51
|
Abdelwahab MT, Kalyoncu E, Onur T, Baykara MZ, Seker UOS. Genetically-Tunable Mechanical Properties of Bacterial Functional Amyloid Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4337-4345. [PMID: 28388843 DOI: 10.1021/acs.langmuir.7b00112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial biofilms are highly ordered, complex, dynamic material systems including cells, carbohydrates, and proteins. They are known to be resistant against chemical, physical, and biological disturbances. These superior properties make them promising candidates for next generation biomaterials. Here we investigated the morphological and mechanical properties (in terms of Young's modulus) of genetically-engineered bacterial amyloid nanofibers of Escherichia coli (E. coli) by imaging and force spectroscopy conducted via atomic force microscopy (AFM). In particular, we tuned the expression and biochemical properties of the major and minor biofilm proteins of E. coli (CsgA and CsgB, respectively). Using appropriate mutants, amyloid nanofibers constituting biofilm backbones are formed with different combinations of CsgA and CsgB, as well as the optional addition of tagging sequences. AFM imaging and force spectroscopy are used to probe the morphology and measure the Young's moduli of biofilm protein nanofibers as a function of protein composition. The obtained results reveal that genetically-controlled secretion of biofilm protein components may lead to the rational tuning of Young's moduli of biofilms as promising candidates at the bionano interface.
Collapse
Affiliation(s)
- M Tarek Abdelwahab
- Department of Mechanical Engineering, Bilkent University , Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Ebuzer Kalyoncu
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Tugce Onur
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Mehmet Z Baykara
- Department of Mechanical Engineering, Bilkent University , Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| | - Urartu Ozgur Safak Seker
- Institute of Materials Science and Nanotechnology, Bilkent University , Ankara 06800, Turkey
- National Nanotechnology Research Center (UNAM), Bilkent University , Ankara 06800, Turkey
| |
Collapse
|
52
|
Nematbakhsh A, Sun W, Brodskiy PA, Amiri A, Narciso C, Xu Z, Zartman JJ, Alber M. Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia. PLoS Comput Biol 2017; 13:e1005533. [PMID: 28531187 PMCID: PMC5460904 DOI: 10.1371/journal.pcbi.1005533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/06/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive.
Collapse
Affiliation(s)
- Ali Nematbakhsh
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| | - Wenzhao Sun
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Aboutaleb Amiri
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Mathematics, University of California, Riverside, California, United States of America
| |
Collapse
|
53
|
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. NATURE NANOTECHNOLOGY 2017; 12:295-307. [PMID: 28383040 DOI: 10.1038/nnano.2017.45] [Citation(s) in RCA: 494] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Alsteens
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - David Martinez-Martin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christoph Gerber
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 80, 4057 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
54
|
Claus D, Mlikota M, Geibel J, Reichenbach T, Pedrini G, Mischinger J, Schmauder S, Osten W. Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation. J Med Imaging (Bellingham) 2017; 4:014505. [PMID: 28386578 PMCID: PMC5352912 DOI: 10.1117/1.jmi.4.1.014505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 11/14/2022] Open
Abstract
In minimally invasive surgery the haptic feedback, which represents an important tool for the localization of abnormalities, is no longer available. Elastography is an imaging technique that results in quantitative elastic parameters. It can hence be used to replace the lost sense of touch, as to enable tissue localization and discrimination. Digital image correlation is the chosen elastographic imaging technique. The implementation discussed here is clinically sound, based on a spectrally engineered illumination source that enables imaging of biological surface markers (blood vessels) with high contrast. Mechanical loading and deformation of the sample is performed using a rolling indenter, which enables the investigation of large organs (size of kidney) with reduced measurement time compared to a scanning approach. Furthermore, the rolling indentation results in strain contrast improvement and an increase in detection accuracy. The successful application of digital image correlation is first demonstrated on a silicone phantom and later on biological samples. Elasticity parameters and their corresponding four-dimensional distribution are generated via solving the inverse problem (only two-dimensional displacement field and strain map experimentally available) using a well-matched hyperelastic finite element model.
Collapse
Affiliation(s)
- Daniel Claus
- Universität Stuttgart , Institut für Technische Optik, Stuttgart, Germany
| | - Marijo Mlikota
- Universität Stuttgart , Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre, Stuttgart, Germany
| | - Jonathan Geibel
- Universität Stuttgart , Institut für Technische Optik, Stuttgart, Germany
| | - Thomas Reichenbach
- Universität Stuttgart , Institut für Technische Optik, Stuttgart, Germany
| | - Giancarlo Pedrini
- Universität Stuttgart , Institut für Technische Optik, Stuttgart, Germany
| | - Johannes Mischinger
- Eberhard Karls Universität Tübingen , Klinik für Urologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Siegfried Schmauder
- Universität Stuttgart , Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre, Stuttgart, Germany
| | - Wolfgang Osten
- Universität Stuttgart , Institut für Technische Optik, Stuttgart, Germany
| |
Collapse
|
55
|
Zhang G, Fan N, Lv X, Liu Y, Guo J, Yang L, Peng B, Jiang H. Investigation of the Mechanical Properties of the Human Osteosarcoma Cell at Different Cell Cycle Stages †. MICROMACHINES 2017. [PMCID: PMC6190040 DOI: 10.3390/mi8030089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mechanical properties of a single cell play substantial roles in cell mitosis, differentiation, and carcinogenesis. According to the difference of elastic modulus between the benign cell and the tumor cell, it has been shown that the mechanical properties of cells, as special biomarkers, may contribute greatly to disease diagnosis and drug screening. However, the mechanical properties of cells at different cell cycle stages are still not clear, which may mislead us when we use them as biomarkers. In this paper, the target regions of the human osteosarcoma cell were precisely scanned without causing any cell damage by using an atomic force microscopy (AFM) for the first time. Then, the elasticity properties of the human osteosarcoma cells were investigated quantitatively at various regions and cell cycle stages. The 32 × 32 resolution map of the elasticity showed that the elastic modulus of the cells at the interphase was larger than that at the telophase of mitosis. Moreover, the elastic modulus of the cell in the peripheral region was larger than that in the nuclear region of the cell. This work provides an accurate approach to measure the elasticity properties of cells at different stages of the cell cycle for further application in the disease diagnosis.
Collapse
Affiliation(s)
- Guocheng Zhang
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
| | - Na Fan
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
| | - Xiaoying Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (X.L.); (Y.L.)
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (X.L.); (Y.L.)
| | - Jian Guo
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Longxiang Yang
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
- Center for Robotics, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
- Correspondence: (B.P.); (H.J.); Tel.: +86-28-61831723 (B.P.); +86-28-61830242 (H.J.)
| | - Hai Jiang
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; (G.Z.); (N.F.); (J.G.); (L.Y.)
- Correspondence: (B.P.); (H.J.); Tel.: +86-28-61831723 (B.P.); +86-28-61830242 (H.J.)
| |
Collapse
|
56
|
Guz NV, Patel SJ, Dokukin ME, Clarkson B, Sokolov I. AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell-cell communication. NANOTECHNOLOGY 2016; 27:494005. [PMID: 27834315 PMCID: PMC5221648 DOI: 10.1088/0957-4484/27/49/494005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biomechanical properties of single cells in vitro or ex vivo and their pericellular interfaces have recently attracted a lot of attention as a potential biophysical (and possibly prognostic) marker of various diseases and cell abnormalities. At the same time, the influence of the cell environment on the biomechanical properties of cells is not well studied. Here we use atomic force microscopy to demonstrate that cell-cell communication can have a profound effect on both cell elasticity and its pericellular coat. A human pre-B p190BCR/ABL acute lymphoblastic leukemia cell line (ALL3) was used in this study. Assuming that cell-cell communication is inversely proportional to the distance between cells, we study ALL3 cells in vitro growing at different cell densities. ALL3 cells demonstrate a clear density dependent behavior. These cells grow very well if started at a relatively high cell density (HD, >2 × 105 cells ml-1) and are poised to grow at low cell density (LD, <1 × 104 cells ml-1). Here we observe ∼6× increase in the elastic (Young's) modulus of the cell body and ∼3.6× decrease in the pericellular brush length of LD cells compared to HD ALL3 cells. The difference observed in the elastic modulus is much larger than typically reported for pathologically transformed cells. Thus, cell-cell communication must be taken into account when studying biomechanics of cells, in particular, correlating cell phenotype and its biophysical properties.
Collapse
Affiliation(s)
- Nataliia V Guz
- Department of Chemistry, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5820, USA
| | | | | | | | | |
Collapse
|
57
|
Lu Z, Li H, Hou C, Peng Y, Long J, Liu J. Endogenously generated amyloid-β increases stiffness in human neuroblastoma cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:415-424. [PMID: 27853822 DOI: 10.1007/s00249-016-1185-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/19/2016] [Accepted: 10/28/2016] [Indexed: 12/26/2022]
Abstract
Amyloid-β (Aβ) is widely recognized as toxic to neuronal cells. Its deposition on plasma and intracellular membranes and aggregation into amyloid plaques can disturb the composition and physiological function of neurons. Whether a physical property of cells, such as stiffness, is altered by endogenously overexpressed Aβ has not yet been investigated. In this study, we used human neuroblastoma cells stably overexpressing amyloid precursor protein (APP) and its Swedish mutant form (APPswe) to measure the changes in cell stiffness. Our results showed that the stiffness of cells overexpressing APP or APPswe was higher than that of control SH-SY5Y cells. Either reducing levels of Aβ with the γ secretase inhibitor DAPT or blocking the membrane calcium channel formed by Aβ with tromethamine decreased cell stiffness to a level close to the control SH-SY5Y cells. Our results suggested that Aβ, not APP, contributed to increased cell stiffness and that closure of calcium channels formed by Aβ can alleviate the effects of Aβ on membrane stiffness.
Collapse
Affiliation(s)
- Zhuoyang Lu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Hua Li
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Chen Hou
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Yunhua Peng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Jiangang Long
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Jiankang Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, 710049, Xi'an, China.
| |
Collapse
|
58
|
Lanzicher T, Martinelli V, Long CS, Del Favero G, Puzzi L, Borelli M, Mestroni L, Taylor MRG, Sbaizero O. AFM single-cell force spectroscopy links altered nuclear and cytoskeletal mechanics to defective cell adhesion in cardiac myocytes with a nuclear lamin mutation. Nucleus 2016; 6:394-407. [PMID: 26309016 DOI: 10.1080/19491034.2015.1084453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Previous investigations suggested that lamin A/C gene (LMNA) mutations, which cause a variety of human diseases including muscular dystrophies and cardiomyopathies, alter the nuclear mechanical properties. We hypothesized that biomechanical changes may extend beyond the nucleus.
Collapse
Affiliation(s)
- Thomas Lanzicher
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Valentina Martinelli
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,b International Center for Genetic Engineering and Biotechnology ; Trieste Italy
| | - Carlin S Long
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Giorgia Del Favero
- d Department of Food Chemistry and Toxicology ; University of Vienna ; Waehringer Str. 38A-1090 Vienna Austria
| | - Luca Puzzi
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy
| | - Massimo Borelli
- e Department of Life Sciences ; University of Trieste ; Trieste Italy
| | - Luisa Mestroni
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Matthew R G Taylor
- c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| | - Orfeo Sbaizero
- a Department of Engineering and Architecture ; University of Trieste ; Trieste Italy.,c Cardiovascular Institute & Adult Medical Genetics; University of Colorado Denver Anschutz Medical Campus ; CO USA
| |
Collapse
|
59
|
Abdelhady HG, Abdel-Salam HA, Niazy EM, Mueller A, Quast MJ, Effat AM, Elbehairi SEI. Spatiotemporal PFQNM visualization of the effect of suicide dendriplexes on dividing HeLa cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2365-2371. [PMID: 27389145 DOI: 10.1016/j.nano.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/09/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Suicide gene delivery is significant in cancer therapy but has not been fully investigated on a cellular scale. Here, Peak Force Quantitative Nanomechanical atomic force microscopy (PFQNM-AFM) was applied to visualize the effect of herpes simplex virus thymidine kinase dendriplexes (G4AcFaHSTK) on the morphological and nanomechanical properties of individual live and dividing HeLa cells. Cells were then exposed to G4AcFaHSTK, followed by ganciclovir, and directly imaged by real-time PFQNM-AFM. Cell membrane liquefaction, cytoplasmic shrinkage, and cytoskeleton structure loss were observed during cell division. The average Young's modulus of the nuclear region increased with time as the cell continued from metaphase (6.29 kPa) to telophase (13.6 kPa) and then decreased (2.25 kPa) upon apoptosis. In contrast, cells exposed to either ganciclovir or G4AcFaHSTK alone have no changes. Thus, understanding the real-time effects of suicide dendriplexes on the cytoskeletal and nanomechanical behaviors of cancer cells may provide new methods for cancer treatment.
Collapse
Affiliation(s)
- Hosam G Abdelhady
- Pharmaceutics and Pharmaceutical Technology, College of Pharmacy-Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia; Bioavailability Center, National Organization for Drug Control and Research, Agouza, Giza, Egypt.
| | - Hassan A Abdel-Salam
- Pharmaceutics and Pharmaceutical Technology, College of Pharmacy-Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia; Department of Microbiology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Esmaeel M Niazy
- Pharmaceutics and Pharmaceutical Technology, College of Pharmacy-Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Anja Mueller
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Matthew J Quast
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Ahmed M Effat
- Pharmaceutics and Pharmaceutical Technology, College of Pharmacy-Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Serag-Eldin I Elbehairi
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, Agouza, Giza, Egypt; Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
60
|
Abstract
Cytokinesis, a model cell shape change event, is controlled by an integrated system that coordinates the mitotic spindle signals with a mechanoresponsive cytoskeletal network that drives contractility and furrow ingression. Quantitative methods that measure cell mechanics, mechanoresponse (mechanical stress-induced protein accumulation), protein dynamics, and molecular interactions are necessary to provide insight into both the mechanical and biochemical components involved in cytokinesis and cell shape regulation. Micropipette aspiration, fluorescence correlation and cross-correlation spectroscopy, and fluorescence recovery after photobleaching are valuable methods for measuring cell mechanics and protein dynamics in vivo that occur on nanometer to micron length-scales, and microsecond to minute timescales. Collectively, these methods provide the ability to quantify the molecular interactions that control the cell's ability to change shape and undergo cytokinesis.
Collapse
|
61
|
Simon M, Dokukin M, Kalaparthi V, Spedden E, Sokolov I, Staii C. Load Rate and Temperature Dependent Mechanical Properties of the Cortical Neuron and Its Pericellular Layer Measured by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1111-1119. [PMID: 26727545 DOI: 10.1021/acs.langmuir.5b04317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When studying the mechanical properties of cells by an indentation technique, it is important to take into account the nontrivial pericellular interface (or pericellular "brush") which includes a pericellular coating and corrugation of the pericellular membrane (microvilli and microridges). Here we use atomic force microscopy (AFM) to study the mechanics of cortical neurons taking into account the presence of the above pericellular brush surrounding cell soma. We perform a systematic study of the mechanical properties of both the brush layer and the underlying neuron soma and demonstrate that the brush layer is likely responsible for the low elastic modulus (<1 kPa) typically reported for cortical neurons. When the contribution of the pericellular brush is excluded, the average elastic modulus of the cortical neuron soma is found to be 3-4 times larger than previously reported values measured under similar physiological conditions. We also demonstrate that the underlying soma behaves as a nonviscous elastic material over the indentation rates studied (1-10 μm/s). As a result, it seems that the brush layer is responsible for the previously reported viscoelastic response measured for the neuronal cell body as a whole, within these indentation rates. Due to of the similarities between the macroscopic brain mechanics and the effective modulus of the pericellular brush, we speculate that the pericellular brush layer might play an important role in defining the macroscopic mechanical properties of the brain.
Collapse
Affiliation(s)
- Marc Simon
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Maxim Dokukin
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Vivekanand Kalaparthi
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Elise Spedden
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Igor Sokolov
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Cristian Staii
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
62
|
Gladilin E, Eils R, Peshkin L. On the embryonic cell division beyond the contractile ring mechanism: experimental and computational investigation of effects of vitelline confinement, temperature and egg size. PeerJ 2015; 3:e1490. [PMID: 26713241 PMCID: PMC4690382 DOI: 10.7717/peerj.1490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
Embryonic cell division is a mechanical process which is predominantly driven by contraction of the cleavage furrow and response of the remaining cellular matter. While most previous studies focused on contractile ring mechanisms of cytokinesis, effects of environmental factors such as pericellular vitelline membrane and temperature on the mechanics of dividing cells were rarely studied. Here, we apply a model-based analysis to the time-lapse imaging data of two species (Saccoglossus kowalevskii and Xenopus laevis) with relatively large eggs, with the goal of revealing the effects of temperature and vitelline envelope on the mechanics of the first embryonic cell division. We constructed a numerical model of cytokinesis to estimate the effects of vitelline confinement on cellular deformation and to predict deformation of cellular contours. We used the deviations of our computational predictions from experimentally observed cell elongation to adjust variable parameters of the contractile ring model and to quantify the contribution of other factors (constitutive cell properties, spindle polarization) that may influence the mechanics and shape of dividing cells. We find that temperature affects the size and rate of dilatation of the vitelline membrane surrounding fertilized eggs and show that in native (not artificially devitellinized) egg cells the effects of temperature and vitelline envelope on mechanics of cell division are tightly interlinked. In particular, our results support the view that vitelline membrane fulfills an important role of micromechanical environment around the early embryo the absence or improper function of which under moderately elevated temperature impairs normal development. Furthermore, our findings suggest the existence of scale-dependent mechanisms that contribute to cytokinesis in species with different egg size, and challenge the view of mechanics of embryonic cell division as a scale-independent phenomenon.
Collapse
Affiliation(s)
- Evgeny Gladilin
- Theoretical Bioinformatics, German Cancer Research Center , Heidelberg , Germany ; BioQuant and IPMB, University Heidelberg , Heidelberg , Germany
| | - Roland Eils
- Theoretical Bioinformatics, German Cancer Research Center , Heidelberg , Germany ; BioQuant and IPMB, University Heidelberg , Heidelberg , Germany
| | - Leonid Peshkin
- Systems Biology, Harvad Medical School , Boston, MA , USA
| |
Collapse
|
63
|
Ali S, Wall IB, Mason C, Pelling AE, Veraitch FS. The effect of Young's modulus on the neuronal differentiation of mouse embryonic stem cells. Acta Biomater 2015; 25:253-267. [PMID: 26159105 DOI: 10.1016/j.actbio.2015.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/27/2015] [Accepted: 07/05/2015] [Indexed: 12/15/2022]
Abstract
There is substantial evidence that cells produce a diverse response to changes in ECM stiffness depending on their identity. Our aim was to understand how stiffness impacts neuronal differentiation of embryonic stem cells (ESC's), and how this varies at three specific stages of the differentiation process. In this investigation, three effects of stiffness on cells were considered; attachment, expansion and phenotypic changes during differentiation. Stiffness was varied from 2 kPa to 18 kPa to finally 35 kPa. Attachment was found to decrease with increasing stiffness for both ESC's (with a 95% decrease on 35 kPa compared to 2 kPa) and neural precursors (with a 83% decrease on 35 kPa). The attachment of immature neurons was unaffected by stiffness. Expansion was independent of stiffness for all cell types, implying that the proliferation of cells during this differentiation process was independent of Young's modulus. Stiffness had no effect upon phenotypic changes during differentiation for mESC's and neural precursors. 2 kPa increased the proportion of cells that differentiated from immature into mature neurons. Taken together our findings imply that the impact of Young's modulus on attachment diminishes as neuronal cells become more mature. Conversely, the impact of Young's modulus on changes in phenotype increased as cells became more mature.
Collapse
|
64
|
Bui VC, Nguyen TH. The role of CD4 on mechanical properties of live cell membrane. J Biomed Mater Res A 2015; 104:239-44. [DOI: 10.1002/jbm.a.35559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/13/2015] [Accepted: 09/03/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Van-Chien Bui
- Center for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases (ZIK HIKE); University of Greifswald; 17489 Greifswald Germany
| | - Thi-Huong Nguyen
- Center for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases (ZIK HIKE); University of Greifswald; 17489 Greifswald Germany
| |
Collapse
|
65
|
Abstract
Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.
Collapse
|
66
|
Guz N, Dokukin M, Kalaparthi V, Sokolov I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 2015; 107:564-575. [PMID: 25099796 DOI: 10.1016/j.bpj.2014.06.033] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022] Open
Abstract
Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young's modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions ("brush" models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed.
Collapse
Affiliation(s)
- Nataliia Guz
- Department of Physics, Clarkson University, Potsdam, New York
| | - Maxim Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
| | | | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts; Department of Physics, Tufts University, Medford, Massachusetts.
| |
Collapse
|
67
|
Haghparast SMA, Kihara T, Miyake J. Distinct mechanical behavior of HEK293 cells in adherent and suspended states. PeerJ 2015; 3:e1131. [PMID: 26246972 PMCID: PMC4525692 DOI: 10.7717/peerj.1131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/06/2015] [Indexed: 11/20/2022] Open
Abstract
The mechanical features of individual animal cells have been regarded as indicators of cell type and state. Previously, we investigated the surface mechanics of cancer and normal stromal cells in adherent and suspended states using atomic force microscopy. Cancer cells possessed specific mechanical and actin cytoskeleton features that were distinct from normal stromal cells in adherent and suspended states. In this paper, we report the unique mechanical and actin cytoskeletal features of human embryonic kidney HEK293 cells. Unlike normal stromal and cancer cells, the surface stiffness of adherent HEK293 cells was very low, but increased after cell detachment from the culture surface. Induced actin filament depolymerization revealed that the actin cytoskeleton was the underlying source of the stiffness in suspended HEK293 cells. The exclusive mechanical response of HEK293 cells to perturbation of the actin cytoskeleton resembled that of adherent cancer cells and suspended normal stromal cells. Thus, with respect to their special cell-surface mechanical features, HEK293 cells could be categorized into a new class distinct from normal stromal and cancer cells.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Haghparast
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka , Japan
| | - Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu , Kitakyushu, Fukuoka , Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka , Japan
| |
Collapse
|
68
|
Seghezza S, Dante S, Diaspro A, Canale C. High resolution nanomechanical characterization of multi-domain model membranes by fast Force Volume. J Mol Recognit 2015. [DOI: 10.1002/jmr.2490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Silvia Seghezza
- Fondazione Istituto Italiano di Tecnologia; Nanophysics; Via Morego 30 Genova GE 16163 Italy
| | - Silvia Dante
- Fondazione Istituto Italiano di Tecnologia; Nanophysics; Via Morego 30 Genova GE 16163 Italy
| | - Alberto Diaspro
- Fondazione Istituto Italiano di Tecnologia; Nanophysics; Via Morego 30 Genova GE 16163 Italy
- University of Genova; Department of Physics; Genova GE Italy
| | - Claudio Canale
- Fondazione Istituto Italiano di Tecnologia; Nanophysics; Via Morego 30 Genova GE 16163 Italy
| |
Collapse
|
69
|
Giorgio E, Robyr D, Spielmann M, Ferrero E, Di Gregorio E, Imperiale D, Vaula G, Stamoulis G, Santoni F, Atzori C, Gasparini L, Ferrera D, Canale C, Guipponi M, Pennacchio LA, Antonarakis SE, Brussino A, Brusco A. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD). Hum Mol Genet 2015; 24:3143-54. [PMID: 25701871 PMCID: PMC4424952 DOI: 10.1093/hmg/ddv065] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/13/2015] [Indexed: 01/23/2023] Open
Abstract
Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (∼660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. This second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.
Collapse
Affiliation(s)
- Elisa Giorgio
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy
| | - Daniel Robyr
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin 14195, Germany
| | - Enza Ferrero
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy
| | - Eleonora Di Gregorio
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy Medical Genetics Unit and
| | - Daniele Imperiale
- Centro Regionale Malattie Da Prioni - Domp (ASLTO2), Torino 10144, Italy
| | - Giovanna Vaula
- Department of Neurology, Città della Salute e della Scienza University Hospital, Torino 10126, Italy
| | - Georgios Stamoulis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Federico Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Cristiana Atzori
- Centro Regionale Malattie Da Prioni - Domp (ASLTO2), Torino 10144, Italy
| | | | | | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa 16163, Italy and
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, MS 84-171, Berkeley, CA 9472, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Alessandro Brussino
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, via Santena, 19, Torino 10126, Italy Medical Genetics Unit and
| |
Collapse
|
70
|
Abstract
Cell shape is determined by cellular mechanics. Cell deformations in animal cells, such as those required for cell migration, division or epithelial morphogenesis, are largely controlled by changes in mechanical stress and tension at the cell surface. The plasma membrane and the actomyosin cortex control surface mechanics and determine cell surface tension. Tension in the actomyosin cortex primarily arises from myosin-generated stresses and depends strongly on the ultrastructural architecture of the network. Plasma membrane tension is controlled mainly by the surface area of the membrane relative to cell volume and can be modulated by changing membrane composition, shape and the organization of membrane-associated proteins. We review here our current understanding of the control of cortex and membrane tension by molecular processes. We particularly highlight the need for studies that bridge the scales between microscopic events and emergent properties at the cellular level. Finally, we discuss how the mechanical interplay between membrane dynamics and cortex contractility is key to understanding the biomechanical control of cell morphogenesis.
Collapse
|
71
|
Ferrera D, Canale C, Marotta R, Mazzaro N, Gritti M, Mazzanti M, Capellari S, Cortelli P, Gasparini L. Lamin B1 overexpression increases nuclear rigidity in autosomal dominant leukodystrophy fibroblasts. FASEB J 2014; 28:3906-18. [PMID: 24858279 PMCID: PMC4139899 DOI: 10.1096/fj.13-247635] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/12/2014] [Indexed: 12/22/2022]
Abstract
The architecture and structural mechanics of the cell nucleus are defined by the nuclear lamina, which is formed by A- and B-type lamins. Recently, gene duplication and protein overexpression of lamin B1 (LB1) have been reported in pedigrees with autosomal dominant leukodystrophy (ADLD). However, how the overexpression of LB1 affects nuclear mechanics and function and how it may result in pathology remain unexplored. Here, we report that in primary human skin fibroblasts derived from ADLD patients, LB1, but not other lamins, is overexpressed at the nuclear lamina and specifically enhances nuclear stiffness. Transient transfection of LB1 in HEK293 and neuronal N2a cells mimics the mechanical phenotype of ADLD nuclei. Notably, in ADLD fibroblasts, reducing LB1 protein levels by shRNA knockdown restores elasticity values to those indistinguishable from control fibroblasts. Moreover, isolated nuclei from ADLD fibroblasts display a reduced nuclear ion channel open probability on voltage-step application, suggesting that biophysical changes induced by LB1 overexpression may alter nuclear signaling cascades in somatic cells. Overall, the overexpression of LB1 in ADLD cells alters nuclear mechanics and is linked to changes in nuclear signaling, which could help explain the pathogenesis of this disease.
Collapse
Affiliation(s)
| | | | - Roberto Marotta
- Department of Nanochemistry, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Marta Gritti
- Department of Biosciences, University of Milano, Milan, Italy
| | | | - Sabina Capellari
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica, Ospedale Bellaria, Bologna, Italy; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica, Ospedale Bellaria, Bologna, Italy; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
72
|
Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1323-33. [DOI: 10.1016/j.nano.2014.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/18/2022]
|
73
|
Bishitz Y, Gabai H, Girshovitz P, Shaked NT. Optical-mechanical signatures of cancer cells based on fluctuation profiles measured by interferometry. JOURNAL OF BIOPHOTONICS 2014; 7:624-30. [PMID: 23585163 DOI: 10.1002/jbio.201300019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/17/2013] [Accepted: 03/21/2013] [Indexed: 05/21/2023]
Abstract
We propose to establish a cancer biomarker based on the unique optical-mechanical signatures of cancer cells measured in a noncontact, label-free manner by optical interferometry. Using wide-field interferometric phase microscopy (IPM), implemented by a portable, off-axis, common-path and low-coherence interferometric module, we quantitatively measured the time-dependent, nanometer-scale optical thickness fluctuation maps of live cells in vitro. We found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells. Atomic force microscopy (AFM) measurements validated the results. Our study shows the potential of IPM as a simple clinical tool for aiding in diagnosis and monitoring of cancer.
Collapse
Affiliation(s)
- Yael Bishitz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
74
|
Wong AD, Searson PC. Live-cell imaging of invasion and intravasation in an artificial microvessel platform. Cancer Res 2014; 74:4937-45. [PMID: 24970480 DOI: 10.1158/0008-5472.can-14-1042] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methods to visualize metastasis exist, but additional tools to better define the biologic and physical processes underlying invasion and intravasation are still needed. One difficulty in studying metastasis stems from the complexity of the interface between the tumor microenvironment and the vascular system. Here, we report the development of an investigational platform that positions tumor cells next to an artificial vessel embedded in an extracellular matrix. On this platform, we used live-cell fluorescence microscopy to analyze the complex interplay between metastatic cancer cells and a functional artificial microvessel that was lined with endothelial cells. The platform recapitulated known interactions, and its use demonstrated the capabilities for a systematic study of novel physical and biologic parameters involved in invasion and intravasation. In summary, our work offers an important new tool to advance knowledge about metastasis and candidate antimetastatic therapies.
Collapse
Affiliation(s)
- Andrew D Wong
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland. Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland
| | - Peter C Searson
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland. Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
75
|
Pfreundschuh M, Martinez-Martin D, Mulvihill E, Wegmann S, Muller DJ. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nat Protoc 2014; 9:1113-30. [DOI: 10.1038/nprot.2014.070] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
76
|
Microtubules mediate changes in membrane cortical elasticity during contractile activation. Exp Cell Res 2014; 322:21-9. [DOI: 10.1016/j.yexcr.2013.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022]
|
77
|
Yoo L, Reed J, Shin A, Demer JL. Atomic force microscopy determination of Young׳s modulus of bovine extra-ocular tendon fiber bundles. J Biomech 2014; 47:1899-903. [PMID: 24767704 DOI: 10.1016/j.jbiomech.2014.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/30/2013] [Accepted: 02/06/2014] [Indexed: 12/29/2022]
Abstract
Extra-ocular tendons (EOTs) transmit the oculorotary force of the muscles to the eyeball to generate dynamic eye movements and align the eyes, yet the mechanical properties of the EOTs remain undefined. The EOTs are known to be composed of parallel bundles of small fibers whose mechanical properties must be determined in order to characterize the overall behavior of EOTs. The current study aimed to investigate the transverse Young׳s modulus of EOT fiber bundles using atomic force microscopy (AFM). Fresh bovine EOT fiber bundle specimens were maintained under temperature and humidity control, and indented 100nm by the inverted pyramid tip of an AFM (Veeco Digital Instruments, NY). Ten indentations were conducted for each of 3 different locations of 10 different specimens from each of 6 EOTs, comprising a total of 1800 indentations. Young׳s modulus for each EOT was determined using a Hertzian contact model. Young׳s moduli for fiber bundles from all six EOTs were determined. Mean Young׳s moduli for fiber bundles were similar for the six anatomical EOTs: lateral rectus 60.12±2.69 (±SD)MPa, inferior rectus 59.69±5.34MPa, medial rectus 56.92±1.91MPa, superior rectus 59.66±2.64MPa, inferior oblique 57.7±1.36MPa, and superior oblique 59.15±2.03. Variation in Young׳s moduli among the six EOTs was not significant (P>0.25). The Young׳s modulus of bovine EOT fibers is highly uniform among the six extraocular muscles, suggesting that each EOT is assembled from fiber bundles representing the same biomechanical elements. This uniformity will simplify overall modeling.
Collapse
Affiliation(s)
- Lawrence Yoo
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095-7002, USA
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Shin
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095-7002, USA; Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - Joseph L Demer
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095-7002, USA; Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
78
|
Dividing cells regulate their lipid composition and localization. Cell 2014; 156:428-39. [PMID: 24462247 PMCID: PMC3909459 DOI: 10.1016/j.cell.2013.12.015] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/16/2013] [Accepted: 12/04/2013] [Indexed: 12/18/2022]
Abstract
Although massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology. Systematic, comprehensive lipid analyses in dividing cells and midbodies AFM shows dividing cells and their lipids have specific physical properties Screen of lipid biosynthetic enzymes reveals 23 genes required for division Perturbing lipid levels alters actin cytoskeleton and cell stiffness
Collapse
|
79
|
Liu D, Yi C, Wang K, Fong CC, Wang Z, Lo PK, Sun D, Yang M. Reorganization of cytoskeleton and transient activation of Ca2+ channels in mesenchymal stem cells cultured on silicon nanowire arrays. ACS APPLIED MATERIALS & INTERFACES 2013; 5:13295-13304. [PMID: 24308382 DOI: 10.1021/am404276r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tissue engineering combines biological cells and synthetic materials containing chemical signaling molecules to form scaffolds for tissue regeneration. Mesenchymal stem cells (MSCs) provide an attractive source for tissue engineering due to their versatility of multipotent differentiation. Recently, it has been recognized that both chemical and mechanical stimulations are essential mediators of adhesion and differentiation of MSCs. While significant progress has been made on the understanding of chemical regulatory factors within the extracellular matrix, the effects of mechanical stimulation exerted by nanomaterials on MSCs and the underlying mechanisms are less well-known. The present study showed that the adhesion, proliferation, and differentiation of MSCs cultured on vertically aligned silicon nanowire (SiNW) arrays were significantly different from those on flat silicon wafer and control substrates. The interactions between MSCs and the SiNW arrays caused the stem cells to preferentially differentiate toward osteocytes and chondrocytes but not adipocytes in the absence of supplementary growth factors. Our study demonstrated that Ca(2+) ion channels were transiently activated in MSCs upon mechanical stimulation, which eventually led to activation of Ras/Raf/MEK/ERK signaling cascades to regulate adhesion, proliferation, and differentiation of MSCs. The stretch-mediated transient Ca(2+) ion channel activation and cytoskeleton reorganization during stem cell-nanowire interaction may be early events of lineage-specific potentiation of MSCs in determining the fates of mesenchymal stem cells cultured on microenvironments with specific mechanical properties.
Collapse
Affiliation(s)
- Dandan Liu
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen, China
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Lafaurie-Janvore J. [Temporal regulation of abscission, the last step of cell division]. Biol Aujourdhui 2013; 207:133-148. [PMID: 24103343 DOI: 10.1051/jbio/2013010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Indexed: 06/02/2023]
Abstract
Cell division is one of the most tightly controlled steps of the cell cycle. Indeed, the many steps of cell division have to be perfectly coordinated both in time and space in order to ensure an error-free division and an accurate transmission of the genome from the mother cell to the two daughter cells. Abscission, the last step of cytokinesis, consists in the severing of the intercellular bridge that connects the two daughter cells after the contraction of the acto-myosin ring. As is the case for any other step of cell division, abscission has to be precisely regulated in order to take place at the right time and the proper place. Whereas the spatial regulation of abscission is quite well understood, the study of temporal regulation is in its infancy. This review begins by describing the formation of the intercellular bridge, its organization, and its composition. Next the different models of abscission are discussed. Finally, the current understanding of the temporal regulation of abscission is detailed. In particular, I present my recent results on the role of forces exerted by the daughter cells on the intercellular bridge.
Collapse
|
81
|
Haase K, Pelling AE. The role of the actin cortex in maintaining cell shape. Commun Integr Biol 2013; 6:e26714. [PMID: 24349607 DOI: 10.4161/cib.26714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
Considering that the plasma membrane is host to a variety of mechanical cues in vivo, and the actin cortex is known to support cell shape, it comes as no surprise that the paired membrane-cortex plays a major role in cellular responses to deformation. In a recent study, we applied highly localized forces to HeLa cells in order to examine the deformation response of the membrane and cortex. Direct visualization of the deformation in the loading plane allowed for the characterization of the observed time-dependent strain. Despite large magnitude and long duration loading regimes, the majority of cells recovered their initial pre-deformed morphology within ~2 min. Unexpectedly, perturbed regions above large-volume nuclei were shown to be quite soft and had negligible influence on morphological recovery. The resistance to deformation and ability to recover was found to be largely influenced by the actin network, and dependent upon rho-kinase mediated contractility.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics; MacDonald Hall; University of Ottawa; Ottawa, ON Canada
| | - Andrew E Pelling
- Department of Physics; MacDonald Hall; University of Ottawa; Ottawa, ON Canada ; Department of Biology; Gendron Hall; University of Ottawa; Ottawa, ON Canada ; Institute for Science, Society and Policy; Simard Hall; University of Ottawa; Ottawa, ON Canada
| |
Collapse
|
82
|
Haase K, Pelling AE. Resiliency of the plasma membrane and actin cortex to large-scale deformation. Cytoskeleton (Hoboken) 2013; 70:494-514. [PMID: 23929821 DOI: 10.1002/cm.21129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
The tight coupling between the plasma membrane and actin cortex allows cells to rapidly change shape in response to mechanical cues and during physiological processes. Mechanical properties of the membrane are critical for organizing the actin cortex, which ultimately governs the conversion of mechanical information into signaling. The cortex has been shown to rapidly remodel on timescales of seconds to minutes, facilitating localized deformations and bundling dynamics that arise during the exertion of mechanical forces and cellular deformations. Here, we directly visualized and quantified the time-dependent deformation and recovery of the membrane and actin cortex of HeLa cells in response to externally applied loads both on- and off-nucleus using simultaneous confocal and atomic force microscopy. The local creep-like deformation of the membrane and actin cortex depends on both load magnitude and duration and does not appear to depend on cell confluency. The membrane and actin cortex rapidly recover their initial shape after prolonged loading (up to 10 min) with large forces (up to 20 nN) and high aspect ratio deformations. Cytoplasmic regions surrounding the nucleus are shown to be more resistant to long-term creep than nuclear regions. These dynamics are highly regulated by actomyosin contractility and an intact actin cytoskeleton. Results suggest that in response to local deformations, the nucleus does not appear to provide significant resistance or play a major role in cell shape recovery. The membrane and actin cortex clearly possess remarkable mechanical stability, critical for the transduction of mechanical deformation into long term biochemical signals and cellular remodeling.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada
| | | |
Collapse
|
83
|
Dufrêne YF, Martínez-Martín D, Medalsy I, Alsteens D, Müller DJ. Multiparametric imaging of biological systems by force-distance curve–based AFM. Nat Methods 2013; 10:847-54. [DOI: 10.1038/nmeth.2602] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 07/14/2013] [Indexed: 12/23/2022]
|
84
|
Zhang W, Kai K, Ueno NT, Qin L. A Brief Review of the Biophysical Hallmarks of Metastatic Cancer Cells. ACTA ACUST UNITED AC 2013; 1:59-66. [PMID: 25309822 DOI: 10.1166/ch.2013.1010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A hallmark of metastatic cancer cells is their invasion through the basal membrane and endothelial layer, which requires a highly elastic cytoskeleton and nucleus. Therefore, cellular deformability can serve as a universal biophysical marker for detecting a tumor's propensity for invasion, migration, and metastasis. In this review, we define the importance of the biophysical features of cancer cells in tumor metastasis and summarize the state-of-the-art technology for the study of cell biomechanics. This review will serve as a brief introduction to the interdisciplinary character of cancer cell biophysics for cancer biologists, physicists, and engineers.
Collapse
Affiliation(s)
- Weijia Zhang
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kazuharu Kai
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Breast Cancer Translational Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Breast Cancer Translational Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
85
|
Atomic force microscopy of 3T3 and SW-13 cell lines: An investigation of cell elasticity changes due to fixation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3303-8. [DOI: 10.1016/j.msec.2013.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/18/2013] [Accepted: 04/05/2013] [Indexed: 11/21/2022]
|
86
|
Wang L, Chen T, Zhou X, Huang Q, Jin C. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization. Micron 2013; 51:48-53. [PMID: 23906659 DOI: 10.1016/j.micron.2013.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/01/2022]
Abstract
We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology.
Collapse
Affiliation(s)
- Liqun Wang
- Key Lab for Shock and Microcirculation Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | |
Collapse
|
87
|
Schäffer TE. Nanomechanics of molecules and living cells with scanning ion conductance microscopy. Anal Chem 2013; 85:6988-94. [PMID: 23692368 DOI: 10.1021/ac400686k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hydrodynamic flow through a nanopipet in a scanning ion conductance microscope (SICM) can exert localized forces on a sample surface. These forces can be used for trapping of molecules in lipid bilayers and for mapping the mechanical properties of living cells.
Collapse
Affiliation(s)
- Tilman E Schäffer
- University of Tübingen, Department of Physics and LISA+, Tübingen, Germany
| |
Collapse
|
88
|
Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. Progress of AFM single-cell and single-molecule morphology imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5906-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
89
|
Dokukin M, Guz N, Sokolov I. Quantitative study of the elastic modulus of loosely attached cells in AFM indentation experiments. Biophys J 2013; 104:2123-31. [PMID: 23708352 PMCID: PMC3660635 DOI: 10.1016/j.bpj.2013.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 02/07/2023] Open
Abstract
When measuring the elastic (Young's) modulus of cells using AFM, good attachment of cells to a substrate is paramount. However, many cells cannot be firmly attached to many substrates. A loosely attached cell is more compliant under indenting. It may result in artificially low elastic modulus when analyzed with the elasticity models assuming firm attachment. Here we suggest an AFM-based method/model that can be applied to extract the correct Young's modulus of cells loosely attached to a substrate. The method is verified by using primary breast epithelial cancer cells (MCF-7) at passage 4. At this passage, approximately one-half of cells develop enough adhesion with the substrate to be firmly attached to the substrate. These cells look well spread. The other one-half of cells do not develop sufficient adhesion, and are loosely attached to the substrate. These cells look spherical. When processing the AFM indentation data, a straightforward use of the Hertz model results in a substantial difference of the Young's modulus between these two types of cells. If we use the model presented here, we see no statistical difference between the values of the Young's modulus of both poorly attached (round) and firmly attached (close to flat) cells. In addition, the presented model allows obtaining parameters of the brush surrounding the cells. The cellular brush observed is also statistically identical for both types of cells. The method described here can be applied to study mechanics of many other types of cells loosely attached to substrates, e.g., blood cells, some stem cells, cancerous cells, etc.
Collapse
Affiliation(s)
- Maxim E. Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
- Department of Physics, Clarkson University, Potsdam, New York
| | - Nataliia V. Guz
- Department of Physics, Clarkson University, Potsdam, New York
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Department of Physics, Clarkson University, Potsdam, New York
- Nanoengineering and Biotechnology Laboratories Center, Clarkson University, Potsdam, New York
| |
Collapse
|
90
|
Dufrêne YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. NANOSCALE 2013; 5:4094-4104. [PMID: 23535827 DOI: 10.1039/c3nr00340j] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
91
|
Sokolov I, Dokukin ME, Guz NV. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 2013; 60:202-13. [PMID: 23639869 DOI: 10.1016/j.ymeth.2013.03.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 02/09/2023] Open
Abstract
Here we overview and further develop a quantitative method to measure mechanics of biological cells in indentation experiments, which is based on the use of atomic force microscopy (AFM). We demonstrate how the elastic modulus of the cell body should be measured when the cellular brush is taken into account. The brush is an essential inelastic part of the cell, which surrounds all eukaryotic (the brush is mostly microvilli and glycocalyx) and gram-negative prokaryotic cells (the brush is polysaccharides). The other main feature of the described method is the use of a relatively dull AFM probe to stay in the linear stress-strain regime. In particular, we show that the elastic modulus (aka the Young's modulus) of cells is independent of the indentation depth up to 10-20% deformation for the eukaryotic cells studied here. Besides the elastic modulus, the method presented allows obtaining the parameters of cellular brush, such as the effective length and grafting density of the brush. Although the method is demonstrated on eukaryotic cells, it is directly applicable for all types of cells, and even non-biological soft materials surrounded by either a brush or any field of long-range forces.
Collapse
Affiliation(s)
- Igor Sokolov
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
92
|
Medalsy ID, Müller DJ. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS NANO 2013; 7:2642-2650. [PMID: 23442147 DOI: 10.1021/nn400015z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Knowing the dynamic mechanical response of tissue, cells, membranes, proteins, nucleic acids, and carbohydrates to external perturbations is important to understand various biological and biotechnological problems. Atomic force microscopy (AFM)-based approaches are the most frequently used nanotechnologies to determine the mechanical properties of biological samples that range in size from microscopic to (sub)nanoscopic. However, the dynamic nature of biomechanical properties has barely been addressed by AFM imaging. In this work, we characterizethe viscoelastic properties of the native light-driven proton pump bacteriorhodopsin of the purple membrane of Halobacterium salinarum. Using force-distance curve (F-D)-based AFM we imaged purple membranes while force probing their mechanical response over a wide range of loading rates (from ∼0.5 to 100 μN/s). Our results show that the mechanical stiffness of protein and membrane increases with the loading rate up to a factor of 10 (from ∼0.3 to 3.2 N/m). In addition, the electrostatic repulsion between AFM tip and sample can alter the mechanical stiffness measured by AFM up to ∼60% (from ∼0.8 to 1.3 N/m).These findings indicate that the mechanical response of membranes and proteins and probably of other biomolecular systems should be determined at different loading rates to fully understand their properties.
Collapse
Affiliation(s)
- Izhar D Medalsy
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | |
Collapse
|
93
|
Ferraro-Gideon J, Sheykhani R, Zhu Q, Duquette ML, Berns MW, Forer A. Measurements of forces produced by the mitotic spindle using optical tweezers. Mol Biol Cell 2013; 24:1375-86. [PMID: 23485565 PMCID: PMC3639049 DOI: 10.1091/mbc.e12-12-0901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An optical trap is used to stop chromosome movement in spermatocytes from an insect and a flatworm and to stop pole movement in PtK cells. The forces required are much smaller than previously believed. We used a trapping laser to stop chromosome movements in Mesostoma and crane-fly spermatocytes and inward movements of spindle poles after laser cuts across Potorous tridactylus (rat kangaroo) kidney (PtK2) cell half-spindles. Mesostoma spermatocyte kinetochores execute oscillatory movements to and away from the spindle pole for 1–2 h, so we could trap kinetochores multiple times in the same spermatocyte. The trap was focused to a single point using a 63× oil immersion objective. Trap powers of 15–23 mW caused kinetochore oscillations to stop or decrease. Kinetochore oscillations resumed when the trap was released. In crane-fly spermatocytes trap powers of 56–85 mW stopped or slowed poleward chromosome movement. In PtK2 cells 8-mW trap power stopped the spindle pole from moving toward the equator. Forces in the traps were calculated using the equation F = Q′P/c, where P is the laser power and c is the speed of light. Use of appropriate Q′ coefficients gave the forces for stopping pole movements as 0.3–2.3 pN and for stopping chromosome movements in Mesostoma spermatocytes and crane-fly spermatocytes as 2–3 and 6–10 pN, respectively. These forces are close to theoretical calculations of forces causing chromosome movements but 100 times lower than the 700 pN measured previously in grasshopper spermatocytes.
Collapse
|
94
|
Wang J, Pelling AE. An Approach to Visualize the Deformation of the Intermediate Filament Cytoskeleton in Response to Locally Applied Forces. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/513546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intermediate filament (IF) cytoskeleton plays an important role in integrating biomechanical pathways associated with the actin and microtubule cytoskeleton. Vimentin is a type III IF protein commonly found in fibroblast cells and plays a role in transmitting forces through the cytoskeleton. Employing simultaneous laser scanning confocal and atomic force microscopy (AFM), we developed a methodology to quantify the deformation of the GFP-vimentin-labeled IF cytoskeleton as a function of time in response to force application by the AFM. Over short times (seconds), IFs deformed rapidly and transmitted force throughout the entire cell in a highly complex and anisotropic fashion. After several minutes, mechanically induced displacements of IFs resemble basal movements. In well-adhered cells the deformation of IFs is highly anisotropic as they tend to deform away from the longitudinal axis of the cell. This study demonstrates that simultaneous AFM and LSCM can be employed to track the deformation and dissipation of force through the IF cytoskeleton.
Collapse
Affiliation(s)
- Jiashan Wang
- Department of Physics and Department of Biology, University of Ottawa, MacDonald Hall,150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Andrew E. Pelling
- Department of Physics and Department of Biology, University of Ottawa, MacDonald Hall,150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
95
|
Roubinet C, Tran PT, Piel M. Common mechanisms regulating cell cortex properties during cell division and cell migration. Cytoskeleton (Hoboken) 2012; 69:957-72. [PMID: 23125194 DOI: 10.1002/cm.21086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
Single cell morphogenesis results from a balance of forces involving internal pressure (also called turgor pressure in plants and fungi) and the plastic and dynamic outer shell of the cell. Dominated by the cell wall in plants and fungi, mechanical properties of the outer shell of animal cells arise from the cell cortex, which is mostly composed of the plasma membrane (and membrane proteins) and the underlying meshwork of actin filaments and myosin motors (and associated proteins). In this review, following Bray and White [1988; Science 239:883-889], we draw a parallel between the regulation of the cell cortex during cell division and cell migration in animal cells. Starting from the similarities in shape changes and underlying mechanical properties, we further propose that the analogy between cell division and cell migration might run deeper, down to the basic molecular mechanisms driving cell cortex remodeling. We focus our attention on how an heterogeneous and dynamic cortex can be generated to allow cell shape changes while preserving cell integrity.
Collapse
Affiliation(s)
- Chantal Roubinet
- Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France.
| | | | | |
Collapse
|
96
|
Guolla L, Bertrand M, Haase K, Pelling AE. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. J Cell Sci 2012; 125:603-13. [PMID: 22389400 DOI: 10.1242/jcs.088302] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It is becoming clear that mechanical stimuli are crucial factors in regulating the biology of the cell, but the short-term structural response of a cell to mechanical forces remains relatively poorly understood. We mechanically stimulated cells transiently expressing actin-EGFP with controlled forces (0-20 nN) in order to investigate the structural response of the cell. Two clear force-dependent responses were observed: a short-term (seconds) local deformation of actin stress fibres and a long-term (minutes) force-induced remodelling of stress fibres at cell edges, far from the point of contact. By photobleaching markers along stress fibres we were also able to quantify strain dynamics occurring along the fibres throughout the cell. The results reveal that the cell exhibits complex heterogeneous negative and positive strain fluctuations along stress fibres in resting cells that indicate localized contraction and stretch dynamics. The application of mechanical force results in the activation of myosin contractile activity reflected in an ~50% increase in strain fluctuations. This approach has allowed us to directly observe the activation of myosin in response to mechanical force and the effects of cytoskeletal crosslinking on local deformation and strain dynamics. The results demonstrate that force application does not result in simplistic isotropic deformation of the cytoarchitecture, but rather a complex and localized response that is highly dependent on an intact microtubule network. Direct visualization of force-propagation and stress fibre strain dynamics have revealed several crucial phenomena that take place and ultimately govern the downstream response of a cell to a mechanical stimulus.
Collapse
Affiliation(s)
- Louise Guolla
- Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | | | | |
Collapse
|
97
|
Salbreux G, Charras G, Paluch E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 2012; 22:536-45. [PMID: 22871642 DOI: 10.1016/j.tcb.2012.07.001] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 12/11/2022]
Abstract
The cortex is a thin, crosslinked actin network lying immediately beneath the plasma membrane of animal cells. Myosin motors exert contractile forces in the meshwork. Because the cortex is attached to the cell membrane, it plays a central role in cell shape control. The proteic constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. The cortex has recently attracted increasing attention and its functions in cellular processes such as cytokinesis, cell migration, and embryogenesis are progressively being dissected. In this review, we summarize current knowledge on the structural organization, composition, and mechanics of the actin cortex, focusing on the link between molecular processes and macroscopic physical properties. We also highlight consequences of cortex dysfunction in disease.
Collapse
Affiliation(s)
- Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
| | | | | |
Collapse
|
98
|
Abstract
Cytokinesis, the final step in cell division, partitions the contents of a single cell into two. In animal cells, cytokinesis occurs through cortical remodeling orchestrated by the anaphase spindle. Cytokinesis relies on a tight interplay between signaling and cellular mechanics and has attracted the attention of both biologists and physicists for more than a century. In this review, we provide an overview of four topics in animal cell cytokinesis: (a) signaling between the anaphase spindle and cortex, (b) the mechanics of cortical remodeling, (c) abscission, and (d) regulation of cytokinesis by the cell cycle machinery. We report on recent progress in these areas and highlight some of the outstanding questions that these findings bring into focus.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
99
|
Galvagni F, Baldari CT, Oliviero S, Orlandini M. An apical actin-rich domain drives the establishment of cell polarity during cell adhesion. Histochem Cell Biol 2012; 138:419-33. [PMID: 22644377 PMCID: PMC3426669 DOI: 10.1007/s00418-012-0965-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2012] [Indexed: 01/09/2023]
Abstract
One of the most important questions in cell biology concerns how cells reorganize after sensing polarity cues. In the present study, we describe the formation of an actin-rich domain on the apical surface of human primary endothelial cells adhering to the substrate and investigate its role in cell polarity. We used confocal immunofluorescence procedures to follow the redistribution of proteins required for endothelial cell polarity during spreading initiation. Activated Moesin, vascular endothelial cadherin and partitioning defective 3 were found to be localized in the apical domain, whereas podocalyxin and caveolin-1 were distributed along the microtubule cytoskeleton axis, oriented from the centrosome to the cortical actin-rich domain. Moreover, activated signaling molecules were localized in the core of the apical domain in tight association with filamentous actin. During cell attachment, loss of the apical domain by Moesin silencing or drug disruption of the actin cytoskeleton caused irregular cell spreading and mislocalization of polarity markers. In conclusion, our results suggest that the apical domain that forms during the spreading process is a structural organizer of cell polarity by regulating trafficking and activation of signaling proteins.
Collapse
Affiliation(s)
- Federico Galvagni
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | |
Collapse
|
100
|
Shimizu Y, Kihara T, Haghparast SMA, Yuba S, Miyake J. Simple display system of mechanical properties of cells and their dispersion. PLoS One 2012; 7:e34305. [PMID: 22479595 PMCID: PMC3316616 DOI: 10.1371/journal.pone.0034305] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/25/2012] [Indexed: 12/03/2022] Open
Abstract
The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.
Collapse
Affiliation(s)
- Yuji Shimizu
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takanori Kihara
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- * E-mail:
| | - Seyed Mohammad Ali Haghparast
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shunsuke Yuba
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Amagasaki, Hyogo, Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|