51
|
Shao D, Smith DL, Kabbage M, Roth MG. Effectors of Plant Necrotrophic Fungi. FRONTIERS IN PLANT SCIENCE 2021; 12:687713. [PMID: 34149788 PMCID: PMC8213389 DOI: 10.3389/fpls.2021.687713] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 05/20/2023]
Abstract
Plant diseases caused by necrotrophic fungal pathogens result in large economic losses in field crop production worldwide. Effectors are important players of plant-pathogen interaction and deployed by pathogens to facilitate plant colonization and nutrient acquisition. Compared to biotrophic and hemibiotrophic fungal pathogens, effector biology is poorly understood for necrotrophic fungal pathogens. Recent bioinformatics advances have accelerated the prediction and discovery of effectors from necrotrophic fungi, and their functional context is currently being clarified. In this review we examine effectors utilized by necrotrophic fungi and hemibiotrophic fungi in the latter stages of disease development, including plant cell death manipulation. We define "effectors" as secreted proteins and other molecules that affect plant physiology in ways that contribute to disease establishment and progression. Studying and understanding the mechanisms of necrotrophic effectors is critical for identifying avenues of genetic intervention that could lead to improved resistance to these pathogens in plants.
Collapse
Affiliation(s)
| | | | | | - Mitchell G. Roth
- Department of Plant Pathology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
52
|
Gavish AR, Shapiro OH, Kramarsky-Winter E, Vardi A. Microscale tracking of coral-vibrio interactions. ISME COMMUNICATIONS 2021; 1:18. [PMID: 37938689 PMCID: PMC9723675 DOI: 10.1038/s43705-021-00016-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022]
Abstract
To improve our understanding of coral infection and disease, it is important to study host-pathogen interactions at relevant spatio-temporal scales. Here, we provide a dynamic microscopic view of the interaction between a coral pathogen, Vibrio coralliilyticus and its coral host Pocillopora damicornis. This was achieved using a microfluidics-based system facilitating control over flow, light and temperature conditions. Combined with time-resolved biochemical and microbial analyses of the system exudates, this approach provides novel insights into the early phases of a coral infection at unprecedented spatio-temporal resolution. We provide evidence that infection may occur through ingestion of the pathogen by the coral polyps, or following pathogen colonization of small tissue lesions on the coral surface. Pathogen ingestion invariably induced the release of pathogen-laden mucus from the gastrovascular cavity. Despite the high bacterial load used in our experiments, approximately one-third of coral fragments tested did not develop further symptoms. In the remaining two-thirds, mucus spewing was followed by the severing of calicoblastic connective tissues (coenosarc) and subsequently necrosis of most polyps. Despite extensive damage to symptomatic colonies, we frequently observed survival of individual polyps, often accompanied by polyp bail-out. Biochemical and microbial analyses of exudates over the course of symptomatic infections revealed that severing of the coenosarc was followed by an increase in matrix metaloprotease activity, and subsequent increase in both pathogen and total bacterial counts. Combined, these observations provide a detailed description of a coral infection, bringing us a step closer to elucidating the complex interactions underlying coral disease.
Collapse
Affiliation(s)
- Assaf R Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Orr H Shapiro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Food Quality and Safety, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| | - Esti Kramarsky-Winter
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
53
|
Wu X, Lai Y, Rao S, Lv L, Ji M, Han K, Weng J, Lu Y, Peng J, Lin L, Wu G, Chen J, Yan F, Zheng H. Genome-Wide Identification Reveals That Nicotiana benthamiana Hypersensitive Response (HR)-Like Lesion Inducing Protein 4 (NbHRLI4) Mediates Cell Death and Salicylic Acid-Dependent Defense Responses to Turnip Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2021; 12:627315. [PMID: 34113359 PMCID: PMC8185164 DOI: 10.3389/fpls.2021.627315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Hypersensitive response (HR)-like cell death is an important mechanism that mediates the plant response to pathogens. In our previous study, we reported that NbHIR3s regulate HR-like cell death and basal immunity. However, the host genes involved in HR have rarely been studied. Here, we used transcriptome sequencing to identify Niben101Scf02063g02012.1, an HR-like lesion inducing protein (HRLI) in Nicotiana benthamiana that was significantly reduced by turnip mosaic virus (TuMV). HRLIs are uncharacterized proteins which may regulate the HR process. We identified all six HRLIs in N. benthamiana and functionally analyzed Niben101Scf02063g02012.1, named NbHRLI4, in response to TuMV. Silencing of NbHRLI4 increased TuMV accumulation, while overexpression of NbHRLI4 conferred resistance to TuMV. Transient overexpression of NbHRLI4 caused cell death with an increase in the expression of salicylic acid (SA) pathway genes but led to less cell death level and weaker immunity in plants expressing NahG. Thus, we have characterized NbHRLI4 as an inducer of cell death and an antiviral regulator of TuMV infection in a SA-mediated manner.
Collapse
Affiliation(s)
- Xinyang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuchao Lai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lanqing Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Mengfei Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiajia Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
54
|
Lee IH, Kim HS, Nam KJ, Lee KL, Yang JW, Kwak SS, Lee JJ, Shim D, Kim YH. The Defense Response Involved in Sweetpotato Resistance to Root-Knot Nematode Meloidogyne incognita: Comparison of Root Transcriptomes of Resistant and Susceptible Sweetpotato Cultivars With Respect to Induced and Constitutive Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:671677. [PMID: 34025707 PMCID: PMC8131533 DOI: 10.3389/fpls.2021.671677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 05/08/2023]
Abstract
Sweetpotato (Ipomoea batatas [L.] Lam) is an economically important, nutrient- and pigment-rich root vegetable used as both food and feed. Root-knot nematode (RKN), Meloidogyne incognita, causes major yield losses in sweetpotato and other crops worldwide. The identification of genes and mechanisms responsible for resistance to RKN will facilitate the development of RKN resistant cultivars not only in sweetpotato but also in other crops. In this study, we performed RNA-seq analysis of RKN resistant cultivars (RCs; Danjami, Pungwonmi and Juhwangmi) and susceptible cultivars (SCs; Dahomi, Shinhwangmi and Yulmi) of sweetpotato infected with M. incognita to examine the induced and constitutive defense response-related transcriptional changes. During induced defense, genes related to defense and secondary metabolites were induced in SCs, whereas those related to receptor protein kinase signaling and protein phosphorylation were induced in RCs. In the uninfected control, genes involved in proteolysis and biotic stimuli showed differential expression levels between RCs and SCs during constitutive defense. Additionally, genes related to redox regulation, lipid and cell wall metabolism, protease inhibitor and proteases were putatively identified as RKN defense-related genes. The root transcriptome of SCs was also analyzed under uninfected conditions, and several potential candidate genes were identified. Overall, our data provide key insights into the transcriptional changes in sweetpotato genes that occur during induced and constitutive defense responses against RKN infection.
Collapse
Affiliation(s)
- Il-Hwan Lee
- Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, South Korea
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Ki Jung Nam
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, South Korea
| | - Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, South Korea
| | - Jung-Wook Yang
- Department of Crop Cultivation & Environment, Research National Institute of Crop Science, Rural Development Administration, Suwon, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jeung Joo Lee
- Department of Plant Medicine, IALS, Gyeongsang National University, Jinju, South Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
55
|
Suleman M, Ma M, Ge G, Hua D, Li H. The role of alternative oxidase in plant hypersensitive response. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:415-419. [PMID: 33480175 DOI: 10.1111/plb.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
The innate immune system of plants is crucial in defining the fate of a plant cell during plant-pathogen interactions. This response is often accompanied by a hypersensitive reaction leading to the death of a plant cell and restricted pathogen growth. Plant mitochondria, in this case, play a key role by maintaining a balance between cell respiration and reactive oxygen species formation. One of the key features of the hypersensitive response is the shift of the normal plant respiratory pathway to a special 'alternative' pathway. Plants contain an enzyme, alternative oxidase, for maintaining metabolic homeostasis of the cell. This energy dissipating respiration provides a branch in normal respiration by using ubiquinone to form water and heat, thus maintaining the energy status of the cell. Alternative oxidase is thought to minimize production of reactive oxygen species and can also function in 'anti-apoptotic' machinery in plant cells. In this mini review, we briefly describe the alternative respiratory pathway and explain the role of alternative oxidase in important cellular processes, such as programmed cell death and the hypersensitive response.
Collapse
Affiliation(s)
- M Suleman
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - M Ma
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - G Ge
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - D Hua
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - H Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
56
|
Han R, Yin W, Ahmad B, Gao P, Li Z, Wang X. Pathogenesis and Immune Response in Resistant and Susceptible Cultivars of Grapevine ( Vitis spp.) Against Elsinoë ampelina Infection. PHYTOPATHOLOGY 2021; 111:799-807. [PMID: 33079021 DOI: 10.1094/phyto-03-20-0079-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elsinoë ampelina is the main cause of grape anthracnose, and the majority of grapevine cultivars are susceptible to this fungus. Some Chinese wild grape cultivars are resistant, however. It is therefore apt to compare the pathogenesis and immune responses in susceptible and resistant cultivars of grapevine to explore the detailed molecular and biochemical mechanisms of resistance to this fungus. In this study, ultrastructural and histopathological observations were used to demonstrate the resistance responses to E. ampelina in the resistant Chinese wild cultivar Vitis quinquangularis clone 'Shang-24' and the susceptible cultivars V. davidii 'Tangwei' and V. vinifera 'Thompson Seedless'. Seventy-two hours postinoculation (hpi) with E. ampelina, brown necrotic spots were clearly visible on the leaves of the susceptible 'Tangwei' and 'Thompson Seedless'. The infection was characterized by rapid colonization of the host cells by hyphae and massive spread of the pathogen in the intercellular spaces, ultimately leading to host cell collapse, cuticle dissolution, and extensive hyphal growth. In the resistant clone 'Shang-24', the conidia were lysed, a large quantity of electronically dense matter appeared, the hyphal growth was suppressed, and the host cells remained intact. In addition, six genes associated with disease resistance were differentially expressed in the susceptible and resistant cultivars. These disease-related genes were significantly up-regulated following infection with E. ampelina. This study illustrates the differences in infection and colonization of E. ampelina in resistant and susceptible grape leaves.
Collapse
Affiliation(s)
- Rui Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peijia Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
57
|
Nibras N, Liu C, Mottet D, Wang C, Reinkensmeyer D, Remy-Neris O, Laffont I, Schweighofer N. Dissociating Sensorimotor Recovery and Compensation During Exoskeleton Training Following Stroke. Front Hum Neurosci 2021; 15:645021. [PMID: 33994981 PMCID: PMC8120113 DOI: 10.3389/fnhum.2021.645021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/30/2021] [Indexed: 01/23/2023] Open
Abstract
The quality of arm movements typically improves in the sub-acute phase of stroke affecting the upper extremity. Here, we used whole arm kinematic analysis during reaching movements to distinguish whether these improvements are due to true recovery or to compensation. Fifty-three participants with post-acute stroke performed ∼80 reaching movement tests during 4 weeks of training with the ArmeoSpring exoskeleton. All participants showed improvements in end-effector performance, as measured by movement smoothness. Four ArmeoSpring angles, shoulder horizontal (SH) rotation, shoulder elevation (SE), elbow rotation, and forearm rotation, were recorded and analyzed. We first characterized healthy joint coordination patterns by performing a sparse principal component analysis on these four joint velocities recorded during reaching tests performed by young control participants. We found that two dominant joint correlations [SH with elbow rotation and SE with forearm rotation] explained over 95% of variance of joint velocity data. We identified two clusters of stroke participants by comparing the evolution of these two correlations in all tests. In the "Recoverer" cluster (N = 19), both joint correlations converged toward the respective correlations for control participants. Thus, Recoverers relearned how to generate smooth end-effector movements while developing joint movement patterns similar to those of control participants. In the "Compensator" cluster (N = 34), at least one of the two joint correlations diverged from the corresponding correlation of control participants. Compensators relearned how to generate smooth end-effector movements by discovering various new compensatory movement patterns dissimilar to those of control participants. New compensatory patterns included atypical decoupling of the SE and forearm joints, and atypical coupling of the SH rotation and elbow joints. There was no difference in clinical impairment level between the two groups either at the onset or at the end of training as assessed with the Upper Extremity Fugl-Meyer scale. However, at the start of training, the Recoverers showed significantly faster improvements in end-effector movement smoothness than the Compensators. Our analysis can be used to inform neurorehabilitation clinicians on how to provide movement feedback during practice and suggest avenues for refining exoskeleton robot therapy to reduce compensatory patterns.
Collapse
Affiliation(s)
- Nadir Nibras
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Denis Mottet
- Euromov Digital Health in Motion, University of Montpellier, IMT Mines Alès, Montpellier, France
| | - Chunji Wang
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
| | - David Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Olivier Remy-Neris
- Université de Brest, Centre Hospitalier Universitaire, LaTIM-INSERM UMR 1101, Brest, France
| | - Isabelle Laffont
- Euromov Digital Health in Motion, University of Montpellier, IMT Mines Alès, Montpellier, France.,Montpellier University Hospital, Euromov Digital Health in Motion, Montpellier University, Montpellier, France
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
58
|
Iqbal N, Czékus Z, Poór P, Ördög A. Plant defence mechanisms against mycotoxin Fumonisin B1. Chem Biol Interact 2021; 343:109494. [PMID: 33915161 DOI: 10.1016/j.cbi.2021.109494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Fumonisin B1 (FB1) is the most harmful mycotoxin which prevails in several crops and affects the growth and yield as well. Hence, keeping the alarming consequences of FB1 under consideration, there is still a need to seek other more reliable approaches and scientific knowledge for FB1-induced cell death and a comprehensive understanding of the mechanisms of plant defence strategies. FB1-induced disturbance in sphingolipid metabolism initiates programmed cell death (PCD) through various modes such as the elevated generation of reactive oxygen species, lipid peroxidation, cytochrome c release from the mitochondria, and activation of specific proteases and nucleases causing DNA fragmentation. There is a close interaction between sphingolipids and defence phytohormones in response to FB1 exposure regulating PCD and defence. In this review, the model plant Arabidopsis and various crops have been presented with different levels of susceptibility and resistivity exposed to various concentration of FB1. In addition to this, regulation of PCD and defence mechanisms have been also demonstrated at the physiological, biochemical and molecular levels to help the understanding of the role and function of FB1-inducible molecules and genes and their expressions in plants against pathogen attacks which could provide molecular and biochemical markers for the detection of toxin exposure.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| |
Collapse
|
59
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
60
|
Backes A, Guerriero G, Ait Barka E, Jacquard C. Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. FRONTIERS IN PLANT SCIENCE 2021; 12:614951. [PMID: 33889162 PMCID: PMC8055952 DOI: 10.3389/fpls.2021.614951] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
Net blotch, induced by the ascomycete Pyrenophora teres, has become among the most important disease of barley (Hordeum vulgare L.). Easily recognizable by brown reticulated stripes on the sensitive barley leaves, net blotch reduces the yield by up to 40% and decreases seed quality. The life cycle, the mode of dispersion and the development of the pathogen, allow a quick contamination of the host. Crop residues, seeds, and wild grass species are the inoculum sources to spread the disease. The interaction between the barley plant and the fungus is complex and involves physiological changes with the emergence of symptoms on barley and genetic changes including the modulation of different genes involved in the defense pathways. The genes of net blotch resistance have been identified and their localizations are distributed on seven barley chromosomes. Considering the importance of this disease, several management approaches have been performed to control net blotch. One of them is the use of beneficial bacteria colonizing the rhizosphere, collectively referred to as Plant Growth Promoting Rhizobacteria. Several studies have reported the protective role of these bacteria and their metabolites against potential pathogens. Based on the available data, we expose a comprehensive review of Pyrenophora teres including its morphology, interaction with the host plant and means of control.
Collapse
Affiliation(s)
- Aurélie Backes
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| | - Cédric Jacquard
- Unité de Recherche Résistance Induite et Bioprotection des Plantes, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
61
|
Liu H, Li Y, Hu Y, Yang Y, Zhang W, He M, Li X, Zhang C, Kong F, Liu X, Hou X. EDS1-interacting J protein 1 is an essential negative regulator of plant innate immunity in Arabidopsis. THE PLANT CELL 2021; 33:153-171. [PMID: 33751092 PMCID: PMC8136891 DOI: 10.1093/plcell/koaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/23/2020] [Indexed: 05/13/2023]
Abstract
Plants have evolved precise mechanisms to optimize immune responses against pathogens. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) plays a vital role in plant innate immunity by regulating basal resistance and effector-triggered immunity. Nucleocytoplasmic trafficking of EDS1 is required for resistance reinforcement, but the molecular mechanism remains elusive. Here, we show that EDS1-INTERACTING J PROTEIN1 (EIJ1), which acts as a DnaJ protein-like chaperone in response to pathogen infection, functions as an essential negative regulator of plant immunity by interacting with EDS1. The loss-of-function mutation of EIJ1 did not affect plant growth but significantly enhanced pathogen resistance. Upon pathogen infection, EIJ1 relocalized from the chloroplast to the cytoplasm, where it interacted with EDS1, thereby restricting pathogen-triggered trafficking of EDS1 to the nucleus and compromising resistance at an early infection stage. During disease development, EIJ1 was gradually degraded, allowing the nuclear accumulation of EDS1 for transcriptional resistance reinforcement. The avirulent strain Pst DC3000 (AvrRps4) abolished the repressive action of EIJ1 by rapidly inducing its degradation in the effector-triggered immunity response. Thus, our findings show that EIJ1 is an essential EDS1-dependent negative regulator of innate plant immunity and provide a mechanistic understanding of how the nuclear versus cytoplasmic distribution of EDS1 is regulated during the immune response.
Collapse
Affiliation(s)
- Hailun Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yilong Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenbin Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Author for communication:
| |
Collapse
|
62
|
Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O 2 and mitochondrial cytochrome-c release. JOURNAL OF PLANT RESEARCH 2021; 134:179-194. [PMID: 33569718 DOI: 10.1007/s10265-021-01259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The programmed cell death (PCD) occurs when the targeted cells have fulfilled their task or under conditions as oxidative stress generated by ROS species. Thus, plants have to deal with the singlet oxygen 1O2 produced in chloroplasts. 1O2 is unlikely to act as a primary retrograde signal owing to its high reactivity and short half-life. In addition to its high toxicity, the 1O2 generated under an excess or low excitation energy might also act as a highly versatile signal triggering chloroplast-to-nucleus retrograde signaling (ChNRS) and nuclear reprogramming or cell death. Molecular and biochemical studies with the flu mutant, which accumulates protochlorophyllide in the dark, demonstrated that chloroplastic 1O2-driven EXECUTER-1 (EX1) and EX2 proteins are involved in the 1O2-dependent response. Both EX1 and EX2 are necessary for full suppression of 1O2-induced gene expression. That is, EXECUTER proteolysis via the ATP-dependent zinc protease (FtsH) is an integral part of 1O2-triggered retrograde signaling. The existence of at least two independent ChNRS involving EX1 and β-cyclocitral, and dihydroactinidiolide and OXI1, respectively, seem clear. Besides, this update also focuses on plant PCD and its relation with mitochondrial cytochrome-c (Cytc) release to cytosol. Changes in the dynamics and morphology of mitochondria were shown during the onset of cell death. The mitochondrial damage and translocation of Cytc may be one of the major causes of PCD triggering. Together, this current overview illustrates the complexity of the cellular response to oxidative stress development. A puzzle with the majority of its pieces still not placed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago de Compostela (USC), Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
63
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
64
|
Belov AA, Witte TE, Overy DP, Smith ML. Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in Cryphonectria parasitica. G3-GENES GENOMES GENETICS 2021; 11:6025178. [PMID: 33561228 PMCID: PMC7849911 DOI: 10.1093/g3journal/jkaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023]
Abstract
The underlying molecular mechanisms of programmed cell death associated with fungal allorecognition, a form of innate immunity, remain largely unknown. In this study, transcriptome analysis was used to infer mechanisms activated during barrage formation in vic3-incompatible strains of Cryphonectria parasitica, the chestnut blight fungus. Pronounced differential expression occurred in barraging strains of genes involved in mating pheromone (mf2-1, mf2-2), secondary metabolite production, detoxification (including oxidative stress), apoptosis-related, RNA interference, and HET-domain genes. Evidence for secondary metabolite production and reactive oxygen species (ROS) accumulation is supported through UPLC-HRMS analysis and cytological staining, respectively. Differential expression of mating-related genes and HET-domain genes was further examined by RT-qPCR of incompatible interactions involving each of the six vegetative incompatibility (vic) loci in C. parasitica and revealed distinct recognition process networks. We infer that vegetative incompatibility in C. parasitica activates defence reactions that involve secondary metabolism, resulting in increased toxicity of the extra- and intracellular environment. Accumulation of ROS (and other potential toxins) may result in detoxification failure and activation of apoptosis, sporulation, and the expression of associated pheromone genes. The incompatible reaction leaves abundant traces of a process-specific metabolome as conidiation is initiated.
Collapse
Affiliation(s)
- Anatoly A Belov
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas E Witte
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa, ON, K1Y 4X2, Canada
| | - Myron L Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
65
|
Falak N, Imran QM, Hussain A, Yun BW. Transcription Factors as the "Blitzkrieg" of Plant Defense: A Pragmatic View of Nitric Oxide's Role in Gene Regulation. Int J Mol Sci 2021; 22:E522. [PMID: 33430258 PMCID: PMC7825681 DOI: 10.3390/ijms22020522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.
Collapse
Affiliation(s)
- Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
- Department of Medical Biochemistry and Biophysics, Umea University, 90187 Umea, Sweden
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| |
Collapse
|
66
|
Li J, Zhang Y, Wang P, Yu L, An J, Deng G, Sun Y, Seung Kim J. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
67
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
68
|
Chua A, Sherwood OL, Fitzhenry L, Ng CKY, McCabe PF, Daly CT. Cyanobacteria-Derived Proline Increases Stress Tolerance in Arabidopsis thaliana Root Hairs by Suppressing Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2020; 11:490075. [PMID: 33381127 PMCID: PMC7768022 DOI: 10.3389/fpls.2020.490075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2020] [Indexed: 05/31/2023]
Abstract
Nitrogen-fixing heterocystous cyanobacteria are used as biofertilizer inoculants for stimulating plant growth but can also alleviate plant stress by exometabolite secretion. However, only a small number of studies have focused on elucidating the identity of said bioactives because of the wide array of exuded compounds. Here, we used the root hair assay (RHA) as a rapid programmed cell death (PCD) screening tool for characterizing the bioactivity of cyanobacteria Nostoc muscorum conditioned medium (CM) on Arabidopsis thaliana root hair stress tolerance. We found that heat-stressed A. thaliana pre-treated with N. muscorum CM fractions exhibited significantly lower root hair PCD levels compared to untreated seedlings. Treatment with CM increased stress tolerance by suppressing PCD in root hairs but not necrosis, indicating the bioactive compound was specifically modulating the PCD pathway and not a general stress response. Based on documented N. muscorum exometabolites, we identified the stress-responsive proline as a compound of interest and strong evidence from the ninhydrin assay and HPLC indicate that proline is present in N. muscorum CM. To establish whether proline was capable of suppressing PCD, we conducted proline supplementation experiments. Our results showed that exogenous proline had a similar effect on root hairs as N. muscorum CM treatment, with comparable PCD suppression levels and insignificant necrosis changes. To verify proline as one of the biologically active compounds in N. muscorum CM, we used three mutant A. thaliana lines with proline transporter mutations (lht1, aap1 and atprot1-1::atprot2-3::atprot3-2). Compared with the wild-type seedlings, PCD-suppression in lht1and aap1 mutants was significantly reduced when supplied with low proline (1-5 μM) levels. Similarly, pre-treatment with N. muscorum CM resulted in elevated PCD levels in all three mutant lines compared to wild-type seedlings. Our results show that plant uptake of cyanobacteria-derived proline alters their root hair PCD sensitivity threshold. This offers evidence of a novel biofertilizer mechanism for reducing stress-induced PCD levels, independent of the existing mechanisms documented in the literature.
Collapse
Affiliation(s)
- Alysha Chua
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
- Eco-Innovation Research Centre (EIRC), Waterford Institute of Technology, Waterford, Ireland
| | - Orla L. Sherwood
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Laurence Fitzhenry
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| | - Carl K.-Y. Ng
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Dublin, Ireland
| | - Cara T. Daly
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
- Eco-Innovation Research Centre (EIRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
69
|
Bernacki MJ, Czarnocka W, Zaborowska M, Różańska E, Labudda M, Rusaczonek A, Witoń D, Karpiński S. EDS1-Dependent Cell Death and the Antioxidant System in Arabidopsis Leaves is Deregulated by the Mammalian Bax. Cells 2020; 9:cells9112454. [PMID: 33182774 PMCID: PMC7698216 DOI: 10.3390/cells9112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death is the ultimate end of a cell cycle that occurs in all living organisms during development or responses to biotic and abiotic stresses. In the course of evolution, plants and animals evolve various molecular mechanisms to regulate cell death; however, some of them are conserved among both these kingdoms. It was found that mammalian proapoptotic BCL-2 associated X (Bax) protein, when expressed in plants, induces cell death, similar to hypersensitive response (HR). It was also shown that changes in the expression level of genes encoding proteins involved in stress response or oxidative status regulation mitigate Bax-induced plant cell death. In our study, we focused on the evolutional compatibility of animal and plant cell death molecular mechanisms. Therefore, we studied the deregulation of reactive oxygen species burst and HR-like propagation in Arabidopsis thaliana expressing mammalian Bax. We were able to diminish Bax-induced oxidative stress and HR progression through the genetic cross with plants mutated in ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), which is a plant-positive HR regulator. Plants expressing the mouse Bax gene in eds1-1 null mutant background demonstrated less pronounced cell death and exhibited higher antioxidant system efficiency compared to Bax-expressing plants. Moreover, eds1/Bax plants did not show HR marker genes induction, as in the case of the Bax-expressing line. The present study indicates some common molecular features between animal and plant cell death regulation and can be useful to better understand the evolution of cell death mechanisms in plants and animals.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Institute of Technology and Life Sciences, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Magdalena Zaborowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Correspondence:
| |
Collapse
|
70
|
Luo S, Tang Z, Yu J, Liao W, Xie J, Lv J, Feng Z, Dawuda MM. Hydrogen sulfide negatively regulates cd-induced cell death in cucumber (Cucumis sativus L) root tip cells. BMC PLANT BIOLOGY 2020; 20:480. [PMID: 33087071 PMCID: PMC7579943 DOI: 10.1186/s12870-020-02687-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/07/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a gas signal molecule involved in regulating plants tolerance to heavy metals stress. In this study, we investigated the role of H2S in cadmium-(Cd-) induced cell death of root tips of cucumber seedlings. RESULTS The results showed that the application of 200 μM Cd caused cell death, increased the content of reactive oxygen species (ROS), chromatin condensation, the release of Cytochrome c (Cyt c) from mitochondria and activated caspase-3-like protease. Pretreatment of seedlings with 100 μM sodium hydrogen sulfide (NaHS, a H2S donor) effectively alleviated the growth inhibition and reduced cell death of root tips caused by Cd stress. Additionally, NaHS + Cd treatment could decrease the ROS level and enhanced antioxidant enzyme activity. Pretreatment with NaHS also inhibited the release of Cyt c from the mitochondria, the opening of the mitochondrial permeability transition pore (MPTP), and the activity of caspase-3-like protease in the root tips of cucumber seedling under Cd stress. CONCLUSION H2S inhibited Cd-induced cell death in cucumber root tips by reducing ROS accumulation, activating the antioxidant system, inhibiting mitochondrial Cyt c release and reducing the opening of the MPTP. The results suggest that H2S is a negative regulator of Cd-induced cell death in the root tips of cucumber seedling.
Collapse
Affiliation(s)
- Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
- Horticulture Department, FoA University For Development Studies, Box TL, 1350 Tamale, Ghana
| |
Collapse
|
71
|
Valandro F, Menguer PK, Cabreira-Cagliari C, Margis-Pinheiro M, Cagliari A. Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110603. [PMID: 32900441 DOI: 10.1016/j.plantsci.2020.110603] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD) is a genetically controlled process that leads to cell suicide in both eukaryotic and prokaryotic organisms. In plants PCD occurs during development, defence response and when exposed to adverse conditions. PCD acts controlling the number of cells by eliminating damaged, old, or unnecessary cells to maintain cellular homeostasis. Unlike in animals, the knowledge about PCD in plants is limited. The molecular network that controls plant PCD is poorly understood. Here we present a review of the current mechanisms involved with the genetic control of PCD in plants. We also present an updated version of the AtLSD1 deathosome, which was previously proposed as a network controlling HR-mediated cell death in Arabidopsis thaliana. Finally, we discuss the unclear points and open questions related to the AtLSD1 deathosome.
Collapse
Affiliation(s)
- Fernanda Valandro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Paloma Koprovski Menguer
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | | | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - Alexandro Cagliari
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, RS, Brazil; Universidade Estadual do Rio Grande do Sul (UERGS), RS, Brazil.
| |
Collapse
|
72
|
Brown AJ, Newhouse AE, Powell WA, Parry D. Comparative efficacy of gypsy moth (Lepidoptera: Erebidae) entomopathogens on transgenic blight-tolerant and wild-type American, Chinese, and hybrid chestnuts (Fagales: Fagaceae). INSECT SCIENCE 2020; 27:1067-1078. [PMID: 31339228 DOI: 10.1111/1744-7917.12713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
American chestnut (Castanea dentata [Marsh.] Borkh.) was once the dominant hardwood species in Eastern North America before an exotic fungal pathogen, Cryphonectria parasitica (Murrill) Barr, functionally eliminated it across its range. One promising approach toward restoring American chestnut to natural forests is development of blight-tolerant trees using genetic transformation. However, transformation and related processes can result in unexpected and unintended phenotypic changes, potentially altering ecological interactions. To assess unintended tritrophic impacts of transgenic American chestnut on plant-herbivore interactions, gypsy moth (Lymantria dispar L.) caterpillars were fed leaf disks excised from two transgenic events, Darling 54 and Darling 58, and four control American chestnut lines. Leaf disks were previously treated with an LD50 dose of either the species-specific Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) or the generalist pathogen Bacillus thuringiensis subsp. kurstaki (Btk). Mortality was quantified and compared to water blank controls. Tree genotype had a strong effect on the efficacies of both pathogens. Larval mortality from Btk-treated foliage from only one transgenic event, Darling 54, differed from its isogenic progenitor, Ellis 1, but was similar to an unrelated wild-type American chestnut control. LdMNPV efficacy was unaffected by genetic transformation. Results suggest that although genetic modification of trees may affect interactions with other nontarget organisms, this may be due to insertion effects, and variation among different genotypes (whether transgenic or wild-type) imparts a greater change in response than transgene presence.
Collapse
Affiliation(s)
- Aaron J Brown
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Andrew E Newhouse
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - William A Powell
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Dylan Parry
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| |
Collapse
|
73
|
Zhang X, D’Arcy R, Chen L, Xu M, Ming D, Menon C. The Feasibility of Longitudinal Upper Extremity Motor Function Assessment Using EEG. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5487. [PMID: 32992698 PMCID: PMC7582505 DOI: 10.3390/s20195487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Motor function assessment is crucial in quantifying motor recovery following stroke. In the rehabilitation field, motor function is usually assessed using questionnaire-based assessments, which are not completely objective and require prior training for the examiners. Some research groups have reported that electroencephalography (EEG) data have the potential to be a good indicator of motor function. However, those motor function scores based on EEG data were not evaluated in a longitudinal paradigm. The ability of the motor function scores from EEG data to track the motor function changes in long-term clinical applications is still unclear. In order to investigate the feasibility of using EEG to score motor function in a longitudinal paradigm, a convolutional neural network (CNN) EEG model and a residual neural network (ResNet) EEG model were previously generated to translate EEG data into motor function scores. To validate applications in monitoring rehabilitation following stroke, the pre-established models were evaluated using an initial small sample of individuals in an active 14-week rehabilitation program. Longitudinal performances of CNN and ResNet were evaluated through comparison with standard Fugl-Meyer Assessment (FMA) scores of upper extremity collected in the assessment sessions. The results showed good accuracy and robustness with both proposed networks (average difference: 1.22 points for CNN, 1.03 points for ResNet), providing preliminary evidence for the proposed method in objective evaluation of motor function of upper extremity in long-term clinical applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (X.Z.); (M.X.)
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC V5A 1S6, Canada;
| | - Ryan D’Arcy
- Schools of Engineering Science and Computer Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
| | - Minpeng Xu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (X.Z.); (M.X.)
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (X.Z.); (M.X.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- Tianjin International Joint Research Center for Neural Engineering, Tianjin 300072, China
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC V5A 1S6, Canada;
| |
Collapse
|
74
|
Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Sriram S. Induction of Ced9 mediated anti-apoptosis in commercial banana cultivar Rasthali for stable resistance against Fusarium wilt. 3 Biotech 2020; 10:371. [PMID: 32832331 DOI: 10.1007/s13205-020-02357-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
Anti-apoptotic gene Ced-9 enhanced resistance against Fusarium oxysporum f. sp. cubense (Foc) in the susceptible banana cultivar Rasthali by arresting tissue necrosis. The embryogenic cell suspension of banana cultivar Rasthali was stably transformed with Ced-9 gene and transformed lines were regenerated independently. The putative transgenic lines were analyzed with PCR using gene primers and further subjected to Southern blot to estimate copy number. The root-challenge bioassay with Foc showed 17-51% Vascular Discoloration Index in independent transformants compared to untransformed banana cv Rasthali (98% VDI). Four transgenic events showed a higher level of resistance over a period of 6 months. Overcoming tissue necrosis is the most ideal method to avoid Fusarium multiplication and spread in banana. Oxidative stress-induced cell necrosis is prevented by the activation of antiapoptotic pathways by Ced-9 and is proving to be an effective method to control this dreaded disease. This is the first report from India on the generation of transgenic banana cultivar Rasthali expressing antiapoptotic Ced-9 gene for resistance to Fusarium wilt.
Collapse
Affiliation(s)
- C Sunisha
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
- Department of Biotechnology and Biochemistry, Centre for Postgraduate Studies, Jain University, Bangalore, India
| | - H D Sowmya
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - T R Usharani
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - M Umesha
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - H R Gopalkrishna
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| | - S Sriram
- Division of Biotechnology, ICAR-Indian Institute of Horticultural Research, Hessaraghatta, Bangalore, 560 089 India
| |
Collapse
|
75
|
Zavafer A, González-Solís A, Palacios-Bahena S, Saucedo-García M, Tapia de Aquino C, Vázquez-Santana S, King-Díaz B, Gavilanes-Ruiz M. Organized Disassembly of Photosynthesis During Programmed Cell Death Mediated By Long Chain Bases. Sci Rep 2020; 10:10360. [PMID: 32587330 PMCID: PMC7316715 DOI: 10.1038/s41598-020-65186-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
In plants, pathogen triggered programmed cell death (PCD) is frequently mediated by polar lipid molecules referred as long chain bases (LCBs) or ceramides. PCD interceded by LCBs is a well-organized process where several cell organelles play important roles. In fact, light-dependent reactions in the chloroplast have been proposed as major players during PCD, however, the functional aspects of the chloroplast during PCD are largely unknown. For this reason, we investigated events that lead to disassembly of the chloroplast during PCD mediated by LCBs. To do so, LCB elevation was induced with Pseudomonas syringae pv. tomato (a non-host pathogen) or Fumonisin B1 in Phaseolus vulgaris. Then, we performed biochemical tests to detect PCD triggering events (phytosphingosine rises, MPK activation and H2O2 generation) followed by chloroplast structural and functional tests. Observations of the chloroplast, via optical phenotyping methods combined with microscopy, indicated that the loss of photosynthetic linear electron transport coincides with the organized ultrastructure disassembly. In addition, structural changes occurred in parallel with accumulation of H2O2 inside the chloroplast. These features revealed the collapse of chloroplast integrity and function as a mechanism leading to the irreversible execution of the PCD promoted by LCBs.
Collapse
Affiliation(s)
- Alonso Zavafer
- Climate Change Cluster, University of Technology Sydney, Faculty of Science Building 4, Level 6 Corner of Thomas and, Harris St, Ultimo NSW 2007, Sydney, Australia
| | - Ariadna González-Solís
- Dpto. de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, 04510, Ciudad de México, México
| | - Silvia Palacios-Bahena
- Dpto. de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, 04510, Ciudad de México, México
| | - Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
| | - Cinthya Tapia de Aquino
- Dpto. de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, 04510, Ciudad de México, México
| | - Sonia Vázquez-Santana
- Dpto. de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, 04510, Ciudad de México, México
| | - Beatriz King-Díaz
- Dpto. de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, 04510, Ciudad de México, México
| | - Marina Gavilanes-Ruiz
- Dpto. de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México (UNAM). Ciudad Universitaria, 04510, Ciudad de México, México.
| |
Collapse
|
76
|
Lacchini E, Goossens A. Combinatorial Control of Plant Specialized Metabolism: Mechanisms, Functions, and Consequences. Annu Rev Cell Dev Biol 2020; 36:291-313. [PMID: 32559387 DOI: 10.1146/annurev-cellbio-011620-031429] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.
Collapse
Affiliation(s)
- Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; , .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
77
|
Ni J, Li J, Zhu R, Zhang M, Qi K, Zhang S, Wu J. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves. Gene 2020; 743:144582. [PMID: 32173543 DOI: 10.1016/j.gene.2020.144582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 11/19/2022]
Abstract
As the main energy source for generating ATP during plant growth and development, sugars are synthesized in leaves, while sugar allocation depends on both intracellular transport between different organelles and source-to-sink transport. However, sugar transport related research is limited in pear. Here, a sugar transporter PbSWEET4 was identified that control sugar content and senescence in leaf. Phylogenetic analysis and multiple sequence alignment results indicated that PbSWEET4 was homologous to AtSWEET15, which contained two conserved domains and could promote senescence. The qRT-PCR and transcriptome database result showed that the expression of PbSWEET4 was positively correlated with leaf development, especially highly expressed in older leaves. Furthermore, the evaluation of promoter-GUS activity also indicated that PbSWEET4 exhibited the highest expression level in older leaves. The subcellular localization revealed that the PbSWEET4 localized in the plasma membrane. Finally, overexpression of the PbSWEET4 in strawberry plants could reduce leaf sugar content and chlorophyll content, while accelerate leaf senescence, which might be due to enhanced export of sugars from leaves. These results enrich the knowledge about the function of sugar exporter in regulating the fruit species development, and provide a novel genetic resource for future improvement in carbohydrate partitioning for pear and other fruit trees.
Collapse
Affiliation(s)
- Jiangping Ni
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongxiang Zhu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
78
|
Fleming MK, Smejka T, Henderson Slater D, van Gils V, Garratt E, Yilmaz Kara E, Johansen-Berg H. Sleep Disruption After Brain Injury Is Associated With Worse Motor Outcomes and Slower Functional Recovery. Neurorehabil Neural Repair 2020; 34:661-671. [PMID: 32508249 PMCID: PMC7327954 DOI: 10.1177/1545968320929669] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background. Sleep is important for consolidation of motor
learning, but brain injury may affect sleep continuity and therefore
rehabilitation outcomes. Objective. This study aims to assess
the relationship between sleep quality and motor recovery in brain injury
patients receiving inpatient rehabilitation. Methods.
Fifty-nine patients with brain injury were recruited from 2 specialist inpatient
rehabilitation units. Sleep quality was assessed (up to 3 times) objectively
using actigraphy (7 nights) and subjectively using the Sleep Condition
Indicator. Motor outcome assessments included Action Research Arm test (upper
limb function), Fugl-Meyer Assessment (motor impairment), and the Rivermead
Mobility Index. The Functional Independence Measure (FIM) was assessed at
admission and discharge by the clinical team. Fifty-five age- and gender-matched
healthy controls completed one assessment. Results. Inpatients
demonstrated lower self-reported sleep quality (P < .001)
and more fragmented sleep (P < .001) than controls. For
inpatients, sleep fragmentation explained significant additional variance in
motor outcomes, over and above that explained by admission FIM score
(P < .017), such that more disrupted sleep was
associated with poorer motor outcomes. Using stepwise linear regression, sleep
fragmentation was the only variable found to explain variance in rate of change
in FIM (R2adj = 0.12, P
= .027), whereby more disrupted sleep was associated with slower recovery.
Conclusions. Inpatients with brain injury demonstrate
impaired sleep quality, and this is associated with poorer motor outcomes and
slower functional recovery. Further investigation is needed to determine how
sleep quality can be improved and whether this affects outcome.
Collapse
Affiliation(s)
- Melanie K Fleming
- University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Oxford Health NHS Foundation Trust, Oxford, UK
| | - Tom Smejka
- University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Henderson Slater
- University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Veerle van Gils
- University of Oxford, Oxford, UK.,Maastricht University, Maastricht, The Netherlands
| | | | - Ece Yilmaz Kara
- University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
79
|
Kai J, Yang X, Wang Z, Wang F, Jia Y, Wang S, Tan S, Chen A, Shao J, Zhang F, Zhang Z, Zheng S. Oroxylin a promotes PGC-1α/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease. Free Radic Biol Med 2020; 153:89-102. [PMID: 32289481 DOI: 10.1016/j.freeradbiomed.2020.03.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is well acknowledged that alcoholic liver disease (ALD) is widely prevalent all over the world, characterized by aberrant lipid deposition and excessive oxidative stress in hepatocytes. Recently, pyroptosis, a new type of programmed cell death, has been found in ALD, which provides new ideas for the treatment of ALD. METHODS Male ICR mice were treated with the Lieber-De-Carli diet (Dyets) or isocaloric liquid diet for 8 weeks, and binge alcohol model was also used for ALD. Blood and livers were taken to evaluate the efficacy of oroxylin A. The levels of factors related to hepatocyte pyroptosis were measured via western blot analyses, immunofluorescence analyses and quantitative reverse transcriptase in vitro. RESULT Our study found that oroxylin A suppressed hepatocyte pyroptosis through a NLRP3 inflammasome dependent-canonical caspase-1 pathway. Results illuminated that oroxylin A inhibited NLRP3 inflammasome activation by reducing ROS accumulation. Furthermore, oroxylin A upregulated mitofusin 2 (Mfn2) to resist lipid deposition and mitochondria-derived ROS overproduction. As an upstream mediator of Mfn2, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a major regulator of mitochondria, was found to promote transcription of Mfn2 under oroxylin A treatment. CONCLUSION Our research revealed that oroxylin A could alleviate ALD via PGC-1α/Mfn2 signaling mediated canonical pyroptosis pathway resistance.
Collapse
Affiliation(s)
- Jun Kai
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhimin Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250035, China
| | - Shanzhong Tan
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, MO, 63104, USA
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
80
|
Zhang M, Li W, Feng J, Gong Z, Yao Y, Zheng C. Integrative transcriptomics and proteomics analysis constructs a new molecular model for ovule abortion in the female-sterile line of Pinus tabuliformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110462. [PMID: 32234230 DOI: 10.1016/j.plantsci.2020.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Ovule development is critical to plant reproduction and free nuclear mitosis of megagametophyte (FNMM) is vital for ovule development. However, most results of ovule development were based on the studies in angiosperms, and its molecular regulation remained largely unknown in gymnosperms, particularly, during FNMM. In this context, we studied the genome-wide difference between sterile line (SL) and fertile line (FL) ovules using transcriptomics and proteomics approaches in Pinus tabuliformis Carr. Comparative analyses revealed that genes involved in DNA replication, DNA damage repair, Cell cycle, Apoptosis and Energy metabolism were highlighted. Further results showed the low expressions of MCM 2-7, RRM1, etc. perhaps led to abnormal DNA replication and damage repair, and the significantly different expressions of PARP2, CCs1, CCs3, etc. implied that the accumulated DNA double-stranded breaks were failed to be repaired and the cell cycle was arrested at G2/M in SL ovules, potentially resulting in the occurrence of apoptosis. Moreover, the deficiency of ETF-QO might hinder FNMM. Consequently, FNMM stopped and ovule aborted in SL ovules. Our results suggested a selective regulatory mechanism led to FNMM half-stop and ovule abortion in P. tabuliformis and these insights could be exploited to investigate the molecular regulations of ovule development in woody gymnosperms.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Wenhai Li
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Jun Feng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China.
| |
Collapse
|
81
|
Zhao Y, Yu H, Zhou JM, Smith SM, Li J. Malate Circulation: Linking Chloroplast Metabolism to Mitochondrial ROS. TRENDS IN PLANT SCIENCE 2020; 25:446-454. [PMID: 32304657 DOI: 10.1016/j.tplants.2020.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 05/02/2023]
Abstract
In photosynthetic cells, chloroplasts and mitochondria are the sites of the core redox reactions underpinning energy metabolism. Such reactions generate reactive oxygen species (ROS) when oxygen is partially reduced. ROS signaling leads to responses by cells which enable them to adjust to changes in redox status. Recent studies in Arabidopsis thaliana reveal that chloroplast NADH can be used to generate malate which is exported to the mitochondrion where its oxidation regenerates NADH. Oxidation of this NADH produces mitochondrial ROS (mROS) which can activate signaling systems to modulate energy metabolism, and in certain cases can lead to programmed cell death (PCD). We propose the term 'malate circulation' to describe such redistribution of reducing equivalents to mediate energy homeostasis in the cell.
Collapse
Affiliation(s)
- Yannan Zhao
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
82
|
Liu J, Wang X, Yang L, Nan W, Ruan M, Bi Y. Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus. PROTOPLASMA 2020; 257:965-977. [PMID: 32008084 DOI: 10.1007/s00709-020-01483-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Mitogen-activated protein kinase kinase 9 (MKK9) is an upstream activator of mitogen-activated protein kinase 3 (MAPK3) and MAPK6 in planta. To investigate MKK9 roles in mitochondrial respiration in Arabidopsis, MKK9DD, the active allele with mutations of Thr-201 and Ser-205 to Asp, and MKK9KR, the allele lacking MKK9 activity with a mutation of Lys-76 to Arg, were used. Results showed that the total respiratory rate (Vt), alternative pathway capacity (Valt) and cytochrome pathway capacity (Vcyt) increased under 0-100 mM NaCl treatments but decreased under 150-300 mM NaCl treatments in Col-0 callus. However, the activation of MKK9 by dexamethasone (DEX) increased Vt, Valt and Vcyt under 200 mM NaCl treatment; moreover, Valt showed more increase than Vcyt. The activation of MKK9 in MKK9DD callus sharply increased AOX protein expression under normal and NaCl conditions, but the increase was not observed in MKK9KR callus. Further results indicated that MAPK3 and MAPK6 were involved in the MKK9-induced increase of AOX protein levels. qRT-PCR results showed that MKK9-MAPK3/MAPK6 was involved in the NaCl-induced AOX1b and AOX1d expression, but only MKK9-MAPK3 was necessary for AOX2 expression; in addition, MAPK3 regulated the AOX1a transcription in an MKK9-independent manner. MKK9 positively regulated SOD and CAT activities by affecting MAPK3 and MAPK6 and negatively regulated APX and POD activities by affecting MAPK3. Moreover, MKK9 functions as a positive factor in H2O2 accumulation under salt stress. The regulation of ethylene on alternative respiration was also associated with MKK9 under salt stress. Taken together, the MKK9-MAPK3/MAPK6 pathway plays a pivotal role in increasing alternative respiration in the salt-treated Arabidopsis callus.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Lei Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenbin Nan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Mengjiao Ruan
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
83
|
Zhang N, Yang J, Fang A, Wang J, Li D, Li Y, Wang S, Cui F, Yu J, Liu Y, Peng Y, Sun W. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region. MOLECULAR PLANT PATHOLOGY 2020; 21:445-459. [PMID: 32087618 PMCID: PMC7060142 DOI: 10.1111/mpp.12894] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important 'cysteine-proline-alanine-arginine-serine' motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Jiyun Yang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Anfei Fang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Jiyang Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchun130118China
| | - Yuejiao Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Shanzhi Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Junjie Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu210014China
| | - Yongfeng Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu210014China
| | - You‐Liang Peng
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Agricultural BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Wenxian Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
- College of Plant ProtectionJilin Agricultural UniversityChangchun130118China
| |
Collapse
|
84
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
85
|
Mei Y, Ma Z, Wang Y, Zhou X. Geminivirus C4 antagonizes the HIR1-mediated hypersensitive response by inhibiting the HIR1 self-interaction and promoting degradation of the protein. THE NEW PHYTOLOGIST 2020; 225:1311-1326. [PMID: 31537050 DOI: 10.1111/nph.16208] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/13/2019] [Indexed: 05/13/2023]
Abstract
Tomato leaf curl Yunnan virus (TLCYnV)-encoded C4 protein induces the upregulation of the hypersensitive induced reaction 1 (HIR1) gene but interferes with the HIR1-mediated hypersensitive response (HR). HIR1 self-interaction is essential for the HIR1-induced HR. TLCYnV C4 impairs the HIR1 self-interaction and concomitantly increases the amount of Leucine-Rich Repeat protein 1 (LRR1), a modulator of HIR1, which binds to HIR1. LRR1 promotes the degradation of HIR1, compromising the HIR1-mediated HR. This study provides new insights into the mechanisms employed by a viral protein to counter host resistance through the cooption of the host regulatory system.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
86
|
Bertea CM, Casacci LP, Bonelli S, Zampollo A, Barbero F. Chemical, Physiological and Molecular Responses of Host Plants to Lepidopteran Egg-Laying. FRONTIERS IN PLANT SCIENCE 2020; 10:1768. [PMID: 32082339 PMCID: PMC7002387 DOI: 10.3389/fpls.2019.01768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Plant-lepidopteran interactions involve complex processes encompassing molecules and regulators to counteract defense responses they develop against each other. Lepidoptera identify plants for oviposition and exploit them as larval food sources to complete their development. In turn, plants adopt different strategies to overcome and limit herbivorous damages. The insect egg deposition on leaves can already induce a number of defense responses in several plant species. This minireview deals with the main features involved in the interaction between plants and lepidopteran egg-laying, focusing on responses from both insect and plant side. We discuss different aspects of direct and indirect plant responses triggered by lepidopteran oviposition. In particular, we focus our attention on the mechanisms underlying egg-induced plant defenses that can i) directly damage the eggs such as localized hypersensitive response (HR)-like necrosis, neoplasm formation, production of ovicidal compounds and ii) indirect defenses, such as production of oviposition-induced plant volatiles (OIPVs) used to attract natural enemies (parasitoids) able to kill the eggs or hatching larvae. We provide an overview of chemical, physiological, and molecular egg-mediated plant responses induced by both specialist and generalist lepidopteran species, also dealing with effectors, elicitors, and chemical signals involved in the process. Egg-associated microorganisms are also discussed, although little is known about this third partner participating in plant-lepidopteran interactions.
Collapse
Affiliation(s)
- Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Luca Pietro Casacci
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Simona Bonelli
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Arianna Zampollo
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| | - Francesca Barbero
- Zoolab, Department of Life Sciences and Systems Biology, Turin University, Turin, Italy
| |
Collapse
|
87
|
Su W, Huang L, Ling H, Mao H, Huang N, Su Y, Ren Y, Wang D, Xu L, Muhammad K, Que Y. Sugarcane calcineurin B-like (CBL) genes play important but versatile roles in regulation of responses to biotic and abiotic stresses. Sci Rep 2020; 10:167. [PMID: 31932662 PMCID: PMC6957512 DOI: 10.1038/s41598-019-57058-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/21/2019] [Indexed: 11/09/2022] Open
Abstract
Free calcium ions are common second messengers in plant cells. The calcineurin B-like protein (CBL) is a special calcium sensor that plays an important role in plant growth and stress response. In this study, we obtained three CBL genes (GenBank accession nos. KX013374, KX013375, and KX013376) from sugarcane variety ROC22. The open reading frames of ScCBL genes ranged from 642 to 678 base pairs in length and encoded polypeptides from 213 to 225 amino acids in length. ScCBL2-1, ScCBL3-1, and ScCBL4 were all located in the plasma membrane and cytoplasm. ScCBL2-1 and ScCBL3-1 expression was up-regulated by treatment with salicylic acid (SA), methyl jasmonate (MeJA), hydrogen peroxide (H2O2), polyethylene glycol (PEG), sodium chloride (NaCl), or copper chloride (CuCl2). ScCBL4 expression was down-regulated in response to all of these stresses (abscisic acid (ABA), SA, MeJA, and NaCl) except for H2O2, calcium chloride (CaCl2), PEG, and CuCl2. Expression in Escherichia coli BL21 cells showed that ScCBLs can enhance tolerance to NaCl or copper stress. Overexpression of ScCBLs in Nicotiana benthamiana leaves promoted their resistance to infection with the tobacco pathogen Ralstonia solanacearum. The results from the present study facilitate further research regarding ScCBL genes, and in particular, their roles in the response to various stresses in sugarcane.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaying Mao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
88
|
Tian A, Miyashita S, Ando S, Takahashi H. Single Amino Acid Substitutions in the Cucumber Mosaic Virus 1a Protein Induce Necrotic Cell Death in Virus-Inoculated Leaves without Affecting Virus Multiplication. Viruses 2020; 12:v12010091. [PMID: 31941092 PMCID: PMC7019621 DOI: 10.3390/v12010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
When Arabidopsis thaliana ecotype Col-0 was inoculated with a series of reassortant viruses created by exchanging viral genomic RNAs between two strains of cucumber mosaic virus (CMV), CMV(Y), and CMV(H), cell death developed in the leaves inoculated with reassortant CMV carrying CMV(H) RNA1 encoding 1a protein, but not in noninoculated upper leaves. In general, cell death in virus-infected plants is a critical event for virus survival because virus multiplication is completely dependent on host cell metabolism. However, interestingly, this observed cell death did not affect either virus multiplication in the inoculated leaves or systemic spread to noninoculated upper leaves. Furthermore, the global gene expression pattern of the reassortant CMV-inoculated leaves undergoing cell death was clearly different from that in hypersensitive response (HR) cell death, which is coupled with resistance to CMV. These results indicated that the observed cell death does not appear to be HR cell death but rather necrotic cell death unrelated to CMV resistance. Interestingly, induction of this necrotic cell death depended on single amino acid substitutions in the N-terminal region surrounding the methyltransferase domain of the 1a protein. Thus, development of necrotic cell death might not be induced by non-specific damage as a result of virus multiplication, but by a virus protein-associated mechanism. The finding of CMV 1a protein-mediated induction of necrotic cell death in A. thaliana, which is not associated with virus resistance and HR cell death, has the potential to provide a new pathosystem to study the role of cell death in virus–host plant interactions.
Collapse
|
89
|
Godlewski M, Kobylińska A. Bax Inhibitor 1 (BI-1) as a conservative regulator of Programmed Cell Death. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Programmed cell death (PCD) is a physiological process in which infected or unnecessary cells due to their suicidal death capability can be selectively eliminated. Pro- and antiapoptotic proteins play an important role in the induction or inhibition of this process. Presented article shows property of Bax-1 (BI-1) inhibitor which is one of the conservative protein associated with the endoplasmic reticulum (ER) as well as its cytoprotective role in the regulation of cellular processes. It was shown that: 1) BI-1 is a small protein consisting of 237 amino acids (human protein - 36 kDa) and has 6 (in animals) and 7 (in plants) α-helical transmembrane domains, 2) BI-1 is expressed in all organisms and in most tissues, moreover its level depends on the functional condition of cells and it is involved in the development or reaction to biotic and abiotic stresses, 3) BI-1 forms a pH-dependent Ca2+ channel enabling release of these ions from the ER, 4) cytoprotective effects of BI-1 requires a whole, unchanged C-terminus, 5) BI-1 can interact directly with numerous other proteins, BI-1 protein affects numerous cellular processes, including: counteracting ER stress, oxidative stress, loss of cellular Ca2+ homeostasis as well as this protein influences on sphingolipid metabolism, autophagy, actin polymerization, lysosomal activity and cell proliferation. Studies of BI-1 functions will allow understanding the mechanisms of anticancer therapy or increases the knowledge of crop tolerance to environmental stresses.
Collapse
Affiliation(s)
- Mirosław Godlewski
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Agnieszka Kobylińska
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
90
|
Ban YW, Roy NS, Yang H, Choi HK, Kim JH, Babu P, Ha KS, Ham JK, Park KC, Choi IY. Comparative transcriptome analysis reveals higher expression of stress and defense responsive genes in dwarf soybeans obtained from the crossing of G. max and G. soja. Genes Genomics 2019; 41:1315-1327. [PMID: 31363917 DOI: 10.1007/s13258-019-00846-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. Dwarfism in plants prevents lodging and therefore it's a desired trait in crops. OBJECTIVE To find differentially expressed genes to classify and understand the regulation of genes related to plant growth in mutant dwarf soybeans, which appeared in the F5 generation. METHODS We obtained a few segregated dwarf soybeans in the populations derived from the crossing of Glycine max var. Peking and Glycine soja var. IT182936 in an F5 RIL population. These dwarf soybeans may be useful genetic resources for plant breeders, geneticists and biologists. Using the Illumina high-throughput platform, transcriptomes were generated and compared among normal and dwarf soybeans in triplicate. CONCLUSION We found complex relationship of the expressed genes to plant growth. There were highly significantly up-/downregulated genes according to the comparison of gene expression in normal and dwarf soybeans. The genes related to disease and stress responses were found to be upregulated in dwarf soybeans. Such over-expression of disease resistance and other immune response genes can be targeted to understand how the immune genes regulate the response of plant growth. In addition, photosynthesis-related genes showed very low expression in dwarf lines. The transcriptome expression and genes classified as related to plant growth may be useful resources to researchers studying plant growth.
Collapse
Affiliation(s)
- Yong-Wook Ban
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, South Korea
- Department of Forest Environmental System, Kangwon National University, Chuncheon, 24341, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, South Korea
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341, South Korea
| | - Heejung Yang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Hong-Kyu Choi
- Department of Molecular Genetics, Dong-A University, Busan, 49315, South Korea
| | - Jin-Hyun Kim
- Department of Molecular Genetics, Dong-A University, Busan, 49315, South Korea
| | - Prakash Babu
- Department of Forest Environmental System, Kangwon National University, Chuncheon, 24341, South Korea
| | - Keon-Soo Ha
- Gangwondo Agricultural Research and Extension Services, Chuncheon, 24226, South Korea
| | - Jin-Kwan Ham
- Gangwondo Agricultural Research and Extension Services, Chuncheon, 24226, South Korea
| | - Kyong Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, South Korea.
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
91
|
Rienth M, Crovadore J, Ghaffari S, Lefort F. Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis Vinifera) and primes plant immunity mechanisms. PLoS One 2019; 14:e0222854. [PMID: 31560730 PMCID: PMC6764689 DOI: 10.1371/journal.pone.0222854] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/09/2019] [Indexed: 12/30/2022] Open
Abstract
The reduction of synthetic fungicides in agriculture is necessary to guarantee a sustainable production that protects the environment and consumers' health. Downy mildew caused by the oomycete Plasmopara viticola is the major pathogen in viticulture worldwide and responsible for up to 60% of pesticide treatments. Alternatives to reduce fungicides are thus utterly needed to ensure sustainable vineyard-ecosystems, consumer health and public acceptance. Essential oils (EOs) are amongst the most promising natural plant protection alternatives and have shown their antibacterial, antiviral and antifungal properties on several agricultural crops. However, the efficiency of EOs highly depends on timing, application method and the molecular interactions between the host, the pathogen and EO. Despite proven EO efficiency, the underlying processes are still not understood and remain a black box. The objectives of the present study were: a) to evaluate whether a continuous fumigation of a particular EO can control downy mildew in order to circumvent the drawbacks of direct application, b) to decipher molecular mechanisms that could be triggered in the host and the pathogen by EO application and c) to try to differentiate whether essential oils directly repress the oomycete or act as plant resistance primers. To achieve this a custom-made climatic chamber was constructed that enabled a continuous fumigation of potted vines with different EOs during long-term experiments. The grapevine (Vitis vinifera) cv Chasselas was chosen in reason of its high susceptibility to Plasmopara viticola. Grapevine cuttings were infected with P. viticola and subsequently exposed to continuous fumigation of different EOs at different concentrations, during 2 application time spans (24 hours and 10 days). Experiments were stopped when infection symptoms were clearly observed on the leaves of the control plants. Plant physiology (photosynthesis and growth rate parameters) were recorded and leaves were sampled at different time points for subsequent RNA extraction and transcriptomics analysis. Strikingly, the Oregano vulgare EO vapour treatment during 24h post-infection proved to be sufficient to reduce downy mildew development by 95%. Total RNA was extracted from leaves of 24h and 10d treatments and used for whole transcriptome shotgun sequencing (RNA-seq). Sequenced reads were then mapped onto the V. vinifera and P. viticola genomes. Less than 1% of reads could be mapped onto the P. viticola genome from treated samples, whereas up to 30% reads from the controls mapped onto the P. viticola genome, thereby confirming the visual observation of P. viticola absence in the treated plants. On average, 80% of reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated genes. Transcriptomic data clearly showed that the treatment triggered the plant's innate immune system with genes involved in salicylic, jasmonic acid and ethylene synthesis and signaling, activating Pathogenesis-Related-proteins as well as phytoalexin synthesis. These results elucidate EO-host-pathogen interactions for the first time and indicate that the antifungal efficiency of EO is mainly due to the triggering of resistance pathways inside the host plants. This is of major importance for the production and research on biopesticides, plant stimulation products and for resistance-breeding strategies.
Collapse
Affiliation(s)
- Markus Rienth
- Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Julien Crovadore
- Plants and Pathogens Group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, Jussy, Geneva, Switzerland
| | - Sana Ghaffari
- Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - François Lefort
- Plants and Pathogens Group, Institute Land Nature and Environment, Hepia, HES-SO University of Applied Sciences and Arts Western Switzerland, Jussy, Geneva, Switzerland
| |
Collapse
|
92
|
Proteomics of PTI and Two ETI Immune Reactions in Potato Leaves. Int J Mol Sci 2019; 20:ijms20194726. [PMID: 31554174 PMCID: PMC6802228 DOI: 10.3390/ijms20194726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/29/2022] Open
Abstract
Plants have a variety of ways to defend themselves against pathogens. A commonly used model of the plant immune system is divided into a general response triggered by pathogen-associated molecular patterns (PAMPs), and a specific response triggered by effectors. The first type of response is known as PAMP triggered immunity (PTI), and the second is known as effector-triggered immunity (ETI). To obtain better insight into changes of protein abundance in immunity reactions, we performed a comparative proteomic analysis of a PTI and two different ETI models (relating to Phytophthora infestans) in potato. Several proteins showed higher abundance in all immune reactions, such as a protein annotated as sterol carrier protein 2 that could be interesting since Phytophthora species are sterol auxotrophs. RNA binding proteins also showed altered abundance in the different immune reactions. Furthermore, we identified some PTI-specific changes of protein abundance, such as for example, a glyoxysomal fatty acid beta-oxidation multifunctional protein and a MAR-binding protein. Interestingly, a lysine histone demethylase was decreased in PTI, and that prompted us to also analyze protein methylation in our datasets. The proteins upregulated explicitly in ETI included several catalases. Few proteins were regulated in only one of the ETI interactions. For example, histones were only downregulated in the ETI-Avr2 interaction, and a putative multiprotein bridging factor was only upregulated in the ETI-IpiO interaction. One example of a methylated protein that increased in the ETI interactions was a serine hydroxymethyltransferase.
Collapse
|
93
|
Sathe AP, Su X, Chen Z, Chen T, Wei X, Tang S, Zhang XB, Wu JL. Identification and characterization of a spotted-leaf mutant spl40 with enhanced bacterial blight resistance in rice. RICE (NEW YORK, N.Y.) 2019; 12:68. [PMID: 31446514 PMCID: PMC6708518 DOI: 10.1186/s12284-019-0326-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/15/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Spotted leaf mutants show typical necrotic lesions that appear spontaneously in the absence of any pathogen attack. These mutants are often characterized to exhibit programmed cell death (PCD) and activation of plant defense responses resulting in enhanced disease resistance to multiple pathogens. Here, we reported a novel spotted-leaf mutant, spl40 that showed enhanced disease resistance response. RESULTS Initially lesions appeared at leaf tips during seedling stage and gradually covered the whole leaf at the tillering stage. The lesion development was light-dependent. spl40 showed obvious cell death at and around the lesion, and burst of reactive oxygen species (ROS) was accompanied by disturbed ROS scavenging system. Photosynthetic capacity was compromised as evidenced by significant reductions in chlorophyll content, important photosynthesis parameters and downregulated expression of photosynthesis-related genes which ultimately led to poor performance of major agronomic traits. spl40 exhibited enhanced resistance to 14 out of 16 races of bacterial blight pathogen of rice, caused by Xanthomonas oryzae pv. oryzae, most probably though activation of SA and JA signaling pathways, owing to upregulated expression of SA and JA signaling genes, though the exact mechanism remain to be elucidated. The spotted-leaf phenotype was controlled by a novel single recessive nuclear gene. Genetic mapping combined with high throughput sequencing analysis identified Os05G0312000 as the most probable candidate gene. Sequencing of ORF revealed a single SNP change from C to T that resulted in non-synonymous change in amino acid residue from leucine to phenylalanine. Interestingly, the complementation plants did not display lesions before heading but showed lesions at the heading stage and the transgenic T1 progenies could be classified into 3 categories based on their lesion intensity, indicating the complex genetic nature of the spl40 mutation. CONCLUSION The results obtained here clearly show that genes related to defense and PCD were upregulated in accordance with enhanced disease resistance and occurrence of PCD, whereas the photosynthetic capacity and overall ROS homeostasis was compromised in spl40. Our data suggest that a novel spotted-leaf mutant, spl40, would help to elucidate the mechanism behind lesion development involving programmed cell death and associated defense responses.
Collapse
Affiliation(s)
- Atul Prakash Sathe
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiaona Su
- Nanchang Business College of Jiangxi Agricultural University, Nanchang, 330044 China
| | - Zheng Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Ting Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiangjing Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiao-bo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jian-li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
94
|
Balint‐Kurti P. The plant hypersensitive response: concepts, control and consequences. MOLECULAR PLANT PATHOLOGY 2019; 20:1163-1178. [PMID: 31305008 PMCID: PMC6640183 DOI: 10.1111/mpp.12821] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.
Collapse
Affiliation(s)
- Peter Balint‐Kurti
- Plant Science Research UnitUSDA‐ARSRaleighNCUSA
- Department of Entomology and Plant PathologyNC State UniversityRaleighNC27695‐7613USA
| |
Collapse
|
95
|
Mizrachi A, Graff van Creveld S, Shapiro OH, Rosenwasser S, Vardi A. Light-dependent single-cell heterogeneity in the chloroplast redox state regulates cell fate in a marine diatom. eLife 2019; 8:47732. [PMID: 31232691 PMCID: PMC6682412 DOI: 10.7554/elife.47732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Diatoms are photosynthetic microorganisms of great ecological and biogeochemical importance, forming vast blooms in aquatic ecosystems. However, we are still lacking fundamental understanding of how individual cells sense and respond to diverse stress conditions, and what acclimation strategies are employed during bloom dynamics. We investigated cellular responses to environmental stress at the single-cell level using the redox sensor roGFP targeted to various organelles in the diatom Phaeodactylum tricornutum. We detected cell-to-cell variability using flow cytometry cell sorting and a microfluidics system for live imaging of oxidation dynamics. Chloroplast-targeted roGFP exhibited a light-dependent, bi-stable oxidation pattern in response to H2O2 and high light, revealing distinct subpopulations of sensitive oxidized cells and resilient reduced cells. Early oxidation in the chloroplast preceded commitment to cell death, and can be used for sensing stress cues and regulating cell fate. We propose that light-dependent metabolic heterogeneity regulates diatoms’ sensitivity to environmental stressors in the ocean. Microscopic algae, such as diatoms, are widely spread throughout the oceans, and are responsible for half of the oxygen we breathe. At certain times of the year these algae grow very rapidly to form large “blooms” that can be detected by satellites in space. These blooms are generally short-lived because the algae are either eaten by other marine organisms, run out of nutrients, or die as a result of being infected by viruses or bacteria. However, some diatom cells survive the end of the bloom and go on to generate new blooms in the future, but it is still not clear how. As the bloom collapses, diatoms experience many stressful conditions which can cause active molecules known as reactive oxygen species, or ROS for short, to accumulate inside cells. Normally growing cells also produce low amounts of ROS, which regulate various processes that are important for maintaining a cell’s health. However, high amounts of ROS can cause damage, which may lead to a cell’s death. Now, Mizrachi et al. investigated why some algae survive while others die in response to stressful conditions, focusing on the amount of ROS that accumulates within the diatom Phaeodactylum tricornutum. Laboratory experiments showed that individual cells of P. tricornutum respond differently to environmental stress, forming two distinct groups of either sensitive or resilient cells. Sensitive cells accumulated high levels of ROS within a cell compartment known as the chloroplast and eventually died. Whereas resilient cells were able to maintain low levels of ROS in the chloroplast and survived long after the other cells perished. Populations of genetically identical diatom cells also formed distinct groups of sensitive and resilient cells, demonstrating that these two opposing reactions to stress are not caused by genetic differences between cells. Lastly, Mizrachi et al. showed that how diatoms acclimate to stress depends on the amount of light they are exposed to. When in the dark, all cells became sensitive to oxidative stress, without forming distinct groups. But, when exposed to strong light that mimics the ocean surface, cells formed distinct groups within the population. This suggests that light regulates how susceptible these microscopic algae are to environmental stress. The different responses within a population may serve as a “bet-hedging” strategy, enabling at least some of the cells to survive unpredicted stressful conditions. The next challenge will be to find out whether algae growing in the oceans also use the same strategy and investigate what impact this has on diatom blooms.
Collapse
Affiliation(s)
- Avia Mizrachi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shiri Graff van Creveld
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Orr H Shapiro
- Department of Food Quality and Safety, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.,The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
96
|
Li S, Zhao J, Zhai Y, Yuan Q, Zhang H, Wu X, Lu Y, Peng J, Sun Z, Lin L, Zheng H, Chen J, Yan F. The hypersensitive induced reaction 3 (HIR3) gene contributes to plant basal resistance via an EDS1 and salicylic acid-dependent pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:783-797. [PMID: 30730076 DOI: 10.1111/tpj.14271] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/20/2023]
Abstract
The hypersensitive-induced reaction (HIR) gene family is associated with the hypersensitive response (HR) that is a part of the plant defense system against bacterial and fungal pathogens. The involvement of HIR genes in response to viral pathogens has not yet been studied. We now report that the HIR3 genes of Nicotiana benthamiana and Oryza sativa (rice) were upregulated following rice stripe virus (RSV) infection. Silencing of HIR3s in N. benthamiana resulted in an increased accumulation of RSV RNAs, whereas overexpression of HIR3s in N. benthamiana or rice reduced the expression of RSV RNAs and decreased symptom severity, while also conferring resistance to Turnip mosaic virus, Potato virus X, and the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. Silencing of HIR3 genes in N. benthamiana reduced the content of salicylic acid (SA) and was accompanied by the downregulated expression of genes in the SA pathway. Transient expression of the two HIR3 gene homologs from N. benthamiana or the rice HIR3 gene in N. benthamiana leaves caused cell death and an accumulation of SA, but did not do so in EDS1-silenced plants or in plants expressing NahG. The results indicate that HIR3 contributes to plant basal resistance via an EDS1- and SA-dependent pathway.
Collapse
Affiliation(s)
- Saisai Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yushan Zhai
- College of Plant Protection, Northwest A& F University, Yangling, 712100, China
| | - Quan Yuan
- College of Plant Protection, Northwest A& F University, Yangling, 712100, China
| | - Hehong Zhang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xinyang Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
97
|
Mucha J, Gabała E, Zadworny M. The effects of structurally different siderophores on the organelles of Pinus sylvestris root cells. PLANTA 2019; 249:1747-1760. [PMID: 30820648 DOI: 10.1007/s00425-019-03117-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Siderophores are a driver of Pinus sylvestris root responses to metabolites secreted by pathogenic and mycorrhizal fungi. Structurally different siderophores regulate the uptake of Fe by microorganisms and may play a key role in the colonization of plants by beneficial or pathogenic fungi. Siderophore action, however, may be dependent on the distribution of Fe within cells. Here, the involvement of siderophores in determining the changes of organelle morphology and element composition of some cellular fractions of root cells in Pinus sylvestris to trophically diverse fungi was investigated. Changes in the morphology and concentrations of different elements within organelles of root cells in response to three structurally different siderophores were examined by transmission electron microscopy combined with energy-dispersive X-ray spectroscopy. Weak development of mitochondrial cristae and the deposition of backup materials in plastids occurred in the absence of Fe in the structures of triacetylfusarinine C and ferricrocin. In response to metabolites of both pathogenic and mycorrhizal fungi, Fe accumulated mainly in the cell walls and cytoplasm. Fe counts increased in all of the analyzed organelles in response to applications of ferricrocin and triacetylfusarinine C. Chelation of Fe within the structure of siderophores prevents the binding of exogenous Fe, decreasing the abundance of Fe in the cell wall and cytoplasm. The concentrations of N, P, K, Ca, Mn, Cu, Mg, and Zn also increased in cells after applications of ferricrocin and triacetylfusarinine C, while the levels of these elements decreased in the cell wall and cytoplasm when Fe was present within the structure of the siderophores. These results provide insight into the siderophore-driven response of plants to various symbionts.
Collapse
Affiliation(s)
- Joanna Mucha
- Institute of Dendrology, Polish Academy of Science, Parkowa 5, 62-035, Kórnik, Poland.
| | - Elżbieta Gabała
- Institute of Plant Protection, National Research Institute, Węgorka 20, 60-318, Poznań, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Science, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
98
|
He Y, Kim SB, Balint-Kurti P. A maize cytochrome b-c1 complex subunit protein ZmQCR7 controls variation in the hypersensitive response. PLANTA 2019; 249:1477-1485. [PMID: 30694389 DOI: 10.1007/s00425-019-03092-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
The gene GRMZM2G318346 which encodes a cytochrome b-c1 complex subunit 7 is associated with variation in strength of the hypersensitive response in maize. We previously identified a QTL at 3,545,354 bp (B73 reference genome V2) on maize chromosome 5 associated with variation in the hypersensitive response (HR) conferred by the autoactive R-gene Rp1-D21 (Olukolu et al. in PLoS Genet 10:e1004562 2014). In this study, we show that a gene at this locus, GRMZM2G318346 which encodes a cytochrome b-c1 complex subunit seven (ZmQCR7), an important part of the mitochondrial electron transport chain, can suppress HR mediated by Rp1-D21 in a transient expression assay. ZmQCR7 alleles from two maize lines, W22 and B73 differ for the encoded proteins at just two sites, amino acid 27 (threonine and alanine in B73 and W22, respectively) and amino acid 109 (asparagine and serine), however, the B73 allele is much more effective at suppressing HR. We show that variation at amino acid 27 controlled this variation in HR-suppressing effects. We furthermore demonstrate that the B73 allele of ZmQCR7 can suppress HR induced by RPM1(D505 V), another autoactive R-gene, and that Arabidopsis homologs of ZmQCR7 can also suppress NLR-induced HR. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Yijian He
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
| | - Saet-Byul Kim
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA.
- Plant Science Research Unit, USDA-ARS, NC State University, Raleigh, NC, 27695-7616, USA.
| |
Collapse
|
99
|
Das PP, Chua GM, Lin Q, Wong SM. iTRAQ-based analysis of leaf proteome identifies important proteins in secondary metabolite biosynthesis and defence pathways crucial to cross-protection against TMV. J Proteomics 2019; 196:42-56. [PMID: 30726703 DOI: 10.1016/j.jprot.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Cross-protection is a phenomenon in which infection with a mild virus strain protects host plants against subsequent infection with a closely related severe virus strain. This study showed that a mild strain mutant virus, Tobacco mosaic virus (TMV)-43A could cross protect Nicotiana benthamiana plants against wild-type TMV. Furthermore, we investigated the host responses at the proteome level to identify important host proteins involved in cross-protection. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyze the proteome profiles of TMV, TMV-43A and cross-protected plants at different time-points. Our results showed that TMV-43A can cross-protect N. benthamiana plants from TMV. In cross-protected plants, photosynthetic activities were augmented, as supported by the increased accumulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) enzymes, which are crucial for chlorophyll biosynthesis. The increased abundance of ROS scavenging enzymes like thioredoxins and L-ascorbate peroxidase would prevent oxidative damage in cross-protected plants. Interestingly, the abundance of defence-related proteins (14-3-3 and NbSGT1) decreased, along with a reduction in virus accumulation during cross-protection. In conclusion, we have identified several important host proteins that are crucial in cross-protection to counter TMV infection in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: TMV is the most studied model for host-virus interaction in plants. It can infect wide varieties of plant species, causing significant economic losses. Cross protection is one of the methods to combat virus infection. A few cross-protection mechanisms have been proposed, including replicase/coat protein-mediated resistance, RNA silencing, and exclusion/spatial separation between virus strains. However, knowledge on host responses at the proteome level during cross protection is limited. To address this knowledge gap, we have leveraged on a global proteomics analysis approach to study cross protection. We discovered that TMV-43A (protector) protects N. benthamiana plants from TMV (challenger) infection through multiple host pathways: secondary metabolite biosynthesis, photosynthesis, defence, carbon metabolism, protein translation and processing and amino acid biosynthesis. In the secondary metabolite biosynthesis pathway, enzymes 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) play crucial roles in chlorophyll biosynthesis during cross protection. In addition, accumulation of ROS scavenging enzymes was also found in cross-protected plants, providing rescues from excessive oxidative damage. Reduced abundance of plant defence proteins is correlated to reduced virus accumulation in host plants. These findings have increased our knowledge in host responses during cross-protection.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Gao Ming Chua
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
100
|
Poór P, Patyi G, Takács Z, Szekeres A, Bódi N, Bagyánszki M, Tari I. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). JOURNAL OF PLANT RESEARCH 2019; 132:273-283. [PMID: 30758749 PMCID: PMC7196940 DOI: 10.1007/s10265-019-01085-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
The growth regulator, salicylic acid (SA) plays an important role in the induction of cell death in plants. Production of reactive oxygen species (ROS) by mitochondrial electron transport chain (mtETC), cytochrome c (cyt c) release from mitochondria and loss of mitochondrial integrity can be observed during cell death execution in plant tissues. The aim of this work was to study the putative role of hexokinases (HXKs) in the initiation of cell death using tomato (Solanum lycopersicum L.) leaves and mitochondria isolated from plants exposed to a sublethal, 0.1 mM and a cell death-inducing, 1 mM concentrations of SA. Both treatments enhanced ROS and nitric oxide (NO) production in the leaves, which contributed to a concentration-dependent loss of membrane integrity. Images prepared by transmission electron microscopy showed swelling and disorganisation of mitochondrial cristae and vacuolization of mitochondria after SA exposure. Using post-embedding immunohistochemistry, cyt c release from mitochondria was also detected after 1 mM SA treatment. Both SA treatments decreased the activity and transcript levels of HXKs in the leaves and the total mtHXK activity in the mitochondrial fraction. The role of mitochondrial hexokinases (mtHXKs) in ROS and NO production of isolated mitochondria was investigated by the addition of HXK substrate, glucose (Glc) and a specific HXK inhibitor, N-acetylglucosamine (NAG) to the mitochondrial suspension. Both SA treatments enhanced ROS production by mtETC in the presence of succinate and ADP, which was slightly inhibited by Glc and increased significantly by NAG in control and in 0.1 mM SA-treated mitochondria. These changes were not significant at 1 mM SA, which caused disorganisation of mitochondrial membranes. Thus the inhibition of mtHXK activity can contribute to the mitochondrial ROS production, but it is not involved in NO generation in SA-treated leaf mitochondria suggesting that SA can promote cell death by suppressing mtHXK transcription and activity.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Gábor Patyi
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| |
Collapse
|