51
|
Page MM, Schuster EF, Mudaliar M, Herzyk P, Withers DJ, Selman C. Common and unique transcriptional responses to dietary restriction and loss of insulin receptor substrate 1 (IRS1) in mice. Aging (Albany NY) 2019; 10:1027-1052. [PMID: 29779018 PMCID: PMC5990393 DOI: 10.18632/aging.101446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies. However, it remains unclear how these particular interventions act mechanistically to produce their beneficial effects. Here, we investigated transcriptional responses in wild-type and IRS1 null mice fed an ad libitum diet (WTAL and KOAL) or fed a 30% DR diet (WTDR or KODR). Using an RNAseq approach we noted a high correlation coefficient of differentially expressed genes existed within the same tissue across WTDR and KOAL mice and many metabolic features were shared between these mice. Overall, we report that significant overlap exists in the tissue-specific transcriptional response between long-lived DR mice and IRS1 null mice. However, there was evidence of disconnect between transcriptional signatures and certain phenotypic measures between KOAL and KODR, in that additive effects on body mass were observed but at the transcriptional level DR induced a unique set of genes in these already long-lived mice.
Collapse
Affiliation(s)
- Melissa M Page
- Institute des Sciences de la Vie, Faculty of Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eugene F Schuster
- The Breast Cancer Now Toby Robins Research Centre The Institute of Cancer Research, London, UK
| | - Manikhandan Mudaliar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Glasgow Molecular Pathology Node, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Cerevance, Cambridge Science Park, Cambridge, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Campus, Bearsden, UK.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
52
|
Bartke A, Evans TR, Musters CJM. Anti-aging interventions affect lifespan variability in sex, strain, diet and drug dependent fashion. Aging (Albany NY) 2019; 11:4066-4074. [PMID: 31235676 PMCID: PMC6628994 DOI: 10.18632/aging.102037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022]
Abstract
Decreased forkhead box O1 (FoxO1) activity induces hyperlipidemia and increased PPARγ, leading to hyperlipidemia in association with endoplasmic reticulum (ER) stress. In the liver, aging and comorbidities such as hyperlipidemia and diabetes significantly influence a wide variety of steatosis, but the underlying mechanisms are complex and remain elusive. To establish the modulatory role of FoxO1 and the functional consequences of its altered interaction with PPARγ in the present study, we utilized a cell culture system, aged rats and diabetic db/db mice. We found that, under ER stress, FoxO1 induces PPARγ-mediated lipid accumulation in aged rat livers. Our data showed that the FoxO1-induced hepatic lipid accumulation was negatively regulated by Akt signaling. PPARγ, a key lipogenesis transcription factor, was increased in aged liver, resulting in lipid accumulation via hepatic ER stress under hyperglycemic conditions. We further demonstrated that loss of FoxO1 causes a decline in PPARγ expression and reduces lipid accumulation. In addition, the interaction between FoxO1 and PPARγ was shown to induce hepatic steatosis in aging and db/db mice. We provide evidence that, in aged rats, FoxO1 interaction with PPARγ promotes hepatic steatosis, due to hyperglycemia-induced ER stress, which causes an impairment in Akt signaling, such in aging-related diabetes.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Tracy R Evans
- Illinois State Museum Research and Collections Center, Springfield, Illinois 62703, USA
| | - C J M Musters
- Institute of Environmental Sciences, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
53
|
Stout R, Birch-Machin M. Mitochondria's Role in Skin Ageing. BIOLOGY 2019; 8:E29. [PMID: 31083540 PMCID: PMC6627661 DOI: 10.3390/biology8020029] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products.
Collapse
Affiliation(s)
- Roisin Stout
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mark Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
54
|
Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. Endocr Rev 2019; 40:575-601. [PMID: 30576428 PMCID: PMC6416709 DOI: 10.1210/er.2018-00216] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
The important role of GH in the control of mammalian longevity was first deduced from extended longevity of mice with genetic GH deficiency (GHD) or GH resistance. Mice with isolated GHD (IGHD) due to GHRH or GHRH receptor mutations, combined deficiency of GH, prolactin, and TSH, or global deletion of GH receptors live longer than do their normal siblings. They also exhibit multiple features of delayed and/or slower aging, accompanied by extension of healthspan. The unexpected, remarkable longevity benefit of severe endocrine defects in these animals presumably represents evolutionarily conserved trade-offs among aging, growth, maturation, fecundity, and the underlying anabolic processes. Importantly, the negative association of GH signaling with longevity extends to other mammalian species, apparently including humans. Data obtained in humans with IGHD type 1B, owing to a mutation of the GHRH receptor gene, in the Itabaianinha County, Brazil, provide a unique opportunity to study the impact of severe reduction in GH signaling on age-related characteristics, health, and functionality. Individuals with IGHD are characterized by proportional short stature, doll facies, high-pitched voices, and central obesity. They have delayed puberty but are fertile and generally healthy. Moreover, these IGHD individuals are partially protected from cancer and some of the common effects of aging and can attain extreme longevity, 103 years of age in one case. We think that low, but detectable, residual GH secretion combined with life-long reduction of circulating IGF-1 and with some tissue levels of IGF-1 and/or IGF-2 preserved may account for the normal longevity and apparent extension of healthspan in these individuals.
Collapse
Affiliation(s)
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
55
|
|
56
|
Vitale G, Pellegrino G, Vollery M, Hofland LJ. ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians' Perspective. Front Endocrinol (Lausanne) 2019; 10:27. [PMID: 30774624 PMCID: PMC6367275 DOI: 10.3389/fendo.2019.00027] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Human aging is currently defined as a physiological decline of biological functions in the body with a continual adaptation to internal and external damaging. The endocrine system plays a major role in orchestrating cellular interactions, metabolism, growth, and aging. Several in vivo studies from worms to mice showed that downregulated activity of the GH/IGF-1/insulin pathway could be beneficial for the extension of human life span, whereas results are contradictory in humans. In the present review, we discuss the potential role of the IGF-1 system in modulation of longevity, hypothesizing that the endocrine and metabolic adaptation observed in centenarians and in mammals during caloric restriction may be a physiological strategy for extending lifespan through a slower cell growing/metabolism, a better physiologic reserve capacity, a shift of cellular metabolism from cell proliferation to repair activities and a decrease in accumulation of senescent cells. Therefore, understanding of the link between IGF-1/insulin system and longevity may have future clinical applications in promoting healthy aging and in Rehabilitation Medicine.
Collapse
Affiliation(s)
- Giovanni Vitale
- Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed Oncologica, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Giovanni Vitale
| | - Giuseppe Pellegrino
- Faculty of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Leo J. Hofland
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
57
|
Plausible Links Between Metabolic Networks, Stem Cells, and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:355-388. [PMID: 31898793 DOI: 10.1007/978-3-030-31206-0_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is an inevitable consequence of life, and all multicellular organisms undergo a decline in tissue and organ functions as they age. Several well-known risk factors, such as obesity, diabetes, and lack of physical activity that lead to the cardiovascular system, decline and impede the function of vital organs, ultimately limit overall life span. Over recent years, aging research has experienced an unparalleled growth, particularly with the discovery and recognition of genetic pathways and biochemical processes that control to some extent the rate of aging.In this chapter, we focus on several aspects of stem cell biology and aging, beginning with major cellular hallmarks of aging, endocrine regulation of aging and its impact on stem cell compartment, and mechanisms of increased longevity. We then discuss the role of epigenetic modifications associated with aging and provide an overview on a most recent search of antiaging modalities.
Collapse
|
58
|
Abstract
Significant progress in defining the biology of aging, particularly in animal models, supports the geroscience hypothesis, which posits that by therapeutically targeting biological aging, the onset of multiple age-related diseases can be delayed "en suite". Geroscience investigators are preparing to test this hypothesis in humans for the first time. In this review, we describe development of large-scale clinical trials designed to determine if multiple age-related health conditions can be simultaneously alleviated with interventions targeting the underlying biology of aging. We describe the rationale and collaborative, consensus building approach used to design the first aging outcomes trial called Targeting Aging with Metformin (TAME). Through this case study, we outline features that could be more broadly extended to other geroscience-guided clinical trials, including a process for selecting biochemical and molecular markers of biologic age and we provide a perspective on the potential impact of clinical trials targeting aging.
Collapse
|
59
|
Bartke A, Quainoo N. Impact of Growth Hormone-Related Mutations on Mammalian Aging. Front Genet 2018; 9:586. [PMID: 30542372 PMCID: PMC6278173 DOI: 10.3389/fgene.2018.00586] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals. Discovering these mutations (sometimes referred to as “longevity genes”) led to identification of evolutionarily conserved molecular, cellular, and organismal mechanisms of aging. Studies in mice provided evidence for the important role of growth hormone (GH) signaling in mammalian aging. Mice with mutations or gene deletions leading to GH deficiency or GH resistance have reduced body size and delayed maturation, but are healthier and more resistant to stress, age slower, and live longer than their normal (wild type) siblings. Mutations of the same genes in people can provide remarkable protection from age-related disease, but have no consistent impact on lifespan. Ongoing research indicates that genetic defects in GH signaling are linked to extension of healthspan and lifespan via a variety of interlocking mechanism, including improvements in genome and stem cell maintenance, stress resistance, glucose homeostasis, and thermogenesis, along with reductions in the mechanistic target of rapamycin (mTOR) C1 complex signaling and in chronic low grade inflammation.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Nana Quainoo
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States
| |
Collapse
|
60
|
Hahn O, Stubbs TM, Reik W, Grönke S, Beyer A, Partridge L. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet 2018; 14:e1007766. [PMID: 30462643 PMCID: PMC6281273 DOI: 10.1371/journal.pgen.1007766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
| | - Thomas M. Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
61
|
Kobayashi M, Fujii N, Narita T, Higami Y. SREBP-1c-Dependent Metabolic Remodeling of White Adipose Tissue by Caloric Restriction. Int J Mol Sci 2018; 19:ijms19113335. [PMID: 30373107 PMCID: PMC6275055 DOI: 10.3390/ijms19113335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric restriction (CR) delays the onset of many age-related pathophysiological changes and extends lifespan. White adipose tissue (WAT) is not only a major tissue for energy storage, but also an endocrine tissue that secretes various adipokines. Recent reports have demonstrated that alterations in the characteristics of WAT can impact whole-body metabolism and lifespan. Hence, we hypothesized that functional alterations in WAT may play important roles in the beneficial effects of CR. Previously, using microarray analysis of WAT from CR rats, we found that CR enhances fatty acid (FA) biosynthesis, and identified sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA synthesis, as a mediator of CR. These findings were validated by showing that CR failed to upregulate factors involved in FA biosynthesis and to extend longevity in SREBP-1c knockout mice. Furthermore, we revealed that SREBP-1c is implicated in CR-associated mitochondrial activation through the upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Notably, these CR-associated phenotypes were observed only in WAT. We conclude that CR induces SREBP-1c-dependent metabolic remodeling, including the enhancement of FA biosynthesis and mitochondrial activation, via PGC-1α in WAT, resulting in beneficial effects.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Takumi Narita
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
62
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
63
|
Bartke A. Growth Hormone and Aging: Updated Review. World J Mens Health 2018; 37:19-30. [PMID: 29756419 PMCID: PMC6305861 DOI: 10.5534/wjmh.180018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/28/2023] Open
Abstract
Role of growth hormone (GH) in mammalian aging is actively explored in clinical, epidemiological, and experimental studies. The age-related decline in GH levels is variously interpreted as a symptom of neuroendocrine aging, as one of causes of altered body composition and other unwelcome symptoms of aging, or as a mechanism of natural protection from cancer and other chronic diseases. Absence of GH signals due to mutations affecting anterior pituitary development, GH secretion, or GH receptors produces an impressive extension of longevity in laboratory mice. Extension of healthspan in these animals and analysis of survival curves suggest that in the absence of GH, aging is slowed down or delayed. The corresponding endocrine syndromes in the human have no consistent impact on longevity, but are associated with remarkable protection from age-related disease. Moreover, survival to extremely old age has been associated with reduced somatotropic (GH and insulin-like growth factor-1) signaling in women and men. In both humans and mice, elevation of GH levels into the supranormal (pathological) range is associated with increased disease risks and reduced life expectancy likely representing acceleration of aging. The widely advertised potential of GH as an anti-aging agent attracted much interest. However, results obtained thus far have been disappointing with few documented benefits and many troublesome side effects. Possible utility of GH in the treatment of sarcopenia and frailty remains to be explored.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
64
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
65
|
Dommerholt MB, Dionne DA, Hutchinson DF, Kruit JK, Johnson JD. Metabolic effects of short-term caloric restriction in mice with reduced insulin gene dosage. J Endocrinol 2018; 237:59-71. [PMID: 29439088 DOI: 10.1530/joe-17-0505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 11/08/2022]
Abstract
Caloric restriction (CR) is the only environmental intervention with robust evidence that it extends lifespan and delays the symptoms of aging, but its mechanisms are incompletely understood. Based on the prolonged longevity of knockout models, it was hypothesized that the insulin-IGF pathway could be a target for developing a CR mimic. This study aimed to test whether CR has additive effects on glucose homeostasis and beta-cell function in mice with reduced insulin gene dosage. To study models with a range of basal insulin levels, wild-type C57BL/6J and mice on an Ins2-/- background, were put on 8 weeks of 40% CR at various ages. Both male and female mice rapidly lost weight due to a reduced WAT mass. Glucose tolerance was improved and fasting glucose levels were reduced by CR in both wild type and 45- and 70-week-old Ins2-/- mice. The effects of CR and reduced insulin on glucose tolerance were non-additive in 20-week-old mice. Interestingly, mice on CR generally exhibited an inability to further depress blood glucose after insulin injection, pointing to possible alterations in insulin sensitivity. In conclusion, our results demonstrate that CR can cause weight loss in the context of reduced insulin production, but that CR-improved glucose homeostasis does not occur near the 'insulin floor' in young mice. Collectively, these data shed further light on the relationships between CR, insulin and glucose homeostasis.
Collapse
Affiliation(s)
- Marleen B Dommerholt
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
- Department of PediatricsUniversity Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Derek A Dionne
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
| | - Daria F Hutchinson
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
| | - Janine K Kruit
- Department of PediatricsUniversity Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - James D Johnson
- Department of Cellular and Physiological SciencesUniversity of British Columbia, Vancouver, Canada
| |
Collapse
|
66
|
Matyi S, Jackson J, Garrett K, Deepa SS, Unnikrishnan A. The effect of different levels of dietary restriction on glucose homeostasis and metabolic memory. GeroScience 2018; 40:139-149. [PMID: 29455275 PMCID: PMC5964050 DOI: 10.1007/s11357-018-0011-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 11/28/2022] Open
Abstract
Over the past 50 years, dietary restriction (DR) has been shown to extend the life span of a wide variety of organisms. A hallmark feature of DR is improved glucose homeostasis resulting in increased glucose tolerance and insulin sensitivity of animals ranging from rodents to humans. In this study, we demonstrate the early effects of varying levels of DR on glucose tolerance. Within 10 days of 40% DR, glucose tolerance was significantly improved and by 120 days; 10 and 20% DR also showed enhanced glucose tolerance. All three levels of DR showed reduced adiposity, increased expression of genes involved in fat turnover, and a reduction in the expression for markers of inflammation. Studies have shown that mice fed a DR diet retained metabolic memory in terms of improved glucose tolerance even after DR is discontinued. We show that 40% DR not only has an early effect on glucose tolerance but also maintained it after DR was discontinued for 2 months. Therefore, improvement in glucose tolerance is brought about by all three levels of DR but the metabolic memory is not dose responsive.
Collapse
Affiliation(s)
- Stephanie Matyi
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
| | - Jordan Jackson
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
| | - Karla Garrett
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA
| | - Archana Unnikrishnan
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Reynolds Oklahoma Center on Aging, Oklahoma City, OK, USA. .,Harold Hamm Diabetic Center, Oklahoma City, OK, USA.
| |
Collapse
|
67
|
Miyazawa T, Nakagawa K, Kim SH, Thomas MJ, Paul L, Zingg JM, Dolnikowski GG, Roberts SB, Kimura F, Miyazawa T, Azzi A, Meydani M. Curcumin and piperine supplementation of obese mice under caloric restriction modulates body fat and interleukin-1β. Nutr Metab (Lond) 2018; 15:12. [PMID: 29445415 PMCID: PMC5801844 DOI: 10.1186/s12986-018-0250-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/29/2018] [Indexed: 12/29/2022] Open
Abstract
Background Dietary bioactive compounds capable of improving metabolic profiles would be of great value, especially for overweight individuals undergoing a caloric restriction (CR) regimen. Curcumin (Cur), a possible anti-obesity compound, and piperine (Pip), a plausible enhancer of Cur’s bioavailability and efficacy, may be candidate agents for controlling body fat, metabolism and low grade inflammation. Methods 47 eight-week-old male C57BL/6 mice were fed a high fat diet (HFD) for 23 weeks to induce obesity. Then, mice were divided into 5 groups. Group 1 continued on HFD ad libitum. The other 4 groups underwent CR (reduced 10% HFD intake for 10 weeks, 20% for 20 weeks) with Cur, Pip, Cur + Pip or none of these. Percent body fat, plasma inflammatory markers associated with obesity (interferon (IFN)-γ, interleukin (IL)-10, IL-12 p70, IL-1β, IL-6 and KC/GRO), plasma Cur metabolites and liver telomere length were measured. Results Compared to the other groups, obese mice who underwent CR and received Cur + Pip in their diet lost more fat and had significantly lower IL-1β and KC/GRO. Tandem mass spectrometry analysis of plasma from obese mice under CR showed no difference in Cur metabolite levels between groups supplemented with Cur alone or combined with Pip. However, plasma IL-1β levels were inversely correlated with curcumin glucuronide. Minor modulation of telomere length were observed. Conclusions It is plausible that supplementing the high fat diet of CR mice with Cur + Pip may increase loss of body fat and suppresses HFD induced inflammation. Combination of Cur and Pip has potential to enhance CR effects for the prevention of metabolic syndrome.
Collapse
Affiliation(s)
- Taiki Miyazawa
- 1Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA.,2Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845 Japan
| | - Kiyotaka Nakagawa
- 1Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA.,2Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845 Japan
| | - Sharon H Kim
- 1Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA
| | - Michael J Thomas
- 1Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA
| | - Ligi Paul
- 3Vitamin Metabolism Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA
| | - Jean-Marc Zingg
- 4Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, 33136 USA
| | - Gregory G Dolnikowski
- 5Mass Spectrometry Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA
| | - Susan B Roberts
- 6Energy Metabolism Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA
| | - Fumiko Kimura
- 2Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845 Japan
| | - Teruo Miyazawa
- 7Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579 Japan.,8Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845 Japan
| | - Angelo Azzi
- 1Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA
| | - Mohsen Meydani
- 1Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, (HNRCA) at Tufts University, Boston, MA 02111 USA
| |
Collapse
|
68
|
Davy PMC, Allsopp RC, Donlon TA, Morris BJ, Willcox DC, Willcox BJ. FOXO3 and Exceptional Longevity: Insights From Hydra to Humans. Curr Top Dev Biol 2018; 127:193-212. [PMID: 29433738 DOI: 10.1016/bs.ctdb.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is a complex, multifactorial process with significant plasticity. While several biological pathways appear to influence aging, few genes have been identified that are both evolutionarily conserved and have a strong impact on aging and age-related phenotypes. The FoxO3 gene (FOXO3), and its homologs in model organisms, appears especially important, forming a key gene in the insulin/insulin-like growth factor-signaling pathway, and influencing life span across diverse species. We highlight some of the key findings that are associated with FoxO3 protein, its gene and homologs in relation to lifespan in different species, and the insights these findings might provide about the molecular, cellular, and physiological processes that modulate aging and longevity in humans.
Collapse
Affiliation(s)
- Philip M C Davy
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, United States
| | - Richard C Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, United States
| | - Timothy A Donlon
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; Ohana Genetics, Honolulu, HI, United States
| | - Brian J Morris
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Donald Craig Willcox
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; Okinawa International University, Ginowan, Okinawa, Japan
| | - Bradley J Willcox
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.
| |
Collapse
|
69
|
Garratt M, Nakagawa S, Simons MJP. Life-span Extension With Reduced Somatotrophic Signaling: Moderation of Aging Effect by Signal Type, Sex, and Experimental Cohort. J Gerontol A Biol Sci Med Sci 2017; 72:1620-1626. [PMID: 28207064 PMCID: PMC5861954 DOI: 10.1093/gerona/glx010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 12/17/2022] Open
Abstract
Reduced somatotrophic signaling through the growth hormone (GH) and insulin-like growth factor pathways (IGF1) can delay aging, although the degree of life-extension varies markedly across studies. By collating data from previous studies and using meta-analysis, we tested whether factors including sex, hormonal manipulation, body weight change and control baseline mortality quantitatively predict relative life-extension. Manipulations of GH signaling (including pituitary and direct GH deficiencies) generate significantly greater extension in median life span than IGF1 manipulations (including IGF1 production, reception, and bioactivity), producing a consistent shift in mortality risk of mutant mice. Reduced Insulin receptor substrate (IRS) expression produces more similar life-extension to reduced GH, although effects are more heterogeneous and appear to influence the demography of mortality differently. Life-extension with reduced IGF1 signaling, but neither GH nor IRS signaling, increases life span significantly more in females than males, and in cohorts where control survival is short. Our results thus suggest that reduced GH signaling has physiological benefits to survival outside of its actions on circulating IGF1. In addition to these biological moderators, we found an overrepresentation of small sample sized studies that report large improvements in survival, indicating potential publication bias. We discuss how this could potentially confound current conclusions from published work, and how this warrants further study replication.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology, University of Michigan Medical School, Ann Arbor
| | - Shinichi Nakagawa
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Mirre J P Simons
- Department of Animal and Plant Sciences, University of Sheffield, UK
| |
Collapse
|
70
|
Mitchell SE, Delville C, Konstantopedos P, Derous D, Green CL, Wang Y, Han JDJ, Promislow DEL, Douglas A, Chen L, Lusseau D, Speakman JR. The effects of graded levels of calorie restriction: V. Impact of short term calorie and protein restriction on physical activity in the C57BL/6 mouse. Oncotarget 2017; 7:19147-70. [PMID: 27007156 PMCID: PMC4991372 DOI: 10.18632/oncotarget.8158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/28/2016] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) delays the onset of age-related disease and extends lifespan in a number of species. When faced with reduced energy supply animals need to lower energy demands, which may be achieved in part by reducing physical activity (PA). We monitored changes in PA using implanted transmitters in male C57BL/6 mice in response to graded levels of CR (10 to 40%) or matched levels of graded protein restriction (PR) for 3 months. Mice were fed at lights out and ad libitum controls were limited to dark-phase feeding (12AL) or 24hr/day. Total daily PA declined in a non-linear manner over the first 30 days of CR or PR, remaining stable thereafter. Total daily PA was not related to the level of CR or PR. Total daily PA over the last 20 days of restriction was related to circulating leptin, insulin, tumor necrosis factor-α (TNF-α) and insulin-like growth factor (IGF)-1 levels, measured after 3 months. Mice under restriction showed a high level of activity in the 2hrs before feeding (food anticipatory activity: FAA). FAA followed a complex pattern, peaking around day 20, falling on ∼day 37 then increasing again. FAA was also positively related to the level of restriction and inversely to leptin, insulin, TNF-α and IGF-1. Non-FAA, in contrast, declined over the period of restriction, generally more so in mice under greater restriction, thereby offsetting to some extent the increase in FAA. Mice under PR displayed no changes in PA over time or in comparison to 12AL, and showed no increase in FAA.
Collapse
Affiliation(s)
- Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Camille Delville
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Penelope Konstantopedos
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daniel E L Promislow
- Department of Pathology and Department of Biology, University of Washington, Seattle, Washington, USA
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| |
Collapse
|
71
|
Berryman DE, List EO. Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. Int J Mol Sci 2017; 18:ijms18081621. [PMID: 28933734 PMCID: PMC5578013 DOI: 10.3390/ijms18081621] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is an excessive accumulation or expansion of adipose tissue (AT) due to an increase in either the size and/or number of its characteristic cell type, the adipocyte. As one of the most significant public health problems of our time, obesity and its associated metabolic complications have demanded that attention be given to finding effective therapeutic options aimed at reducing adiposity or the metabolic dysfunction associated with its accumulation. Growth hormone (GH) has therapeutic potential due to its potent lipolytic effect and resultant ability to reduce AT mass while preserving lean body mass. However, AT and its resident adipocytes are significantly more dynamic and elaborate than once thought and require one not to use the reduction in absolute mass as a readout of efficacy alone. Paradoxically, therapies that reduce GH action may ultimately prove to be healthier, in part because GH also possesses potent anti-insulin activities along with concerns that GH may promote the growth of certain cancers. This review will briefly summarize some of the newer complexities of AT relevant to GH action and describe the current understanding of how GH influences this tissue using data from both humans and mice. We will conclude by considering the therapeutic use of GH or GH antagonists in obesity, as well as important gaps in knowledge regarding GH and AT.
Collapse
Affiliation(s)
- Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
72
|
Sun LY, Fang Y, Patki A, Koopman JJ, Allison DB, Hill CM, Masternak MM, Darcy J, Wang J, McFadden S, Bartke A. Longevity is impacted by growth hormone action during early postnatal period. eLife 2017; 6. [PMID: 28675141 PMCID: PMC5515575 DOI: 10.7554/elife.24059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Life-long lack of growth hormone (GH) action can produce remarkable extension of longevity in mice. Here we report that GH treatment limited to a few weeks during development influences the lifespan of long-lived Ames dwarf and normal littermate control mice in a genotype and sex-specific manner. Studies in a separate cohort of Ames dwarf mice show that this short period of the GH exposure during early development produces persistent phenotypic, metabolic and molecular changes that are evident in late adult life. These effects may represent mechanisms responsible for reduced longevity of dwarf mice exposed to GH treatment early in life. Our data suggest that developmental programming of aging importantly contributes to (and perhaps explains) the well documented developmental origins of adult disease.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States
| | - Yimin Fang
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, United States
| | - Jacob Je Koopman
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - David B Allison
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, United States.,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, United States
| | - Cristal M Hill
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, United States.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Jian Wang
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| |
Collapse
|
73
|
Hine C, Kim HJ, Zhu Y, Harputlugil E, Longchamp A, Matos MS, Ramadoss P, Bauerle K, Brace L, Asara JM, Ozaki CK, Cheng SY, Singha S, Ahn KH, Kimmelman A, Fisher FM, Pissios P, Withers DJ, Selman C, Wang R, Yen K, Longo VD, Cohen P, Bartke A, Kopchick JJ, Miller R, Hollenberg AN, Mitchell JR. Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production. Cell Metab 2017; 25:1320-1333.e5. [PMID: 28591635 PMCID: PMC5722247 DOI: 10.1016/j.cmet.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/20/2017] [Accepted: 05/11/2017] [Indexed: 01/27/2023]
Abstract
Decreased growth hormone (GH) and thyroid hormone (TH) signaling are associated with longevity and metabolic fitness. The mechanisms underlying these benefits are poorly understood, but may overlap with those of dietary restriction (DR), which imparts similar benefits. Recently we discovered that hydrogen sulfide (H2S) is increased upon DR and plays an essential role in mediating DR benefits across evolutionary boundaries. Here we found increased hepatic H2S production in long-lived mouse strains of reduced GH and/or TH action, and in a cell-autonomous manner upon serum withdrawal in vitro. Negative regulation of hepatic H2S production by GH and TH was additive and occurred via distinct mechanisms, namely direct transcriptional repression of the H2S-producing enzyme cystathionine γ-lyase (CGL) by TH, and substrate-level control of H2S production by GH. Mice lacking CGL failed to downregulate systemic T4 metabolism and circulating IGF-1, revealing an essential role for H2S in the regulation of key longevity-associated hormones.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hyo-Jeong Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Zhu
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eylul Harputlugil
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Surgery, Heart and Vascular Center Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Souza Matos
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kevin Bauerle
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lear Brace
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - C Keith Ozaki
- Department of Surgery, Heart and Vascular Center Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Subhankar Singha
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Republic of Korea
| | - Alec Kimmelman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ffolliott M Fisher
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pavlos Pissios
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dominic J Withers
- Medical Research Council Clinical Science Centre, Imperial College, London W12 0NN, UK
| | - Colin Selman
- Glasgow Ageing Research Network, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Kelvin Yen
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- Department of Biological Sciences, Longevity Institute, School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Richard Miller
- Department of Pathology & Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
74
|
Fujii N, Narita T, Okita N, Kobayashi M, Furuta Y, Chujo Y, Sakai M, Yamada A, Takeda K, Konishi T, Sudo Y, Shimokawa I, Higami Y. Sterol regulatory element-binding protein-1c orchestrates metabolic remodeling of white adipose tissue by caloric restriction. Aging Cell 2017; 16:508-517. [PMID: 28256090 PMCID: PMC5418191 DOI: 10.1111/acel.12576] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) can delay onset of several age‐related pathophysiologies and extend lifespan in various species, including rodents. CR also induces metabolic remodeling involved in activation of lipid metabolism, enhancement of mitochondrial biogenesis, and reduction of oxidative stress in white adipose tissue (WAT). In studies using genetically modified mice with extended lifespans, WAT characteristics influenced mammalian lifespans. However, molecular mechanisms underlying CR‐associated metabolic remodeling of WAT remain unclear. Sterol regulatory element‐binding protein‐1c (Srebp‐1c), a master transcription factor of fatty acid (FA) biosynthesis, is responsible for the pathogenesis of fatty liver (steatosis). Our study showed that, under CR conditions, Srebp‐1c enhanced mitochondrial biogenesis via increased expression of peroxisome proliferator‐activated receptor gamma coactivator‐1α (Pgc‐1α) and upregulated expression of proteins involved in FA biosynthesis within WAT. However, via Srebp‐1c, most of these CR‐associated metabolic alterations were not observed in other tissues, including the liver. Moreover, our data indicated that Srebp‐1c may be an important factor both for CR‐associated suppression of oxidative stress, through increased synthesis of glutathione in WAT, and for the prolongevity action of CR. Our results strongly suggested that Srebp‐1c, the primary FA biosynthesis‐promoting transcriptional factor implicated in fatty liver disease, is also the food shortage‐responsive factor in WAT. This indicated that Srebp‐1c is a key regulator of metabolic remodeling leading to the beneficial effects of CR.
Collapse
Affiliation(s)
- Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Takumi Narita
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Naoyuki Okita
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Department of Internal Medicine Research; Sasaki Institute; Sasaki Foundation; 2-2 Kandasurugadai Chiyoda-ku, Tokyo 101-0062 Japan
| | - Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Yurika Furuta
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Yoshikazu Chujo
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Masahiro Sakai
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Atsushi Yamada
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Kanae Takeda
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences; Akita Prefectural University; Shimoshinjo Nakano, Akita 010-0195 Japan
| | - Yuka Sudo
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| | - Isao Shimokawa
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Department of Pathology; Nagasaki University Graduate School of Biomedical Sciences; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease; Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
- Translational Research Center, Research Institute of Science and Technology; Tokyo University of Science; 2641 Yamazaki Noda, Chiba 278-8510 Japan
| |
Collapse
|
75
|
Espeland MA, Crimmins EM, Grossardt BR, Crandall JP, Gelfond JAL, Harris TB, Kritchevsky SB, Manson JE, Robinson JG, Rocca WA, Temprosa M, Thomas F, Wallace R, Barzilai N, Multimorbidity Clinical Trials Consortium. Clinical Trials Targeting Aging and Age-Related Multimorbidity. J Gerontol A Biol Sci Med Sci 2017; 72:355-361. [PMID: 28364543 PMCID: PMC5777384 DOI: 10.1093/gerona/glw220] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in identifying interventions that may increase health span by targeting biological processes underlying aging. The design of efficient and rigorous clinical trials to assess these interventions requires careful consideration of eligibility criteria, outcomes, sample size, and monitoring plans. Methods Experienced geriatrics researchers and clinical trialists collaborated to provide advice on clinical trial design. Results Outcomes based on the accumulation and incidence of age-related chronic diseases are attractive for clinical trials targeting aging. Accumulation and incidence rates of multimorbidity outcomes were developed by selecting at-risk subsets of individuals from three large cohort studies of older individuals. These provide representative benchmark data for decisions on eligibility, duration, and assessment protocols. Monitoring rules should be sensitive to targeting aging-related, rather than disease-specific, outcomes. Conclusions Clinical trials targeting aging are feasible, but require careful design consideration and monitoring rules.
Collapse
Affiliation(s)
- Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles
| | - Brandon R Grossardt
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jill P Crandall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Jonathan A L Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Walter A Rocca
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Marinella Temprosa
- The Biostatistics Center, The George Washington University, Rockville, Maryland
| | - Fridtjof Thomas
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis
| | | | - Nir Barzilai
- The Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | | |
Collapse
|
76
|
Mathew R, Pal Bhadra M, Bhadra U. Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 2017; 18:35-53. [DOI: 10.1007/s10522-016-9670-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
|
77
|
|
78
|
Dluzen DF, Noren Hooten N, Evans MK. Extracellular RNA in aging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27531497 DOI: 10.1002/wrna.1385] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/16/2022]
Abstract
Since the discovery of extracellular RNA (exRNA) in circulation and other bodily fluids, there has been considerable effort to catalog and assess whether exRNAs can be used as markers for health and disease. A variety of exRNA species have been identified including messenger RNA and noncoding RNA such as microRNA (miRNA), small nucleolar RNA, transfer RNA, and long noncoding RNA. Age-related changes in exRNA abundance have been observed, and it is likely that some of these transcripts play a role in aging. In this review, we summarize the current state of exRNA profiling in various body fluids and discuss age-related changes in exRNA abundance that have been identified in humans and other model organisms. miRNAs, in particular, are a major focus of current research and we will highlight and discuss the potential role that specific miRNAs might play in age-related phenotypes and disease. We will also review challenges facing this emerging field and various strategies that can be used for the validation and future use of exRNAs as markers of aging and age-related disease. WIREs RNA 2017, 8:e1385. doi: 10.1002/wrna.1385 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Douglas F Dluzen
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
79
|
Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a Tool to Target Aging. Cell Metab 2016; 23:1060-1065. [PMID: 27304507 PMCID: PMC5943638 DOI: 10.1016/j.cmet.2016.05.011] [Citation(s) in RCA: 719] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
Aging has been targeted by genetic and dietary manipulation and by drugs in order to increase lifespan and health span in numerous models. Metformin, which has demonstrated protective effects against several age-related diseases in humans, will be tested in the TAME (Targeting Aging with Metformin) trial, as the initial step in the development of increasingly effective next-generation drugs.
Collapse
Affiliation(s)
- Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jill P Crandall
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephen B Kritchevsky
- Wake Forest Older Americans Independence Center and the Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark A Espeland
- Wake Forest Older Americans Independence Center and the Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
80
|
Hill CM, Fang Y, Miquet JG, Sun LY, Masternak MM, Bartke A. Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure. Aging Cell 2016; 15:509-21. [PMID: 26990883 PMCID: PMC4854906 DOI: 10.1111/acel.12467] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH) signaling stimulates the production of IGF‐1; however, increased GH signaling may induce insulin resistance and can reduce life expectancy in both mice and humans. Interestingly, disruption of GH signaling by reducing plasma GH levels significantly improves health span and extends lifespan in mice, as observed in Ames dwarf mice. In addition, these mice have increased adiposity, yet are more insulin sensitive compared to control mice. Metabolic stressors such as high‐fat diet (HFD) promote obesity and may alter longevity through the GH signaling pathway. Therefore, our objective was to investigate the effects of a HFD (metabolic stressor) on genetic mechanisms that regulate metabolism during aging. We show that Ames dwarf mice fed HFD for 12 weeks had an increase in subcutaneous and visceral adiposity as a result of diet‐induced obesity, yet are more insulin sensitive and have higher levels of adiponectin compared to control mice fed HFD. Furthermore, energy expenditure was higher in Ames dwarf mice fed HFD than in control mice fed HFD. Additionally, we show that transplant of epididymal white adipose tissue (eWAT) from Ames dwarf mice fed HFD into control mice fed HFD improves their insulin sensitivity. We conclude that Ames dwarf mice are resistant to the detrimental metabolic effects of HFD and that visceral adipose tissue of Ames dwarf mice improves insulin sensitivity in control mice fed HFD.
Collapse
Affiliation(s)
- Cristal M. Hill
- Department of Medical Microbiology, Immunology and Cell Biology Southern Illinois University School of Medicine Springfield IL USA
- Department of Internal Medicine, Geriatrics Research Southern Illinois University School of Medicine Springfield IL USA
| | - Yimin Fang
- Department of Internal Medicine, Geriatrics Research Southern Illinois University School of Medicine Springfield IL USA
| | - Johanna G. Miquet
- Faculty of Pharmacy and Biochemistry Institute of Chemical and Biological Physical Chemistry Buenos Aires Argentina
| | - Liou Y. Sun
- Department of Biology University of Alabama at Birmingham Birmingham AL USA
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences‐ College of Medicine University of Central Florida Orlando FL USA
| | - Andrzej Bartke
- Department of Medical Microbiology, Immunology and Cell Biology Southern Illinois University School of Medicine Springfield IL USA
- Department of Internal Medicine, Geriatrics Research Southern Illinois University School of Medicine Springfield IL USA
| |
Collapse
|
81
|
Bartke A, List EO, Kopchick JJ. The somatotropic axis and aging: Benefits of endocrine defects. Growth Horm IGF Res 2016; 27:41-45. [PMID: 26925766 PMCID: PMC4792645 DOI: 10.1016/j.ghir.2016.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 12/15/2022]
Abstract
Reduced somatotropic [growth hormone (GH) and insulin-like growth factor-1 (IGF-1)] action has been associated with delayed and slower aging, reduced risk of frailty, reduced age-related disease and functional decline, and with remarkably extended longevity. Recent studies have added to the evidence that these relationships discovered in laboratory populations of mice apply to other mammalian species. However, the relationship of the somatotropic signaling to human aging is less striking, complex and controversial. In mice, targeted deletion of GH receptors (GHR) in the liver, muscle or adipose tissue affected multiple metabolic parameters but failed to reproduce the effects of global GHR deletion on longevity. Continued search for mechanisms of extended longevity in animals with GH deficiency or resistance focused attention on different pathways of mechanistic target of rapamycin (mTOR), energy metabolism, regulation of local IGF-1 levels and resistance to high-fat diet (HFD).
Collapse
Affiliation(s)
- Andrzej Bartke
- SIU School of Medicine, Department of Internal Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL 62794-9628, United States.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
82
|
Do A, Menon V, Zhi X, Gesing A, Wiesenborn DS, Spong A, Sun L, Bartke A, Masternak MM. Thyroxine modifies the effects of growth hormone in Ames dwarf mice. Aging (Albany NY) 2016; 7:241-55. [PMID: 25935838 PMCID: PMC4429089 DOI: 10.18632/aging.100739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ames dwarf (df/df) mice lack growth hormone (GH), thyroid stimulating hormone and prolactin. Treatment of juvenile df/df mice with GH alone stimulates somatic growth, reduces insulin sensitivity and shortens lifespan. Early‐life treatment with thyroxine (T4) alone produces modest growth stimulation but does not affect longevity. In this study, we examined the effects of treatment of juvenile Ames dwarf mice with a combination of GH + T4 and compared them to the effects of GH alone. Treatment of female and male dwarfs with GH + T4 between the ages of 2 and 8 weeks rescued somatic growth yet did not reduce lifespan to match normal controls, thus contrasting with the previously reported effects of GH alone. While the male dwarf GH + T4 treatment group had no significant effect on lifespan, the female dwarfs undergoing treatment showed a decrease in maximal longevity. Expression of genes related to GH and insulin signaling in the skeletal muscle and white adipose tissue (WAT) of female dwarfs was differentially affected by treatment with GH + T4 vs. GH alone. Differences in the effects of GH + T4 vs. GH alone on insulin target tissues may contribute to the differential effects of these treatments on longevity.
Collapse
Affiliation(s)
- Andrew Do
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vinal Menon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina Columbia, SC 29209, USA
| | - Xu Zhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Denise S Wiesenborn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Department of Medical Biochemistry and Molecular Biology, University of Saarland, 66421 Homburg, Germany.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibrücken, Germany
| | - Adam Spong
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Liou Sun
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
83
|
Abstract
Caloric restriction is the most effective and reproducible dietary intervention known to regulate aging and increase the healthy lifespan in various model organisms, ranging from the unicellular yeast to worms, flies, rodents, and primates. However, caloric restriction, which in most cases entails a 20–40% reduction of food consumption relative to normal intake, is a severe intervention that results in both beneficial and detrimental effects. Specific types of chronic, intermittent, or periodic dietary restrictions without chronic caloric restriction have instead the potential to provide a significant healthspan increase while minimizing adverse effects. Improved periodic or targeted dietary restriction regimens that uncouple the challenge of food deprivation from the beneficial effects will allow a safe intervention feasible for a major portion of the population. Here we focus on healthspan interventions that are not chronic or do not require calorie restriction.
Collapse
Affiliation(s)
- Changhan Lee
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Valter Longo
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; IFOM - FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| |
Collapse
|
84
|
Brown-Borg HM. Reduced growth hormone signaling and methionine restriction: interventions that improve metabolic health and extend life span. Ann N Y Acad Sci 2015; 1363:40-9. [PMID: 26645136 DOI: 10.1111/nyas.12971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/11/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
Interventions that improve health are often associated with longevity. Reduced growth hormone signaling has been shown to increase life span in mice by over 50%. Similarly, reductions in dietary intake of methionine, in rats and mice, result in life-span extension. Many factors affect metabolic health, mitochondrial function, and resistance to stressors, each of which influence aging and life span. This paper presents a comparison of these two interventions, as well as the results of a study combining these interventions, to understand potential mechanisms underlying their effectiveness in enhancing healthy aging.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
85
|
Finkel T. The metabolic regulation of aging. Nat Med 2015; 21:1416-23. [DOI: 10.1038/nm.3998] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
|
86
|
Victoria B, Dhahbi JM, Nunez Lopez YO, Spinel L, Atamna H, Spindler SR, Masternak MM. Circulating microRNA signature of genotype-by-age interactions in the long-lived Ames dwarf mouse. Aging Cell 2015; 14:1055-66. [PMID: 26176567 PMCID: PMC4693471 DOI: 10.1111/acel.12373] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2015] [Indexed: 11/29/2022] Open
Abstract
Recent evidence demonstrates that serum levels of specific miRNAs significantly change with age. The ability of circulating sncRNAs to act as signaling molecules and regulate a broad spectrum of cellular functions implicates them as key players in the aging process. To discover circulating sncRNAs that impact aging in the long‐lived Ames dwarf mice, we conducted deep sequencing of small RNAs extracted from serum of young and old mice. Our analysis showed genotype‐specific changes in the circulating levels of 21 miRNAs during aging [genotype‐by‐age interaction (GbA)]. Genotype‐by‐age miRNAs showed four distinct expression patterns and significant overtargeting of transcripts involved in age‐related processes. Functional enrichment analysis of putative and validated miRNA targets highlighted cellular processes such as tumor suppression, anti‐inflammatory response, and modulation of Wnt, insulin, mTOR, and MAPK signaling pathways, among others. The comparative analysis of circulating GbA miRNAs in Ames mice with circulating miRNAs modulated by calorie restriction (CR) in another long‐lived mouse suggests CR‐like and CR‐independent mechanisms contributing to longevity in the Ames mouse. In conclusion, we showed for the first time a signature of circulating miRNAs modulated by age in the long‐lived Ames mouse.
Collapse
Affiliation(s)
- Berta Victoria
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida 6900 Lake Nona Blvd. Orlando FL 32827 USA
| | - Joseph M. Dhahbi
- Department of Biochemistry University of California at Riverside Riverside CA 92521 USA
- Center for Genetics Childrens Hospital Oakland Research Institute Oakland CA 94609 USA
| | - Yury O. Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes Florida Hospital 301 E. Princeton Street Orlando FL 2804 USA
| | - Lina Spinel
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida 6900 Lake Nona Blvd. Orlando FL 32827 USA
| | - Hani Atamna
- Department of Medical Education California Northstate University Elk Grove CA USA
| | - Stephen R. Spindler
- Department of Biochemistry University of California at Riverside Riverside CA 92521 USA
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida 6900 Lake Nona Blvd. Orlando FL 32827 USA
- Department of Head and Neck Surgery The Greater Poland Cancer Centre 15 Garbary St. 61‐866 Poznan Poland
| |
Collapse
|
87
|
Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical Genetic Pathways that Modulate Aging in Multiple Species. Cold Spring Harb Perspect Med 2015; 5:5/11/a025114. [PMID: 26525455 DOI: 10.1101/cshperspect.a025114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
88
|
Abstract
The somatotropic signaling pathway has been implicated in aging and longevity studies in mice and other species. The physiology and lifespans of a variety of mutant mice, both spontaneous and genetically engineered, have contributed to our current understanding of the role of growth hormone and insulin-like growth factor I on aging-related processes. Several other mice discovered to live longer than their wild-type control counterparts also exhibit differences in growth factor levels; however, the complex nature of the phenotypic changes in these animals may also impact lifespan. The somatotropic axis impacts several pathways that dictate insulin sensitivity, nutrient sensing, mitochondrial function, and stress resistance as well as others that are thought to be involved in lifespan regulation.
Collapse
Affiliation(s)
- H M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
89
|
Ma S, Yim SH, Lee SG, Kim EB, Lee SR, Chang KT, Buffenstein R, Lewis KN, Park TJ, Miller RA, Clish CB, Gladyshev VN. Organization of the Mammalian Metabolome according to Organ Function, Lineage Specialization, and Longevity. Cell Metab 2015; 22:332-43. [PMID: 26244935 PMCID: PMC4758382 DOI: 10.1016/j.cmet.2015.07.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/15/2015] [Accepted: 07/02/2015] [Indexed: 12/24/2022]
Abstract
Biological diversity among mammals is remarkable. Mammalian body weights range seven orders of magnitude and lifespans differ more than 100-fold among species. While genetic, dietary, and pharmacological interventions can be used to modulate these traits in model organisms, it is unknown how they are determined by natural selection. By profiling metabolites in brain, heart, kidney, and liver tissues of 26 mammalian species representing ten taxonomical orders, we report metabolite patterns characteristic of organs, lineages, and species longevity. Our data suggest different rates of metabolite divergence across organs and reveal patterns representing organ-specific functions and lineage-specific physiologies. We identified metabolites that correlated with species lifespan, some of which were previously implicated in longevity control. We also compared the results with metabolite changes in five long-lived mouse models and observed some similar patterns. Overall, this study describes adjustments of the mammalian metabolome according to lifespan, phylogeny, and organ and lineage specialization.
Collapse
Affiliation(s)
- Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA.
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eun Bae Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Republic of Korea; Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Sang-Rae Lee
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, Republic of Korea
| | - Kyu-Tae Chang
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, Republic of Korea
| | - Rochelle Buffenstein
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Kaitlyn N Lewis
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
90
|
Castillo-Quan JI, Kinghorn KJ, Bjedov I. Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. ADVANCES IN GENETICS 2015; 90:1-101. [PMID: 26296933 DOI: 10.1016/bs.adgen.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging can be defined as the progressive decline in tissue and organismal function and the ability to respond to stress that occurs in association with homeostatic failure and the accumulation of molecular damage. Aging is the biggest risk factor for human disease and results in a wide range of aging pathologies. Although we do not completely understand the underlying molecular basis that drives the aging process, we have gained exceptional insights into the plasticity of life span and healthspan from the use of model organisms such as the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Single-gene mutations in key cellular pathways that regulate environmental sensing, and the response to stress, have been identified that prolong life span across evolution from yeast to mammals. These genetic manipulations also correlate with a delay in the onset of tissue and organismal dysfunction. While the molecular genetics of aging will remain a prosperous and attractive area of research in biogerontology, we are moving towards an era defined by the search for therapeutic drugs that promote healthy aging. Translational biogerontology will require incorporation of both therapeutic and pharmacological concepts. The use of model organisms will remain central to the quest for drug discovery, but as we uncover molecular processes regulated by repurposed drugs and polypharmacy, studies of pharmacodynamics and pharmacokinetics, drug-drug interactions, drug toxicity, and therapeutic index will slowly become more prevalent in aging research. As we move from genetics to pharmacology and therapeutics, studies will not only require demonstration of life span extension and an underlying molecular mechanism, but also the translational relevance for human health and disease prevention.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kerri J Kinghorn
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ivana Bjedov
- Cancer Institute, University College London, London, UK
| |
Collapse
|
91
|
Wiesenborn DS, Menon V, Zhi X, Do A, Gesing A, Wang Z, Bartke A, Altomare DA, Masternak MM. The effect of calorie restriction on insulin signaling in skeletal muscle and adipose tissue of Ames dwarf mice. Aging (Albany NY) 2015; 6:900-12. [PMID: 25411241 PMCID: PMC4247389 DOI: 10.18632/aging.100700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-living Ames dwarf (df/df) mice are homozygous for a mutation of the Prop1(df) gene. As a result, mice are deficient in growth hormone (GH), prolactin (PRL) and thyrotropin (TSH). In spite of the hormonal deficiencies, df/df mice live significantly longer and healthier lives compared to their wild type siblings. We studied the effects of calorie restriction (CR) on the expression of insulin signaling genes in skeletal muscle and adipose tissue of normal and df/df mice. The analysis of genes expression showed that CR differentially affects the insulin signaling pathway in these insulin target organs. Moreover, results obtained in both normal and Ames dwarf mice indicate more direct effects of CR on insulin signaling genes in adipose tissue than in skeletal muscle. Interestingly, CR reduced the protein levels of adiponectin in the epididymal adipose tissue of normal and Ames dwarf mice, while elevating adiponectin levels in skeletal muscle and plasma of normal mice only. In conclusion, our findings suggest that both skeletal muscle and adipose tissue are important mediators of insulin effects on longevity. Additionally, the results revealed divergent effects of CR on expression of genes in the insulin signaling pathway of normal and Ames dwarf mice.
Collapse
Affiliation(s)
- Denise S Wiesenborn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vinal Menon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA. Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina Columbia, SC 29209, USA
| | - Xu Zhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Andrew Do
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Zhihui Wang
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA. Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 61-866 Poznan
| |
Collapse
|
92
|
Sell C. Minireview: The Complexities of IGF/Insulin Signaling in Aging: Why Flies and Worms Are Not Humans. Mol Endocrinol 2015; 29:1107-13. [PMID: 26102060 DOI: 10.1210/me.2015-1074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A remarkable plasticity in life span has been uncovered in recent years, offering hope that the basic mechanisms of aging and interventions that delay aging may be identified in the coming decades. Life span extension has been achieved by genetic manipulation in multiple organisms including Sarcomyces cervisae, Caenorhabditis elegans, and Drosophila melanogaster, resulting in more than a doubling of life span in some cases. Typically, a reduction in function has been the most effective approach to extending life span, and a reduction in the insulin/IGF-1 signaling pathway appears to provide the most robust increase in life span. This highly conserved pathway integrates growth/survival signals with nutrient status. In mammals, it comprises part of the neuroendocrine axis, a critical regulator of growth and development. Reduced functionality of the neuroendocrine axis itself promotes life span extension in mammals; however, reduced activity of the IGF-1 signaling pathway specifically leads to less robust increases in life span. This review examines the differences in the insulin/IGF-1 axis between invertebrate and mammalian systems and discusses implications of these differences in terms of life span modulation.
Collapse
Affiliation(s)
- Christian Sell
- Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
93
|
Bulterijs S, Hull RS, Björk VCE, Roy AG. It is time to classify biological aging as a disease. Front Genet 2015; 6:205. [PMID: 26150825 PMCID: PMC4471741 DOI: 10.3389/fgene.2015.00205] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/25/2015] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sven Bulterijs
- Faculty of Science, Ghent UniversityGhent, Belgium
- Heales vzwBrussels, Belgium
| | - Raphaella S. Hull
- Biochemistry Department, University of OxfordOxford, UK
- The Biogerontology Research FoundationLondon, UK
| | - Victor C. E. Björk
- Heales vzwBrussels, Belgium
- Institutionen för Biologisk Grundutbildning, Uppsala UniversityUppsala, Sweden
| | - Avi G. Roy
- Heales vzwBrussels, Belgium
- The Biogerontology Research FoundationLondon, UK
- Institute for Translational Medicine, School of Science, University of BuckinghamBuckingham, UK
| |
Collapse
|
94
|
Hill CM, Arum O, Boparai RK, Wang F, Fang Y, Sun LY, Masternak MM, Bartke A. Female PAPP-A knockout mice are resistant to metabolic dysfunction induced by high-fat/high-sucrose feeding at middle age. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9765. [PMID: 25953669 PMCID: PMC4424199 DOI: 10.1007/s11357-015-9765-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/02/2015] [Indexed: 05/19/2023]
Abstract
Longevity and aging are influenced by common intracellular signals of the insulin/insulin-like growth factor (IGF)-1 pathway. Abnormally high levels of bioactive IGF-1 increase the development of various cancers and may contribute to metabolic diseases such as insulin resistance. Enhanced availability of IGF-1 is promoted by cleavage of IGF binding proteins (IGFBPs) by proteases, including the pregnancy-associated plasma protein-A (PAPPA). In vitro, PAPP-A is regulated by pro-inflammatory cytokines (PICs) such as interleukin (IL)-6 and tumor necrosis factor (TNF). Mice born with deficiency of the Papp-a gene (PAPP-A knockout (KO) mice) live ~30-40 % longer than their normal littermates and have decreased bioactive IGF-1 on standard diets. Our objective was to elucidate how the effects of high-fat, high-sucrose diet (HFHS) promote obesity, induce metabolic dysfunction, and alter systemic cytokine expression in PAPP-A KO and normal mice. PAPP-A KO mice fed HFHS diet for 10 weeks were more glucose tolerant and had enhanced insulin sensitivity compared to normal mice fed HFHS diet. PAPP-A KO mice fed HFHS diet had lower levels of pro-inflammatory cytokines (IL-2, IL-6, and TNF-α) compared to normal mice fed the same diet. However, anti-inflammatory cytokine levels (IL-4 and adiponectin) were higher in PAPP-A KO mice fed HFHS diet compared to normal mice fed HFHS. Circulating PAPP-A levels were elevated in normal mice fed an HFHS diet compared to normal mice fed a standard, low-fat, low-sucrose (LFLS) diet. Indirect calorimetry showed, at 10 weeks of feeding HFHS diet, significantly increased oxygen consumption (VO2) in PAPP-A KO mice fed HFHS diet compared to normal mice fed the same diet. Furthermore, respiratory quotient (RQ) was significantly lower in PAPP-A KO mice fed HFHS diet compared to normal (N) mice fed HFHS diet indicating PAPP-A KO mice fed HFHS diet are able to rely on fat as their primary source of energy more so than normal controls. We conclude that PAPP-A KO mice are resistant to the HFHS diet induction of metabolic dysfunction associated with higher levels of anti-inflammatory cytokines and a remarkably metabolic flexible phenotype and that some of the effects of HFHS diet in normal animals may be due to increased levels of PAPP-A.
Collapse
Affiliation(s)
- Cristal M. Hill
- />Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL USA
- />Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794 USA
| | - Oge Arum
- />Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794 USA
- />631 N. 6th St., Springfield, IL 62702 USA
| | - Ravneet K. Boparai
- />Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794 USA
| | - Feiya Wang
- />Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794 USA
| | - Yimin Fang
- />Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794 USA
| | - Liou Y. Sun
- />Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794 USA
| | - Michal M. Masternak
- />Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL USA
| | - Andrzej Bartke
- />Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL USA
- />Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794 USA
| |
Collapse
|
95
|
Grimmel M, Backhaus C, Proikas-Cezanne T. WIPI-Mediated Autophagy and Longevity. Cells 2015; 4:202-17. [PMID: 26010754 PMCID: PMC4493456 DOI: 10.3390/cells4020202] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 01/20/2023] Open
Abstract
Autophagy is a lysosomal degradation process for cytoplasmic components, including organelles, membranes, and proteins, and critically secures eukaryotic cellular homeostasis and survival. Moreover, autophagy-related (ATG) genes are considered essential for longevity control in model organisms. Central to the regulatory relationship between autophagy and longevity is the control of insulin/insulin-like growth factor receptor-driven activation of mTOR (mechanistic target of rapamycin), which inhibits WIPI (WD repeat protein interacting with phosphoinositides)-mediated autophagosome formation. Release of the inhibitory mTOR action on autophagy permits the production of PI3P (phosphatidylinositol-3 phosphate), predominantly at the endoplasmic reticulum, to function as an initiation signal for the formation of autophagosomes. WIPI proteins detect this pool of newly produced PI3P and function as essential PI3P effector proteins that recruit downstream autophagy-related (ATG) proteins. The important role of WIPI proteins in autophagy is highlighted by functional knockout of the WIPI homologues ATG-18 and EPG-6 in Caenorhabditis elegans (C. elegans). Adult lifespan is significantly reduced in ATG-18 mutant animals, demonstrating that longevity as such is crucially determined by essential autophagy factors. In this review we summarize the role of WIPI proteins and their C. elegans homologues with regard to the molecular basis of aging. As the development of strategies on how to increase health span in humans is increasingly appreciated, we speculate that targeting WIPI protein function might represent a therapeutic opportunity to fight and delay the onset of age-related human diseases.
Collapse
Affiliation(s)
- Mona Grimmel
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Charlotte Backhaus
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany.
| |
Collapse
|
96
|
Park JH, Ha H. Short-term Treatment of Daumone Improves Hepatic Inflammation in Aged Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:269-74. [PMID: 25954133 PMCID: PMC4422968 DOI: 10.4196/kjpp.2015.19.3.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/23/2015] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Abstract
Chronic inflammation has been proposed as one of the main molecular mechanisms of aging and age-related diseases. Although evidence in humans is limited, short-term calorie restriction (CR) has been shown to have anti-inflammatory effects in aged experimental animals. We reported on the long-term treatment of daumone, a synthetic pheromone secreted by Caenorhabditis elegans in an energy deficient environment, extends the life-span and attenuates liver injury in aged mice. The present study examined whether late onset short-term treatment of daumone exerts anti-inflammatory effects in the livers of aged mice. Daumone was administered orally at doses of 2 or 20 mg/kg/day for 5 weeks to 24-month-old male C57BL/6J mice. Increased liver macrophage infiltration and gene expression of proinflammatory cytokines in aged mice were significantly attenuated by daumone treatment, suggesting that short-term oral administration of daumone may have hepatoprotective effects. Daumone also dose-dependently suppressed tumor necrosis factor-α (TNF-α)-induced nuclear factor-κB (NF-κB) phosphorylation in HepG2 cells. The present data demonstrated that short-term treatment of daumone has anti-inflammatory effects in aged mouse livers possibly through suppression of NF-κB signaling and suggest that daumone may become a lead compound targeting aging and age-associated diseases.
Collapse
Affiliation(s)
- Jong Hee Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
97
|
Pollock RD, Carter S, Velloso CP, Duggal NA, Lord JM, Lazarus NR, Harridge SDR. An investigation into the relationship between age and physiological function in highly active older adults. J Physiol 2015; 593:657-80; discussion 680. [PMID: 25565071 DOI: 10.1113/jphysiol.2014.282863] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/18/2014] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding genetic and lifestyle factors, and in particular to ill-defined and low levels of physical activity. This study assessed the relationship between age and a diverse range of physiological functions in a cohort of highly active older individuals (cyclists) aged 55-79 years in whom the effects of lifestyle factors would be ameliorated. Significant associations between age and function were observed for many functions. V̇O2max was most closely associated with age, but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The data suggest that the relationship between human ageing and physiological function is highly individualistic and modified by inactivity. ABSTRACT Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55-79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular, metabolic, endocrine and cognitive functions, bone strength, and health and well-being. Significant associations between age and function were observed for many functions. The maximal rate of oxygen consumption (V̇O2max) showed the closest association with age (r = -0.443 to -0.664; P < 0.001), but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The results of this cross-sectional study suggest that even when many confounding variables are removed the relationship between function and healthy ageing is complex and likely to be highly individualistic and that physical activity levels must be taken into account in ageing studies.
Collapse
Affiliation(s)
- Ross D Pollock
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
98
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Armstrong V, Rojanathammanee L. Altered dietary methionine differentially impacts glutathione and methionine metabolism in long-living growth hormone-deficient Ames dwarf and wild-type mice. LONGEVITY & HEALTHSPAN 2014; 3:10. [PMID: 25584190 PMCID: PMC4290132 DOI: 10.1186/2046-2395-3-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023]
Abstract
Background Extending mammalian health span and life span has been achieved under a variety of dietary restriction protocols. Reducing the intake of a specific amino acid has also been shown to extend health and longevity. We recently reported that methionine (MET) restriction is not effective in life span extension in growth hormone (GH) signaling mutants. To better understand the apparent necessity of GH in the ‘sensing’ of altered dietary MET, the current study was designed to evaluate MET and glutathione (GSH) metabolism (as well as other pathways) in long-living GH-deficient Ames dwarf and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) dietary MET consumption. Metabolite expression was examined in liver tissue, while gene and protein expression were evaluated in liver, kidney, and muscle tissues. Results Body weight was maintained in dwarf mice on the MET diets, while wild-type mice on higher levels of MET gained weight. Liver MET levels were similar in Ames mice, while several MET pathway enzymes were elevated regardless of dietary MET intake. Transsulfuration enzymes were also elevated in Ames mice but differences in cysteine levels were not different between genotypes. Dwarf mice maintained higher levels of GSH on MET restriction compared to wild-type mice, while genotype and diet effects were also detected in thioredoxin and glutaredoxin. MET restriction increased transmethylation in both genotypes as indicated by increased S-adenosylmethionine (SAM), betaine, and dimethylglycine. Diet did not impact levels of glycolytic components, but dwarf mice exhibited higher levels of key members of this pathway. Coenzyme A and measures of fatty acid oxidation were elevated in dwarf mice and unaffected by diet. Conclusions This component analysis between Ames and wild-type mice suggests that the life span differences observed may result from the atypical MET metabolism and downstream effects on multiple systems. The overall lack of responsiveness to the different diets is well reflected across many metabolic pathways in dwarf mice indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels. Electronic supplementary material The online version of this article (doi:10.1186/2046-2395-3-10) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Joseph A Wonderlich
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Vanessa Armstrong
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Lalida Rojanathammanee
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA ; School of Sports Science, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
99
|
Brown-Borg HM, Rakoczy SG, Wonderlich JA, Rojanathammanee L, Kopchick JJ, Armstrong V, Raasakka D. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell 2014; 13:1019-27. [PMID: 25234161 PMCID: PMC4244257 DOI: 10.1111/acel.12269] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2014] [Indexed: 11/29/2022] Open
Abstract
Growth hormone significantly impacts lifespan in mammals. Mouse longevity is extended when growth hormone (GH) signaling is interrupted but markedly shortened with high-plasma hormone levels. Methionine metabolism is enhanced in growth hormone deficiency, for example, in the Ames dwarf, but suppressed in GH transgenic mice. Methionine intake affects also lifespan, and thus, GH mutant mice and respective wild-type littermates were fed 0.16%, 0.43%, or 1.3% methionine to evaluate the interaction between hormone status and methionine. All wild-type and GH transgenic mice lived longer when fed 0.16% methionine but not when fed higher levels. In contrast, animals without growth hormone signaling due to hormone deficiency or resistance did not respond to altered levels of methionine in terms of lifespan, body weight, or food consumption. Taken together, our results suggest that the presence of growth hormone is necessary to sense dietary methionine changes, thus strongly linking growth and lifespan to amino acid availability.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine and Health SciencesGrand Forks, ND, 58203, USA
| | - Sharlene G Rakoczy
- Department of Basic Sciences, University of North Dakota School of Medicine and Health SciencesGrand Forks, ND, 58203, USA
| | - Joseph A Wonderlich
- Department of Basic Sciences, University of North Dakota School of Medicine and Health SciencesGrand Forks, ND, 58203, USA
| | - Lalida Rojanathammanee
- Department of Basic Sciences, University of North Dakota School of Medicine and Health SciencesGrand Forks, ND, 58203, USA
| | - John J Kopchick
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine, Edison Biotechnology Institute, Ohio UniversityAthens, OH, 45701, USA
| | - Vanessa Armstrong
- Department of Basic Sciences, University of North Dakota School of Medicine and Health SciencesGrand Forks, ND, 58203, USA
| | - Debbie Raasakka
- Department of Basic Sciences, University of North Dakota School of Medicine and Health SciencesGrand Forks, ND, 58203, USA
| |
Collapse
|
100
|
Arum O, Saleh J, Boparai R, Turner J, Kopchick J, Khardori R, Bartke A. Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging. F1000Res 2014; 3:256. [PMID: 25789159 PMCID: PMC4358413 DOI: 10.12688/f1000research.5378.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 11/20/2022] Open
Abstract
The correlation of physiological sensitivity to insulin ( vis-à-vis glycemic regulation) and longevity is extensively established, creating a justifiable gerontological interest on whether insulin sensitivity is causative, or even predictive, of some or all phenotypes of slowed senescence (including longevity). The growth hormone receptor/ binding protein gene-disrupted (GHR-KO) mouse is the most extensively investigated insulin-sensitive, attenuated aging model. It was reported that, in a manner divergent from similar mutants, GHR-KO mice fail to respond to caloric restriction (CR) by altering their insulin sensitivity. We hypothesized that maximized insulin responsiveness is what causes GHR-KO mice to exhibit a suppressed survivorship response to dietary (including caloric) restriction; and attempted to refute this hypothesis by assessing the effects of CR on GHR-KO mice for varied slow-aging-associated phenotypes. In contrast to previous reports, we found GHR-KO mice on CR to be less responsive than their ad libitum (A.L.) counterparts to the hypoglycemia-inducing effects of insulin. Further, CR had negligible effects on the metabolism or cognition of GHR-KO mice. Therefore, our data suggest that the effects of CR on the insulin sensitivity of GHR-KO mice do not concur with the effects of CR on the aging of GHR-KO mice.
Collapse
Affiliation(s)
- Oge Arum
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - Jamal Saleh
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - Ravneet Boparai
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - Jeremy Turner
- Department of Surgery, Division of ENT-Otolaryngology, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| | - John Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Romesh Khardori
- Department of Internal Medicine, Division of Endocrinology & Metabolism, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University-School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|