51
|
Shi J, Wang H, Hazebroek J, Ertl DS, Harp T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:708-19. [PMID: 15918884 DOI: 10.1111/j.1365-313x.2005.02412.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phytic acid, myo-inositol-1,2,3,4,5,6-hexakisphosphate or Ins P6, is the most abundant myo-inositol phosphate in plant cells, but its biosynthesis is poorly understood. Also uncertain is the role of myo-inositol as a precursor of phytic acid biosynthesis. We identified a low-phytic acid mutant, lpa3, in maize. The Mu-insertion mutant has a phenotype of reduced phytic acid, increased myo-inositol and lacks significant amounts of myo-inositol phosphate intermediates in seeds. The gene responsible for the mutation encodes a myo-inositol kinase (MIK). Maize MIK protein contains conserved amino acid residues found in pfkB carbohydrate kinases. The maize lpa3 gene is expressed in developing embryos, where phytic acid is actively synthesized and accumulates to a large amount. Characterization of the lpa3 mutant provides direct evidence for the role of myo-inositol and MIK in phytic acid biosynthesis in developing seeds. Recombinant maize MIK phosphorylates myo-inositol to produce multiple myo-inositol monophosphates, Ins1/3P, Ins4/6P and possibly Ins5P. The characteristics of the lpa3 mutant and MIK suggest that MIK is not a salvage enzyme for myo-inositol recycling and that there are multiple phosphorylation routes to phytic acid in developing seeds. Analysis of the lpa2/lpa3 double mutant implies interactions between the phosphorylation routes.
Collapse
Affiliation(s)
- Jinrui Shi
- Crop Genetics Research and Development, Pioneer Hi-Bred International, Inc., Johnston, IA 50131, USA.
| | | | | | | | | |
Collapse
|
52
|
Abstract
When viewing the changes in our understanding of inositides over the last 20 years, it is difficult to know whether to be more impressed by the proliferation in the number of inositides themselves (e.g. seven polyphosphoinositol lipids, more than 30 inositol phosphates), or by the number of functions for each. This review will focus on two specific aspects of this diversity: the evolution of the polyphosphoinositides, and the synthesis and functions of the higher inositol phosphates.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
53
|
Lin L, Ockenden I, Lott JNA. The concentrations and distribution of phytic acid-phosphorus and other mineral nutrients in wild-type and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) grains and grain parts. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b04-146] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comparison of mineral nutrient and phytic acid-phosphorus (PA-P) distribution in the grains of wild-type (WT) and low phytic acid1-1 (lpa1-1) corn (Zea mays L.) was conducted to determine how the lpa1-1 mutation influences mineral element concentrations in different grain parts and impacts the structure of phosphorus-rich inclusions (globoids) in the grain cells. This is the first report regarding total phosphorus (P) and PA-P concentrations in scutellum and root-shoot axis portions of cereal embryos of WT in comparison to its matching lpa1-1 genotype. In WT, 95% of the grain PA-P was located in the embryo, mostly in the scutellum. The lpa1-1 mutation reduced whole-grain PA-P by 62% but influenced the scutella more than the root-shoot axes and rest-of-grain fractions. In spite of the lpa1-1 mutants containing greatly reduced PA-P, whole-grain amounts of Mg, Fe, and Mn were higher in lpa1-1 than in WT, K and Zn were similar, and Ca was lower. Iron was 1/3 higher in lpa1-1 grains than WT while Ca was 18% lower. Decreased phytic acid in lpa1-1 grains resulted in reduction in globoid size in both scutellum and aleurone layer cells. Most lpa1-1 aleurone globoids were non-spherical and scutellum globoids were clusters of small spheres while WT globoids were large discrete spheres. X-ray analyses of globoids in both grain types revealed major amounts of P, K, and Mg and traces of Ca, Fe, and Zn. Both grain types contained almost no mineral nutrient stores in the starchy endosperm.Key words: corn (Zea mays L.), phytic acid-phosphorus, low phytic acid1-1 (lpa1-1) grains, mineral nutrients, globoids, electron microscopy.
Collapse
|
54
|
Coelho CMM, Tsai SM, Vitorello VA. Dynamics of inositol phosphate pools (tris-, tetrakis- and pentakisphosphate) in relation to the rate of phytate synthesis during seed development in common bean (Phaseolus vulgaris). JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1-9. [PMID: 15700415 DOI: 10.1016/j.jplph.2004.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Four cultivars of Phaseolus vulgaris were grown in a greenhouse and each flower was Labeled with date of anthesis. Seeds were collected at six different stages of development and inositol phosphates (InsPs) were analyzed by ion-pair reversed-phase HPLC. Phytate accumulation was similar in all cultivars, and the specific rate of phytate synthesis (Rs) peaked at about 22 days after flowering (DAF). Variations in the concentrations of the InsP3 and InsP4 pools matched changes in Rs in cultivars Una and Aruã. These results suggest mass-action effects. Thus, the rates of conversion of InsP3 to InsP5 appeared to be at least partly dependent on substrate concentration. Proportional increases in size of all InsP pools up to 21 DAF are also consistent with Little regulation in this part of the pathway. However, this did not appear to be the case in cv. Diamante Negro or with the conversion of InsP5 to InsP6 in all cultivars, where concentrations of the InsP precursor pools peaked earlier or even dropped as Rs peaked, suggesting activation of enzyme activity. Therefore, the evidence is consistent with a control point regulating this metabolic route upstream of InsP3 and possibly in the conversion of InsP5 to InsP6.
Collapse
Affiliation(s)
- Cileide Maria Medeiros Coelho
- Laboratório de Biologia Celular e Molecular, Centro de Energia Nuclear no Agricultura, Universidade de São Paulo, Piracicaba, SP 13400-970, Brazil
| | | | | |
Collapse
|
55
|
Seeds AM, Sandquist JC, Spana EP, York JD. A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J Biol Chem 2004; 279:47222-32. [PMID: 15322119 DOI: 10.1074/jbc.m408295200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolism of inositol 1,4,5-trisphosphate (I(1,4,5)P3) results in the production of diverse arrays of inositol polyphosphates (IPs), such as IP4, IP5, IP6) and PP-IP5. Insights into their synthesis in metazoans are reported here through molecular studies in the fruit fly, Drosophila melanogaster. Two I(1,4,5)P3 kinase gene products are implicated in initiating catabolism of these important IP regulators. We find dmIpk2 is a nucleocytoplasmic 6-/3-kinase that converts I(1,4,5)P3 to I(1,3,4,5,6)P5, and harbors 5-kinase activity toward I(1,3,4,6)P4, and dmIP3K is a 3-kinase that converts I(1,4,5)P3 to I(1,3,4,5)P4. To assess their relative roles in the cellular production of IPs we utilized complementation analysis, RNA interference, and overexpression studies. Heterologous expression of dmIpk2, but not dmIP3K, in ipk2 mutant yeast recapitulates phospholipase C-dependent cellular synthesis of IP6. Knockdown of dmIpk2 in Drosophila S2 cells and transgenic flies results in a significant reduction of IP6 levels; whereas depletion of dmIP3K, either alpha or beta isoforms or both, does not decrease IP6 synthesis but instead increases its production, possibly by expanding I(1,4,5)P3 pools. Similarly, knockdown of an I(1,4,5)P3 5-phosphatase results in significant increase in dmIpk2/dmIpk1-dependent IP6 synthesis. IP6 production depends on the I(1,3,4,5,6)P5 2-kinase activity of dmIpk1 and is increased in transgenic flies overexpressing dmIpk2. Our studies reveal that phosphatase and kinase regulation of I(1,4,5)P3 metabolic pools directly impinge on higher IP synthesis, and that the major route of IP6 synthesis depends on the activities of dmIpk2 and dmIpk1, but not dmIP3K, thereby challenging the role of IP3K in the genesis of higher IP messengers.
Collapse
Affiliation(s)
- Andrew M Seeds
- Department of Pharmacology, Howard Hughes Medical Institute, Duke University Medical Center, DUMC 3813, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
56
|
Shears SB. How versatile are inositol phosphate kinases? Biochem J 2004; 377:265-80. [PMID: 14567754 PMCID: PMC1223885 DOI: 10.1042/bj20031428] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 10/14/2003] [Accepted: 10/20/2003] [Indexed: 01/31/2023]
Abstract
This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, NIEHS/NIH/DHSS Research Triangle Park, NC 27709, USA.
| |
Collapse
|
57
|
Abstract
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6)) was first described as an abundant form of phosphorus in plant seeds and other plant tissues and dubbed "phytic acid". Subsequently it was found to be a common constituent in eukaryotic cells, its metabolism a basic component of cellular housekeeping. In addition to phosphate, myo-inositol (Ins) and mineral storage and retrieval in plant organs and tissues, other roles for Ins P(6) include service as a major metabolic pool in Ins phosphate and pyrophosphate pathways involved in signaling and regulation; possibly as an effector or ligand in these processes; as a form of energy currency and in ATP regeneration; in RNA export and DNA repair; and as an anti-oxidant. The relatively recent demonstration that pyrophosphate-containing derivatives of Ins P(6) can function as phosphate donors in the regeneration of ATP is reminiscent of the proposal, made four decades ago in studies of seed development, that Ins P(6) itself may serve in this function. Studies of Ins P(6) in non-plant systems rarely include the consideration that this compound might represent a significant fraction of cellular P; cellular phosphate nutrition has been viewed as either not interesting or of little importance. However, there may be few fundamental differences among diverse eukaryotes in both the metabolic pathways involving Ins P(6) and the spectrum of possible roles for it and its metabolites.
Collapse
Affiliation(s)
- Victor Raboy
- USDA-ARS, 1691 South 2700 West, Aberdeen, ID 83210, USA.
| |
Collapse
|
58
|
Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. PHYTOCHEMISTRY 2003; 62:691-706. [PMID: 12620321 DOI: 10.1016/s0031-9422(02)00610-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6) or "phytic acid") typically represents approximately 75% of the total phosphorus and >80% of soluble myo-inositol (Ins) phosphates in seeds. The seed phosphorus and Ins phosphate phenotypes of four non-lethal barley (Hordeum vulgare L.) low phytic acid mutations are described. In seeds homozygous for M 635 and M 955 reductions in Ins P(6), approximately 75 and >90% respectively, are accompanied by reductions in other Ins phosphates and molar-equivalent increases in Pi. This phenotype suggests a block in supply of substrate Ins. In seeds homozygous for barley low phytic acid 1-1 (lpa1-1), a 45% decrease in Ins P(6) is mostly matched by an increase in Pi but also accompanied by small increases in Ins(1,2,3,4,6)P(5). In seeds homozygous for barley lpa2-1, reductions in seed Ins P(6) are accompanied by increases in both Pi and in several Ins phosphates, a phenotype that suggests a lesion in Ins phosphate metabolism, rather than Ins supply. The increased Ins phosphates in barley lpa2-1 seed are: Ins(1,2,3,4,6)P(5); Ins(1,2,4,6)P(4) and/or its enantiomer Ins(2,3,4,6)P(4); Ins(1,2,3,4)P(4) and/or its enantiomer Ins(1,2,3,6)P(4); Ins(1,2,6)P(3) and/or its enantiomer Ins(2,3,4)P(3); Ins(1,5,6)P(3) and/or its enantiomer Ins(3,4,5)P(3) (the methods used here cannot distinguish between enantiomers). This primarily "5-OH" series of Ins phosphates differs from the "1-/3-OH" series observed at elevated levels in seed of the maize lpa2 genotype, but previous chromosomal mapping data indicated that the maize and barley lpa2 loci might be orthologs of a single ancestral gene. Therefore one hypothesis that might explain the differing lpa2 phenotypes is that their common ancestral gene encodes a multi-functional, Ins phosphate kinase with both "1-/-3-" and "5-kinase" activities. A putative pyrophosphate-containing Ins phosphate, possibly an Ins P(7), was also observed in the mature seed of all barley genotypes except lpa2-1. Barley M 955 indicates that at least for this species, the ability to accumulate Ins P(6) can be nearly abolished while retaining at least short-term ( approximately 1.0 years) viability.
Collapse
Affiliation(s)
- John A Dorsch
- USDA-ARS, 1691 South 2700 West, Aberdeen, ID 83210, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Brian Q Phillippy
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
60
|
Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. PLANT PHYSIOLOGY 2003; 131:507-15. [PMID: 12586875 PMCID: PMC166827 DOI: 10.1104/pp.014258] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Revised: 10/11/2002] [Accepted: 11/06/2002] [Indexed: 05/18/2023]
Abstract
Reduced phytic acid content in seeds is a desired goal for genetic improvement in several crops. Low-phytic acid mutants have been used in genetic breeding, but it is not known what genes are responsible for the low-phytic acid phenotype. Using a reverse genetics approach, we found that the maize (Zea mays) low-phytic acid lpa2 mutant is caused by mutation in an inositol phosphate kinase gene. The maize inositol phosphate kinase (ZmIpk) gene was identified through sequence comparison with human and Arabidopsis Ins(1,3,4)P(3) 5/6-kinase genes. The purified recombinant ZmIpk protein has kinase activity on several inositol polyphosphates, including Ins(1,3,4)P(3), Ins(3,5,6)P(3), Ins(3,4,5,6)P(4), and Ins(1,2,5,6)P(4). The ZmIpk mRNA is expressed in the embryo, the organ where phytic acid accumulates in maize seeds. The ZmIpk Mutator insertion mutants were identified from a Mutator F(2) family. In the ZmIpk Mu insertion mutants, seed phytic acid content is reduced approximately 30%, and inorganic phosphate is increased about 3-fold. The mutants also accumulate myo-inositol and inositol phosphates as in the lpa2 mutant. Allelic tests showed that the ZmIpk Mu insertion mutants are allelic to the lpa2. Southern-blot analysis, cloning, and sequencing of the ZmIpk gene from lpa2 revealed that the lpa2-1 allele is caused by the genomic sequence rearrangement in the ZmIpk locus and the lpa2-2 allele has a nucleotide mutation that generated a stop codon in the N-terminal region of the ZmIpk open reading frame. These results provide evidence that ZmIpk is one of the kinases responsible for phytic acid biosynthesis in developing maize seeds.
Collapse
Affiliation(s)
- Jinrui Shi
- Pioneer Hi-Bred International, P.O. Box 1004, Johnston, Iowa 50131, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Stevenson-Paulik J, Odom AR, York JD. Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 2002; 277:42711-8. [PMID: 12226109 DOI: 10.1074/jbc.m209112200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the high deposition of inositol hexakisphosphate (IP(6)), also known as phytate or phytin, in certain plant tissues little is known at the molecular level about the pathway(s) involved in its production. In budding yeast, IP(6) synthesis occurs through the sequential phosphorylation of I(1,4,5)P(3) by two gene products, Ipk2 and Ipk1, a IP(3)/IP(4) dual-specificity 6-/3-kinase and an inositol 1,3,4,5,6-pentakisphosphate 2-kinase, respectively. Here we report the identification and characterization of two inositol polyphosphate kinases from Arabidopsis thaliana, designated AtIpk2alpha and AtIpk2beta that are encoded by distinct genes on chromosome 5 and that are ubiquitously expressed in mature tissue. The primary structures of AtIpk2alpha and AtIpk2beta are 70% identical to each other and 12-18% identical to Ipk2s from yeast and mammals. Similar to yeast Ipk2, purified recombinant AtIpk2alpha and AtIpk2beta have 6-/3-kinase activities that sequentially phosphorylate I(1,4,5)P(3) to generate I(1,3,4,5,6)P(5) predominantly via an I(1,4,5,6)P(4) intermediate. While I(1,3,4,5)P(4) is a substrate for the plant Ipk2s, it does not appear to be a detectable product of the IP(3) reaction. Additionally, we report that the plant and yeast Ipk2 have a novel 5-kinase activity toward I(1,3,4,6)P(4) and I(1,2,3,4,6)P(5), which would allow these proteins to participate in at least two proposed pathways in the synthesis of IP(6). Heterologous expression of either plant isoform in an ipk2 mutant yeast strain restores IP(4) and IP(5) production in vivo and rescues its temperature-sensitive growth defects. Collectively our results provide a molecular basis for the synthesis of higher inositol polyphosphates in plants through multiple routes and indicate that the 6-/3-/5-kinase activities found in plant extracts may be encoded by the IPK2 gene class.
Collapse
Affiliation(s)
- Jill Stevenson-Paulik
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
62
|
|
63
|
Abstract
Abundant evidence now supports the existence of phospholipids in the nucleus that resist washing of nuclei with detergents. These lipids are apparently not in the nuclear envelope as part of a bilayer membrane, but are actually within the nucleus in the form of proteolipid complexes with unidentified proteins. This review discusses the experimental evidence that attempts to explain their existence. Among these nuclear lipids are the polyphosphoinositol lipids which, together with the enzymes that synthesize them, form an intranuclear phospholipase C (PI-PLC) signaling system that generates diacylglycerol (DAG) and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The isoforms of PI-PLC that are involved in this signaling system, and how they are regulated, are not yet entirely clear. Generation of DAG within the nucleus is believed to recruit protein kinase C (PKC) to the nucleus to phosphorylate intranuclear proteins. Generation of Ins(1,4,5)P3 may mobilize Ca2+ from the space between the nuclear membranes and thus increase nucleoplasmic Ca2+. Less well understood are the increasing number of variations and complications on the "simple" idea of a PI-PLC system. These include, all apparently within the nucleus, (i) two routes of synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; (ii) two sources of DAG, one from the PI-PLC pathway and the other probably from phosphatidylcholine; (iii) several isoforms of PKC translocating to nuclei; (iv) increases in activity of the PI-PLC pathway at two points in the cell cycle; (v) a pathway of phosphorylation of Ins(1,4,5)P3, which may have several functions, including a role in the transfer of mRNA out of the nucleus; and (vi) the possible existence of other lipid signaling pathways that may include sphingolipids, phospholipase A2, and, in particular, 3-phosphorylated inositol lipids, which are now emerging as possible major players in nuclear signaling.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, UK.
| |
Collapse
|
64
|
Grases F, Simonet BM, Vucenik I, Perelló J, Prieto RM, Shamsuddin AM. Effects of exogenous inositol hexakisphosphate (InsP(6)) on the levels of InsP(6) and of inositol trisphosphate (InsP(3)) in malignant cells, tissues and biological fluids. Life Sci 2002; 71:1535-46. [PMID: 12127908 DOI: 10.1016/s0024-3205(02)01927-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
InsP(6) is abundant in cereals and legumes. InsP(6) and lower inositol phosphates, in particular InsP(3), participate in important intracellular processes. In addition, InsP(6) possess significant health benefits, such as anti-cancer effect, kidney stones prevention, lowering serum cholesterol. Because of the insensitivity of existing methods for determination of non-radiolabeled inositol phosphates, little is known about the natural occurrence, much less on the concentrations of InsP(6) and InsP(3) in biological samples. Using gas chromatography-mass detection analysis of HPLC chromatographic fractions, we report a measurement of unlabeled total InsP(3) and InsP(6) (a) as they occur within cells culture, tissues, and plasma, and (b) their changes depending on the presence of exogenous InsP(6). When rats were fed on a purified diet in which InsP(6) was undetectable (AIN-76A) the levels of InsP(6) in brain were 3.35 +/- 0.57 (SE) micromol.kg(-1) and in plasma 0.023 +/- 0.008 (SE) micromol.l(-1). The presence of InsP(6) in diet dramatically influenced its levels in brain and in plasma. When rats were given an InsP(6)-sufficient diet (AIN-76A + 1% InsP(6)), the levels of InsP(6) were about 100-fold higher in brain tissues (36.8 +/- 1.8 (SE)) than in plasma (0.29 +/- 0.02 (SE)); InsP(6) concentrations were 8.5-fold higher than total InsP(3) concentrations in either plasma (0.033 +/- 0.012 (SE)) and brain (4.21 +/- 0.55 (SE)). When animals were given an InsP(6)-poor diet (AIN-76A only), there was a 90% decrease in InsP(6) content in both brain tissue and plasma (p < 0.001); however, there was no change in the level of total InsP(3). In non-stimulated malignant cells (MDA-MB 231 and K562) the InsP(6) contents were 16.2 +/- 9.1 (SE) micromol.kg(-1) for MDA-MB 231 cells and 15.6 +/- 2.7 (SE) for K 562 cells. These values were around 3-fold higher than those of InsP(3) (4.8 +/- 0.5 micromol.kg(-1) and 6.9 +/- 0.1 (SE) for MDA-MB 231 and K562 cells respectively). Treatment of malignant cells with InsP(6) resulted in a 2-fold increase in the intracellular concentrations of total InsP(3) (9.5 +/- 1.3 (SE) and 10.8 +/- 1.0 (SE) micromol.kg(-1) for MDA-MB 231 and K562 cells respectively, p < 0.05), without changes in InsP(6) levels. These results indicate that exogenous InsP(6) directly affects its physiological levels in plasma and brain of normal rats without changes on the total InsP(3) levels. Although a similar fluctuation of InsP(6) concentration was not seen in human malignant cell lines following InsP(6) treatment, an increased intracellular levels of total InsP(3) was clearly observed.
Collapse
Affiliation(s)
- Felix Grases
- Laboratory of Renal Lithiasis Research, Faculty of Science, University of Balearic Islands, Ctra. Valldemossa Km 7.5, 07071 Palma de Mallorca, Spain.
| | | | | | | | | | | |
Collapse
|
65
|
Turner BL, Papházy MJ, Haygarth PM, McKelvie ID. Inositol phosphates in the environment. Philos Trans R Soc Lond B Biol Sci 2002; 357:449-69. [PMID: 12028785 PMCID: PMC1692967 DOI: 10.1098/rstb.2001.0837] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment.
Collapse
Affiliation(s)
- Benjamin L Turner
- Soil Science Group, Institute of Grassland and Environmental Research, North Wyke, Okehampton, Devon EX20 2SB, UK.
| | | | | | | |
Collapse
|
66
|
Irigoín F, Ferreira F, Fernández C, Sim RB, Díaz A. myo-Inositol hexakisphosphate is a major component of an extracellular structure in the parasitic cestode Echinococcus granulosus. Biochem J 2002; 362:297-304. [PMID: 11853537 PMCID: PMC1222389 DOI: 10.1042/0264-6021:3620297] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
myo-Inositol hexakisphosphate (IP(6)) is an abundant intracellular component of animal cells. In this study we describe the presence of extracellular IP(6) in the hydatid cyst wall (HCW) of the larval stage of the cestode parasite Echinococcus granulosus. The HCW comprises an inner cellular layer and an outer, acellular (laminated) layer up to 2 mm in thickness that protects the parasite from host immune cells. A compound, subsequently identified as IP(6), was detected in and purified from an HCW extract on the basis of its capacity to inhibit complement activation. The identification of the isolated compound was carried out by a combination of NMR, MS and TLC. The majority of IP(6) in the HCW was found in the acellular layer, with only a small fraction of the compound being extracted from cells. In the laminated layer, IP(6) was present in association with calcium, and accounted for up to 15% of the total dry mass of the HCW. IP(6) was not detected in any other structures or stages of the parasite. Our results imply that IP(6) is secreted by the larval stage of the parasite in a polarized fashion towards the interface with the host. This is the first report of the secretion of IP(6), and the possible implications beyond the biology of E. granulosus are discussed.
Collapse
Affiliation(s)
- Florencia Irigoín
- Cátedra de Inmunología, Facultad de Química/Ciencias, Universidad de la República, Avenida Alfredo Navarro 3051, piso 2, CP 11600, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
67
|
Brinch-Pedersen H, Sørensen LD, Holm PB. Engineering crop plants: getting a handle on phosphate. TRENDS IN PLANT SCIENCE 2002; 7:118-25. [PMID: 11906835 DOI: 10.1016/s1360-1385(01)02222-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plant seeds, most of the phosphate is in the form of phytic acid. Phytic acid is largely indigestible by monogastric animals and is the single most important factor hindering the uptake of a range of minerals. Engineering crop plants to produce a heterologous phytase improves phosphate bioavailability and reduces phytic acid excretion. This reduces the phosphate load on agricultural ecosystems and thereby alleviates eutrophication of the aquatic environment. Improved phosphate availability also reduces the need to add inorganic phosphate, a non-renewable resource. Iron and zinc uptake might be improved, which is significant for human nutrition in developing countries.
Collapse
Affiliation(s)
- Henrik Brinch-Pedersen
- Danish Institute of Agricultural Sciences, Dept of Plant Biology, Research Centre Flakkebjerg, DK-4200, Slagelse, Denmark.
| | | | | |
Collapse
|
68
|
Raboy V. Seeds for a better future: 'low phytate' grains help to overcome malnutrition and reduce pollution. TRENDS IN PLANT SCIENCE 2001; 6:458-62. [PMID: 11590064 DOI: 10.1016/s1360-1385(01)02104-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
myo-Inositol(1,2,3,4,5,6)hexakisphosphate (InsP(6) or 'phytic acid') was first known as the storage form of phosphorus in seeds. Seed-derived dietary InsP(6) can contribute to iron and zinc deficiency in human populations. Excretion of 'phytic acid phosphorus' by non-ruminants such as poultry, swine and fish can contribute to water pollution. Sustainable solutions to these important problems might depend on progress in the molecular biology and genetics of InsP(6) accumulation during seed development. The development of 'low phytate' grain and legume genotypes could help advance our understanding of this biology, and when used in foods and feeds might help to reduce human malnutrition and reduce animal waste phosphorus.
Collapse
Affiliation(s)
- V Raboy
- US Department of Agriculture, Agricultural Research Service, 1691 So. 2700 W, PO Box 307, Aberdeen, ID 83210, USA.
| |
Collapse
|
69
|
Grases F, Simonet BM, Prieto RM, March JG. Variation of InsP(4),InsP(5) and InsP(6) levels in tissues and biological fluids depending on dietary phytate. J Nutr Biochem 2001; 12:595-601. [PMID: 12031265 DOI: 10.1016/s0955-2863(01)00178-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Due to the increasing interest of InsP(6) on human health, the aim of this paper is to compare the levels of highly phosphorilated inositols (InsP(4), InsP(5) and InsP(6)) in organs and biological fluids of rats and to study the influence of the presence and absence of InsP(6) in diets. Thus, for this purpose, the variation of InsP(4), InsP(5) and InsP(6) levels in organs and biological fluids of rats submitted to two different diets were studied. In the AIN-76A diet no InsP(6) was present, yet the other was a 1% InsP(6) modified diet (AIN-76A + 1% InsP(6)). The highest InsP(4), InsP(5) and InsP(6) levels were found to be 10-fold superior in the brain than those found in the kidney. When the InsP(6) was eliminated from the diet, the InsP(6) levels decreased dramatically (97.2% in kidney, 89.8% in brain, 100% in bone, 90.5% in plasma and 98.1% in urine), the InsP(5) levels showed an important decrease (61.2% in kidney, 45.5% in brain, 28.1% in bone, 30% in plasma and 88.6% in urine) and the InsP(4) levels in organs only changed slightly. From these results, it can be deduced that the majority of InsP(6) present in the organism is of dietary origin and its endogenous synthesis is not important. According to the results, it can be evidenced that the endogenous synthesis of InsP(5) can occur, besides InsP(6) can be transformed by enzymatic dephosphorilation in InsP(5).
Collapse
Affiliation(s)
- F Grases
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
70
|
Grases F, Simonet BM, Prieto RM, March JG. Phytate levels in diverse rat tissues: influence of dietary phytate. Br J Nutr 2001; 86:225-31. [PMID: 11502236 DOI: 10.1079/bjn2001389] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phytate (inositol hexaphosphate; InsP6) was determined in rat tissues fed on diets with different phytate contents, using a GC-mass detection methodology that permitted the evaluation of the total amount of this substance present in such tissues. The highest InsP6 concentrations were found in brain 5.89 x 10(-2)(SE 5.7 x 10(-3)) mg/g DM), whereas the concentrations detected in kidneys, liver and bone were similar to each other 1.96 x 10(-3) (SE 0.20 x 10(-3), 3.11 x 10(-3) (SE 0.24 x 10(-3), 1.77 x 10(-3) (SE 0.17 x 10(-3)) mg/g DM respectively) and 10-fold less than those detected in brain. When rats were fed on a purified diet in which InsP6 was undetectable, the InsP6 levels of the organs mentioned earlier decreased dramatically (9.0 x 10(-4), 3.8 x 10(-5), 1.4 x 10(-5) mg/g DM in brain, kidneys and liver respectively) and in some cases became undetectable (bone). The addition of InsP6 to this purified diet led to the increase of InsP6 levels in these tissues. This clearly demonstrated that the majority of the InsP6 found in organs and tissues has a dietary origin and is not a consequence of endogenous synthesis. Consequently, considering that InsP6 could be involved in some important biological roles, the value of any diet on supplying this substance is noteworthy.
Collapse
Affiliation(s)
- F Grases
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | |
Collapse
|
71
|
Abstract
Following the discovery of inositol-1,4,5-trisphosphate as a second messenger, many other inositol phosphates were discovered in quick succession, with some understanding of their synthesis pathways and a few guesses at their possible functions. But then it all seemed to go comparatively quiet, with an explosion of interest in the inositol lipids. Now the water-soluble phase is once again becoming a focus of interest. Old and new data point to a new vista of inositol phosphates, with functions in many diverse aspects of cell biology, such as ion-channel physiology, membrane dynamics and nuclear signalling.
Collapse
Affiliation(s)
- R F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, UK.
| | | |
Collapse
|
72
|
Abstract
This review assesses the authenticity of inositol hexakisphosphate (InsP(6)) being a wide-ranging regulator of many important cellular functions. Against a background in which the possible importance of localized InsP(6) metabolism is discussed, there is the facile explanation that InsP(6) is merely an "inactive" precursor for the diphosphorylated inositol phosphates. Indeed, many of the proposed cellular functions of InsP(6) cannot sustain a challenge from the implementation of a rigorous set of criteria, which are designed to avoid experimental artefacts.
Collapse
Affiliation(s)
- S B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA.
| |
Collapse
|
73
|
Abstract
There is now abundant evidence for the existence of phospholipids in the nucleus that resist washing of nuclei with detergents. These lipids are apparently not in the nuclear envelope, but are actually within the nucleus, presumably not in a bilayer membrane but instead forming proteolipid complexes with unidentified proteins. This review discusses the experimental evidence that attempts to explain their existence. Among these nuclear lipids are the polyphosphoinositol lipids which, together with the enzymes that synthesize them, form an intranuclear phospholipase C (PI-PLC) signaling system that generates diacylglycerol and inositol-1,4,5-trisphosphate [Ins(1,4,5)P(3)]. The isoforms of PI-PLC that are involved in this signaling system, and how they are regulated, are not yet clear. Generation of diacylglycerol within the nucleus is believed to recruit protein kinase C to the nucleus to phosphorylate intranuclear proteins. Generation of Ins(1,4,5)P(3) may mobilize Ca(2+) from the space between the nuclear membranes and thus increase nucleoplasmic Ca(2+). Less well understood are an increasing number of variations and complications on the "simple" idea of a PI-PLC system. These include, all apparently within the nucleus: (i) two separate routes of synthesis of phosphatidylinositol-4,5-bisphosphate; (ii) two different sources of diacylglycerol, one being from the PI-PLC pathway, and the other probably from phosphatidylcholine; (iii) several different isoforms of PKC translocating to the nuclei; (iv) increases in activity of the PI-PLC pathway at two different points in the cell cycle; (v) a pathway of phosphorylation of Ins(1,4,5)P(3), which may have several functions, including a role in the transfer of messenger RNA (mRNA) out of the nucleus; and (vi) the possible existence of other lipid signaling pathways that may include sphingolipids, phospholipase A2, and 3-phosphorylated inositol lipids.
Collapse
Affiliation(s)
- R Irvine
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
74
|
|
75
|
Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. PLANT PHYSIOLOGY 2000; 124:355-68. [PMID: 10982449 PMCID: PMC59149 DOI: 10.1104/pp.124.1.355] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Accepted: 05/30/2000] [Indexed: 05/18/2023]
Abstract
Phytic acid (myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate or Ins P(6)) typically represents approximately 75% to 80% of maize (Zea mays) seed total P. Here we describe the origin, inheritance, and seed phenotype of two non-lethal maize low phytic acid mutants, lpa1-1 and lpa2-1. The loci map to two sites on chromosome 1S. Seed phytic acid P is reduced in these mutants by 50% to 66% but seed total P is unaltered. The decrease in phytic acid P in mature lpa1-1 seeds is accompanied by a corresponding increase in inorganic phosphate (P(i)). In mature lpa2-1 seed it is accompanied by increases in P(i) and at least three other myo-inositol (Ins) phosphates (and/or their respective enantiomers): D-Ins(1,2,4,5,6) P(5); D-Ins (1,4,5,6) P(4); and D-Ins(1,2,6) P(3). In both cases the sum of seed P(i) and Ins phosphates (including phytic acid) is constant and similar to that observed in normal seeds. In both mutants P chemistry appears to be perturbed throughout seed development. Homozygosity for either mutant results in a seed dry weight loss, ranging from 4% to 23%. These results indicate that phytic acid metabolism during seed development is not solely responsible for P homeostasis and indicate that the phytic acid concentration typical of a normal maize seed is not essential to seed function.
Collapse
Affiliation(s)
- V Raboy
- United States Department of Agriculture-Agricultural Research Service, National Small Grain Germplasm Research Facility, P.O. Box 307, Aberdeen, Idaho 83210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Grases F, Simonet BM, March JG, Prieto RM. Inositol hexakisphosphate in urine: the relationship between oral intake and urinary excretion. BJU Int 2000; 85:138-42. [PMID: 10619962 DOI: 10.1046/j.1464-410x.2000.00324.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the relationship between the oral intake of inositol hexakisphosphate (InsP6, phytic acid, an inhibitor of urinary crystallization) and its urinary excretion, to establish their possible mutual influence. MATERIALS AND METHODS Two groups of male Wistar rats (six animals each) received either; tap water and normal rat food pellets (controls); or a liquid diet in which InsP6 was absent and which then received gradually increasing amounts of InsP6. The urinary levels of InsP6 were then assessed regularly in both groups. RESULTS When InsP6 was absent from the diet, urinary excretion declined to undetectable levels after 22 days. The addition of increasing amounts of InsP6 to the liquid diet caused an increase in its urinary excretion after about 10 days. Adding InsP6 in amounts > 425 mg/L caused no further increases in urinary excretion. Adding inositol (with no InsP6) to the liquid diet caused only a slight increase in the urinary excretion of InsP6. CONCLUSION These results showed that InsP6 urinary levels were related to its oral intake; consequently, a low consumption of InsP6 would cause a urinary deficit of this crystallization inhibitor and thus an increase in the risk of developing urinary calcium stones. Although urinary excretion was dose-dependent, there was an ingested amount (20.9 mg/kg) above which there was no increase in the amount excreted. This intake is easily obtained by consuming a normal diet (rich in InsP6) indicating that to maintain appropriate urinary levels of InsP6, the consumption of InsP6 supplements is only necessary when the diet is particularly poor in InsP6.
Collapse
Affiliation(s)
- F Grases
- Laboratory of Renal Lithiasis Research, University of the Belearic Islands, Palma de Mallorca, Spain.
| | | | | | | |
Collapse
|
77
|
York JD, Odom AR, Murphy R, Ives EB, Wente SR. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 1999; 285:96-100. [PMID: 10390371 DOI: 10.1126/science.285.5424.96] [Citation(s) in RCA: 396] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In order to identify additional factors required for nuclear export of messenger RNA, a genetic screen was conducted with a yeast mutant deficient in a factor Gle1p, which associates with the nuclear pore complex (NPC). The three genes identified encode phospholipase C and two potential inositol polyphosphate kinases. Together, these constitute a signaling pathway from phosphatidylinositol 4, 5-bisphosphate to inositol hexakisphosphate (IP6). The common downstream effects of mutations in each component were deficiencies in IP6 synthesis and messenger RNA export, indicating a role for IP6 in GLE1 function and messenger RNA export.
Collapse
Affiliation(s)
- J D York
- Department of Pharmacology, Duke University Medical Center, DUMC 3813, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
78
|
Shears SB. The versatility of inositol phosphates as cellular signals. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1436:49-67. [PMID: 9838040 DOI: 10.1016/s0005-2760(98)00131-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cells from across the phylogenetic spectrum contain a variety of inositol phosphates. Many different functions have been ascribed to this group of compounds. However, it is remarkable how frequently several of these different inositol phosphates have been linked to various aspects of signal transduction. Therefore, this review assesses the evidence that inositol phosphates have evolved into a versatile family of second messengers.
Collapse
Affiliation(s)
- S B Shears
- Inositide Signalling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
79
|
Downes C. Foreword. Biochim Biophys Acta Mol Cell Biol Lipids 1998. [DOI: 10.1016/s0005-2760(98)00144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
80
|
Liberona JL, Powell JA, Shenoi S, Petherbridge L, Caviedes R, Jaimovich E. Differences in both inositol 1,4,5-trisphosphate mass and inositol 1,4,5-trisphosphate receptors between normal and dystrophic skeletal muscle cell lines. Muscle Nerve 1998; 21:902-9. [PMID: 9626250 DOI: 10.1002/(sici)1097-4598(199807)21:7<902::aid-mus8>3.0.co;2-a] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human normal (RCMH) and Duchenne muscular dystrophy (RCDMD) cell lines, as well as newly developed normal and dystrophic murine cell lines, were used for the study of both changes in inositol 1,4,5-trisphosphate (IP3) mass and IP3 binding to receptors. Basal levels of IP3 were increased two- to threefold in dystrophic human and murine cell lines compared to normal cell lines. Potassium depolarization induced a time-dependent IP3 rise in normal human cells and cells of the myogenic mouse cell line (129CB3), which returned to their basal levels after 60 s. However, in the human dystrophic cell line (RCDMD), IP3 levels remained high up to 200 s after potassium depolarization. Expression of IP3 receptors was studied measuring specific binding of 3H-IP3 in the murine cell lines (normal 129CB3 and dystrophic mdx XLT 4-2). All the cell lines bind 3H-IP3 with relatively high affinity (Kd: between 40 and 100 nmol/L). IP3 receptors are concentrated in the nuclear fraction, and their density is significantly higher in dystrophic cells compared to normal. These findings together with high basal levels of IP3 mass suggest a possible role for this system in the deficiency of intracellular calcium regulation in Duchenne muscular dystrophy.
Collapse
MESH Headings
- Actinin/analysis
- Animals
- Calcium Channels/analysis
- Calcium Channels/metabolism
- Cell Fractionation
- Cell Line
- Dystrophin/deficiency
- Dystrophin/genetics
- Electrophysiology
- Humans
- Inositol 1,4,5-Trisphosphate/analysis
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/metabolism
- Potassium Chloride/pharmacology
- Radioligand Assay
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ryanodine/pharmacology
- Tritium
Collapse
Affiliation(s)
- J L Liberona
- Department of Physiology and Biophysics, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
81
|
van Haastert PJ, van Dijken P. Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium. FEBS Lett 1997; 410:39-43. [PMID: 9247119 DOI: 10.1016/s0014-5793(97)00415-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biochemical and genetic data on the metabolism of inositol phosphates in the microorganism Dictyostelium are combined in a scheme composed of in five subroutes. The first subroute is the inositol cycle as found in other organisms: inositol is incorporated into phospholipids that are hydrolysed by PLC producing Ins(1,4,5)P3 which is dephosphorylated to inositol. The second subroute is the sequential phosphorylation of inositol to InsP6; the Ins(3,4,6)P3 intermediate does not release Ca2+. The third subroute is the sequential phosphorylation of Ins(1,4,5)P3 to InsP6 in a nucleus associated fraction, whereas the fourth subroute is the dephosphorylation of Ins(1,3,4,5,6)P5 to Ins(1,4,5)P3 at the plasma membrane. This last route mediates Ins(1,4,5)P3 formation in cells with a disruption of the single PLC gene. Finally, we recognize the formation of InsP7 and InsP8 as the fifth subroute.
Collapse
Affiliation(s)
- P J van Haastert
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
82
|
Brearley CA, Parmar PN, Hanke DE. Metabolic evidence for PtdIns(4,5)P2-directed phospholipase C in permeabilized plant protoplasts. Biochem J 1997; 324 ( Pt 1):123-31. [PMID: 9164848 PMCID: PMC1218408 DOI: 10.1042/bj3240123] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Comparison of the sequences of the genes encoding phospholipase C (PLC) which have been cloned to date in plants with their mammalian counterparts suggests that plant PLC is similar to PLCdelta of mammalian cells. The physiological role and mechanism of activation of PLCdelta is unclear. It has recently been shown that Ins(1,4,5)P3 may not solely be the product of PtdIns(4,5)P2-directed PLC activity. Enzyme activities capable of producing Ins(1,4,5)P3 from endogenous inositol phosphates are present in Dictyostelium and also in rat liver. Significantly it has not been directly determined whether Ins(1,4,5)P3 present in higher plants is the product of a PtdIns(4, 5)P2-directed PLC activity. Therefore we have developed an experimental strategy for the identification of d-Ins(1,4,5)P3 in higher plants. By the use of a short-term non-equilibrium labelling strategy in permeabilized plant protoplasts, coupled to the use of a 'metabolic trap' to prevent degradation of [32P]Ins(1,4,5)P3, we were able to determine the distribution of 32P in individual phosphate esters of Ins(1,4,5)P3. The [32]Ins(1,4,5)P3 identified showed the same distribution of label in individual phosphate esters as that of [32P]PtdIns(4,5)P2 isolated from the same tissue. We thus provide in vivo evidence for the action of a PtdIns(4,5)P2-directed PLC activity in plant cells which is responsible for the production of Ins(1,4,5)P3 observed here. This observation does not, however, exclude the possibility that in other cells or under different conditions Ins(1,4,5)P3 can be generated by alternative routes.
Collapse
Affiliation(s)
- C A Brearley
- Department of Plant Sciences, University of Cambridge, Downing St, Cambridge CB2 3EA, U.K
| | | | | |
Collapse
|
83
|
Van Dijken P, Bergsma JC, Van Haastert PJ. Phospholipase-C-independent inositol 1,4,5-trisphosphate formation in Dictyostelium cells. Activation of a plasma-membrane-bound phosphatase by receptor-stimulated Ca2+ influx. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:113-9. [PMID: 9063453 DOI: 10.1111/j.1432-1033.1997.00113.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dictyostelium cells have enzyme activities that generate the inositol polyphosphate Ins(1,4,5)P3 from Ins(1,3,4,5,6)P5 via the intermediates Ins(1,3,4,5)P4 and Ins(1,4,5,6)P4. These enzyme activities could explain why cells with a deletion of the single phospholipase C gene (plc- cells) possess nearly normal Ins(1,4,5)P3 levels. In this study the regulation and the subcellular localization of the enzyme activities was investigated. The enzyme activities performing the different reaction steps from Ins(1,3,4,5,6)P5 to Ins(1,4,5)P3 are probably due to a single enzyme. Indications for this are the previously shown similar Ca2+ dependencies of the various reaction steps. Furthermore, the activities mediating the complete conversion of Ins(1,3,4,5,6)P5 to Ins(1,4,5)P3 co-purify after subcellular fractionation, solubilization, and chromatography of the proteins. Subcellular fractionation studies demonstrate that the enzyme is localized mainly at the inner face of the plasma membrane. The enzyme activity could not be stimulated in vitro by guanosine 5'-(3-thio)triphosphate, a procedure known to activate G-protein-coupled enzymes in Dictyostelium. Still, in plc- cells the level of Ins(1,4,5)P3 was increased significantly after stimulation with high concentrations of the extracellular ligand cAMP. This stimulation is most likely due to the influx of Ca2+ because no increase of Ins(1,4,5)P3 could be detected in the absence of extracellular Ca2+. The results demonstrate the existence of a new receptor-controlled route for the formation of Ins(1,4,5)P3 that is independent of phospholipase C.
Collapse
Affiliation(s)
- P Van Dijken
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | |
Collapse
|
84
|
Abstract
Inositol hexaphosphate (InsP6 or IP6) is ubiquitous. At 10 microM to 1 mM concentrations, IP6 and its lower phosphorylated forms (IP(1-5)) as well as inositol (Ins) are contained in most mammalian cells, wherein they are important in regulating vital cellular functions such as signal transduction, cell proliferation and differentiation. A striking anti-cancer action of IP6 has been demonstrated both in vivo and in vitro, which is based on the hypotheses that exogenously administered IP6 may be internalized, dephosphorylated to IP(1-5), and inhibit cell growth. There is additional evidence that Ins alone may further enhance the anti-cancer effect of IP6. Besides decreasing cellular proliferation, IP6 also causes differentiation of malignant cells often resulting in a reversion to normal phenotype. These data strongly point towards the involvement of signal transduction pathways, cell cycle regulatory genes, differentiation genes, oncogenes and perhaps, tumor suppressor genes in bringing about the observed anti-neoplastic action of IP6.
Collapse
Affiliation(s)
- A M Shamsuddin
- University of Maryland School of Medicine, Baltimore 21201-1192, U.S.A
| | | | | |
Collapse
|
85
|
Accumulation and Storage of Phosphate and Minerals. ADVANCES IN CELLULAR AND MOLECULAR BIOLOGY OF PLANTS 1997. [DOI: 10.1007/978-94-015-8909-3_12] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
86
|
Brearley CA, Hanke DE. Inositol phosphates in barley (Hordeum vulgare L.) aleurone tissue are stereochemically similar to the products of breakdown of InsP6 in vitro by wheat-bran phytase. Biochem J 1996; 318 ( Pt 1):279-86. [PMID: 8761483 PMCID: PMC1217619 DOI: 10.1042/bj3180279] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Partisphere SAX HPLC analysis of endogenous inositol phosphates in [3H]inositol-labelled barley aleurone tissue revealed a range of isomers, including D- and/or L-Ins3P, D- and/or L-Ins(1,4)P2, D- and/or L-Ins(1,2)P2, a third unidentified InsP2, Ins(1,2,3)P3, D- and/or L-Ins(1,2,6)P3, D-and/or L-Ins(1,2,3,4)P4, D- and/or L-Ins(1,2,5,6)P4, Ins(1,3,4,5,6)P5, D- and/or L-Ins(1,2,3,4,5)P5, Ins(1,2,3,4,6)P5, InsP6 and a molecule with the chromatographic properties of an inositol pyrophosphate. The striking match between the identities of the stereoisomers, and in some cases enantiomers, detected in vivo and those stereoisomers produced in vitro by the action of wheat-bran phytase on InsP6 [Cosgrove (1980) Inositol Phosphates: Their Chemistry, Bio-chemistry and Physiology. Elsevier, Amsterdam] strongly suggests that most of the inositol phosphates identified are products of the breakdown of InsP4 by endogenous phytase(s) with stereospecificity similar to that of the wheat-bran enzyme(s).
Collapse
Affiliation(s)
- C A Brearley
- Department of Plant Sciences, University of Cambridge, U.K
| | | |
Collapse
|
87
|
Van Dijken P, Bergsma JC, Hiemstra HS, De Vries B, Van Der Kaay J, Van Haastert PJ. Dictyostelium discoideum contains three inositol monophosphatase activities with different substrate specificities and sensitivities to lithium. Biochem J 1996; 314 ( Pt 2):491-5. [PMID: 8670062 PMCID: PMC1217077 DOI: 10.1042/bj3140491] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The small ion lithium, a very effective agent in the treatment of manic depressive patients, inhibits the mammalian enzyme inositol monophosphatase, which is proposed as the biological target for the effects of lithium. In this study we investigated Dictyostelium discoideum inositol monophosphatase activity. Partial purification of the proteins in the soluble cell fraction using anion-exchange chromatography revealed the presence of at least three enzyme activities capable of degrading inositol monophosphate isomers. The first activity was similar to the monophosphatase found in mammalian cells, as it degraded Ins(4)P, Ins(1)P and to a lesser extent Ins(3)P, was dependent on MgCl2 and inhibited by LiCl in a uncompetitive [corrected] manner. The second enzyme activity was specific for Ins(4)P; the enzyme activity was not dependent on MgCl2 and not inhibited by LiCl. The third monophosphatase activity degraded especially Ins(3)P, but also Ins(4)P and Ins(1)P; increasing concentrations of MgCl2 inhibited this enzyme activity, whereas LiCl had no effect. In vivo, LiCl induces a reduction of inositol levels by about 20%. In [3H]inositol-labelled cells LiCl causes a 6-fold increase in the radioactivity of [3H]Ins(1)P, a doubling of [3H]Ins(4)P and a slight decrease in the radioactivity in [3H]Ins(3)P. These data indicate that the biological effects of lithium in Dictyostelium are not due to depletion of the inositol pool by inhibition of inositol monophosphatase activity.
Collapse
Affiliation(s)
- P Van Dijken
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
We have undertaken an analysis of the inositol phosphates of Spirodela polyrhiza at a developmental stage when massive accumulation of InsP6 indicates that a large net synthesis is occurring. We have identified Ins3P, Ins(1,4)P2, Ins(3,4)P2 and possibly Ins(4,6)P2, Ins(3,4,6)P3, Ins(3,4,5,6)P4, Ins (1,3,4,5,6)P5, D- and/or L-Ins(1,2,4,5,6)P5 and InsP6 and revealed the likely presence of a second InsP3 with chromatographic properties similar to Ins(1,4,5)P3. The higher inositol phosphates identified show no obvious direct link to pathways of metabolism of second messengers purported to operate in higher plants, nor do they resemble the immediate products of plant phytase action on InsP6.
Collapse
Affiliation(s)
- C A Brearley
- Department of Plant Sciences, University of Cambridge, U.K
| | | |
Collapse
|
89
|
Brearley CA, Hanke DE. Metabolic evidence for the order of addition of individual phosphate esters in the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochem J 1996; 314 ( Pt 1):227-33. [PMID: 8660287 PMCID: PMC1217029 DOI: 10.1042/bj3140227] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aquatic monocotyledonous plant Spirodela polyrhiza was labelled with [33P]Pi for short periods under non-equilibrium conditions. An InsP6 fraction was obtained and dissected by using enantiospecific (enzymic) and non-enantiospecific (chemical) means to determine the relative labelling of individual phosphate substituents on the inositol ring of InsP6. Phosphates in positions D-1, -2, -3, -4, -5 and -6 contained approx. 21%, 32-39%, 9-10%, 14-16%, 19-23% and 16-18% of the label respectively. We conclude from the foregoing, together with identities [described in the preceding paper, Brearley and Hanke (1996) Biochem. J. 314, 215-225] of inositol phosphates found in this plant at a developmental stage associated with massive accumulation of InsP6, that synthesis of InsP6 from myo-inositol proceeds according to the sequence Ins3P-->Ins(3,4)P2-->Ins(3,4,6)P3-->Ins(3,4,5,6)P4-->Ins(1,3,4,5,6 ) P5-->InsP6 in Spirodela polyrhiza. These results represent the first description of the synthetic sequence to InsP6 in the plant kingdom and the only comprehensive description of endogenous inositol phosphates in any plant tissue. The sequence described differs from that reported in the slime mould Dictyostelium discoideum.
Collapse
Affiliation(s)
- C A Brearley
- Department of Plant Sciences, University of Cambridge, U.K
| | | |
Collapse
|
90
|
Sun X, You J, Hedner T, Erlinge D, Fellström B, Yoo H, Wahlestedt C, Edvinsson L. alpha-Trinositol: a functional (non-receptor) neuropeptide Y antagonist in vasculature. J Pharm Pharmacol 1996; 48:77-84. [PMID: 8722501 DOI: 10.1111/j.2042-7158.1996.tb05882.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y is a sympathetic co-neurotransmitter released with noradrenaline upon sympathetic nerve stimulation. This study describes the ability of a synthetic inositol phosphate, alpha-trinositol(D-myo-inositol 1,2,6-triphosphate; PP 56) to antagonize vasoconstrictor responses to neuropeptide Y in-vitro as well as in-vivo. In human and guinea-pig isolated arteries alpha-trinositol potently (10 nM to 1 microM extracellular concentration) suppressed the constriction evoked by neuropeptide Y alone, the potentiation by neuropeptide Y of noradrenaline-evoked constriction, and the neuropeptide Y-induced inhibition of relaxation. Moreover, in the pithed (areflexive) rat, a non-adrenergic portion of the pressor response to preganglionic sympathetic nerve stimulation was sensitive to alpha-trinositol. As studied in the recently cloned human (vascular-type) Y1 receptor, the action of alpha-trinositol does not occur through antagonism at the neuropeptide Y recognition site nor does it induce allosteric changes of this receptor. However, we found alpha-trinositol to inhibit the rise in intracellular Ca2+ as well as inositol triphosphate concentrations induced by neuropeptide Y. It is, therefore, proposed that alpha-trinositol represents a non-receptor, but yet selective antagonist of neuropeptide Y in vasculature, opening up the possibility to investigate involvement of neuropeptide Y in sympathetic blood pressure control and in cardiovascular disorders.
Collapse
Affiliation(s)
- X Sun
- Department of Pharmacology, University of Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Biswas S, Biswas BB. Metabolism of myo-inositol phosphates and the alternative pathway in generation of myo-inositol trisphosphate involved in calcium mobilization in plants. Subcell Biochem 1996; 26:287-316. [PMID: 8744269 DOI: 10.1007/978-1-4613-0343-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S Biswas
- Department of Biochemistry, Bose Institute, Calcutta, India
| | | |
Collapse
|
92
|
Shears SB. Inositol pentakis- and hexakisphosphate metabolism adds versatility to the actions of inositol polyphosphates. Novel effects on ion channels and protein traffic. Subcell Biochem 1996; 26:187-226. [PMID: 8744266 DOI: 10.1007/978-1-4613-0343-5_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S B Shears
- Inositol Lipid Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
93
|
Affiliation(s)
- P P Murthy
- Chemistry Department, Michigan Technological University, Houghton 49931, USA
| |
Collapse
|
94
|
Affiliation(s)
- V Raboy
- USDA-ARS Range Weeds and Cereals Research Unit, Montana State University, Bozeman 59717, USA
| | | |
Collapse
|
95
|
Van Haastert PJ. Transduction of the chemotactic cAMP signal across the plasma membrane of Dictyostelium cells. EXPERIENTIA 1995; 51:1144-54. [PMID: 8536802 DOI: 10.1007/bf01944732] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aggregating Dictyostelium cells secrete cAMP during cell aggregation. cAMP induces two fast responses, the production of more cAMP (relay) and directed cell locomotion (chemotaxis). Extracellular cAMP binds to G-protein-coupled receptors leading to the activation of second messenger pathways, including the activation of adenylyl cyclase, guanylyl cyclase, phospholipase C and the opening of plasma membrane Ca2+ channels. Many genes encoding these sensory transduction proteins have been cloned and null mutants of nearly all components have been characterized in detail. Undoubtedly, activation of adenylyl cyclase is the most complex, involving G-proteins, a soluble protein called CRAC and components of the MAP kinase pathway. Null mutants in this pathway do not aggregate, but can exhibit chemotaxis and develop normally when supplied with exogenous cAMP. The pathways leading to the activation of phospholipase C were identified, but unexpectedly, deletion of the phospholipase C gene has no effect on chemotaxis and development, nor on intracellular Ins(1,4,5)P3 levels; the metabolism of this second messenger will be discussed in some detail. Activation of guanylyl cyclase is G-protein-dependent and essential for chemotaxis. Analysis of a collection of chemotactic mutants reveals that most mutants are defective in either the production or intracellular detection of cGMP, thereby placing this second messenger at the center of chemotactic signal transduction. Analysis of the cAMP-mediated opening of plasma membrane calcium channels in signal transduction mutants suggests that it has two components, one that depends on G-proteins and intracellular cGMP and one that is G-protein-independent.
Collapse
Affiliation(s)
- P J Van Haastert
- Department of Biochemistry, University of Groningen, The Netherlands
| |
Collapse
|
96
|
Van Dijken P, de Haas JR, Craxton A, Erneux C, Shears SB, Van Haastert PJ. A novel, phospholipase C-independent pathway of inositol 1,4,5-trisphosphate formation in Dictyostelium and rat liver. J Biol Chem 1995; 270:29724-31. [PMID: 8530362 DOI: 10.1074/jbc.270.50.29724] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In an earlier study a mutant Dictyostelium cell-line (plc-) was constructed in which all phospholipase C activity was disrupted and nonfunctional, yet these cells had nearly normal Ins(1,4,5)P3 levels (Drayer, A.L., Van Der Kaay, J., Mayr, G.W, Van Haastert, P.J.M. (1990) EMBO J. 13, 1601-1609). We have now investigated if these cells have a phospholipase C-independent de novo pathway of Ins(1,4,5)P3 synthesis. We found that homogenates of plc- cells produce Ins(1,4,5)P3 from endogenous precursors. The enzyme activities that performed these reactions were located in the particulate cell fraction, whereas the endogenous substrate was soluble and could be degraded by phytase. We tested various potential inositol polyphosphate precursors and found that the most efficient were Ins(1,3,4,5,6)P5, Ins(1,3,4,5)P4, and Ins(1,4,5,6)P4. The utilization of Ins(1,3,4,5,6)P5, which can be formed independently of phospholipase C by direct phosphorylation of inositol (Stephens, L.R. and Irvine, R.F. (1990) Nature 346, 580-582), provides Dictyostelium with an alternative and novel pathway of de novo Ins(1,4,5)P3 synthesis. We further discovered that Ins(1,3,4,5,6)P5 was converted to Ins(1,4,5)P3 via both Ins(1,3,4,5)P4 and Ins(1,4,5,6)P4. In the absence of calcium no Ins(1,4,5)P3 formation could be observed; half-maximal activity was observed at low micromolar calcium concentrations. These reaction steps could also be performed by a single enzyme purified from rat liver, namely, the multiple inositol polyphosphate phosphatase. These data indicate that organisms as diverse as rat and Dictyostelium possess enzyme activities capable of synthesizing the second messengers Ins(1,4,5)P3 and Ins(1,3,4,5)P4 via a novel phospholipase C-independent pathway.
Collapse
Affiliation(s)
- P Van Dijken
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
97
|
Sasakawa N, Sharif M, Hanley MR. Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Pharmacol 1995; 50:137-46. [PMID: 7543266 DOI: 10.1016/0006-2952(95)00059-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Sasakawa
- Department of Biological Chemistry, School of Medicine, University of California at Davis 95616-8635, USA
| | | | | |
Collapse
|
98
|
Toker A, Meyer M, Reddy KK, Falck JR, Aneja R, Aneja S, Parra A, Burns DJ, Ballas LM, Cantley LC. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31643-0] [Citation(s) in RCA: 418] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
99
|
Purification and some properties of inositol 1,3,4,5,6-Pentakisphosphate 2-kinase from immature soybean seeds. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46940-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
100
|
Estevez F, Pulford D, Stark MJ, Carter AN, Downes CP. Inositol trisphosphate metabolism in Saccharomyces cerevisiae: identification, purification and properties of inositol 1,4,5-trisphosphate 6-kinase. Biochem J 1994; 302 ( Pt 3):709-16. [PMID: 7945194 PMCID: PMC1137289 DOI: 10.1042/bj3020709] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ins(1,4,5)P3 metabolism was examined in Saccharomyces cerevisiae extracts. S. cerevisiae contains readily detectable Ins(1,4,5)P3 kinase activity that is predominantly soluble, but phosphomonoesterase activity acting on Ins(1,4,5)P3 was not detected in either soluble or particulate preparations from this organism. We have purified the kinase activity approximately 685-fold in a rapid four-step process, and obtained a stable preparation. The enzyme has an apparent native molecular mass of approximately 40 kDa, and displays Michaelis-Menten kinetics with respect to its two substrates, ATP and Ins(1,4,5)P3. The Km for ATP was 2.1 mM, and that for Ins(1,4,5)P3 was 7.1 microM. The enzyme appeared to be the first step in the conversion of Ins(1,4,5)P3 into an InsP5, and the partially purified preparation contained another activity that converted the InsP4 product into an InsP5. The InsP4 product of the partially purified kinase was not metabolized by human erythrocyte ghosts and co-chromatographed with an Ins(3,4,5,6)P4 [L-Ins(1,4,5,6)P4] standard, identifying it as D-Ins(1,4,5,6)P4. The yeast enzyme is thus an Ins(1,4,5)P3 6-kinase. This activity may be an important step in the production of inositol polyphosphates such as InsP5 and InsP6 in S. cerevisiae.
Collapse
Affiliation(s)
- F Estevez
- Department of Biochemistry, University of Dundee, Scotland, U.K
| | | | | | | | | |
Collapse
|