51
|
Hu J, Choi JH, Gaddameedhi S, Kemp MG, Reardon JT, Sancar A. Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo. J Biol Chem 2013; 288:20918-20926. [PMID: 23749995 DOI: 10.1074/jbc.m113.482257] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is the sole mechanism for removing the major UV photoproducts from genomic DNA in human cells. In vitro with human cell-free extract or purified excision repair factors, the damage is removed from naked DNA or nucleosomes in the form of 24- to 32-nucleotide-long oligomers (nominal 30-mer) by dual incisions. Whether the DNA damage is removed from chromatin in vivo in a similar manner and what the fate of the excised oligomer was has not been known previously. Here, we demonstrate that dual incisions occur in vivo identical to the in vitro reaction. Further, we show that transcription-coupled repair, which operates in the absence of the XPC protein, also generates the nominal 30-mer in UV-irradiated XP-C mutant cells. Finally, we report that the excised 30-mer is released from the chromatin in complex with the repair factors TFIIH and XPG. Taken together, our results show the congruence of in vivo and in vitro data on nucleotide excision repair in humans.
Collapse
Affiliation(s)
- Jinchuan Hu
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Jun-Hyuk Choi
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and; the Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea
| | - Shobhan Gaddameedhi
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Michael G Kemp
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Joyce T Reardon
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and
| |
Collapse
|
52
|
Lihoradova OA, Indran SV, Kalveram B, Lokugamage N, Head JA, Gong B, Tigabu B, Juelich TL, Freiberg AN, Ikegami T. Characterization of Rift Valley fever virus MP-12 strain encoding NSs of Punta Toro virus or sandfly fever Sicilian virus. PLoS Negl Trop Dis 2013; 7:e2181. [PMID: 23638202 PMCID: PMC3630143 DOI: 10.1371/journal.pntd.0002181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/15/2013] [Indexed: 12/22/2022] Open
Abstract
Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are important for vaccine development for Rift Valley fever. Upon outbreak of zoonotic viral diseases in herds of animals, early detection of naturally infected animals and prevention of further viral spread are important for minimizing the impact of outbreak in the society. Vaccination may compromise the identification of infected animals since both natural infection and vaccination induce antibodies specific to the pathogen. Therefore, new generation vaccines should have a marker to differentiate infected from vaccinated animals (DIVA). Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans and a high-rate abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is safe and immunogenic, but lacks a DIVA marker. In this study, we developed and characterized improved MP-12 viruses which encode a DIVA marker by replacing the virulence gene with that of serologically distinct viruses belonging to the same genera. The novel MP-12 variant with such DIVA marker was highly efficacious and replicated efficiently in human diploid cells for vaccine production, and will become alternative candidate vaccines of MP-12 for veterinary applications.
Collapse
Affiliation(s)
- Olga A. Lihoradova
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sabarish V. Indran
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nandadeva Lokugamage
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer A. Head
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bersabeh Tigabu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
53
|
Kuper J, Kisker C. DNA Helicases in NER, BER, and MMR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:203-24. [DOI: 10.1007/978-1-4614-5037-5_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
54
|
Cai G, Chaban YL, Imasaki T, Kovacs JA, Calero G, Penczek PA, Takagi Y, Asturias FJ. Interaction of the mediator head module with RNA polymerase II. Structure 2012; 20:899-910. [PMID: 22579255 DOI: 10.1016/j.str.2012.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 02/09/2023]
Abstract
Mediator, a large (21 polypeptides, MW ∼1 MDa) complex conserved throughout eukaryotes, plays an essential role in control of gene expression by conveying regulatory signals that influence the activity of the preinitiation complex. However, the precise mode of interaction between Mediator and RNA polymerase II (RNAPII), and the mechanism of regulation by Mediator remain elusive. We used cryo-electron microscopy and reconstituted in vitro transcription assays to characterize a transcriptionally-active complex including the Mediator Head module and components of a minimum preinitiation complex (RNAPII, TFIIF, TFIIB, TBP, and promoter DNA). Our results reveal how the Head interacts with RNAPII, affecting its conformation and function.
Collapse
Affiliation(s)
- Gang Cai
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Yang M, Chen Y, Zhou Y, Wang L, Zhang H, Bi LJ, Zhang XE. MSMEG_2731, an uncharacterized nucleic acid binding protein from Mycobacterium smegmatis, physically interacts with RPS1. PLoS One 2012; 7:e36666. [PMID: 22590585 PMCID: PMC3348880 DOI: 10.1371/journal.pone.0036666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 04/04/2012] [Indexed: 12/04/2022] Open
Abstract
While the M. smegmatis genome has been sequenced, only a small portion of the genes have been characterized experimentally. Here, we purify and characterize MSMEG_2731, a conserved hypothetical alanine and arginine rich M. smegmatis protein. Using ultracentrifugation, we show that MSMEG_2731 is a monomer in vitro. MSMEG_2731 exists at a steady level throughout the M. smegmatis life-cycle. Combining results from pull-down techniques and LS-MS/MS, we show that MSMEG_2731 interacts with ribosomal protein S1. The existence of this interaction was confirmed by co-immunoprecipitation. We also show that MSMEG_2731 can bind ssDNA, dsDNA and RNA in vitro. Based on the interactions of MSMEG_2731 with RPS1 and RNA, we propose that MSMEG_2731 is involved in the transcription-translation process in vivo.
Collapse
Affiliation(s)
- Mingzhang Yang
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Chen
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhou
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liwei Wang
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongtai Zhang
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Li-Jun Bi
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (L-JB); (X-EZ)
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (L-JB); (X-EZ)
| |
Collapse
|
56
|
Abstract
Nucleotide excision repair proteins are classically associated with DNA repair. However, a study by Fong et al. (2011) in the most recent issue of Cell demonstrates that the XPC/RAD23B/CETN2 nucleotide excision repair complex additionally functions as a transcriptional coactivator of Oct4/Sox2, critically regulating maintenance and reestablishment of stem cell pluripotency.
Collapse
|
57
|
Abstract
Structures of complete 10-subunit yeast TFIIH and of a nested set of subcomplexes, containing 5, 6, and 7 subunits, have been determined by electron microscopy (EM) and 3D reconstruction. Consistency among all the structures establishes the location of the "minimal core" subunits (Ssl1, Tfb1, Tfb2, Tfb4, and Tfb5), and additional densities can be specifically attributed to Rad3, Ssl2, and the TFIIK trimer. These results can be further interpreted by placement of previous X-ray structures into the additional densities to give a preliminary picture of the RNA polymerase II preinitiation complex. In this picture, the key catalytic components of TFIIH, the Ssl2 ATPase/helicase and the Kin28 protein kinase are in proximity to their targets, downstream promoter DNA and the RNA polymerase C-terminal domain.
Collapse
|
58
|
Li J, Bhat A, Xiao W. Regulation of nucleotide excision repair through ubiquitination. Acta Biochim Biophys Sin (Shanghai) 2011; 43:919-29. [PMID: 21986915 DOI: 10.1093/abbs/gmr088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms. While bacteria require only three proteins to complete the incision step of NER, eukaryotes employ about 30 proteins to complete the same step. Here we summarize recent studies demonstrating that ubiquitination, a post-translational modification, plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis. Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process. We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.
Collapse
Affiliation(s)
- Jia Li
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
59
|
Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 2011; 6:e27966. [PMID: 22132183 PMCID: PMC3222671 DOI: 10.1371/journal.pone.0027966] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
We previously developed a fermentation protocol for lipid accumulation in the oleaginous yeast Y. lipolytica. This process was used to perform transcriptomic time-course analyses to explore gene expression in Y. lipolytica during the transition from biomass production to lipid accumulation. In this experiment, a biomass concentration of 54.6 g(CDW)/l, with 0.18 g/g(CDW) lipid was obtained in ca. 32 h, with low citric acid production. A transcriptomic profiling was performed on 11 samples throughout the fermentation. Through statistical analyses, 569 genes were highlighted as differentially expressed at one point during the time course of the experiment. These genes were classified into 9 clusters, according to their expression profiles. The combination of macroscopic and transcriptomic profiles highlighted 4 major steps in the culture: (i) a growth phase, (ii) a transition phase, (iii) an early lipid accumulation phase, characterized by an increase in nitrogen metabolism, together with strong repression of protein production and activity; (iv) a late lipid accumulation phase, characterized by the rerouting of carbon fluxes within cells. This study explores the potential of Y. lipolytica as an alternative oil producer, by identifying, at the transcriptomic level, the genes potentially involved in the metabolism of oleaginous species.
Collapse
Affiliation(s)
| | - Julien Cescut
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | | | - Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques, UMR-S 665 - Université Paris 7, INTS, Paris, France
| | - Veronique Le Berre
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
- Plateforme Biopuces de la Génopole de Toulouse Midi Pyrénées, INSA/DGBA 135, Toulouse, France
| | - Jean-Louis Uribelarrea
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Carole Molina-Jouve
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
- INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France
- CNRS, UMR5504, Toulouse, France
| | - Jean-Marc Nicaud
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- CNRS, Micalis, Jouy-en-Josas, France
| |
Collapse
|
60
|
Lin JJ, Lehmann LW, Bonora G, Sridharan R, Vashisht AA, Tran N, Plath K, Wohlschlegel JA, Carey M. Mediator coordinates PIC assembly with recruitment of CHD1. Genes Dev 2011; 25:2198-209. [PMID: 21979373 DOI: 10.1101/gad.17554711] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Murine Chd1 (chromodomain helicase DNA-binding protein 1), a chromodomain-containing chromatin remodeling protein, is necessary for embryonic stem (ES) cell pluripotency. Chd1 binds to nucleosomes trimethylated at histone 3 Lys 4 (H3K4me3) near the beginning of active genes but not to bivalent domains also containing H3K27me3. To address the mechanism of this specificity, we reproduced H3K4me3- and CHD1-stimulated gene activation in HeLa extracts. Multidimensional protein identification technology (MuDPIT) and immunoblot analyses of purified preinitiation complexes (PICs) revealed the recruitment of CHD1 to naive chromatin but enhancement on H3K4me3 chromatin. Studies in depleted extracts showed that the Mediator coactivator complex, which controls PIC assembly, is also necessary for CHD1 recruitment. MuDPIT analyses of CHD1-associated proteins support the recruitment data and reveal numerous components of the PIC, including Mediator. In vivo, CHD1 and Mediator are recruited to an inducible gene, and genome-wide binding of the two proteins correlates well with active gene transcription in mouse ES cells. Finally, coimmunoprecipitation of CHD1 and Mediator from cell extracts can be ablated by shRNA knockdown of a specific Mediator subunit. Our data support a model in which the Mediator coordinates PIC assembly along with the recruitment of CHD1. The combined action of the PIC and H3K4me3 provides specificity in targeting CHD1 to active genes.
Collapse
Affiliation(s)
- Justin J Lin
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Khobta A, Epe B. Interactions between DNA damage, repair, and transcription. Mutat Res 2011; 736:5-14. [PMID: 21907218 DOI: 10.1016/j.mrfmmm.2011.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/22/2011] [Accepted: 07/25/2011] [Indexed: 01/16/2023]
Abstract
This review addresses a variety of mechanisms by which DNA repair interacts with transcription and vice versa. Blocking of transcriptional elongation is the best studied of these mechanisms. Transcription recovery after damage therefore has often been used as a surrogate marker of DNA repair in cells. However, it has become evident that relationships between DNA damage, repair, and transcription are more complex due to various indirect effects of DNA damage on gene transcription. These include inhibition of transcription by DNA repair intermediates as well as regulation of transcription and of the epigenetic status of the genes by DNA repair-related mechanisms. In addition, since transcription is emerging as an important endogenous source of DNA damage in cells, we briefly summarise recent advances in understanding the nature of co-transcriptionally induced DNA damage and the DNA repair pathways involved.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | | |
Collapse
|
62
|
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) 2011; 10:697-713. [PMID: 21571596 PMCID: PMC3234290 DOI: 10.1016/j.dnarep.2011.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicases must unwind DNA at the right place and time to maintain genomic integrity or gene expression. Biologically critical XPB and XPD helicases are key members of the human TFIIH complex; they anchor CAK kinase (cyclinH, MAT1, CDK7) to TFIIH and open DNA for transcription and for repair of duplex distorting damage by nucleotide excision repair (NER). NER is initiated by arrested RNA polymerase or damage recognition by XPC-RAD23B with or without DDB1/DDB2. XP helicases, named for their role in the extreme sun-mediated skin cancer predisposition xeroderma pigmentosum (XP), are then recruited to asymmetrically unwind dsDNA flanking the damage. XPB and XPD genetic defects can also cause premature aging with profound neurological defects without increased cancers: Cockayne syndrome (CS) and trichothiodystrophy (TTD). XP helicase patient phenotypes cannot be predicted from the mutation position along the linear gene sequence and adjacent mutations can cause different diseases. Here we consider the structural biology of DNA damage recognition by XPC-RAD23B, DDB1/DDB2, RNAPII, and ATL, and of helix unwinding by the XPB and XPD helicases plus the bacterial repair helicases UvrB and UvrD in complex with DNA. We then propose unified models for TFIIH assembly and roles in NER. Collective crystal structures with NMR and electron microscopy results reveal functional motifs, domains, and architectural elements that contribute to biological activities: damaged DNA binding, translocation, unwinding, and ATP driven changes plus TFIIH assembly and signaling. Coupled with mapping of patient mutations, these combined structural analyses provide a framework for integrating and unifying the rich biochemical and cellular information that has accumulated over forty years of study. This integration resolves puzzles regarding XP helicase functions and suggests that XP helicase positions and activities within TFIIH detect and verify damage, select the damaged strand for incision, and coordinate repair with transcription and cell cycle through CAK signaling.
Collapse
Affiliation(s)
- Jill O. Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular Biology, Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
63
|
Kitamura A, Matsushita K, Takiguchi Y, Shimada H, Tada Y, Yamanaka M, Hiroshima K, Tagawa M, Tomonaga T, Matsubara H, Inoue M, Hasegawa M, Sato Y, Levens D, Tatsumi K, Nomura F. Synergistic effect of non-transmissible Sendai virus vector encoding the c-myc suppressor FUSE-binding protein-interacting repressor plus cisplatin in the treatment of malignant pleural mesothelioma. Cancer Sci 2011; 102:1366-73. [PMID: 21435101 PMCID: PMC7667494 DOI: 10.1111/j.1349-7006.2011.01931.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human malignant pleural mesothelioma (HMPM) is highly resistant to conventional therapy, and therefore novel therapies are required. We previously reported that overexpression of the FUSE-binding protein-interacting repressor (FIR), a c-myc transcriptional repressor, induces apoptosis via c-Myc suppression, and is thus a suitable cancer therapy. In the current preclinical trial, a fusion gene deleted non-transmissible Sendai virus vector encoding FIR (SeV/ΔF/FIR) was prepared and its cytotoxic activity against an orthotopic xenograft model of HMPM, in combination with cisplatin, was assessed. SeV/ΔF/FIR and a fusion gene deleted non-transmissible Sendai virus vector encoding green fluorescent protein (SeV/ΔF/GFP) were prepared. The transduction efficiency of these agents in terms of dose-dependent cytotoxicity and/or apoptosis induction was then assessed in a few HMPM cells. Combination therapy with SeV/ΔF/FIR plus cisplatin was evaluated in vitro and in a mouse model. SeV/ΔF/FIR significantly reduced cell viability in three HMPM cell lines but was less effective in non-tumor immortalized mesothelial cells. SeV/ΔF/FIR cytotoxicity was partly due to apoptosis induction via c-Myc suppression. In addition, SeV/ΔF/FIR showed synergistic antitumor effects in combination with cisplatin, as was revealed by isobologram analysis in MSTO-211H. Moreover, combination therapy with SeV/ΔF/FIR plus cisplatin demonstrated significant tumor reduction and improvement in survival rate in an animal model. Combination therapy with SeV/ΔF/FIR plus cisplatin has therapeutic potential against HMPM. SeV/ΔF/FIR plus cisplatin will be an attractive modality against HMPM in the future.
Collapse
Affiliation(s)
- Atsushi Kitamura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ren S, Zhou S, Wu F, Zhang L, Li X, Zhang J, Xu J, Lv M, Zhang J, Zhou C. Association between polymorphisms of DNA repair genes and survival of advanced NSCLC patients treated with platinum-based chemotherapy. Lung Cancer 2011; 75:102-9. [PMID: 21676483 DOI: 10.1016/j.lungcan.2011.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) in DNA repair genes can be used to explain the differences in survival of platinum-treated non-small cell lung cancer (NSCLC) patients regardless of their performance status. To define the role of DNA repair gene SNPs in NSCLC patients, we investigated the association between survival and 12 different SNPs of 9 DNA repair genes. METHODS 340 patients were treated with platinum-based chemotherapy. Polymorphisms were detected by real time PCR with TaqMan probe, using genomic DNA extracted from peripheral blood samples. Multivariate logistic or Cox regression analyses were used to adjust for possible confounding variables. RESULTS The median overall survival time was 15 months and it was significantly longer in patients harboring ERCC1 118 C/T or T/T allele: 18 months as compared to 13.8 months for the C/C allele (P=0.014). Subgroup analysis revealed that ERCC1 118 C/T or T/T was associated with increased survival in elderly patients (P=0.018), male (P=0.022), squamous carcinoma (P=0.003), smoker (P=0.076) and those treated with non-gemcitabine/cisplatin or carboplatin (non-GP/GC) regimen (P=0.023). XRCC3C/C was associated with better survival in non-gemcitabine/cisplatin treated patients (P=0.014). Both of CCNH-V270A C/C or C/T and XPD 751 A/A showed a significant longer survival in the squamous cell carcinoma subgroup (P=0.047 and P=0.034 respectively). CONCLUSION Present data indicates that ERCC1 118 C/T or T/T might provide a better prognostic predictive marker of NSCLC patients treated with platinum-based chemotherapy, mainly in elderly subgroup, male, squamous carcinoma, smoker and those treated with non-GP/GC regimen.
Collapse
Affiliation(s)
- Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, No 507 Zhengmin Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Egly JM, Coin F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) 2011; 10:714-21. [PMID: 21592869 DOI: 10.1016/j.dnarep.2011.04.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The TFIIH multiprotein complex is organized into a 7-subunit core associated with a 3-subunit CDK-activating kinase module (CAK). Three enzymatic subunits are present in TFIIH, two ATP-dependent DNA helicases: XPB and XPD, and the kinase Cdk7. Mutations in three of the subunits, XPB, XPD and TTDA, lead to three distinct genetic disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD) predisposing patients not only to cancer and ageing but also to developmental and neurological defects. These heterogeneous phenotypes originate from the dual role of TFIIH in transcription and DNA repair. For twenty years, many molecular studies have been conducted with the aim to unveil the role of TFIIH in DNA repair and transcription as well as the origin of the phenotypes of patients. This review intends to give a non-exhaustive survey of the most prominent discoveries on the molecular functioning of TFIIH.
Collapse
Affiliation(s)
- Jean-Marc Egly
- IGBMC, Program of Functional Genomics and Cancer, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France.
| | | |
Collapse
|
66
|
NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62. J Virol 2011; 85:6234-43. [PMID: 21543505 DOI: 10.1128/jvi.02255-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.
Collapse
|
67
|
Abstract
Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required.
Collapse
|
68
|
Single-stranded DNA binding activity of XPBI, but not XPBII, from Sulfolobus tokodaii causes double-stranded DNA melting. Extremophiles 2010; 15:67-76. [PMID: 21132514 DOI: 10.1007/s00792-010-0338-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
XPB helicase is the largest subunit of transcription factor IIH (TFIIH), a ten-subunit protein complex essential for transcription initiation and nucleotide excision repair (NER) in Eukarya. Two XPB homologues (XPBI and XPBII) are present in the genome of most crenarchaeota, one of the two major phyla of archaea; however, the biochemical properties have not been fully characterized and their cellular roles have not been clearly defined. Here, we report that XPBI from the hyperthermophilic crenarchaeon Sulfolobus tokodaii (StoXPBI) is able to destabilize double-stranded DNA (dsDNA) helix independent of ATP (designated as dsDNA melting activity). This activity is inhibited by single-stranded DNA (ssDNA) and relies on the unique N-terminal domain of StoXPBI, which is also likely responsible for the intrinsic strong ssDNA binding activity of StoXPBI as revealed by deletion analysis. We demonstrate that the ATPase activity of StoXPBII is remarkably stimulated by StoBax1, a nuclease partner of StoXPBII. The role of the unique dsDNA melting activity of XPBI in NER in archaea was discussed.
Collapse
|
69
|
Wu Q, Saunders RA, Szkudlarek-Mikho M, Serna IDL, Chin KV. The obesity-associated Fto gene is a transcriptional coactivator. Biochem Biophys Res Commun 2010; 401:390-5. [PMID: 20858458 DOI: 10.1016/j.bbrc.2010.09.064] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022]
Abstract
The fat mass and obesity associated, FTO, gene has been shown to be associated with obesity in human in several genome-wide association scans. In vitro studies suggest that Fto may function as a single-stranded DNA demethylase. In addition, homologous recombination-targeted knockout of Fto in mice resulted in growth retardation, loss of white adipose tissue, and increase energy metabolism and systemic sympathetic activation. Despite these intense investigations, the exact function of Fto remains unclear. We show here that Fto is a transcriptional coactivator that enhances the transactivation potential of the CCAAT/enhancer binding proteins (C/EBPs) from unmethylated as well as methylation-inhibited gene promoters. Fto also exhibits nuclease activity. We showed further that Fto enhances the binding C/EBP to unmethylated and methylated DNA. The coactivator role of FTO in modulating the transcriptional regulation of adipogenesis by C/EBPs is consistent with the temporal progressive loss of adipose tissue in the Fto-deficient mice, thus suggesting a role for Fto in the epigenetic regulation of the development and maintenance of fat tissue. How FTO reactivates transcription from methyl-repressed gene needs to be further investigated.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Medicine, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
70
|
Ueda T, Compe E, Catez P, Kraemer KH, Egly JM. Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients. ACTA ACUST UNITED AC 2009; 206:3031-46. [PMID: 19934020 PMCID: PMC2806454 DOI: 10.1084/jem.20091892] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations in the XPD subunit of the DNA repair/transcription factor TFIIH result in the rare recessive genetic disorder xeroderma pigmentosum (XP). Many XP patients are compound heterozygotes with a “causative” XPD point mutation R683W and different second mutant alleles, considered “null alleles.” However, there is marked clinical heterogeneity (including presence or absence of skin cancers or neurological degeneration) in these XPD/R683W patients, thus suggesting a contribution of the second allele. Here, we report XP patients carrying XPD/R683W and a second XPD allele either XPD/Q452X, /I455del, or /199insPP. We performed a systematic study of the effect of these XPD mutations on several enzymatic functions of TFIIH and found that each mutation exhibited unique biochemical properties. Although all the mutations inhibited the nucleotide excision repair (NER) by disturbing the XPD helicase function, each of them disrupted specific molecular steps during transcription: XPD/Q452X hindered the transactivation process, XPD/I455del disturbed RNA polymerase II phosphorylation, and XPD/199insPP inhibited kinase activity of the cdk7 subunit of TFIIH. The broad range and severity of clinical features in XP patients arise from a broad set of deficiencies in NER and transcription that result from the combination of mutations found on both XPD alleles.
Collapse
Affiliation(s)
- Takahiro Ueda
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 10142, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | | | | | | | | |
Collapse
|
71
|
Biswas T, Pero JM, Joseph CG, Tsodikov OV. DNA-Dependent ATPase Activity of Bacterial XPB Helicases. Biochemistry 2009; 48:2839-48. [DOI: 10.1021/bi8022416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tapan Biswas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Jessica M. Pero
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Caleb G. Joseph
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| | - Oleg V. Tsodikov
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109-1065
| |
Collapse
|
72
|
Darbary H, Stoler DL, Anderson GR. Family cancer syndromes: inherited deficiencies in systems for the maintenance of genomic integrity. Surg Oncol Clin N Am 2009; 18:1-17, vii. [PMID: 19056039 PMCID: PMC2614132 DOI: 10.1016/j.soc.2008.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Familial cancer syndromes have revealed important fundamental features regarding how all cancers arise through destabilization of the genome, such that somatic evolution can select for the disruption of critical cellular coordinating and regulatory features. The authors examine those cellular genes and systems whose normal role is to preserve genomic integrity and relate them to the genetic foundations of heritable cancers. By examining how these cellular systems normally function, how family cancer genes are able to affect the process of tumor progression can be learned. In so doing, a clearer picture of how sporadic cancers arise is additionally gained.
Collapse
Affiliation(s)
- Huferesh Darbary
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 USA
| | - Daniel L. Stoler
- Department of Head and Neck Surgery, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 USA
| | - Garth R. Anderson
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 USA
| |
Collapse
|
73
|
Zhou J, Blue EK, Hu G, Herring BP. Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding. J Biol Chem 2008; 283:35383-92. [PMID: 18945672 PMCID: PMC2602901 DOI: 10.1074/jbc.m805489200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/15/2008] [Indexed: 11/06/2022] Open
Abstract
Myocardin is a serum response factor (SRF) co-activator that regulates transcription of many smooth muscle-specific genes and is essential for development of vascular smooth muscle. We used a yeast two-hybrid screen, with myocardin as bait in a search for factors that regulate myocardin transcriptional activity. From this screen, thymine DNA glycosylase (TDG) was identified as a myocardin-associated protein. TDG was originally identified as an enzyme involved in base excision repair of T:G mismatches caused by spontaneous deamination of methylated cytosines. However, TDG has also been shown to act as a transcriptional co-activator or co-repressor. The interaction between TDG and myocardin was confirmed in vitro by glutathione S-transferase pull down and in vivo by co-immunoprecipitation assays. We found that TDG abrogates myocardin induced expression of smooth muscle-specific genes and represses the trans-activation of the promoters of myocardin of these genes. Overexpression of TDG in SMCs down-regulated smooth muscle marker expression. Conversely, depletion of endogenous TDG in SMCs increased smooth muscle-specific myosin heavy chain (SM MHC) and Telokin gene expression. Glutathione S-transferase pull-down assays demonstrated that TDG binds to a region of myocardin that includes the SRF binding domain. Furthermore, TDG was found to compete with SRF for binding to myocardin in vitro and in vivo, suggesting that TDG can inhibit expression of smooth muscle-specific genes, at least in part, through disrupting SRF/myocardin interactions. Finally, we demonstrated that the glycosylase activity of TDG is not required for its inhibitory effects on myocardin function. This study reveals a previously unsuspected role for the repair enzyme TDG as a repressor of smooth muscle differentiation via competing with SRF for binding to myocardin.
Collapse
Affiliation(s)
- Jiliang Zhou
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
74
|
Survival in nuclear waste, extreme resistance, and potential applications gleaned from the genome sequence of Kineococcus radiotolerans SRS30216. PLoS One 2008; 3:e3878. [PMID: 19057647 PMCID: PMC2587704 DOI: 10.1371/journal.pone.0003878] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/04/2008] [Indexed: 01/01/2023] Open
Abstract
Kineococcus radiotolerans SRS30216 was isolated from a high-level radioactive environment at the Savannah River Site (SRS) and exhibits γ-radiation resistance approaching that of Deinococcus radiodurans. The genome was sequenced by the U.S. Department of Energy's Joint Genome Institute which suggested the existence of three replicons, a 4.76 Mb linear chromosome, a 0.18 Mb linear plasmid, and a 12.92 Kb circular plasmid. Southern hybridization confirmed that the chromosome is linear. The K. radiotolerans genome sequence was examined to learn about the physiology of the organism with regard to ionizing radiation resistance, the potential for bioremediation of nuclear waste, and the dimorphic life cycle. K. radiotolerans may have a unique genetic toolbox for radiation protection as it lacks many of the genes known to confer radiation resistance in D. radiodurans. Additionally, genes involved in the detoxification of reactive oxygen species and the excision repair pathway are overrepresented. K. radiotolerans appears to lack degradation pathways for pervasive soil and groundwater pollutants. However, it can respire on two organic acids found in SRS high-level nuclear waste, formate and oxalate, which promote the survival of cells during prolonged periods of starvation. The dimorphic life cycle involves the production of motile zoospores. The flagellar biosynthesis genes are located on a motility island, though its regulation could not be fully discerned. These results highlight the remarkable ability of K radiotolerans to withstand environmental extremes and suggest that in situ bioremediation of organic complexants from high level radioactive waste may be feasible.
Collapse
|
75
|
Andressoo JO, Hoeijmakers JHJ, de Waard H. Nucleotide excision repair and its connection with cancer and ageing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 570:45-83. [PMID: 18727498 DOI: 10.1007/1-4020-3764-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jaan-Olle Andressoo
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
76
|
Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell 2008; 31:9-20. [PMID: 18614043 DOI: 10.1016/j.molcel.2008.04.024] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/11/2008] [Accepted: 04/28/2008] [Indexed: 10/21/2022]
Abstract
The transcription/DNA repair factor TFIIH is organized into a core that associates with the CDK-activating kinase (CAK) complex. Using chromatin immunoprecipitation, we have followed the composition of TFIIH over time after UV irradiation of repair-proficient or -deficient human cells. We show that TFIIH changes subunit composition in response to DNA damage. The CAK is released from the core during nucleotide excision repair (NER). Using reconstituted in vitro NER assay, we show that XPA catalyzes the detachment of the CAK from the core, together with the arrival of the other NER-specific factors. The release of the CAK from the core TFIIH promotes the incision/excision of the damaged oligonucleotide and thereby the repair of the DNA. Following repair, the CAK reappears with the core TFIIH on the chromatin, together with the resumption of transcription. Our findings demonstrate that the composition of TFIIH is dynamic to adapt its engagement in distinct cellular processes.
Collapse
Affiliation(s)
- Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C.U. Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
77
|
Okuda M, Tanaka A, Satoh M, Mizuta S, Takazawa M, Ohkuma Y, Nishimura Y. Structural insight into the TFIIE-TFIIH interaction: TFIIE and p53 share the binding region on TFIIH. EMBO J 2008; 27:1161-71. [PMID: 18354501 PMCID: PMC2275666 DOI: 10.1038/emboj.2008.47] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/21/2008] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II and general transcription factors (GTFs) assemble on a promoter to form a transcription preinitiation complex (PIC). Among the GTFs, TFIIE recruits TFIIH to complete the PIC formation and regulates enzymatic activities of TFIIH. However, the mode of binding between TFIIE and TFIIH is poorly understood. Here, we demonstrate the specific binding of the C-terminal acidic domain (AC-D) of the human TFIIEα subunit to the pleckstrin homology domain (PH-D) of the human TFIIH p62 subunit and describe the solution structures of the free and PH-D-bound forms of AC-D. Although the flexible N-terminal acidic tail from AC-D wraps around PH-D, the core domain of AC-D also interacts with PH-D. AC-D employs an entirely novel binding mode, which differs from the amphipathic helix method used by many transcriptional activators. So the binding surface between PH-D and AC-D is much broader than the specific binding surface between PH-D and the p53 acidic fragments. From our in vitro studies, we demonstrate that this interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription.
Collapse
Affiliation(s)
- Masahiko Okuda
- Laboratory of Structural Biology, Graduate School of Supramolecular Biology, Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
78
|
Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 2008; 18:73-84. [PMID: 18166977 DOI: 10.1038/cr.2008.6] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The encounter of elongating RNA polymerase II (RNAPIIo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin ligase complex to the stalled RNAPIIo. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPIIo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcription-blocking lesions, but are also likely to contribute to DNA damage signalling events.
Collapse
|
79
|
Dynan W, Takeda Y, Roth D, Bao G. Understanding and re-engineering nucleoprotein machines to cure human disease. Nanomedicine (Lond) 2008; 3:93-105. [PMID: 18393669 PMCID: PMC2766608 DOI: 10.2217/17435889.3.1.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian nucleus is filled with self-organizing, nanometer-scale nucleoprotein machines that carry out DNA replication, RNA biogenesis and DNA repair. We discuss, as a model, the nonhomologous end-joining (NHEJ) machine, which repairs DNA double-strand breaks. The NHEJ machine consists of six core polypeptides and 10-20 ancillary polypeptides. A full understanding of its design principles will require measuring the behavior of single NHEJ complexes in living cells, using a Nano Toolbox that includes bright, stable, biocompatible fluorophores, efficient protein and nucleic acid-tagging strategies, and sensitive, high-resolution imaging methods. Taking inspiration from natural examples, it might be possible to adapt and redesign the NHEJ machine to precisely correct mutations responsible for common human diseases, such as K-ras in lung cancer or human papillomavirus E6 and E7 genes in cervical and oral cancers.
Collapse
Affiliation(s)
- William Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yoshihiko Takeda
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | - David Roth
- The Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
80
|
Hayden CA, Bosco G. Comparative genomic analysis of novel conserved peptide upstream open reading frames in Drosophila melanogaster and other dipteran species. BMC Genomics 2008; 9:61. [PMID: 18237443 PMCID: PMC2276209 DOI: 10.1186/1471-2164-9-61] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 02/01/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) are elements found in the 5'-region of an mRNA transcript, capable of regulating protein production of the largest, or major ORF (mORF), and impacting organismal development and growth in fungi, plants, and animals. In Drosophila, approximately 40% of transcripts contain upstream start codons (uAUGs) but there is little evidence that these are translated and affect their associated mORF. RESULTS Analyzing 19,389 Drosophila melanogaster transcript annotations and 666,153 dipteran EST sequences we have identified 44 putative conserved peptide uORFs (CPuORFs) in Drosophila melanogaster that show evidence of negative selection, and therefore are likely to be translated. Transcripts with CPuORFs constitute approximately 0.3% of the total number of transcripts, a similar frequency to the Arabidopsis genome, and have a mean length of 70 amino acids, much larger than the mean length of plant CPuORFs (40 amino acids). There is a statistically significant clustering of CPuORFs at cytological band 57 (p = 10-5), a phenomenon that has never been described for uORFs. Based on GO term and Interpro domain analyses, genes in the uORF dataset show a higher frequency of ORFs implicated in mitochondrial import than the genome-wide frequency (p < 0.01) as well as methyltransferases (p < 0.02). CONCLUSION Based on these data, it is clear that Drosophila contain putative CPuORFs at frequencies similar to those found in plants. They are distinguished, however, by the type of mORF they tend to associate with, Drosophila CPuORFs preferentially occurring in transcripts encoding mitochondrial proteins and methyltransferases. This provides a basis for the study of CPuORFs and their putative regulatory role in mitochondrial function and disease.
Collapse
Affiliation(s)
- Celine A Hayden
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
81
|
Schärer OD. Hot topics in DNA repair: the molecular basis for different disease states caused by mutations in TFIIH and XPG. DNA Repair (Amst) 2008; 7:339-44. [PMID: 18077223 PMCID: PMC2246058 DOI: 10.1016/j.dnarep.2007.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
Alterations in genes involved in nucleotide excision repair (NER) are associated with three genetic disorders, xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). The transcription and repair factor TFIIH is a central component of NER and mutations of its subunits are associated with all three diseases. A recent report provides a molecular basis for how mutations in the NER endonuclease XPG that affect the interaction of TFIIH might give rise to CS features. In cells of XP-G patients with a combined XP and CS phenotype, XPG fails to associate with TFIIH and as a consequence the CAK subunit dissociates from core TFIIH. A simplified, but general model of how various assembly and disassembly states of TFIIH can be invoked to explain different disease states is discussed. Accordingly, defects in specific enzymatic functions typically result in XP, dissociation of the CAK subunit from TFIIH is associated with XP/CS and a more generalized destabilization of TFIIH gives rise to TTD. While this classification provides a useful framework to understand how alterations in TFIIH correlate with disease states, it does not universally apply and relevant exception and alternative explanations are discussed.
Collapse
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11974-3400, USA.
| |
Collapse
|
82
|
Gerber HB, Pikman Y, Fisher RP. The CDK-activating kinase (CAK) Csk1 is required for normal levels of homologous recombination and resistance to DNA damage in fission yeast. PLoS One 2008; 3:e1492. [PMID: 18231579 PMCID: PMC2200797 DOI: 10.1371/journal.pone.0001492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) perform essential roles in cell division and gene expression in all eukaryotes. The requirement for an upstream CDK-activating kinase (CAK) is also universally conserved, but the fission yeast Schizosaccharomyces pombe appears to be unique in having two CAKs with both overlapping and specialized functions that can be dissected genetically. The Mcs6 complex--orthologous to metazoan Cdk7/cyclin H/Mat1--activates the cell-cycle CDK, Cdk1, but its non-redundant essential function appears to be in regulation of gene expression, as part of transcription factor TFIIH. The other CAK is Csk1, an ortholog of budding yeast Cak1, which activates all three essential CDKs in S. pombe--Cdk1, Mcs6 and Cdk9, the catalytic subunit of positive transcription elongation factor b (P-TEFb)--but is not itself essential. METHODOLOGY/PRINCIPAL FINDINGS Cells lacking csk1(+) are viable but hypersensitive to agents that damage DNA or block replication. Csk1 is required for normal levels of homologous recombination (HR), and interacts genetically with components of the HR pathway. Tests of damage sensitivity in csk1, mcs6 and cdk9 mutants indicate that Csk1 acts pleiotropically, through Cdk9 and at least one other target (but not through Mcs6) to preserve genomic integrity. CONCLUSIONS/SIGNIFICANCE The two CAKs in fission yeast, which differ with respect to their substrate range and preferences for monomeric CDKs versus CDK/cyclin complexes as substrates, also support different functions of the CDK network in vivo. Csk1 plays a non-redundant role in safeguarding genomic integrity. We propose that specialized activation pathways dependent on different CAKs might insulate CDK functions important in DNA damage responses from those capable of triggering mitosis.
Collapse
Affiliation(s)
- Hilary B. Gerber
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Programs in Biochemistry, Cell and Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York, United States of America
| | - Yana Pikman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Robert P. Fisher
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
83
|
p53 and TFIIEalpha share a common binding site on the Tfb1/p62 subunit of TFIIH. Proc Natl Acad Sci U S A 2007; 105:106-11. [PMID: 18160537 DOI: 10.1073/pnas.0707892105] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The general transcription factor IIH is recruited to the transcription preinitiation complex through an interaction between its p62/Tfb1 subunit and the alpha-subunit of the general transcription factor IIE (TFIIEalpha). We have determined that the acidic carboxyl terminus of TFIIEalpha (TFIIEalpha(336-439)) directly binds the amino-terminal PH domain of p62/Tfb1 with nanomolar affinity. NMR mapping and mutagenesis studies demonstrate that the TFIIEalpha binding site on p62/Tfb1 is identical to the binding site for the second transactivation domain of p53 (p53 TAD2). In addition, we demonstrate that TFIIEalpha(336-439) is capable of competing with p53 for a common binding site on p62/Tfb1 and that TFIIEalpha(336-439) and the diphosphorylated form (pS46/pT55) of p53 TAD2 have similar binding constants. NMR structural studies reveal that TFIIEalpha(336-439) contains a small domain (residues 395-433) folded in a novel betabetaalphaalphaalpha topology. NMR mapping studies demonstrate that two unstructured regions (residues 377-393 and residues 433-439) located on either side of the folded domain appear to be required for TFIIEalpha(336-439) binding to p62/Tfb1 and that these two unstructured regions are held close to each other in three-dimensional space by the novel structured domain. We also demonstrate that, like p53, TFIIEalpha(336-439) can activate transcription in vivo. These results point to an important interplay between the general transcription factor TFIIEalpha and the tumor suppressor protein p53 in regulating transcriptional activation that may be modulated by the phosphorylation status of p53.
Collapse
|
84
|
Kesseler KJ, Kaufmann WK, Reardon JT, Elston T, Sancar A. A mathematical model for human nucleotide excision repair: damage recognition by random order assembly and kinetic proofreading. J Theor Biol 2007; 249:361-75. [PMID: 17869273 PMCID: PMC2702209 DOI: 10.1016/j.jtbi.2007.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
A mathematical model of human nucleotide excision repair was constructed and validated. The model incorporates cooperative damage recognition by RPA, XPA, and XPC followed by three kinetic proofreading steps by the TFIIH transcription/repair factor. The model yields results consistent with experimental data regarding excision rates of UV photoproducts by the reconstituted human excision nuclease system as well as the excision of oligonucleotides from undamaged DNA. The model predicts the effect that changes in the initial concentrations of repair factors have on the excision rate of damaged DNA and provides a testable hypothesis on the biochemical mechanism of cooperativity in protein assembly, suggesting experiments to determine if cooperativity in protein assembly results from an increased association rate or a decreased dissociation rate. Finally, a comparison between the random order assembly with kinetic proofreading model and a sequential assembly model is made. This investigation reveals the advantages of the random order assembly/kinetic proofreading model.
Collapse
Affiliation(s)
- Kevin J. Kesseler
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7255, U.S.A.,
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7255, U.S.A.,
| | - Joyce T. Reardon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, U.S.A., joyce
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, U.S.A.,
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, U.S.A., aziz
| |
Collapse
|
85
|
Vlček D, Ševčovičová A, Sviežená B, Gálová E, Miadoková E. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Genet 2007; 53:1-22. [DOI: 10.1007/s00294-007-0163-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/08/2007] [Accepted: 10/20/2007] [Indexed: 01/12/2023]
|
86
|
Li Y, Jin G, Wang H, Liu H, Qian J, Gu S, Ma H, Miao R, Hu Z, Sun W, Wang Y, Jin L, Wei Q, Shen H, Huang W, Lu D. Polymorphisms of CAK genes and risk for lung cancer: A case–control study in Chinese population. Lung Cancer 2007; 58:171-83. [PMID: 17707548 DOI: 10.1016/j.lungcan.2007.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/17/2007] [Accepted: 06/14/2007] [Indexed: 11/23/2022]
Abstract
The incidence of lung cancer has been increasing over recent decades. Previous studies show that polymorphisms of the genes involved in carcinogen-detoxication, DNA repair and cell cycle control compose of the risk factors for lung cancer. Recent observations reveal that the components of CAK: Cdk7, MAT1 and cyclin H, may play important roles in cell cycle control, transcriptional control, and DNA repairing process, all of which are important in carcinogenesis. To test whether the genetic variants of CAK genes modify the risk of lung cancer, we compared the manifestation of 25 single nucleotide polymorphisms (SNPs) and the haplotypes of Cdk7, MAT1 and cyclin H between 500 patients with lung cancer and 517 healthy controls. Our results indicated that the genotype frequency of MAT1 79023A/G (p = 0.042) and MAT1 85693C/T (p = 0.005) of cases significantly differed from those of the controls. Further analyses revealed that cyclin H 11817C/T, MAT1 12199A/G, MAT1 70650A/G, MAT1 79023A/G and MAT1 85693C/T significantly influenced the susceptibility of lung cancer in a dominant genetic model while cyclin H 12128A/T and MAT1 42172A/G did in a recessive model. Strongest association between cyclin H alleles and lung cancer patients was found in the non-smoke subpopulation. The haplotype 'TAC' (p = 0.007) increased and the haplotype 'TTC' (p = 0.043) decreased the risk of lung cancer. The potential gene-gene and gene-environmental interactions on lung cancer risk was evaluated using MDR software. A significant interaction between the three CAK component genes was identified and the combination of smoking status and genetic factors barely increased the accuracy. Our results suggested that genetic variants in CAK genes, Cdk7, cyclin H, MAT1, might modulate the risk of lung cancer in a gene-gene interaction mode, which consist to the biochemical interaction of corresponding proteins.
Collapse
Affiliation(s)
- Yuanchun Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Mizuki F, Namiki T, Sato H, Furukawa H, Matsusaka T, Ohshima Y, Ishibashi R, Andoh T, Tani T. Participation of XPB/Ptr8p, a component of TFIIH, in nucleocytoplasmic transport of mRNA in fission yeast. Genes Cells 2007; 12:35-47. [PMID: 17212653 DOI: 10.1111/j.1365-2443.2006.01032.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To identify novel factors involved in nuclear mRNA export in Schizosaccharomyces pombe, we isolated and characterized the ptr8(+) gene, mutation of which causes nuclear accumulation of poly (A)(+) RNA. The ptr8(+) gene encodes an S. pombe homologue of human XPB, a component of TFIIH involved in nucleotide excision repair (NER) and transcription. A temperature-sensitive mutant of ptr8(+) (ptr8-1) was highly sensitive to UV irradiation, as are human XPB cells. Northern blot analysis demonstrated that the amount of total poly (A)(+) mRNAs does not decrease significantly at the nonpermissive temperature in ptr8-1 cells, whereas a pulse-labeling assay using (35)S-methionine showed that protein synthesis decreases rapidly after incubation of cells at the nonpermissive temperature, suggesting that ptr8-1 cells have a defect in nuclear mRNA export. In Saccharomyces cerevisiae, a mutation in the SSL2 gene encoding a homologue of Ptr8p also causes a block of mRNA export at the nonpermissive temperature. In addition, expression of human XPB in ptr8-1 cells rescued the ts phenotype and the mRNA export defects, suggesting that human XPB may also play a role in mRNA export. Furthermore, we revealed a functional interaction between Ptr8p and Tho2p, a component of the TREX complex involved in mRNA export. These results suggest that XPB/Ptr8p plays roles not only in NER and transcription, but also plays a conserved role in mRNA export.
Collapse
Affiliation(s)
- Fumitaka Mizuki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Radovic S, Rapisarda VA, Tosato V, Bruschi CV. Functional and comparative characterization of Saccharomyces cerevisiae RVB1 and RVB2 genes with bacterial Ruv homologues. FEMS Yeast Res 2007; 7:527-39. [PMID: 17302941 DOI: 10.1111/j.1567-1364.2006.00205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of yeast RuvB-like gene analogues of bacterial RuvB is self-regulated, as episomal overexpression of RVB1 and RVB2 decreases the expression of their chromosomal copies by 85%. Heterozygosity for either gene correlates with lower double-strand break repair of inverted-repeat DNA and decreased survival after UV irradiation, suggesting their haploinsufficiency, while overexpression of the bacterial RuvAB complex improves UV survival in yeast. Rvb2p preferentially binds artificial DNA Holiday junctions like the bacterial RuvAB complex, whereas Rvb1p binds to duplex or cruciform DNA. As both proteins also interact with chromatin, their role in recombination and repair through chromatin remodelling, and their evolutionary relationship to the bacterial homologue, is discussed.
Collapse
Affiliation(s)
- Slobodanka Radovic
- Yeast Molecular Genetics Group, ICGEB, Area Science Park - W, Trieste, Italy
| | | | | | | |
Collapse
|
89
|
Wijnhoven SWP, Hoogervorst EM, de Waard H, van der Horst GTJ, van Steeg H. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models. Mutat Res 2007; 614:77-94. [PMID: 16769089 DOI: 10.1016/j.mrfmmm.2005.12.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/23/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, both spontaneous as well as UV-induced. As such these models (Xpa, Xpc and Xpe) recapitulate the human xeroderma pigmentosum (XP) syndrome. Defects in TC-NER in humans are associated with Cockayne syndrome (CS), a disease not linked to tumor development. Mice with TC-NER defects (Csa and Csb) are - except for the skin - not susceptible to develop (carcinogen-induced) tumors. Some NER factors, i.e. XPB, XPD, XPF, XPG and ERCC1 have functions outside NER, like transcription initiation and inter-strand crosslink repair. Deficiencies in these processes in mice lead to very severe phenotypes, like trichothiodystrophy (TTD) or a combination of XP and CS. In most cases these animals have a (very) short life span, display segmental progeria, but do not develop tumors. Here we will overview the available NER-related mouse models and will discuss their phenotypes in terms of (chemical-induced) tissue-specific tumor development, mutagenesis and premature aging features.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | |
Collapse
|
90
|
Kang ME, Dahmus ME. The unique C-terminal domain of RNA polymerase II and its role in transcription. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:41-77. [PMID: 8644491 DOI: 10.1002/9780470123171.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M E Kang
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
91
|
Zanton SJ, Pugh BF. Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 2006; 20:2250-65. [PMID: 16912275 PMCID: PMC1553208 DOI: 10.1101/gad.1437506] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic genes are controlled by sequence-specific DNA-binding proteins, chromatin regulators, general transcription factors, and elongation factors. Here we examine the genome-wide location of representative members of these groups and their redistribution when the Saccharomyces cerevisiae genome is reprogrammed by heat shock. As expected, assembly of active transcription complexes is coupled to eviction of H2A.Z nucleosomes, and disassembly is coupled to the return of nucleosomes. Remarkably, a large number of promoters assemble into partial preinitiation complexes (partial PICs), containing TFIIA, TFIID (and/or SAGA), TFIIB, TFIIE, and TFIIF. However, RNA polymerase II and TFIIH are generally not recruited, and nucleosomes are not displaced. These promoters may be preparing for additional stress that naturally accompany heat stress. For example, we find that oxidative stress, which often occurs with prolonged exposure of cells to high temperature, converts partial PICs into full PICs. Partial PICs therefore represent novel regulated intermediates that assemble at promoters in the midst of chromatin.
Collapse
Affiliation(s)
- Sara J Zanton
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
92
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
93
|
Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 2006; 125:703-17. [PMID: 16713563 DOI: 10.1016/j.cell.2006.04.029] [Citation(s) in RCA: 575] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/23/2006] [Accepted: 04/20/2006] [Indexed: 12/31/2022]
Abstract
Over the past years, a large number of histone posttranslational modifications have been described, some of which function to attain a repressed chromatin structure, while others facilitate activation by allowing access of regulators to DNA. Histone H2B monoubiquitination is a mark associated with transcriptional activity. Using a highly reconstituted chromatin-transcription system incorporating the inducible RARbeta2 promoter, we find that the establishment of H2B monoubiquitination by RNF20/40 and UbcH6 is dependent on the transcription elongation regulator complex PAF, the histone chaperone FACT, and transcription. H2B monoubiquitination facilitates FACT function, thereby stimulating transcript elongation and the generation of longer transcripts. These in vitro analyses and corroborating in vivo experiments demonstrate that elongation by RNA polymerase II through the nucleosomal barrier is minimally dependent upon (1) FACT and (2) the recruitment of PAF and the H2B monoubiquitination machinery.
Collapse
Affiliation(s)
- Rushad Pavri
- Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
95
|
Itoh Y, Unzai S, Sato M, Nagadoi A, Okuda M, Nishimura Y, Akashi S. Investigation of molecular size of transcription factor TFIIE in solution. Proteins 2006; 61:633-41. [PMID: 16184598 DOI: 10.1002/prot.20647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human general transcription factor IIE (TFIIE), a component of a transcription preinitiation complex associated with RNA polymerase II, was characterized by size-exclusion chromatography, mass spectrometry, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Recombinant human TFIIE was purified to homogeneity and shown to contain equimolar amounts of TFIIEalpha (50 kDa) and TFIIEbeta (35 kDa) by SDS-PAGE. In the analysis of size-exclusion chromatography of the purified sample, as already reported, TFIIE was shown to be a 170-kDa alpha(2)beta(2) heterotetramer. However, by using electrospray ionization mass spectrometry the purified sample gave the molecular mass of 84,152 +/- 5, indicating that TFIIE is an alphabeta heterodimer but not a heterotetramer. Analytical ultracentrifugation experiment of TFIIE provided that only a single component with the molecular mass of ca. 80,000 existed in solution, also suggesting an alphabeta heterodimer. In addition, its extraordinarily rod-like molecular shape was confirmed by SAXS. It is likely that the rod-like molecular shape of TFIIE has misled larger molecular size in size-exclusion chromatography, which was calibrated by globular proteins. It is demonstrated that TFIIE exists as a heterodimer under our present conditions in solution, although two molecules of heterodimer might be required for the formation of the preinitiation complex with RNA polymerase II for starting the transcription process.
Collapse
Affiliation(s)
- Yoshiyuki Itoh
- Graduate School of Integrated Science, Yokohama City University, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Chmuzh EV, Shestakova LA, Volkova VS, Zakharov IK. Diversity of mechanisms and functions of enzyme systems of DNA repair in Drosophila melanogaster. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406040028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
97
|
Okuda M, Tanaka A, Hanaoka F, Ohkuma Y, Nishimura Y. Structural insights into the asymmetric effects of zinc-ligand cysteine mutations in the novel zinc ribbon domain of human TFIIEalpha for transcription. J Biochem 2006; 138:443-9. [PMID: 16272138 DOI: 10.1093/jb/mvi138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The large subunit of TFIIE (TFIIEalpha) has a highly conserved zinc ribbon domain, which is essential for transcription. Recently, we determined the solution structure of this domain to be that of a novel zinc finger motif [Okuda et al. (2004) J. Biol. Chem. 279, 51395-51403]. On examination of the functions of four cysteine mutants of TFIIEalpha, in which each of four zinc-liganded cysteines was replaced by alanine, we found an interesting functional asymmetry; on a supercoiled template, the two C-terminal mutants did not show any transcriptional activity, however, the two N-terminal mutants retained about 20% activity. Furthermore, these two pairs of mutants showed distinct binding abilities as to several general transcription factors. To obtain structural insights into the asymmetry, here we have analyzed the structures of the four cysteine mutants of the zinc ribbon domain by CD and NMR. All four mutants possessed a characteristic partially folded structure coordinating with a zinc atom, despite the imperfect set of cysteine-ligands. However, they equilibrated with several structures including the random coil structure. Unexpectedly, the two N-terminal mutants mainly equilibrated with the random coil structure, while the two C-terminal ones mainly equilibrated with folded structures. The characteristic structure formation of each mutant was reversible, which totally depended on the zinc binding.
Collapse
Affiliation(s)
- Masahiko Okuda
- International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
98
|
Reardon JT, Sancar A. Purification and characterization of Escherichia coli and human nucleotide excision repair enzyme systems. Methods Enzymol 2006; 408:189-213. [PMID: 16793370 DOI: 10.1016/s0076-6879(06)08012-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleotide excision repair is a multicomponent, multistep enzymatic system that removes a wide spectrum of DNA damage by dual incisions in the damaged strand on both sides of the lesion. The basic steps are damage recognition, dual incisions, resynthesis to replace the excised DNA, and ligation. Each step has been studied in vitro using cell extracts or highly purified repair factors and radiolabeled DNA of known sequence with DNA damage at a defined site. This chapter describes procedures for preparation of DNA substrates designed for analysis of damage recognition, either the 5' or the 3' incision event, excision (resulting from concerted dual incisions), and repair synthesis. Excision in Escherichia coli is accomplished by the three-subunit Uvr(A)BC excision nuclease and in humans by six repair factors: XPA, RPA, XPChR23B, TFIIH, XPFERCC1, and XPG. This chapter outlines methods for expression and purification of these essential repair factors and provides protocols for performing each of the in vitro repair assays with either the E. coli or the human excision nuclease.
Collapse
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, USA
| | | |
Collapse
|
99
|
Lin YC, Choi WS, Gralla JD. TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape. Nat Struct Mol Biol 2005; 12:603-7. [PMID: 15937491 DOI: 10.1038/nsmb949] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 05/10/2005] [Indexed: 11/08/2022]
Abstract
DNA helicases open the duplex during DNA replication, repair and transcription. However, RNA polymerase II is the only member of its family with this requirement; RNA polymerases I and III and bacterial RNA polymerases open DNA without a helicase. In this report, characterization of XPB mutants indicates that its helicase activity is not used for RNA polymerase II promoter opening, which is instead driven by its ATPase activity. The mutants have parallels in sigma(54) bacterial transcription and this suggests a similar mode of opening DNA for both RNA polymerases, involving ATP-dependent enzyme conformational changes. Promoter escape is defective in these XPB mutants, suggesting that the XPB helicase acts as an ATP-driven motor to reorganize the tightly wrapped multiprotein eukaryotic preinitiation complex during the remodeling that precedes elongation and the coupling to RNA processing events.
Collapse
Affiliation(s)
- Yin Chun Lin
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, PO Box 951569, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
100
|
Lin YC, Gralla JD. Stimulation of the XPB ATP-dependent helicase by the beta subunit of TFIIE. Nucleic Acids Res 2005; 33:3072-81. [PMID: 15917439 PMCID: PMC1140373 DOI: 10.1093/nar/gki623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/13/2022] Open
Abstract
TFIIE and TFIIH are essential for the promoter opening and escape that occurs as RNA polymerase II transits into early elongation. XPB, a subunit of TFIIH, contains an ATP-dependent helicase activity that is used in both of these processes. Here, we show that the smaller beta subunit of TFIIE stimulates the XPB helicase and ATPase activities. The larger alpha subunit can use its known inhibitory activity to moderate the stimulation by the beta subunit. Regions of TFIIE beta required for the helicase stimulation were identified. Mutants were constructed that are defective in stimulating the XPB helicase but still allow intact TFIIE to bind and recruit XPB and TFIIH to form the pre-initiation complex. In a test for the functional significance of the stimulatory effect of TFIIE beta, these mutant forms of TFIIE were shown to be defective in a transcription assay on linear DNA. The data suggest that the beta subunit of TFIIE is an ATPase and helicase co-factor that can assist the XPB subunit of TFIIH during transcription initiation and the transition to early elongation, enhancing the potential diversity of regulatory targets.
Collapse
Affiliation(s)
- Yin C. Lin
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California Los AngelesLos Angeles, CA 90095-1569, USA
| | - Jay D. Gralla
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California Los AngelesLos Angeles, CA 90095-1569, USA
| |
Collapse
|