisulfonamides, a novel class of compounds with a unique mode of action by down-modulating the CD4 receptor in lymphocytic and monocytic cells, is especially highlighted. On the basis of the successful results of T-20, the first approved entry inhibitor, the development of effective antiretrovirals that block HIV entry will certainly be further encouraged.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
52
|
Nogueira YL, Oliveira CAF, Ferreira AGP, Nakamura PM, Magnanelli AC. McCoy cell line as a possible model containing CD4+ receptors for the study of HIV-1 replication. Rev Inst Med Trop Sao Paulo 2003; 45:205-11. [PMID: 14502348 DOI: 10.1590/s0036-46652003000400006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several studies have recently shown the use of recombinant rabies virus as potential vector-viral vaccine for HIV-1. The sequence homology between gp 120 and rabies virus glycoprotein has been reported. The McCoy cell line has therefore been used to show CD4+ or CD4+ like receptors. Samples of HIV-1 were isolated, when plasma of HIV-1 positive patients was inoculated in the McCoy cell line. The virus infection was then studied during successive virus passages. The proteins released in the extra cellular medium were checked for protein activity, by exposure to SDS Electrophoresis and blotting to nitro-cellulose filter, then reacting with sera of HIV positive and negative patients. Successive passages were performed, and showed viral replication, membrane permeabilization, the syncytium formation, and the cellular lysis (cytopathic effect). Flow cytometry analysis shows clear evidence that CD4+ receptors are present in this cell line, which enhances the likelihood of easy isolation and replication of HIV. The results observed allow the use of this cell line as a possible model for isolating HIV, as well as for carrying out studies of the dynamics of viral infection in several situations, including exposure to drugs in pharmacological studies, and possibly studies and analyses of the immune response in vaccine therapies.
Collapse
|
53
|
Hammonds J, Chen X, Ding L, Fouts T, De Vico A, zur Megede J, Barnett S, Spearman P. Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core. Virology 2003; 314:636-49. [PMID: 14554091 DOI: 10.1016/s0042-6822(03)00467-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) particles incorporate a trimeric envelope complex (Env) made of gp120 (SU) and gp41 (TM) heterodimers. It has been previously established that soluble CD4 (sCD4) interaction leads to shedding of gp120 from viral particles, and that gp120 may also be easily lost from virions during incubation or particle purification procedures. In the design of HIV particle or pseudovirion-based HIV vaccines, it may be important to develop strategies to maximize the gp120 content of particles. We analyzed the gp120 retention of HIV-1 laboratory-adapted isolates and primary isolates following incubation with sCD4 and variations in temperature. NL4-3 shed gp120 readily in a temperature- and sCD4-dependent manner. Surprisingly, inactivation of the viral protease led to markedly reduced shedding of gp120. Gp120 shedding was shown to vary markedly between HIV-1 strains, and was not strictly determined by whether the isolate was adapted to growth on immortalized T cell lines or was a primary isolate. Pseudovirions produced by expression of codon-optimized gag and env genes also demonstrated enhanced gp120 retention when an immature core structure was maintained. Pseudovirions of optimal stability were produced through a combination of an immature Gag protein core and a primary isolate Env. These results support the feasibility of utilizing pseudovirion particles as immunogens for the induction of humoral responses directed against native envelope structures.
Collapse
Affiliation(s)
- Jason Hammonds
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232-2581, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Affiliation(s)
- J Michael Kilby
- Department of Medicine, University of Alabama, Birmingham, USA.
| | | |
Collapse
|
55
|
Affiliation(s)
- Theodore C Pierson
- Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, Philadelphia, PA 19104, USA
| | | |
Collapse
|
56
|
Fouts T, Godfrey K, Bobb K, Montefiori D, Hanson CV, Kalyanaraman VS, DeVico A, Pal R. Crosslinked HIV-1 envelope-CD4 receptor complexes elicit broadly cross-reactive neutralizing antibodies in rhesus macaques. Proc Natl Acad Sci U S A 2002; 99:11842-7. [PMID: 12192089 PMCID: PMC129356 DOI: 10.1073/pnas.182412199] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification of HIV envelope structures that generate broadly cross-reactive neutralizing antibodies is a major goal for HIV-vaccine development. In this study, we evaluated one such structure, expressed as either a gp120-CD4 or a gp140-CD4 complex, for its ability to elicit a neutralizing antibody response. In rhesus macaques, covalently crosslinked complexes of soluble human CD4 (shCD4) and HIV-1(IIIB) envelope glycoproteins (gp120 or gp140) generated antibodies that neutralized a wide range of primary HIV-1 isolates regardless of the coreceptor usage or genetic subtype. Ig with cross-reactive neutralizing activity was recovered by affinity chromatography with a chimeric single-chain polypeptide containing sequences for HIV(BaL) gp120 and a mimetic peptide that induces a CD4-triggered envelope structure. These results suggest that covalently crosslinked complexes of the HIV-1 surface envelope glycoprotein and CD4 elicit broadly neutralizing humoral responses that, in part, may be directed against a novel epitope(s) found on the HIV-1 envelope.
Collapse
Affiliation(s)
- Timothy Fouts
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Arthos J, Cicala C, Steenbeke TD, Chun TW, Dela Cruz C, Hanback DB, Khazanie P, Nam D, Schuck P, Selig SM, Van Ryk D, Chaikin MA, Fauci AS. Biochemical and biological characterization of a dodecameric CD4-Ig fusion protein: implications for therapeutic and vaccine strategies. J Biol Chem 2002; 277:11456-64. [PMID: 11805109 DOI: 10.1074/jbc.m111191200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drug toxicities associated with HAART lend urgency to the development of new anti-HIV therapies. Inhibition of viral replication at the entry stage of the viral life cycle is an attractive strategy because it prevents de novo infection. Soluble CD4 (sCD4), the first drug in this class, failed to suppress viral replication in vivo. At least three factors contributed to this failure: sCD4 demonstrated poor neutralizing activity against most primary isolates of HIV in vitro; it demonstrated an intrinsic capacity to enhance viral replication at low concentrations; and it exhibited a relatively short half-life in vivo. Many anti-gp120 monoclonal antibodies, including neutralizing monoclonal antibodies also enhance viral replication at suboptimal concentrations. Advances in our understanding of the events leading up to viral entry suggest strategies by which this activity can be diminished. We hypothesized that by constructing a sCD4-based molecule that is large, binds multiple gp120s simultaneously, and is highly avid toward gp120, we could remove its capacity to enhance viral entry. Here we describe the construction of a polymeric CD4-IgG1 fusion protein. The hydrodynamic radius of this molecule is approximately 12 nm. It can bind at least 10 gp120 subunits with binding kinetics that suggest a highly avid interaction toward virion-associated envelope. This protein does not enhance viral replication at suboptimal concentrations. These observations may aid in the design of new therapeutics and vaccines.
Collapse
Affiliation(s)
- James Arthos
- Laboratory of Immunoregulation, NIAID, and the Molecular Interactions Resource Division of Bioengineering and Physical Science, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Taguchi F, Matsuyama S. Soluble receptor potentiates receptor-independent infection by murine coronavirus. J Virol 2002; 76:950-8. [PMID: 11773370 PMCID: PMC135807 DOI: 10.1128/jvi.76.3.950-958.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse hepatitis virus (MHV) infection spreads from MHV-infected DBT cells, which express the MHV receptor CEACAM1 (MHVR), to BHK cells, which are devoid of the receptor, by intercellular membrane fusion (MHVR-independent fusion). This mode of infection is a property of wild-type (wt) JHMV cl-2 virus but is not seen in cultures infected with the mutant virus JHMV srr7. In this study, we show that soluble MHVR (soMHVR) potentiates MHVR-independent fusion in JHMV srr7-infected cultures. Thus, in the presence of soMHVR, JHMV srr7-infected DBT cells overlaid onto BHK cells induce BHK cell syncytia and the spread of JHMV srr7 infection. This does not occur in the absence of soMHVR. soMHVR also enhanced wt virus MHVR-independent fusion. These effects were dependent on the concentration of soMHVR in the culture and were specifically blocked by the anti-MHVR monoclonal antibody CC1. Together with these observations, direct binding of soMHVR to the virus spike (S) glycoprotein as revealed by coimmunoprecipitation demonstrated that the effect is mediated by the binding of soMHVR to the S protein. Furthermore, fusion of BHK cells expressing the JHMV srr7 S protein was also induced by soMHVR. These results indicated that the binding of soMHVR to the S protein expressed on the DBT cell surface potentiates the fusion of MHV-infected DBT cells with nonpermissive BHK cells. We conclude that the binding of soMHVR to the S protein converts the S protein to a fusion-active form competent to mediate cell-cell fusion, in a fashion similar to the fusion of virus and cell membranes.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
59
|
Maihle NJ, Baron AT, Barrette BA, Boardman CH, Christensen TA, Cora EM, Faupel-Badger JM, Greenwood T, Juneja SC, Lafky JM, Lee H, Reiter JL, Podratz KC. EGF/ErbB receptor family in ovarian cancer. Cancer Treat Res 2002; 107:247-58. [PMID: 11775453 DOI: 10.1007/978-1-4757-3587-1_11] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
In summary, the EGF/ErbB family of receptor tyrosine kinases has been shown to play a key role in normal ovarian follicle development, and cell growth regulation of the ovarian surface epithelium. Disregulation of these normal growth regulatory pathways, including overexpression and/or mutation of EGFR/ErbB receptor family members, as well as elements of their downstream signalling pathways, have been shown to contribute to the etiology and progression of epithelial ovarian cancer. It is, therefore, not surprising that these gene products, and their related soluble receptor isoforms may have clinical utility as tumor and/or serum biomarkers of disease activity. Moreover, since several of these soluble receptor isoforms have potent growth inhibitory activity, and are naturally occurring in the circulation, they are ideal candidates for the development of novel therapeutics for the treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- N J Maihle
- Tumor Biology Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Verrier F, Nádas A, Gorny MK, Zolla-Pazner S. Additive effects characterize the interaction of antibodies involved in neutralization of the primary dualtropic human immunodeficiency virus type 1 isolate 89.6. J Virol 2001; 75:9177-86. [PMID: 11533181 PMCID: PMC114486 DOI: 10.1128/jvi.75.19.9177-9186.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus-type I (HIV-1) infection elicits antibodies (Abs) directed against several regions of the gp120 and gp41 envelope glycoproteins. Many of these Abs are able to neutralize T-cell-line-adapted strains (TCLA) of HIV-1, but only a few effectively neutralize primary HIV-1 isolates. The nature of HIV-1 neutralization has been carefully studied using human monoclonal Abs (MAbs), and the ability of such MAbs to act in synergy to neutralize HIV-1 has also been extensively studied. However, most synergy studies have been conducted using TCLA strains. To determine the nature of Ab interaction in HIV-1 primary isolate neutralization, a panel of 12 anti-HIV-1 human immunoglobulin G (IgG) MAbs, specific for epitopes in gp120 and gp41, were used. Initial tests showed that six of these MAbs, as well as sCD4, used individually, were able to neutralize the dualtropic primary isolate HIV-1(89.6); MAbs giving significant neutralization at 2 to 10 microg/ml included 2F5 (anti-gp41), 50-69 (anti-gp41), IgG1b12 (anti-gp120(CD4bd)), 447-52D (anti-gp120(V3)), 2G12 (anti-gp120), and 670-D (anti-gp120(C5)). For studies of reagent interaction, 16 binary combinations of reagents were tested for their ability to neutralize HIV-1(89.6). Reagent combinations tested included one neutralizing MAb with sCD4, six pairs consisting of two neutralizing MAbs, and nine pairs consisting of one neutralizing MAb with another non-neutralizing MAb. To assess the interaction of the latter type of combination, a new mathematical treatment of reagent interaction was developed since previously used methods could be used only when both reagents neutralize. Synergy was noted between sCD4 and a neutralizing anti-gp120(V3) MAb. Antagonism was noted between two pairs of anti-gp41 MAbs (one neutralizing and one non-neutralizing). All of the other 13 pairs of MAbs tested displayed only additive effects. These studies suggest that Abs rarely act in synergy to neutralize primary isolate HIV-1(89.6); many anti-HIV-1 Abs act additively to mediate this biological function.
Collapse
Affiliation(s)
- F Verrier
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
61
|
Si Z, Cayabyab M, Sodroski J. Envelope glycoprotein determinants of neutralization resistance in a simian-human immunodeficiency virus (SHIV-HXBc2P 3.2) derived by passage in monkeys. J Virol 2001; 75:4208-18. [PMID: 11287570 PMCID: PMC114166 DOI: 10.1128/jvi.75.9.4208-4218.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The simian-human immunodeficiency virus SHIV-HXBc2 contains the envelope glycoproteins of a laboratory-adapted, neutralization-sensitive human immunodeficiency virus type 1 variant, HXBc2. Serial in vivo passage of the nonpathogenic SHIV-HXBc2 generated SHIV KU-1, which causes rapid CD4(+) T-cell depletion and an AIDS-like illness in monkeys. A molecularly cloned pathogenic SHIV, SHIV-HXBc2P 3.2, was derived from the SHIV KU-1 isolate and differs from the parental SHIV-HXBc2 by only 12 envelope glycoprotein amino acid residues. Relative to SHIV-HXBc2, SHIV-HXBc2P 3.2 was resistant to neutralization by all of the antibodies tested with the exception of the 2G12 antibody. The sequence changes responsible for neutralization resistance were located in variable regions of the gp120 exterior envelope glycoprotein and in the gp41 transmembrane envelope glycoprotein. The 2G12 antibody, which neutralized SHIV-HXBc2 and SHIV-HXBc2P 3.2 equally, bound the HXBc2 and HXBc2P 3.2 envelope glycoproteins on the cell surface comparably. The ability of the other tested antibodies to achieve saturation was less for the HXBc2P 3.2 envelope glycoproteins than for the HXBc2 envelope glycoproteins, even though the affinity of the antibodies for the two envelope glycoproteins was similar. Thus, a highly neutralization-sensitive SHIV, by modifying both gp120 and gp41 glycoproteins, apparently achieves a neutralization-resistant state by decreasing the saturability of its envelope glycoproteins by antibodies.
Collapse
Affiliation(s)
- Z Si
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
62
|
Choi YH, Rho WS, Kim ND, Park SJ, Shin DH, Kim JW, Im SH, Won HS, Lee CW, Chae CB, Sung YC. Short peptides with induced beta-turn inhibit the interaction between HIV-1 gp120 and CD4. J Med Chem 2001; 44:1356-63. [PMID: 11311058 DOI: 10.1021/jm000403+] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To identify novel peptides that inhibit the interaction between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 and CD4, we constructed a targeted phage-displayed peptide library in which phenylalanine and proline were fixed at the fourth and sixth positions, respectively, because Phe43 and the adjacent beta-turn of CD4 are critical for interaction with gp120. Two synthetic peptides were selected after three rounds of biopanning against gp120, and one of them, G1 peptide (ARQPSFDLQCGF), exhibited specific inhibition of the interaction between gp120 and CD4 with an IC(50) of about 50 microM. Structural analysis using NMR demonstrated that G1 peptide forms a compact cyclic structure similar to the CD4 region interacting with gp120. Two derivatives of G1 peptide, a linear hexameric peptide (G1-6) and a cyclic nonameric peptide (G1-c), were synthesized based on the structure of the G1 peptide. Interestingly, they showed higher inhibitory activities than did G1 peptide with IC(50)'s of 6 and 1 microM, respectively. Thus, this study might provide a new insight into the development of anti-HIV-1 inhibitors.
Collapse
Affiliation(s)
- Y H Choi
- Department of Molecular Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Kolchinsky P, Kiprilov E, Bartley P, Rubinstein R, Sodroski J. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J Virol 2001; 75:3435-43. [PMID: 11238869 PMCID: PMC114136 DOI: 10.1128/jvi.75.7.3435-3443.2001] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
64
|
Kolchinsky P, Kiprilov E, Sodroski J. Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J Virol 2001; 75:2041-50. [PMID: 11160708 PMCID: PMC114788 DOI: 10.1128/jvi.75.5.2041-2050.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring human immunodeficiency virus (HIV-1) variants require the presence of CD4 and specific chemokine receptors to enter a cell. In the laboratory, HIV-1 variants that are capable of bypassing CD4 and utilizing only the CCR5 chemokine receptor for virus entry have been generated. Here we report that these CD4-independent viruses are significantly more sensitive to neutralization by soluble CD4 and a variety of antibodies. The same amino acid changes in the HIV-1 gp120 envelope glycoprotein determined CD4 independence and neutralization sensitivity. The CD4-independent envelope glycoproteins exhibited higher affinity for antibodies against CD4-induced gp120 epitopes but not other neutralizing ligands. The CD4-independent envelope glycoproteins did not exhibit increased lability relative to the wild-type envelope glycoproteins. The utilization of two receptors apparently allows HIV-1 to maintain a more neutralization-resistant state prior to engaging CD4 on the target cell, explaining the rarity of CD4 independence in wild-type HIV-1.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
65
|
Holmen SL, Melder DC, Federspiel MJ. Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. J Virol 2001; 75:726-37. [PMID: 11134286 PMCID: PMC113969 DOI: 10.1128/jvi.75.2.726-737.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Accepted: 10/13/2000] [Indexed: 11/20/2022] Open
Abstract
To better understand retroviral entry, we have characterized the interactions between subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and Tva, the receptor for ALV(A), that result in receptor interference. We have recently shown that soluble forms of the chicken and quail Tva receptor (sTva), expressed from genes delivered by retroviral vectors, block ALV(A) infection of cultured chicken cells ( approximately 200-fold antiviral effect) and chickens (>98% of the birds were not infected). We hypothesized that inhibition of viral replication by sTva would select virus variants with mutations in the surface glycoprotein (SU) that altered the binding affinity of the subgroup A SU for the sTva protein and/or altered the normal receptor usage of the virus. Virus propagation in the presence of quail sTva-mIgG, the quail Tva extracellular region fused to the constant region of the mouse immunoglobulin G (IgG) protein, identified viruses with three mutations in the subgroup A hr1 region of SU, E149K, Y142N, and Y142N/E149K. These mutations reduced the binding affinity of the subgroup A envelope glycoproteins for quail sTva-mIgG (32-, 324-, and 4,739-fold, respectively) but did not alter their binding affinity for chicken sTva-mIgG. The ALV(A) mutants efficiently infected cells expressing the chicken Tva receptor but were 2-fold (E149K), 10-fold (Y142N), and 600-fold (Y142N/E149K) less efficient at infecting cells expressing the quail Tva receptor. These mutations identify key determinants of the interaction between the ALV(A) glycoproteins and the Tva receptor. We also conclude from these results that, at least for the wild-type and variant ALV(A)s tested, the receptor binding affinity was directly related to infection efficiency.
Collapse
Affiliation(s)
- S L Holmen
- Molecular Medicine Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
66
|
Esser U, Speck RF, Deen KC, Atchison RE, Sweet R, Goldsmith MA. Molecular function of the CD4 D1 domain in coreceptor-mediated entry by HIV type 1. AIDS Res Hum Retroviruses 2000; 16:1845-54. [PMID: 11118070 DOI: 10.1089/08892220050195801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The surface molecule CD4 plays a key role in initiating cellular entry by the human immunodeficiency virus type 1 (HIV-1), and it is now recognized as acting synergistically with select chemokine receptors (coreceptors) in the infection process. The present study was undertaken to determine whether the extracellular region of CD4 is sufficient to induce fusion of HIV-1 virions with target cells in the absence of its anchoring function. Using pseudotype reporter viruses to quantitate infection, soluble CD4 (sCD4) was tested for its ability to induce fusion by viruses utilizing CCR5 as their coreceptor. We found that sCD4 was competent to replace membrane-bound CD4 to trigger infection mediated by several HIV-1 envelopes. Furthermore, in a comparison of the envelopes of HIV-1 NL4-3 and a chimera containing the gp120 V3 loop of Ba-L, the V3 region was found to be one factor affecting susceptibility to induction by sCD4. In addition, using truncated and mutant derivatives of sCD4, the amino-terminal D1 domain of CD4 was found to be necessary and sufficient for induction of fusion and to require an intact gp120-binding site for this activity. These results delineate determinants on CD4 and gp120 required for fusion induction in collaboration with a coreceptor, and suggest a mechanism whereby CD4 may contribute to viral infection in trans.
Collapse
Affiliation(s)
- U Esser
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141, USA
| | | | | | | | | | | |
Collapse
|
67
|
Damico R, Bates P. Soluble receptor-induced retroviral infection of receptor-deficient cells. J Virol 2000; 74:6469-75. [PMID: 10864659 PMCID: PMC112155 DOI: 10.1128/jvi.74.14.6469-6475.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Accepted: 04/19/2000] [Indexed: 11/20/2022] Open
Abstract
Current models of retroviral entry hypothesize that interactions between the host cell receptor(s) and viral envelope protein induce structural changes in the envelope protein that convert it to an active conformation, allowing it to mediate fusion with the membrane. Recent evidence supporting this hypothesis is the demonstration that Tva, the receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A), induces conformational changes in the viral envelope protein. These changes include conversion of the envelope protein to an active, membrane-binding state likely representing a fusogenic conformation. To determine whether binding of the soluble Tva (sTva) receptor was sufficient to activate fully the fusogenic potential of the ASLV-A envelope protein, we have evaluated the ability of ASLV-A to infect receptor-deficient cell lines in the presence of sTva. Soluble receptor efficiently mediated infection of cells devoid of endogenous Tva in a dose-dependent manner, and this infection was dependent absolutely on the addition of sTva. The infectivity of the virus was enhanced dramatically in the presence of the polycationic polymer Polybrene or when centrifugal forces were applied during inoculation, resulting in viral titers comparable to those achieved on cells expressing endogenous receptor. sTva functioned to mediate infection at low concentrations, approaching the estimated binding constant of the receptor and viral envelope protein. These results demonstrate that receptor binding can activate the ASLV-A envelope protein and convert it to a fusogenic conformation competent to mediate the fusion of the viral and cellular membranes.
Collapse
Affiliation(s)
- R Damico
- Department of Microbiology, Graduate Program in Cellular and Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | |
Collapse
|
68
|
Christiansen D, Devaux P, Réveil B, Evlashev A, Horvat B, Lamy J, Rabourdin-Combe C, Cohen JH, Gerlier D. Octamerization enables soluble CD46 receptor to neutralize measles virus in vitro and in vivo. J Virol 2000; 74:4672-8. [PMID: 10775604 PMCID: PMC111988 DOI: 10.1128/jvi.74.10.4672-4678.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric fusion protein encompassing the CD46 ectodomain linked to the C-terminal part of the C4b binding protein (C4bp) alpha chain (sCD46-C4bpalpha) was produced in eukaryotic cells. This protein, secreted as a disulfide-linked homo-octamer, was recognized by a panel of anti-CD46 antibodies with varying avidities. Unlike monomeric sCD46, the octameric sCD46-C4bpalpha protein was devoid of complement regulatory activity. However, sCD46-C4bpalpha was able to bind to the measles virus hemagglutinin protein expressed on murine cells with a higher avidity than soluble monomeric sCD46. Moreover, the octameric sCD46-C4bpalpha protein was significantly more efficient than monomeric sCD46 in inhibiting virus binding to CD46, in blocking virus induced cell-cell fusion, and in neutralizing measles virus in vitro. In addition, the octameric sCD46-C4bpalpha protein, but not the monomeric sCD46, fully protected CD46 transgenic mice against a lethal intracranial measles virus challenge.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/metabolism
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CHO Cells
- Cell Fusion
- Complement Activation
- Complement Inactivator Proteins
- Cricetinae
- Glycoproteins
- Hemagglutinins, Viral/metabolism
- Measles/prevention & control
- Measles virus/immunology
- Measles virus/metabolism
- Membrane Cofactor Protein
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Transgenic
- Neutralization Tests
- Receptors, Complement/chemistry
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- D Christiansen
- Immunité et Infections Virales, IVMC, CNRS-UCBL UMR 5537, F-69372 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Rusconi S, Merrill DP, La Seta Catamancio S, Citterio P, Bulgheroni E, Croce F, Chou TC, Yang OO, Herrmann SH, Galli M, Hirsch MS. In Vitro Inhibition of HIV-1 by Met-Sdf-1β Alone or in Combination with Antiretroviral Drugs. Antivir Ther 2000. [DOI: 10.1177/135965350000500304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compounds that can block the CXCR4 chemokine receptor are a promising new class of antiretroviral agents. In these experiments we studied the effect of a modified form of the native stromal cell-derived factor-1 (SDF-1), Met-SDF-1β. The in vitro susceptibility of two different CXCR4-tropic HIV-1 strains was determined. Antiviral effect was assessed by the reduction of p24 antigen production in PHA-stimulated peripheral blood mononuclear cells with exposure to the modified SDF-1 molecule. The 50% inhibitory concentrations (IC50) were derived from six separate experiments. The IC50 against the two HIV-1 isolates was in 1.0–2.8 μg/ml range for Met-SDF-1β. Met-SDF-1β showed synergy to additivity with either zidovudine or nelfinavir at IC75, IC90 and IC95. Additivity was seen when Met-SDF-1β was combined with efavirenz. No cellular toxicity was observed at the highest concentrations when these agents were used either singly or in combination. This compound is a promising new candidate in a receptor-based approach to HIV-1 infection in conjunction with currently available combination antiretroviral drug therapies.
Collapse
Affiliation(s)
- Stefano Rusconi
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Debra P Merrill
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
| | - Simona La Seta Catamancio
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Paola Citterio
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Elisabetta Bulgheroni
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Francesco Croce
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Ting-Chao Chou
- Memorial Sloan-Kettering Cancer Center, New York, N.Y., USA
| | - Otto O Yang
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
| | - Steven H Herrmann
- Infectious Disease and Molecular Biology-Gene Expression, Genetics Institute, Cambridge, Mass., USA
| | - Massimo Galli
- Istituto di Malattie Infettive e Tropicali, Universitá di Milano, Ospedale Luigi Sacco, Milan, Italy
| | - Martin S Hirsch
- Infectious Disease Division, Massachusetts General Hospital and Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
70
|
Shinya E, Dervillez X, Edwards-Lévy F, Duret V, Brisson E, Ylisastigui L, Lévy MC, Cohen JH, Klatzmann D. In-vivo delivery of therapeutic proteins by genetically-modified cells: comparison of organoids and human serum albumin alginate-coated beads. Biomed Pharmacother 1999; 53:471-83. [PMID: 10665341 DOI: 10.1016/s0753-3322(00)88106-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have designed a self-assembling multimeric soluble CD4 molecule by inserting the C-terminal fragment of the alpha chain of human C4-binding protein (C4bp alpha) at the C-terminal end of human soluble CD4 genes. This CD4-C4bp alpha fusion protein (sMulti-CD4) and two other reference molecules, a fusion protein of human serum albumin (HSA) and the first two domains of CD4 (HSA-CD4) and monomeric soluble CD4 (sMono-CD4), were delivered in vivo by genetically modified 293 cells. These cells were implanted in mice as organoids and also encapsulated in HSA alginate-coated beads. sMulti-CD4 showed an apparent molecular weight of about 300-350 kDa, in accordance with a possible heptamer formula. sMulti-CD4 produced either in cell culture or in vivo in mice appeared to be a better invitro inhibitor of HIV infection than sMono-CD4. Plasma levels of sMulti-CD4, HSA-CD4, and sMono-CD4 reached approximately 2,300, 2,700, and 170 ng/mL, respectively, 13 weeks after in-vivo organoid implantation, which had formed tumours at that time. This suggests that the plasma half-life of sMulti-CD4 is much longer than that of sMono-CD4. The 293 xenogeneic cells encapsulated in HSA alginate-coated beads remained alive and kept secreting sMono-CD4 or HSA-CD4 continuously at significant levels for 18 weeks in nude mice, without tumour formation. When implanted in immunocompetent Balb/c mice, they were rejected two to three weeks after implantation. In contrast, encapsulated BL4 hybridoma cells remained alive and kept secreting BL4 anti-CD4 mAb for at least four weeks in Balb/c mice. These results suggest the clinical potential of the C4bp-multimerizing system, which could improve both the biological activity and the poor in-vivo pharmacokinetic performance of a monomeric functional protein like soluble CD4. These data also show that a systemic delivery of therapeutic proteins, including immunoglobulins, can be obtained by the in-vivo implantation of engineered allogeneic cells encapsulated in HSA alginate-coated beads.
Collapse
Affiliation(s)
- E Shinya
- Laboratoire de biologie et thérapeutique des pathologies immunitaires, UPMC/CNRS ESA 7087, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kolchinsky P, Mirzabekov T, Farzan M, Kiprilov E, Cayabyab M, Mooney LJ, Choe H, Sodroski J. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J Virol 1999; 73:8120-6. [PMID: 10482561 PMCID: PMC112828 DOI: 10.1128/jvi.73.10.8120-8126.1999] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gp120 envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and chemokine receptors on the target cell. Primary, clinical HIV-1 isolates require interaction with CD4 to allow gp120 to bind the CCR5 chemokine receptor efficiently. We adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for the adaptation were limited to alteration of glycosylation addition sites in the V2 loop-V1-V2 stem. The gp120 glycoproteins of the adapted viruses bound CCR5 directly, without prior interaction with CD4. Thus, a major function of CD4 binding in the entry of primary HIV-1 isolates can be bypassed by changes in the gp120 V1-V2 elements, which allow the envelope glycoproteins to assume a conformation competent for CCR5 binding.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer, Dana-Farber Cancer Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Schenten D, Marcon L, Karlsson GB, Parolin C, Kodama T, Gerard N, Sodroski J. Effects of soluble CD4 on simian immunodeficiency virus infection of CD4-positive and CD4-negative cells. J Virol 1999; 73:5373-80. [PMID: 10364284 PMCID: PMC112593 DOI: 10.1128/jvi.73.7.5373-5380.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A soluble form of the CD4 receptor (sCD4) can either enhance or inhibit the infection of cells by simian immunodeficiency virus (SIV) and human immunodeficiency virus. We investigated the basis for these varying effects by studying the entry of three SIV isolates into CD4-positive and CD4-negative cells expressing different chemokine receptors. Infection of CD4-negative cells depended upon the viral envelope glycoproteins and upon the chemokine receptor, with CCR5 and gpr15 being more efficient than STRL33. Likewise, enhancement of infection by sCD4 was observed when CCR5- and gpr15-expressing target cells were used but not when those expressing STRL33 were used. The sCD4-mediated enhancement of virus infection of CD4-negative, CCR5-positive cells was related to the sCD4-induced increase in binding of the viral gp120 envelope glycoprotein to CCR5. Inhibitory effects of sCD4 could largely be explained by competition for virus attachment to cellular CD4 rather than other detrimental effects on virus infectivity (e.g., disruption of the envelope glycoprotein spike). Consistent with this, the sCD4-activated SIV envelope glycoprotein intermediate on the virus was long-lived. Thus, the net effect of sCD4 on SIV infectivity appears to depend upon the degree of enhancement of chemokine receptor binding and upon the efficiency of competition for cellular CD4.
Collapse
Affiliation(s)
- D Schenten
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Balliet JW, Berson J, D'Cruz CM, Huang J, Crane J, Gilbert JM, Bates P. Production and characterization of a soluble, active form of Tva, the subgroup A avian sarcoma and leukosis virus receptor. J Virol 1999; 73:3054-61. [PMID: 10074155 PMCID: PMC104065 DOI: 10.1128/jvi.73.4.3054-3061.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor for the subgroup A avian sarcoma and leukosis viruses [ASLV(A)] is the cellular glycoprotein Tva. A soluble form of Tva, sTva, was produced and purified with a baculovirus expression system. Using this system, 7 to 10 mg of purified sTva per liter of cultured Sf9 cells was obtained. Characterization of the carbohydrate modification of sTva revealed that the three N glycosylation sites in sTva were differentially utilized; however, the O glycosylation common to Tva produced in mammalian and avian cells was not observed. Purified sTva demonstrates significant biological activity, specifically blocking infection of avian cells by ASLV(A) with a 90% inhibitory concentration of approximately 25 pM. A quantitative enzyme-linked immunosorbent assay, developed to assess the binding of sTva to ASLV envelope glycoprotein, demonstrates that sTva has a high affinity for EnvA, with an apparent dissociation constant of approximately 0.3 nM. Once they are bound, a very stable complex is formed between EnvA and sTva, with an estimated complex half-life of 6 h. The soluble receptor protein described here represents a valuable tool for analysis of the receptor-envelope glycoprotein interaction and for structural analysis of Tva.
Collapse
Affiliation(s)
- J W Balliet
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY, Alldredge L, Hunter E, Lambert D, Bolognesi D, Matthews T, Johnson MR, Nowak MA, Shaw GM, Saag MS. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998; 4:1302-7. [PMID: 9809555 DOI: 10.1038/3293] [Citation(s) in RCA: 769] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T-20, a synthetic peptide corresponding to a region of the transmembrane subunit of the HIV-1 envelope protein, blocks cell fusion and viral entry at concentrations of less than 2 ng/ml in vitro. We administered intravenous T-20 (monotherapy) for 14 days to sixteen HIV-infected adults in four dose groups (3, 10, 30 and 100 mg twice daily). There were significant, dose-related declines in plasma HIV RNA in all subjects who received higher dose levels. All four subjects receiving 100 mg twice daily had a decline in plasma HIV RNA to less than 500 copies/ml, by bDNA assay. A sensitive RT-PCR assay (detection threshold 40 copies/ml) demonstrated that, although undetectable levels were not achieved in the 14-day dosing period, there was a 1.96 log10 median decline in plasma HIV RNA in these subjects. This study provides proof-of-concept that viral entry can be successfully blocked in vivo. Short-term administration of T-20 seems safe and provides potent inhibition of HIV replication comparable to anti-retroviral regimens approved at present.
Collapse
Affiliation(s)
- J M Kilby
- Department of Medicine, University of Alabama at Birmingham, 35294-2050, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Mondor I, Ugolini S, Sattentau QJ. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J Virol 1998; 72:3623-34. [PMID: 9557643 PMCID: PMC109583 DOI: 10.1128/jvi.72.5.3623-3634.1998] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The binding of human immunodeficiency virus type 1 (HIV-1) (Hx10) virions to two different cell lines was analyzed by using a novel assay based on the detection, by anti-HLA-DR-specific antibodies, of HLA-DR+ virus binding to HLA-DR- cells. Virion attachment to the CD4+-T-cell line A3.01 was highly CD4 dependent in that it was potently inhibited by CD4 monoclonal antibodies (MAbs), and little virus binding to the CD4- sister A2.01 line was observed. By contrast, virion binding to HeLa cells expressing moderate or high levels of CD4 was equivalent to, or lower than, binding to wild-type CD4- HeLa cells. Moreover, several CD4 MAbs did not reduce, but enhanced, HIV-1 attachment to HeLa-CD4 cells. CD4 was required for infection of HeLa cells, however, demonstrating a postattachment role for this receptor. MAbs specific for the V2 and V3 loops and the CD4i epitope of gp120 strongly inhibited virion binding to HeLa-CD4 cells, whereas MAbs specific for the CD4bs and the 2G12 epitopes enhanced attachment. Despite this, all gp120- and gp41-specific MAbs tested neutralized infectivity on HeLa-CD4 cells. HIV-1 attachment to HeLa cells was only partially inhibited by MAbs specific for adhesion molecules present on the virus or target cells but was completely blocked by polyanions such as heparin, dextran sulfate, and pentosan sulfate. Treatment of HeLa-CD4 cells with heparinases completely eliminated HIV attachment and infection, strongly implicating cell surface heparans in the attachment process. CD4 dependence for HIV-1 attachment to target cells is thus highly cell line specific and may be replaced by other ligand-receptor interactions.
Collapse
Affiliation(s)
- I Mondor
- Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | | |
Collapse
|
76
|
Abstract
Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent.
Collapse
Affiliation(s)
- B A Bunnell
- Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-1851, USA
| | | |
Collapse
|
77
|
Wyatt R, Desjardin E, Olshevsky U, Nixon C, Binley J, Olshevsky V, Sodroski J. Analysis of the interaction of the human immunodeficiency virus type 1 gp120 envelope glycoprotein with the gp41 transmembrane glycoprotein. J Virol 1997; 71:9722-31. [PMID: 9371638 PMCID: PMC230282 DOI: 10.1128/jvi.71.12.9722-9731.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.
Collapse
Affiliation(s)
- R Wyatt
- Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Mori T, Shoemaker RH, McMahon JB, Gulakowski RJ, Gustafson KR, Boyd MR. Construction and enhanced cytotoxicity of a [cyanovirin-N]-[Pseudomonas exotoxin] conjugate against human immunodeficiency virus-infected cells. Biochem Biophys Res Commun 1997; 239:884-8. [PMID: 9367864 DOI: 10.1006/bbrc.1997.7505] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyanovirin-N (CV-N) is a novel 11-kDa anti-HIV(human immunodeficiency virus) protein that binds with high affinity to the viral envelope glycoprotein gp120. In contrast to soluble CD4 and most known neutralizing antibodies that bind gp120, CV-N exerts potent anti-viral activity against primary clinical HIV isolates as well as laboratory-adapted strains of HIV. Here we describe the recombinant production, purification, and characterization of a chimeric toxin molecule, FLAG-CV-N-PE38, that contains CV-N as a gp120-targeting moiety linked to the translocation and cytotoxic domains of Pseudomonas exotoxin A. FLAG-CV-N-PE38 showed enhanced cytotoxicity to HIV-infected, gp120-expressing H9 cells compared to uninfected H9 cells. Competition experiments with free CV-N provided further support that the enhanced FLAG-CV-N-PE38-induced cytotoxicity was due to interactions of the CV-N moiety with cell surface gp120. This study establishes the feasibility of use of CV-N as a gp120-targeting sequence for construction and experimental therapeutic investigations of unique new chimeric toxins designed to selectively destroy HIV-infected host cells.
Collapse
Affiliation(s)
- T Mori
- Laboratory of Drug Discovery Research and Development, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
79
|
Ugolini S, Mondor I, Parren PW, Burton DR, Tilley SA, Klasse PJ, Sattentau QJ. Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. J Exp Med 1997; 186:1287-98. [PMID: 9334368 PMCID: PMC2199094 DOI: 10.1084/jem.186.8.1287] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Antibody-mediated neutralization of human immunodeficiency virus type-1 (HIV-1) is thought to function by at least two distinct mechanisms: inhibition of virus-receptor binding, and interference with events after binding, such as virus-cell membrane fusion. Here we show, by the use of a novel virus-cell binding assay, that soluble CD4 and monoclonal antibodies to all confirmed glycoprotein (gp)120 neutralizing epitopes, including the CD4 binding site and the V2 and V3 loops, inhibit the adsorption of two T cell line-adapted HIV-1 viruses to CD4+ cells. A correlation between the inhibition of virus binding and virus neutralization was observed for soluble CD4 and all anti-gp120 antibodies, indicating that this is a major mechanism of HIV neutralization. By contrast, antibodies specific for regions of gp120 other than the CD4 binding site showed little or no inhibition of either soluble gp120 binding to CD4+ cells or soluble CD4 binding to HIV-infected cells, implying that this effect is specific to the virion-cell interaction. However, inhibition of HIV-1 attachment to cells is not a universal mechanism of neutralization, since an anti-gp41 antibody did not inhibit virus-cell binding at neutralizing concentrations, implying activity after virus-cell binding.
Collapse
Affiliation(s)
- S Ugolini
- Centre d'Immunologie de Marseille-Luminy, France
| | | | | | | | | | | | | |
Collapse
|
80
|
Krykbaev R, McKeating J, Jones I. Mutant CD4 molecules with improved binding to HIV envelope protein gp120 selected by phage display. Virology 1997; 234:196-202. [PMID: 9268150 DOI: 10.1006/viro.1997.8651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phage-display methodology has been used to select variant CD4 proteins exhibiting increased binding to the surface envelope glycoprotein, gp120, of Human Immunodeficiency Virus Type-1. To facilitate the selection, a library of mutant CD4 proteins was constructed by cloning a PCR-generated error prone population of the first two domains of CD4 into the phagemid expression vector pHEN1. Phage displaying CD4 in functional form were confirmed by Western blot with CD4-specific antibody and by phage ELISA on immobilized gp120. Biopanning of CD4 phage on immobilized gp120 followed by individual characterization identified five clones with increased binding to gp120. All of the selected variants had one or two amino acid substitutions within the V1 domain of CD4, notably at positions 15, 27, 30, 50, and 66 located in the strands surrounding the main binding loop. Variants which exhibited increased binding to recombinant gp120 in vitro were also shown to have an increased capacity for virus neutralization broadly in line with their in vitro binding activity.
Collapse
Affiliation(s)
- R Krykbaev
- NERC Institute of Virology, Oxford, United Kingdom
| | | | | |
Collapse
|
81
|
Mammano F, Salvatori F, Indraccolo S, De Rossi A, Chieco-Bianchi L, Göttlinger HG. Truncation of the human immunodeficiency virus type 1 envelope glycoprotein allows efficient pseudotyping of Moloney murine leukemia virus particles and gene transfer into CD4+ cells. J Virol 1997; 71:3341-5. [PMID: 9060707 PMCID: PMC191476 DOI: 10.1128/jvi.71.4.3341-3345.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can readily accept envelope (Env) glycoproteins from distantly related retroviruses. However, we previously showed that the HIV-1 Env glycoprotein complex is excluded even from particles formed by the Gag proteins of another lentivirus, visna virus, unless the matrix domain of the visna virus Gag polyprotein is replaced by that of HIV-1. We also showed that the integrity of the HIV-1 matrix domain is critical for the incorporation of wild-type HIV-1 Env protein but not for the incorporation of a truncated form which lacks the 144 C-terminal amino acids of the cytoplasmic domain of the transmembrane glycoprotein. We report here that the C-terminal truncation of the transmembrane glycoprotein also allows the efficient incorporation of HIV-1 Env proteins into viral particles formed by the Gag proteins of the widely divergent Moloney murine leukemia virus (Mo-MLV). Additionally, pseudotyping of a Mo-MLV-based vector with the truncated rather than the full-length HIV-1 Env allowed efficient transduction of human CD4+ cells. These results establish that Mo-MLV-based vectors can be used to target cells susceptible to infection by HIV-1.
Collapse
Affiliation(s)
- F Mammano
- Institute of Oncology, Interuniversity Center for Cancer Research, University of Padua, Italy.
| | | | | | | | | | | |
Collapse
|
82
|
Dettin M, Roncon R, Simonetti M, Tormene S, Falcigno L, Paolillo L, Di Bello C. Synthesis, characterization and conformational analysis of gp 120-derived synthetic peptides that specifically enhance HIV-1 infectivity. J Pept Sci 1997; 3:15-30. [PMID: 9230468 DOI: 10.1002/(sici)1099-1387(199701)3:1<15::aid-psc81>3.0.co;2-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of peptides patterned on the principal neutralizing domain of the HIV-1 envelope glycoprotein gp 120 have been synthesized by solid-phase techniques. Interestingly, in vitro experiments have shown that some of these peptides specifically interact with CD4 and, in particular, that the peptide corresponding to the sequence 307-330 of the HIV-1 MN isolate was able to enhance infection in a dose-specific and not a strain-restricted way. To bypass problems observed in preliminary runs, peptides were synthesized by both Fmoc and Boc chemistry. Comparison of the two strategies has allowed the set up of convenient protocols for the preparation of the target peptides in good yield, and with the high-purity grade needed for biological and physiochemical studies. Since the biological effects were present in the carboxyl-free C-terminal linear peptide but not in the amidated C-terminal analogue, preliminary conformational studies by circular dichroism and nuclear magnetic resonance techniques were also performed in an attempt to correlate these effects with possible contributions of structured conformations as predicted by theoretical calculations. The possibility of a beta-turn structure for the crucial Gly-Pro-Gly-Arg sequence has been confirmed by 2D NMR experiments. Ongoing studies suggest the exploitation of the activating properties of the MN-derived peptides to design a more sensitive and innovative serological test based on the virus itself and not on anti-HIV antibodies, as is the case for the large majority of tests currently in use.
Collapse
Affiliation(s)
- M Dettin
- Institute for Industrial Chemistry, University of Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Advances in knowledge of the pathogenesis of HIV infection, coupled with the arrival of new antiviral agents and results from clinical trials, have moved clinicians closer to effective therapy of HIV infection. Despite these advances, many important issues remain unresolved. The precise clinical roles of new agents such as 3TC and the protease inhibitors have yet to be defined. Methods for monitoring efficacy of therapy continue to be developed, and the results of current and planned clinical trials to address the role of three-drug combinations in initial and subsequent treatment regimens are awaited. With the increasing array of available drugs and monitoring assays, clinicians will have an increased ability to provide effective, individualized therapy. Results of upcoming clinical trials must be carefully evaluated with regard to the patient populations studied, duration of follow-up, and statistical methods employed in developing more rational approaches to the care of patients with HIV disease.
Collapse
Affiliation(s)
- S C Threlkeld
- Infectious Disease Unit, Massachusetts General Hospital, Boston, USA
| | | |
Collapse
|
84
|
Klasse PJ, Sattentau QJ. Altered CD4 interactions of HIV type 1 LAI variants selected for the capacity to induce membrane fusion in the presence of a monoclonal antibody to domain 2 of CD4. AIDS Res Hum Retroviruses 1996; 12:1015-21. [PMID: 8827217 DOI: 10.1089/aid.1996.12.1015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We selected HIV-1-LAI variants with the ability to induce syncytium formation of C8166 cells in the presence of a monoclonal antibody (MAb), 5A8, to domain 2 of CD4. Five biologically cloned variants with at least 60-fold greater resistance than wild type to 5A8-mediated inhibition of syncytium formation were obtained. The variants exhibited reduced relative sensitivity to inhibition of syncytium formation and virus infection, not only by the selecting anti-domain 2 MAb, but also by MAbs to domains 1 and 3 of CD4. By contrast, the sensitivity of these variants to neutralization by soluble CD4 and bivalent CD4-IgG was greater than for the parental clone. The affinities of soluble CD4 for Env protein, in either solubilized or membrane-anchored form, did not differ significantly between the variants and LAI. Analyses of sCD4-induced exposure of the transmembrane protein at 4 and 37 degrees C suggested, however, that the variants had acquired an increased susceptibility to the triggering of conformational changes in their Env oligomers at 37 degrees C. This may represent a mechanism of both the increased resistance to the CD4 MAbs and the enhanced sensitivity to soluble CD4.
Collapse
Affiliation(s)
- P J Klasse
- Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | | |
Collapse
|
85
|
Gauduin MC, Allaway GP, Maddon PJ, Barbas CF, Burton DR, Koup RA. Effective ex vivo neutralization of human immunodeficiency virus type 1 in plasma by recombinant immunoglobulin molecules. J Virol 1996; 70:2586-92. [PMID: 8642690 PMCID: PMC190106 DOI: 10.1128/jvi.70.4.2586-2592.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We tested the ability of human monoclonal antibodies (immunoglobulin G1b12 [IgG1b12] and 19b) and CD4-based molecules (CD4-IgG2 and soluble CD4 [sCD4]) to neutralize human immunodeficiency virus type 1 directly from the plasma of seropositive donors in an ex vivo neutralization assay. IgG1b12 and CD4-IgG2, at concentrations from 1 to 25 micrograms/ml, were found to be effective at reducing the HIV-1 titer in most plasma samples. When viruses recovered from plasma samples were expanded to produce virus stocks, no correlation between the neutralization sensitivities to IgG1b12 and CD4-IgG2 of the in vitro passaged stocks and those of the ex vivo neutralizations performed directly on the plasma was observed. These differences could be due to changes in neutralization sensitivity that occur after one passage of the virus in vitro, or they could be related to the presence of complement or antibodies in the plasma. Furthermore, differences in expression of adhesion molecules on plasma-derived and phytohemagglutinin-activated peripheral blood mononuclear cell-derived viruses could be involved. These studies suggest that IgG1b12 and CD4-IgG2 have broad and potent neutralizing activity in both in vitro and ex vivo neutralization assays and should be considered for use as potential immunoprophylactic or therapeutic agents.
Collapse
Affiliation(s)
- M C Gauduin
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
86
|
Nihrane A, Fujita K, Willey R, Lyu MS, Silver J. Murine leukemia virus envelope protein in transgenic-mouse serum blocks infection in vitro. J Virol 1996; 70:1882-9. [PMID: 8627713 PMCID: PMC190016 DOI: 10.1128/jvi.70.3.1882-1889.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transgenic mice bearing a murine retroviral envelope transgene (Fv4) have Fv4 gp70env (SU) in their serum in amounts sufficient to block infection by ecotropic virus in vitro. Fv4 Env in serum is derived largely but not exclusively from hematopoietic cells. Tail cells from Fv4 mice and cell lines transduced with the Fv4 env transgene synthesize both components of the envelope protein (gp70 SU and p15E TM) but secrete the gp70 moiety, in the absence of retroviral particles. Blocking of the ecotropic viral receptor by secreted gp70 SU may contribute to resistance to retroviral infection in these mice.
Collapse
Affiliation(s)
- A Nihrane
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | |
Collapse
|
87
|
Lin PF, Samanta H, Bechtold CM, Deminie CA, Patick AK, Alam M, Riccardi K, Rose RE, White RJ, Colonno RJ. Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor. Antimicrob Agents Chemother 1996; 40:133-8. [PMID: 8787894 PMCID: PMC163071 DOI: 10.1128/aac.40.1.133] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human immunodeficiency virus (HIV) fusion inhibitor siamycin I, a 21-residue tricyclic peptide, was identified from a Streptomyces culture by using a cell fusion assay involving cocultivation of HeLa-CD4+ cells and monkey kidney (BSC-1) cells expressing the HIV envelope gp160. Siamycin I is effective against acute HIV type 1 (HIV-1) and HIV-2 infections, with 50% effective doses ranging from 0.05 to 5.7 microM, and the concentration resulting in a 50% decrease in cell viability in the absence of viral infection is 150 microM in CEM-SS cells. Siamycin I inhibits fusion between C8166 cells and CEM-SS cells chronically infected with HIV (50% effective dose of 0.08 microM) but has no effect on Sendai virus-induced fusion or murine myoblast fusion. Siamycin I does not inhibit gp120 binding to CD4 in either gp120- or CD4-based capture enzyme-linked immunosorbent assays. Inhibition of HIV-induced fusion by this compound is reversible, suggesting that siamycin I binds noncovalently. An HIV-1 resistant variant was selected by in vitro passage of virus in the presence of increasing concentrations of siamycin I. Drug susceptibility studies on a chimeric virus containing the envelope gene from the siamycin I-resistant variant indicate that resistance maps to the gp160 gene. Envelope-deficient HIV complemented with gp160 from siamycin I-resistant HIV also displayed a resistant phenotype upon infection of HeLa-CD4-LTR-beta-gal cells. A comparison of the DNA sequences of the envelope genes from the resistant and parent viruses revealed a total of six amino acid changes. Together these results indicate that siamycin I interacts with the HIV envelope protein.
Collapse
Affiliation(s)
- P F Lin
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
James W, Weiss RA, Simon JH. The receptor for HIV: dissection of CD4 and studies on putative accessory factors. Curr Top Microbiol Immunol 1996; 205:137-58. [PMID: 8575194 DOI: 10.1007/978-3-642-79798-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- W James
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
89
|
Freed EO, Martin MA. The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection. J Biol Chem 1995; 270:23883-6. [PMID: 7592573 DOI: 10.1074/jbc.270.41.23883] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- E O Freed
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
90
|
Jowett JB, Planelles V, Poon B, Shah NP, Chen ML, Chen IS. The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 1995; 69:6304-13. [PMID: 7666531 PMCID: PMC189529 DOI: 10.1128/jvi.69.10.6304-6313.1995] [Citation(s) in RCA: 430] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection causes profound immunological defects in afflicted patients. Various mechanisms have been proposed to account for the immune dysfunction in AIDS ultimately leading to loss of CD4+ T cells, including HIV-1 envelope-mediated syncytium formation, apoptosis, and cytokine modulation. Here we present results which suggest a novel hypothesis for T-cell dysfunction. We show, using HIV-1 bearing a novel cell surface reporter gene, that infected cells are unable to progress normally through the cell cycle and became arrested in the G2 + M phase. Furthermore, we identify the HIV-1 vpr gene product as being both necessary and sufficient for eliciting this cell cycle arrest. Cell cycle arrest induced by Vpr correlates with an increase in the hyperphosphorylated (inactive) form of the cyclin-dependent serine/threonine kinase CDC2, consistent with an arrest of cells at the boundary of G2 and M.
Collapse
Affiliation(s)
- J B Jowett
- Department of Microbiology & Immunology, UCLA School of Medicine 90095-1678, USA
| | | | | | | | | | | |
Collapse
|
91
|
Wyatt R, Moore J, Accola M, Desjardin E, Robinson J, Sodroski J. Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. J Virol 1995; 69:5723-33. [PMID: 7543586 PMCID: PMC189432 DOI: 10.1128/jvi.69.9.5723-5733.1995] [Citation(s) in RCA: 360] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The binding of human immunodeficiency virus type 1 (HIV-1) to the cellular receptor CD4 has been suggested to induce conformational changes in the viral envelope glycoproteins that promote virus entry. Conserved, discontinuous epitopes on the HIV-1 gp120 glycoprotein recognized by the 17b, 48d, and A32 antibodies are preferentially exposed upon the binding of soluble CD4 (sCD4). The binding of the 17b and 48d antibodies to the gp120 glycoprotein can also be enhanced by the binding of the A32 antibody. Here we constructed HIV-1 gp120 mutants in which the variable segments of the V1/V2 and V3 structures were deleted, individually or in combination, while the 17b, 48d, and A32 epitopes were retained. The effects of the variable loop deletions on the function of the HIV-1 envelope glycoproteins and on the exposure of epitopes induced by sCD4 or A32 binding to the monomeric gp120 glycoprotein were examined. The variable-loop-deleted envelope glycoproteins were able to mediate virus entry, albeit at lower efficiencies than those of the wild-type glycoproteins. Thus, the V1/V2 and V3 variable sequences contribute to the efficiency of HIV-1 entry but are not absolutely required for the process. Neither the V1/V2 nor V3 loops were necessary for the increase in exposure of the 17b/48d epitopes induced by binding of the A32 monoclonal antibody. By contrast, induction of the 17b, 48d, and A32 epitopes by sCD4 binding apparently involves a movement of the V1/V2 loops, which in the absence of CD4 partially mask these epitopes on the native gp120 monomer. The results obtained with a mutant glycoprotein containing a deletion of the V1 loop alone indicated that the contribution of the V2 loop to these phenomena was more significant than that of the V1 sequences. These results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute to CD4-induced gp120 conformational changes detected by the 17b, 48d, and A32 antibodies.
Collapse
Affiliation(s)
- R Wyatt
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
92
|
Sakihama T, Smolyar A, Reinherz EL. Oligomerization of CD4 is required for stable binding to class II major histocompatibility complex proteins but not for interaction with human immunodeficiency virus gp120. Proc Natl Acad Sci U S A 1995; 92:6444-8. [PMID: 7604010 PMCID: PMC41534 DOI: 10.1073/pnas.92.14.6444] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies have failed to detect an interaction between monomeric soluble CD4 (sCD4) and class II major histocompatibility complex (MHC) proteins, suggesting that oligomerization of CD4 on the cell surface may be required to form a stable class II MHC binding site. To test this possibility, we transfected the F43I CD4 mutant, which is incapable of binding to class II MHC or human immunodeficiency virus (HIV) gp120, into COS-7 cells together with wild-type CD4 (wtCD4). Expression of F43I results in a dominant negative effect: no class II MHC binding is observed even though wtCD4 expression is preserved. Apparently, F43I associates with wtCD4 oligomers and interferes with the formation of functional class II MHC binding structures. In contrast, F43I does not affect the binding of gp120 to wtCD4, implying that gp120 binds to a CD4 monomer. By production and characterization of chimeric CD4 molecules, we show that domains 3 and/or 4 appear to be involved in oligomerization. Several models of the CD4-class II MHC interaction are offered, including the possibility that one or two CD4 molecules initially interact with class II MHC dimers and further associate to create larger complexes important for facilitating T-cell receptor crosslinking.
Collapse
Affiliation(s)
- T Sakihama
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | |
Collapse
|
93
|
Dukes CS, Yu Y, Rivadeneira ED, Sauls DL, Liao HX, Haynes BF, Weinberg JB. Cellular CD44S as a determinant of human immunodeficiency virus type 1 infection and cellular tropism. J Virol 1995; 69:4000-5. [PMID: 7539503 PMCID: PMC189132 DOI: 10.1128/jvi.69.7.4000-4005.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CD4 is the predominant cell membrane protein that binds human immunodeficiency virus type 1 (HIV-1) gp120 and facilitates HIV-1 infection, but other membrane-associated molecules may be involved in determining HIV-1 cellular infection. Our prior work had suggested that CD44, the transmembrane receptor for hyaluronan, might play a role in the infection of mononuclear phagocytes with HIV-1. In the present work, we have used cells of the CD4-positive, CD44-negative human T-lymphoblast cell line Jurkat to study the role of CD44 in HIV-1 infection and tropism. Cells were transfected with cDNA for the standard (S, or hematopoietic) CD44 isoform CD44S or the epithelial isoform CD44E. The resultant lines expressed appropriate CD44S or CD44E mRNA and protein. While the parent Jurkat cells, those transfected with vector alone, and those transfected with CD44E could be productively infected with only the lymphocytotropic strain HIV-1-LAI, cells transfected with CD44S were rendered susceptible to productive infection with the monocytotropic strains HIV-1-BaL and HIV-1-ADA. Also, CD44S-transfected cells displayed higher levels of infection with HIV-1-LAI than did the other transfected Jurkat cells. The transfected cell line cells all had comparable growth rates and expressed similar levels of the membrane antigens CD4, CD7, major histocompatibility complex (MHC) class I, MHC class II, and CD11a, while levels of CD3 were slightly higher in cells transfected with vector alone and in one of the clones transfected with CD44S. Hyaluronan binding was increased in cells transfected with either CD44S or CD44E. Mouse NIH 3T3 fibroblasts transfected with human CD4, human CD44S, or both human CD4 and CD44S displayed the appropriate antigens, but they could not be productively infected with lymphocytotropic or monocytotropic strains of HIV-1. The results indicate that in human leukocytes, CD44S is an important determinant of HIV-1 productive infection and may be involved in viral cellular tropism.
Collapse
Affiliation(s)
- C S Dukes
- Department of Medicine, Veterans Affairs Medical Center, Durham, North Carolina 27705, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Rivadeneira ED, Sauls DL, Yu Y, Haynes BF, Weinberg JB. Inhibition of HIV type 1 infection of mononuclear phagocytes by anti-CD44 antibodies. AIDS Res Hum Retroviruses 1995; 11:541-6. [PMID: 7576909 DOI: 10.1089/aid.1995.11.541] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cellular CD4 is the primary membrane molecule that binds HIV-1 through interaction with viral gp120. Membrane glycolipids and cell adhesion molecules have also been noted to be involved in the interaction of HIV-1 with cells and in syncytium formation in infected cells. The purpose of this study was to determine the role of the cell adhesion molecule CD44 in HIV-1 infection of cells. Both normal blood monocytes and lymphocytes expressed CD44 as determined by flow cytometry using the anti-CD44 antibody A3D8. Anti-CD44 monoclonal antibodies A3D8, A1G3, and 5F12 [ascites, purified IgG, and F(ab')2] inhibited infection of monocytes and peritoneal macrophages with HIV-1-BaL and HIV-1-ADA, but had no effect on HIV-1-IIIB infection of mitogen-stimulated lymphocytes, or cells of a T lymphocyte line. CD44 monoclonal antibodies were not toxic for monocytes, and the observed inhibitory effect of CD44 monoclonal antibodies was not dependent on complement. These results suggest that CD44 may be a determinant of HIV-1 infection of mononuclear phagocytes in vitro.
Collapse
Affiliation(s)
- E D Rivadeneira
- Department of Pediatrics, VA Medical Center, Durham, North Carolina 27705, USA
| | | | | | | | | |
Collapse
|
95
|
Choe HR, Sodroski J. Adaptation of human immunodeficiency virus type 1 to cells expressing a binding-deficient CD4 mutant (lysine 46 to aspartic acid). J Virol 1995; 69:2801-10. [PMID: 7707502 PMCID: PMC188974 DOI: 10.1128/jvi.69.5.2801-2810.1995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) was adapted to replicate efficiently in cells expressing an altered form of the CD4 viral receptor. The mutant CD4 (46 K/D) contained a single amino acid change (lysine 46 to aspartic acid) in the CDR2 loop of domain 1, which results in a 15-fold reduction in affinity for the viral gp120 glycoprotein. The ability of the adapted virus to replicate in CD4 46 K/D-expressing cells was independently enhanced by single amino acid changes in the V2 variable loop, the V3 variable loop, and the fourth conserved (C4) region of the gp120 glycoprotein. Combinations of these amino acids in the same envelope glycoprotein resulted in additive enhancement of virus replication in cells expressing the CD4 46 K/D molecule. In cells expressing the wild-type CD4 glycoproteins, the same V2 and V3 residue changes also increased the efficiency of replication of a virus exhibiting decreased receptor-binding ability due to an amino acid change (aspartic acid 368 to glutamic acid) in the gp120 glycoprotein. In neither instance did the adaptive changes restore the binding ability of the monomeric gp120 glycoprotein or the oligomeric envelope glycoprotein complex for the mutant or wild-type CD4 glycoproteins, respectively. Thus, particular conformations of the gp120 V2 and V3 variable loops and of the C4 region allow postreceptor binding events in the membrane fusion process to occur in the context of less than optimal receptor binding. These results suggest that the fusion-related functions of the V2, V3, and C4 regions of gp120 are modulated by CD4 binding.
Collapse
Affiliation(s)
- H R Choe
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
96
|
Allaway GP, Davis-Bruno KL, Beaudry GA, Garcia EB, Wong EL, Ryder AM, Hasel KW, Gauduin MC, Koup RA, McDougal JS. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995; 11:533-9. [PMID: 7576908 DOI: 10.1089/aid.1995.11.533] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CD4-IgG2 is a novel fusion protein comprising human IgG2 in which the Fv portions of both heavy and light chains have been replaced by the V1 and V2 domains of human CD4. This tetrameric protein is being developed as an immunoprophylactic agent to reduce the probability of infection following HIV-1 exposure, in settings such as occupational or perinatal exposure to the virus. CD4-IgG2 has been expressed in Chinese hamster ovary cells and is secreted as a fully assembled heterotetramer. The protein binds with nanomolar affinity to purified gp120 from both a laboratory-adapted strain and a primary isolate of HIV-1. Pharmacokinetic studies in rabbits demonstrated that CD4-IgG2 has a plasma terminal half-life greater than 1 day, compared with 15 min for soluble CD4 (sCD4). CD4-IgG2 does not bind to Fc receptors on the surface of U937 monocyte/macrophage cells. Compared to molecules that incorporate the Fc portion of IgG1, CD4-IgG2 has less potential to mediate functions such as antibody-dependent enhancement of infection or transplacental transmission of HIV-1. When tested in a virus-free HIV-1 envelope glycoprotein-mediated cell fusion assay, the tetrameric CD4-IgG2 molecule inhibited syncytium formation more effectively than monomeric sCD4 or a dimeric CD4-gamma 2 fusion protein. This suggests the protein will block cell-to-cell transmission of HIV-1. Moreover, CD4-IgG2 effectively neutralized a panel of laboratory-adapted strains and primary isolates of HIV-1, including strains with different tropisms and isolated from different stages of the disease, at concentrations that should be readily achieved in vivo.
Collapse
Affiliation(s)
- G P Allaway
- Progenics Pharmaceuticals, Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Krauss S, Kufer P, Federle C, Tabaszewski P, Weiss E, Rieber EP, Riethmüller G. Recombinant CD4-IgE, a novel hybrid molecule, inducing basophils to respond to human immunodeficiency virus (HIV) and HIV-infected target cells. Eur J Immunol 1995; 25:192-9. [PMID: 7531144 DOI: 10.1002/eji.1830250132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Basophils and mast cells, as the main effector cells in IgE-mediated type I hypersensitivity, are involved in the elimination of parasites and, according to recent findings, may also play an important role in the defense against bacterial and viral infections. Using a genetic engineering approach we wanted to redirect this potent IgE-mediated defense system against intruding human immune deficiency virus. We constructed a recombinant CD4-IgE molecule, consisting of the two N-terminal domains of CD4 and the CH2-4 domains of the IgE heavy chain, thus providing the IgE with specificity for the gp120 of human immunodeficiency virus (HIV). The binding properties of hybrid CD4-IgE to the high-affinity receptor for IgE (Fc epsilon RI) on basophils as well as to the low-affinity receptor (Fc epsilon RII or CD23) for IgE on lymphoid cells were found to be similar to those of native IgE. At the same time, the CD4 domains of the recombinant molecule retained the gp120 binding specificity with an affinity similar to that of the native CD4. By functional tests, we demonstrated that CD4-IgE armed basophils can be triggered by free HIV and by HIV-infected cells to release their mediators. We further show that HIV-triggered basophils lead to a decreased replication of HIV in susceptible T cells. We, therefore, conclude that the type I hypersensitivity effector cells can be engaged in the elimination of HIV-infected cells, at least in vitro. Because of the strong binding of the CD4-IgE construct to the Fc epsilon RI, we assume that CD4-IgE has a short t1/2 in serum, but may similarly to IgE exhibit prolonged resident time on basophils and mast cells, which are located close to mucosal surfaces or in the connective tissue. Thus CD4-IgE could play an important role in the elimination of HIV also in vivo.
Collapse
Affiliation(s)
- S Krauss
- Institute for Immunology, University of Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
98
|
Groenink M, Moore JP, Broersen S, Schuitemaker H. Equal levels of gp120 retention and neutralization resistance of phenotypically distinct primary human immunodeficiency virus type 1 variants upon soluble CD4 treatment. J Virol 1995; 69:523-7. [PMID: 7983749 PMCID: PMC188603 DOI: 10.1128/jvi.69.1.523-527.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) variants passaged in T-cell lines, often called laboratory isolates, are potently neutralized by soluble CD4 (sCD4), whereas primary HIV-1 variants are highly resistant to sCD4 neutralization. Previously, it was demonstrated that the domain from V1 to V3 of the HIV-1 gp120 molecule contains one of the major determinants of sCD4 neutralization sensitivity, and the same region has also been implicated as influencing syncytium-inducing (SI) capacity and T-cell-line tropism. To determine possible differences in sCD4 neutralization sensitivity between phenotypically distinct primary HIV-1 variants, a panel of non-syncytium-inducing (NSI) and SI HIV-1 variants was studied. Primary NSI and SI HIV-1 variants appeared to be equally resistant to sCD4 neutralization. Consistent with this observation, sCD4 did not induce gp120 shedding from either primary NSI or SI HIV-1 variants at 37 degrees C. Thus, it is not the potential of certain primary HIV-1 variants to infect T-cell lines but rather their adaptation to T-cell lines that is reflected in specific properties of the viral envelope which influence sCD4 neutralization sensitivity.
Collapse
Affiliation(s)
- M Groenink
- Department of Clinical Viro-Immunology, The Netherlands Red Cross Blood Transfusion Service, Amsterdam
| | | | | | | |
Collapse
|
99
|
Martin JA, Redshaw S, Thomas GJ. Inhibitors of HIV proteinase. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:239-87. [PMID: 8577919 DOI: 10.1016/s0079-6468(08)70455-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J A Martin
- Roche Products Ltd., Welwyn Garden City, Herts, UK
| | | | | |
Collapse
|
100
|
Moore JP, Willey RL, Lewis GK, Robinson J, Sodroski J. Immunological evidence for interactions between the first, second, and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1. J Virol 1994; 68:6836-47. [PMID: 7933065 PMCID: PMC237119 DOI: 10.1128/jvi.68.11.6836-6847.1994] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used a combination of genetic and immunological techniques to explore how amino acid substitutions in the second conserved (C2) domain of gp120 from human immunodeficiency virus type 1 (HIV-1) affect the conformation of the protein. It was reported previously (R. L. Willey, E. K. Ross, A. J. Buckler-White, T. S. Theodore, and M. A. Martin. J. Viol. 63:3595-3600, 1989) that an asparagine-glutamine (N/Q) substitution at C2 residue 267 of HIV-1 NL4/3 reduced virus infectivity, but that infectivity was restored by a compensatory amino acid change (serine-glutamine; S/N) at residue 128 in the C1 domain. Here we show that the 267 N/Q substitution causes the abnormal exposure of a segment of C1 spanning residues 80 to 120, which compromises the integrity of the CD4-binding site. The reversion substitution at residue 128 restores the normal conformation of the C1 domain and recreates a high-affinity CD4-binding site. The gp120 structural perturbation caused by changes in C2 extends also to the C5 domain, and we show by immunological analysis that there is a close association between areas of the C1 and C5 domains. This association might be important for forming a complex binding site for gp41 (E. Helseth, U. Olshevsky, C. Furman, and J. Sodroski. J. Virol. 65:2119-2123, 1991). Segments of the C1 and C2 domains are predicted to form amphipathic alpha helices. We suggest that these helices might be packed together in the core of the folded gp120 molecule, that the 267 N/Q substitution disrupts this interdomain association, and that the 128 S/N reversion substitution restores it.
Collapse
Affiliation(s)
- J P Moore
- Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016
| | | | | | | | | |
Collapse
|