51
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
52
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
53
|
Goto T, Ito Y, Michiue T. Roles of Xenopus chemokine ligand CXCLh (XCXCLh) in early embryogenesis. Dev Growth Differ 2018; 60:226-238. [PMID: 29700804 DOI: 10.1111/dgd.12432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 01/13/2023]
Abstract
Several chemokine molecules control cell movements during early morphogenesis. However, it is unclear whether chemokine molecules affect cell fate. Here, we identified and characterized the CXC-type chemokine ligand in Xenopus laevis, Xenopus CXCLh (XCXCLh), during early embryogenesis. XCXCLh is expressed in the dorsal vegetal region at the gastrula stage. Both overexpression and knockdown of XCXCLh in the dorsal region inhibited gastrulation. XCXCLh contributed to the attraction of mesendodermal cells and accelerated the reassembly of scratched culture cells. Also, XCXCLh contributed to early endodermal induction. Overexpression of VegTmRNA or high concentrations of calcium ions induced XCXCLh expression. XCXCLh may play roles in both cell movements and differentiation during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
54
|
Secreted frizzled related protein 4 (sFRP4) update: A brief review. Cell Signal 2018; 45:63-70. [PMID: 29360572 DOI: 10.1016/j.cellsig.2018.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 12/29/2022]
Abstract
Secreted frizzled-related proteins control a multitude of biological phenomena throughout development and adult life in humans. In parallel, aberrant gene expression and abnormal secreted protein levels accompany a wide range of pathologies in humans. In this review, we provide a brief introduction to sFRP4, an update of the pathways it's involved, its various physiological actions that are reported to contribute to diseases, outlining the importance of its wider research and specific modulation by pharmacologic interventions. First recognized as a novel molecule that co-purified with a disparate protein, its identity was based on its sequence homology to the frizzled receptors. Once multiple members of the family were cloned, their genetic loci, tissue and subcellular distributions were located. Nucleotide and amino acid sequences were characterized and homology to different organisms was found to be present that helped elucidate their actions. Following subsequent experimental studies, they were found to be secreted proteins with an affinity to bind to the Wnt ligands, participating in different developmental and adult homeostatic pathways by the virtue of their regulatory function to the Wnt signal transduction system. Secreted frizzled related protein 4 has garnered considerable attention in the recent years following breakthrough discoveries implicating them in the pathogenesis of various diseases. Studies investigating them can provide information not only regarding their association with a disease but can also help use them as potential biomarkers and therapeutic targets.
Collapse
|
55
|
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. Dev Cell 2017; 43:71-82.e6. [PMID: 29017031 DOI: 10.1016/j.devcel.2017.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 11/23/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secreted signaling protein that is implicated in cardiovascular disease, metabolic disorder, and cancer. Outside of its role in lipid metabolism, ANGPTL4 signaling remains poorly understood. Here, we identify ANGPTL4 as a Wnt signaling antagonist that binds to syndecans and forms a ternary complex with the Wnt co-receptor Lipoprotein receptor-related protein 6 (LRP6). This protein complex is internalized via clathrin-mediated endocytosis and degraded in lysosomes, leading to attenuation of Wnt/β-catenin signaling. Angptl4 is expressed in the Spemann organizer of Xenopus embryos and acts as a Wnt antagonist to promote notochord formation and prevent muscle differentiation. This unexpected function of ANGPTL4 invites re-interpretation of its diverse physiological effects in light of Wnt signaling and may open therapeutic avenues for human disease.
Collapse
|
56
|
Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG. Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cell Signal 2017; 40:30-43. [PMID: 28844868 DOI: 10.1016/j.cellsig.2017.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β-catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata R Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
57
|
Peroxiredoxin1, a novel regulator of pronephros development, influences retinoic acid and Wnt signaling by controlling ROS levels. Sci Rep 2017; 7:8874. [PMID: 28827763 PMCID: PMC5567039 DOI: 10.1038/s41598-017-09262-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
Peroxiredoxin1 (Prdx1) is an antioxidant enzyme belonging to the peroxiredoxin family of proteins. Prdx1 catalyzes the reduction of H2O2 and alkyl hydroperoxide and plays an important role in different biological processes. Prdx1 also participates in various age-related diseases and cancers. In this study, we investigated the role of Prdx1 in pronephros development during embryogenesis. Prdx1 knockdown markedly inhibited proximal tubule formation in the pronephros and significantly increased the cellular levels of reactive oxygen species (ROS), which impaired primary cilia formation. Additionally, treatment with ROS (H2O2) severely disrupted proximal tubule formation, whereas Prdx1 overexpression reversed the ROS-mediated inhibition in proximal tubule formation. Epistatic analysis revealed that Prdx1 has a crucial role in retinoic acid and Wnt signaling pathways during pronephrogenesis. In conclusion, Prdx1 facilitates proximal tubule formation during pronephrogenesis by regulating ROS levels.
Collapse
|
58
|
De Robertis EM, Moriyama Y, Colozza G. Generation of animal form by the Chordin/Tolloid/BMP gradient: 100 years after D'Arcy Thompson. Dev Growth Differ 2017; 59:580-592. [PMID: 28815565 DOI: 10.1111/dgd.12388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022]
Abstract
The classic book "On Growth and Form" by naturalist D'Arcy Thompson was published 100 years ago. To celebrate this landmark, we present experiments in the Xenopus embryo that provide a framework for understanding how simple, quantitative transformations of a morphogen gradient might have affected evolution and morphological diversity of organisms. D'Arcy Thompson proposed that different morphologies might be generated by modifying physical parameters in an underlying system of Cartesian coordinates that pre-existed in Nature and arose during evolutionary history. Chordin is a BMP antagonist secreted by the Spemann organizer located on the dorsal side of the gastrula. Chordin generates a morphogen gradient as first proposed by mathematician Alan Turing. The rate-limiting step of this dorsal-ventral (D-V) morphogen is the degradation of Chordin by the Tolloid metalloproteinase in the ventral side. Chordin is expressed at gastrula on the dorsal side where BMP signaling is low, while at the opposite side peak levels of BMP signaling are reached. In fishes, amphibians, reptiles and birds, high BMP signaling in the ventral region induces transcription of a secreted inhibitor of Tolloid called Sizzled. By depleting Sizzled exclusively in the ventral half of the embryo we were able to expand the ventro-posterior region in an otherwise normal embryo. Conversely, ventral depletion of Tolloid, which stabilizes Chordin, decreased ventral and tail structures, phenocopying the tolloid zebrafish mutation. We explain how historical constraints recorded in the language of DNA become subject to the universal laws of physics when an ancestral reaction-diffusion morphogen gradient dictates form.
Collapse
Affiliation(s)
- Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Yuki Moriyama
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Gabriele Colozza
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1662, USA
| |
Collapse
|
59
|
Fisher JB, Pulakanti K, Rao S, Duncan SA. GATA6 is essential for endoderm formation from human pluripotent stem cells. Biol Open 2017; 6:1084-1095. [PMID: 28606935 PMCID: PMC5550920 DOI: 10.1242/bio.026120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression. Summary: Using the differentiation of huESCs as a model for endoderm formation, we reveal that the transcription factor GATA6 regulates the onset of endoderm gene expression and is required for its viability.
Collapse
Affiliation(s)
- J B Fisher
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - K Pulakanti
- Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - S Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
60
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
61
|
Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition. PLoS Genet 2017; 13:e1006757. [PMID: 28498870 PMCID: PMC5428918 DOI: 10.1371/journal.pgen.1006757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning. Brahma-related-gene-1 (Brg1) is a catalytic subunit of mammalian SWI/SNF chromatin remodeling complexes. Loss of maternal Brg1 protein arrests development in mice at the 2-cell stage, while null homozygotes die at the blastocyst stage. These early requirements have precluded any analysis of Brg1’s embryonic functions. Here we present data from X. laevis and X. tropicalis, which for the first time describe a role for Brg1 during germ layer patterning and axis formation. Brg1-depleted embryos fail to develop past gastrulation. Genome-wide transcriptome analysis at late blastula stage, before the developmental arrest, shows that Brg1 is required predominantly for transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development shortly after midblastula transition. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE and Nieuwkoop center) and ventral (BMP/Vent) signaling centers, being required and sufficient to initiate axial patterning by cooperating with canonical Wnt signaling. Since Brg1-dependent genes share a high burst of transcriptional activation before gastrulation, we propose a systemic role for Brg1 as transcriptional amplifier, which balances the embryonic patterning process.
Collapse
|
62
|
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. Proc Natl Acad Sci U S A 2017; 114:E3081-E3090. [PMID: 28348214 DOI: 10.1073/pnas.1700766114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The earliest event in Xenopus development is the dorsal accumulation of nuclear β-catenin under the influence of cytoplasmic determinants displaced by fertilization. In this study, a genome-wide approach was used to examine transcription of the 43,673 genes annotated in the Xenopus laevis genome under a variety of conditions that inhibit or promote formation of the Spemann organizer signaling center. Loss of function of β-catenin with antisense morpholinos reproducibly reduced the expression of 247 mRNAs at gastrula stage. Interestingly, only 123 β-catenin targets were enriched on the dorsal side and defined an early dorsal β-catenin gene signature. These genes included several previously unrecognized Spemann organizer components. Surprisingly, only 3 of these 123 genes overlapped with the late Wnt signature recently defined by two other groups using inhibition by Dkk1 mRNA or Wnt8 morpholinos, which indicates that the effects of β-catenin/Wnt signaling in early development are exquisitely regulated by stage-dependent mechanisms. We analyzed transcriptome responses to a number of treatments in a total of 46 RNA-seq libraries. These treatments included, in addition to β-catenin depletion, regenerating dorsal and ventral half-embryos, lithium chloride treatment, and the overexpression of Wnt8, Siamois, and Cerberus mRNAs. Only some of the early dorsal β-catenin signature genes were activated at blastula whereas others required the induction of endomesoderm, as indicated by their inhibition by Cerberus overexpression. These comprehensive data provide a rich resource for analyzing how the dorsal and ventral regions of the embryo communicate with each other in a self-organizing vertebrate model embryo.
Collapse
|
63
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
64
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
65
|
Cho GS, Park DS, Choi SC, Han JK. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway. Dev Biol 2016; 421:183-193. [PMID: 27913219 DOI: 10.1016/j.ydbio.2016.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.
Collapse
Affiliation(s)
- Gun-Sik Cho
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Pungnap-Dong, Songpa-Gu, Seoul 138-736, Republic of Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Pungnap-Dong, Songpa-Gu, Seoul 138-736, Republic of Korea.
| | - Jin-Kwan Han
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea.
| |
Collapse
|
66
|
NSrp70 is significant for embryonic growth and development, being a crucial factor for gastrulation and mesoderm induction. Biochem Biophys Res Commun 2016; 479:238-244. [DOI: 10.1016/j.bbrc.2016.09.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022]
|
67
|
Abstract
During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
68
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
69
|
Young JJ, Kjolby RAS, Wu G, Wong D, Hsu SW, Harland RM. Noggin is required for first pharyngeal arch differentiation in the frog Xenopus tropicalis. Dev Biol 2016; 426:245-254. [PMID: 27364468 DOI: 10.1016/j.ydbio.2016.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 02/02/2023]
Abstract
The dorsal ventral axis of vertebrates requires high BMP activity for ventral development and inhibition of BMP activity for dorsal development. Presumptive dorsal regions of the embryo are protected from the ventralizing activity of BMPs by the secretion of BMP antagonists from the mesoderm. Noggin, one such antagonist, binds BMP ligands and prevents them from binding their receptors, however, a unique role for Noggin in amphibian development has remained unclear. Previously, we used zinc-finger nucleases to mutagenize the noggin locus in Xenopus tropicalis. Here, we report on the phenotype of noggin mutant frogs as a result of breeding null mutations to homozygosity. Early homozygous noggin mutant embryos are indistinguishable from wildtype siblings, with normal neural induction and neural tube closure. However, in late tadpole stages mutants present severe ventral craniofacial defects, notably a fusion of Meckel's cartilage to the palatoquadrate cartilage. Consistent with a noggin loss-of-function, mutants show expansions of BMP target gene expression and the mutant phenotype can be rescued with transient BMP inhibition. These results demonstrate that in amphibians, Noggin is dispensable for early embryonic patterning but is critical for cranial skeletogenesis.
Collapse
Affiliation(s)
- John J Young
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Rachel A S Kjolby
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Gloria Wu
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Daniel Wong
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Shu-Wei Hsu
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Richard M Harland
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
70
|
Kraus Y, Aman A, Technau U, Genikhovich G. Pre-bilaterian origin of the blastoporal axial organizer. Nat Commun 2016; 7:11694. [PMID: 27229764 PMCID: PMC4895019 DOI: 10.1038/ncomms11694] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/12/2016] [Indexed: 01/07/2023] Open
Abstract
The startling capacity of the amphibian Spemann organizer to induce naïve cells to form a Siamese twin embryo with a second set of body axes is one of the hallmarks of developmental biology. However, the axis-inducing potential of the blastopore-associated tissue is commonly regarded as a chordate feature. Here we show that the blastopore lip of a non-bilaterian metazoan, the anthozoan cnidarian Nematostella vectensis, possesses the same capacity and uses the same molecular mechanism for inducing extra axes as chordates: Wnt/β-catenin signaling. We also demonstrate that the establishment of the secondary, directive axis in Nematostella by BMP signaling is sensitive to an initial Wnt signal, but once established the directive axis becomes Wnt-independent. By combining molecular analysis with experimental embryology, we provide evidence that the emergence of the Wnt/β-catenin driven blastopore-associated axial organizer predated the cnidarian-bilaterian split over 600 million years ago.
Collapse
Affiliation(s)
- Yulia Kraus
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, Leninskiye gory 1/12, Moscow 119234, Russia
| | - Andy Aman
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| | - Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| |
Collapse
|
71
|
Abstract
TGF-β signals regulate a variety of processes during early vertebrate development, from stem cell maintenance and differentiation to tissue patterning and organogenesis. Detailed understanding of how this signaling pathway operates and what genes control activities of the signaling components of the pathway is therefore important for us to comprehend temporal- and tissue-specific TGF-β functions in vertebrate embryogenesis. Xenopus model system has been employed extensively in research on TGF-β signals, and much insight about TGF-β signaling mechanisms has been gained from these studies. Besides using whole embryos, explants from the ectodermal region of Xenopus, also known as animal caps, are used widely in investigations of the activities of an array of signal transducers as well as regulators of the pathway. This chapter introduces methods for dissection of animal caps and analyses of TGF-β signaling effects on animal caps.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1720 2nd Avenue S., Birmingham, AL, 35294, USA.
| |
Collapse
|
72
|
Ding Y, Colozza G, Zhang K, Moriyama Y, Ploper D, Sosa EA, Benitez MDJ, De Robertis EM. Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev Biol 2016; 426:176-187. [PMID: 27016259 PMCID: PMC5033668 DOI: 10.1016/j.ydbio.2016.02.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 12/31/2022]
Abstract
RNA sequencing has allowed high-throughput screening of differential gene expression in many tissues and organisms. Xenopus laevis is a classical embryological and cell-free extract model system, but its genomic sequence had been lacking due to difficulties arising from allotetraploidy. There is currently much excitement surrounding the release of the completed X. laevis genome (version 9.1) by the Joint Genome Institute (JGI), which provides a platform for genome-wide studies. Here we present a deep RNA-seq dataset of transcripts expressed in dorsal and ventral lips of the early Xenopus gastrula embryo using the new genomic information, which was further annotated by blast searches against the human proteome. Overall, our findings confirm previous results from differential screenings using other methods that uncovered classical dorsal genes such as Chordin, Noggin and Cerberus, as well as ventral genes such as Sizzled, Ventx, Wnt8 and Bambi. Complete transcriptome-wide tables of mRNAs suitable for data mining are presented, which include many novel dorsal- and ventral-specific genes. RNA-seq was very quantitative and reproducible, and allowed us to define dorsal and ventral signatures useful for gene set expression analyses (GSEA). As an example of a new gene, we present here data on an organizer-specific secreted protein tyrosine kinase known as Pkdcc (protein kinase domain containing, cytoplasmic) or Vlk (vertebrate lonesome kinase). Overexpression experiments indicate that Pkdcc can act as a negative regulator of Wnt/ β-catenin signaling independently of its kinase activity. We conclude that RNA-Seq in combination with the X. laevis complete genome now available provides a powerful tool for unraveling cell-cell signaling pathways during embryonic induction.
Collapse
Affiliation(s)
- Yi Ding
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Gabriele Colozza
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Kelvin Zhang
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Yuki Moriyama
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Diego Ploper
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Eric A Sosa
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Maria D J Benitez
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
73
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
74
|
Luehders K, Sasai N, Davaapil H, Kurosawa-Yoshida M, Hiura H, Brah T, Ohnuma SI. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development 2016; 142:3351-61. [PMID: 26443635 DOI: 10.1242/dev.124438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small leucine-rich repeat proteoglycan (SLRP) family proteins play important roles in a number of biological events. Here, we demonstrate that the SLRP family member Asporin (ASPN) plays a crucial role in the early stages of eye development in Xenopus embryos. During embryogenesis, ASPN is broadly expressed in the neuroectoderm of the embryo. Overexpression of ASPN causes the induction of ectopic eyes. By contrast, blocking ASPN function with a morpholino oligonucleotide (ASPN-MO) inhibits eye formation, indicating that ASPN is an essential factor for eye development. Detailed molecular analyses revealed that ASPN interacts with insulin growth factor receptor (IGFR) and is essential for activating the IGF receptor-mediated intracellular signalling pathway. Moreover, ASPN perturbed the Wnt, BMP and Activin signalling pathways, suggesting that ASPN thereby creates a favourable environment in which the IGF signal can dominate. ASPN is thus a novel secreted molecule essential for eye induction through the coordination of multiple signalling pathways.
Collapse
Affiliation(s)
- Kristin Luehders
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Noriaki Sasai
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Hongorzul Davaapil
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Maiko Kurosawa-Yoshida
- Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| | - Hitoshi Hiura
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Tara Brah
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Shin-ichi Ohnuma
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| |
Collapse
|
75
|
Aykul S, Martinez-Hackert E. New Ligand Binding Function of Human Cerberus and Role of Proteolytic Processing in Regulating Ligand-Receptor Interactions and Antagonist Activity. J Mol Biol 2016; 428:590-602. [PMID: 26802359 DOI: 10.1016/j.jmb.2016.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Cerberus is a key regulator of vertebrate embryogenesis. Its biological function has been studied extensively in frog and mouse embryos. Its ability to bind and antagonize the transforming growth factor-β (TGF-β) family ligand Nodal is well established. Strikingly, the molecular function of Cerberus remains poorly understood. The underlying reason is that Cerberus is a complex, multifunctional protein: It binds and inhibits multiple TGF-β family ligands, it may bind and inhibit some Wnt family members, and two different forms with distinct activities have been described. In addition, sequence homology between frog and mammalian Cerberus is low, suggesting that previous studies, which analyzed frog Cerberus function, may not accurately describe the function of mammalian Cerberus. We therefore undertook to determine the molecular activities of human Cerberus in TGF-β family signaling. Using purified proteins, surface plasmon resonance, and reporter gene assays, we discovered that human Cerberus bound and inhibited the TGF-β family ligands Activin B, BMP-6, and BMP-7, but not the frog Cerberus ligand BMP-2. Notably, full-length Cerberus successfully blocked ligand binding to type II receptors, but the short form was less effective. In addition, full-length Cerberus suppressed breast cancer cell migration but the short form did not. Thus, our findings expand the roles of Cerberus as TGF-β family signaling inhibitor, provide a molecular rationale for the function of the N-terminal region, and support the idea that Cerberus could have regulatory activities beyond direct inhibition of TGF-β family signaling.
Collapse
Affiliation(s)
- Senem Aykul
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
76
|
Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3:11-40. [PMID: 27077077 PMCID: PMC4827448 DOI: 10.1016/j.gendis.2015.12.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in controlling cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best-characterized the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance.
Collapse
|
77
|
Carron C, Shi DL. Specification of anteroposterior axis by combinatorial signaling during Xenopus development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:150-68. [PMID: 26544673 DOI: 10.1002/wdev.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
The specification of anteroposterior (AP) axis is a fundamental and complex patterning process that sets up the embryonic polarity and shapes a multicellular organism. This process involves the integration of distinct signaling pathways to coordinate temporal-spatial gene expression and morphogenetic movements. In the frog Xenopus, extensive embryological and molecular studies have provided major advance in understanding the mechanism implicated in AP patterning. Following fertilization, cortical rotation leads to the transport of maternal determinants to the dorsal region and creates the primary dorsoventral (DV) asymmetry. The activation of maternal Wnt/ß-catenin signaling and a high Nodal signal induces the formation of the Nieuwkoop center in the dorsal-vegetal cells, which then triggers the formation of the Spemann organizer in the overlying dorsal marginal zone. It is now well established that the Spemann organizer plays a central role in building the vertebrate body axes because it provides patterning information for both DV and AP polarities. The antagonistic interactions between signals secreted in the Spemann organizer and the opposite ventral region pattern the mesoderm along the DV axis, and this DV information is translated into AP positional values during gastrulation. The formation of anterior neural tissue requires simultaneous inhibition of zygotic Wnt and bone morphogenetic protein (BMP) signals, while an endogenous gradient of Wnt, fibroblast growth factors (FGFs), retinoic acid (RA) signaling, and collinearly expressed Hox genes patterns the trunk and posterior regions. Collectively, DV asymmetry is mostly coupled to AP polarity, and cell-cell interactions mediated essentially by the same regulatory networks operate in DV and AP patterning. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France.,School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
78
|
Zhou S, Flamier A, Abdouh M, Tétreault N, Barabino A, Wadhwa S, Bernier G. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 2015; 142:3294-306. [DOI: 10.1242/dev.125385] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cone photoreceptors are required for color discrimination and high-resolution central vision and are lost in macular degenerations, cone and cone/rod dystrophies. Cone transplantation could represent a therapeutic solution. However, an abundant source of human cones remains difficult to obtain. Work performed in model organisms suggests that anterior neural cell fate is induced ‘by default' if BMP, TGFβ and Wnt activities are blocked, and that photoreceptor genesis operates through an S-cone default pathway. We report here that Coco (Dand5), a member of the Cerberus gene family, is expressed in the developing and adult mouse retina. Upon exposure to recombinant COCO, human embryonic stem cells (hESCs) differentiated into S-cone photoreceptors, developed an inner segment-like protrusion, and could degrade cGMP when exposed to light. Addition of thyroid hormone resulted in a transition from a unique S-cone population toward a mixed M/S-cone population. When cultured at confluence for a prolonged period of time, COCO-exposed hESCs spontaneously developed into a cellular sheet composed of polarized cone photoreceptors. COCO showed dose-dependent and synergistic activity with IGF1 at blocking BMP/TGFβ/Wnt signaling, while its cone-inducing activity was blocked in a dose-dependent manner by exposure to BMP, TGFβ or Wnt-related proteins. Our work thus provides a unique platform to produce human cones for developmental, biochemical and therapeutic studies and supports the hypothesis that photoreceptor differentiation operates through an S-cone default pathway during human retinal development.
Collapse
Affiliation(s)
- Shufeng Zhou
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Mohamed Abdouh
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Nicolas Tétreault
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
- Department of Neuroscience, University of Montréal, Montréal H3T 1J4, Canada
- Department of Ophthalmology, University of Montréal, Montréal H3T 1J4, Canada
| |
Collapse
|
79
|
Kim SU, Park JH, Kim HS, Lee JM, Lee HG, Kim H, Choi SH, Baek S, Kim BK, Park JY, Kim DY, Ahn SH, Lee JD, Han KH. Serum Dickkopf-1 as a Biomarker for the Diagnosis of Hepatocellular Carcinoma. Yonsei Med J 2015; 56:1296-1306. [PMID: 26256972 PMCID: PMC4541659 DOI: 10.3349/ymj.2015.56.5.1296] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Dickkopf-1 (DKK-1) is a Wnt/β-catenin signaling pathway inhibitor. We investigated whether DKK-1 is related to progression in hepatocellular carcinoma (HCC) cells and HCC patients. MATERIALS AND METHODS In vitro reverse-transcription polymerase chain reaction (RT-PCR), wound healing assays, invasion assays, and ELISAs of patient serum samples were employed. The diagnostic accuracy of the serum DKK-1 ELISA was assessed using receiver operating characteristic (ROC) curves and area under ROC (AUC) analyses. RESULTS RT-PCR showed high DKK-1 expression in Hep3B and low in 293 cells. Similarly, the secreted DKK-1 concentration in the culture media was high in Hep3B and low in 293 cells. Wound healing and invasion assays using 293, Huh7, and Hep3B cells showed that DKK-1 overexpression promoted cell migration and invasion, whereas DKK-1 knock-down inhibited them. When serum DKK-1 levels were assessed in 370 participants (217 with HCC and 153 without), it was significantly higher in HCC patients than in control groups (median 1.48 ng/mL vs. 0.90 ng/mL, p<0.001). The optimum DKK-1 cutoff level was 1.01 ng/mL (AUC=0.829; sensitivity 90.7%; specificity 62.0%). Although DKK-1 had a higher AUC than alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP) (AUC=0.829 vs. 0.794 and 0.815, respectively), they were statistically similar (all p>0.05). When three biomarkers were combined (DKK-1 plus AFP plus DCP), they showed significantly higher AUC (AUC=0.952) than single marker, DKK-1 plus AFP, or DKK-1 plus DCP (all p<0.001). CONCLUSION DKK-1 might be a key regulator in HCC progression and a potential therapeutic target in HCC. Serum DKK-1 could complement the diagnostic accuracy of AFP and DCP.
Collapse
Affiliation(s)
- Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Jeon Han Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Myun Lee
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Hyun Gyu Lee
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyemi Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hoon Choi
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Shinhwa Baek
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
| | - Jong Doo Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Hyub Han
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
80
|
Vitorino M, Silva AC, Inácio JM, Ramalho JS, Gur M, Fainsod A, Steinbeisser H, Belo JA. Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. PLoS One 2015; 10:e0135504. [PMID: 26270962 PMCID: PMC4536202 DOI: 10.1371/journal.pone.0135504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway.
Collapse
Affiliation(s)
- Marta Vitorino
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana Cristina Silva
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - José Manuel Inácio
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José Silva Ramalho
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, P.O. Box 12272, Jerusalem, 91120, Israel
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, P.O. Box 12272, Jerusalem, 91120, Israel
| | | | - José António Belo
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
81
|
Miyagi A, Negishi T, Yamamoto TS, Ueno N. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus. Dev Biol 2015; 407:131-44. [PMID: 26244992 DOI: 10.1016/j.ydbio.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022]
Abstract
Patterning of the vertebrate anterior-posterior axis is regulated by the coordinated action of growth factors whose effects can be further modulated by upstream and downstream mediators and the cross-talk of different intracellular pathways. In particular, the inhibition of the Wnt/β-catenin signaling pathway by various factors is critically required for anterior specification. Here, we report that Flop1 and Flop2 (Flop1/2), G protein-coupled receptors related to Gpr4, contribute to the regulation of head formation by inhibiting Wnt/β-catenin signaling in Xenopus embryos. Using whole-mount in situ hybridization, we showed that flop1 and flop2 mRNAs were expressed in the neural ectoderm during early gastrulation. Both the overexpression and knockdown of Flop1/2 resulted in altered embryonic head phenotypes, while the overexpression of either Flop1/2 or the small GTPase RhoA in the absence of bone morphogenetic protein (BMP) signaling resulted in ectopic head induction. Examination of the Flops' function in Xenopus embryo animal cap cells showed that they inhibited Wnt/β-catenin signaling by promoting β-catenin degradation through both RhoA-dependent and -independent pathways in a cell-autonomous manner. These results suggest that Flop1 and Flop2 are essential regulators of Xenopus head formation that act as novel inhibitory components of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Asuka Miyagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takefumi Negishi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
82
|
Zhang X, Gao Y, Lu L, Zhang Z, Gan S, Xu L, Lei A, Cao Y. JmjC Domain-containing Protein 6 (Jmjd6) Derepresses the Transcriptional Repressor Transcription Factor 7-like 1 (Tcf7l1) and Is Required for Body Axis Patterning during Xenopus Embryogenesis. J Biol Chem 2015; 290:20273-83. [PMID: 26157142 DOI: 10.1074/jbc.m115.646554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 12/22/2022] Open
Abstract
Tcf7l1 (also known as Tcf3) is a bimodal transcription factor that plays essential roles in embryogenesis and embryonic and adult stem cells. On one hand, Tcf7l1 works as transcriptional repressor via the recruitment of Groucho-related transcriptional corepressors to repress the transcription of Wnt target genes, and, on the other hand, it activates Wnt target genes when Wnt-activated β-catenin interacts with it. However, how its activity is modulated is not well understood. Here we demonstrate that a JmjC-domain containing protein, Jmjd6, interacts with Tcf7l and derepresses Tcf7l. We show that Jmjd6 binds to a region of Tcf7l1 that is also responsible for Groucho interaction, therefore making it possible that Jmjd6 binding displaces the Groucho transcriptional corepressor from Tcf7l1. Moreover, we show that Jmjd6 antagonizes the repression effect of Tcf7l1 on target gene transcription and is able to enhance β-catenin-induced gene activation and that, vice versa, inhibition of Jmjd6 activity compromises gene activation in both cells and Xenopus early embryos. We also show that jmjd6 is both maternally and zygotically transcribed during Xenopus embryogenesis. Loss of Jmjd6 function causes defects in anterioposterior body axis formation and down-regulation of genes that are involved in anterioposterior axis patterning. The results elucidate a novel mechanism underlying the regulation of Tcf7l1 activity and the regulation of embryonic body axis formation.
Collapse
Affiliation(s)
- Xuena Zhang
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Yan Gao
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Lei Lu
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Zan Zhang
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Shengchun Gan
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Liyang Xu
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Anhua Lei
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| | - Ying Cao
- From the Model Animal Research Center of Nanjing University and the Ministry of Education Key Laboratory of Model Animals for Disease Study, Nanjing 210061, China
| |
Collapse
|
83
|
Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism. Sci Rep 2015; 5:11603. [PMID: 26112133 PMCID: PMC4481404 DOI: 10.1038/srep11603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/29/2015] [Indexed: 01/15/2023] Open
Abstract
Insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) signalling is required for normal embryonic growth and development. Previous reports indicated that the IGF/IGF1R/MAPK pathway contributes to neural induction and the IGF/IGF1R/PI3K/Akt pathway to eye development. Here, we report the isolation of insulin3 encoding a novel insulin-like ligand involved in neural induction. Insulin3 has a similar structure to pro-insulin and mature IGF ligands, but cannot activate the IGF1 receptor. However, similar to IGFs, Insulin3 induced the gene expression of an anterior neural marker, otx2, and enlarged anterior head structures by inhibiting Wnt signalling. Insulin3 are predominantly localised to the endoplasmic reticulum when otx2 is induced by insulin3. Insulin3 reduced extracellular Wnts and cell surface localised Lrp6. These results suggest that Insulin3 is a novel cell-autonomous inhibitor of Wnt signalling. This study provides the first evidence that an insulin-like factor regulates neural induction through an IGF1R-independent mechanism.
Collapse
|
84
|
Holtz AM, Griffiths SC, Davis SJ, Bishop B, Siebold C, Allen BL. Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function. J Cell Biol 2015; 209:739-57. [PMID: 26056142 PMCID: PMC4460154 DOI: 10.1083/jcb.201411024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Vertebrate Hedgehog (HH) signaling is controlled by several ligand-binding antagonists including Patched-1 (PTCH1), PTCH2, and HH-interacting protein 1 (HHIP1), whose collective action is essential for proper HH pathway activity. However, the molecular mechanisms used by these inhibitors remain poorly understood. In this paper, we investigated the mechanisms underlying HHIP1 antagonism of HH signaling. Strikingly, we found evidence that HHIP1 non-cell-autonomously inhibits HH-dependent neural progenitor patterning and proliferation. Furthermore, this non-cell-autonomous antagonism of HH signaling results from the secretion of HHIP1 that is modulated by cell type-specific interactions with heparan sulfate (HS). These interactions are mediated by an HS-binding motif in the cysteine-rich domain of HHIP1 that is required for its localization to the neuroepithelial basement membrane (BM) to effectively antagonize HH pathway function. Our data also suggest that endogenous, secreted HHIP1 localization to HS-containing BMs regulates HH ligand distribution. Overall, the secreted activity of HHIP1 represents a novel mechanism to regulate HH ligand localization and function during embryogenesis.
Collapse
Affiliation(s)
- Alexander M Holtz
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109 Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Samantha J Davis
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, England, UK
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
85
|
Pai VP, Lemire JM, Paré JF, Lin G, Chen Y, Levin M. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation. J Neurosci 2015; 35:4366-85. [PMID: 25762681 PMCID: PMC4355204 DOI: 10.1523/jneurosci.1877-14.2015] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/21/2014] [Accepted: 01/14/2015] [Indexed: 12/26/2022] Open
Abstract
Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca(2+) signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Joan M Lemire
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Jean-François Paré
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Gufa Lin
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ying Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| |
Collapse
|
86
|
Yanagi T, Ito K, Nishihara A, Minamino R, Mori S, Sumida M, Hashimoto C. The Spemann organizer meets the anterior-most neuroectoderm at the equator of early gastrulae in amphibian species. Dev Growth Differ 2015; 57:218-31. [PMID: 25754292 PMCID: PMC4402005 DOI: 10.1111/dgd.12200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 11/17/2022]
Abstract
The dorsal blastopore lip (known as the Spemann organizer) is important for making the body plan in amphibian gastrulation. The organizer is believed to involute inward and migrate animally to make physical contact with the prospective head neuroectoderm at the blastocoel roof of mid- to late-gastrula. However, we found that this physical contact was already established at the equatorial region of very early gastrula in a wide variety of amphibian species. Here we propose a unified model of amphibian gastrulation movement. In the model, the organizer is present at the blastocoel roof of blastulae, moves vegetally to locate at the region that lies from the blastocoel floor to the dorsal lip at the onset of gastrulation. The organizer located at the blastocoel floor contributes to the anterior axial mesoderm including the prechordal plate, and the organizer at the dorsal lip ends up as the posterior axial mesoderm. During the early step of gastrulation, the anterior organizer moves to establish the physical contact with the prospective neuroectoderm through the “subduction and zippering” movements. Subduction makes a trench between the anterior organizer and the prospective neuroectoderm, and the tissues face each other via the trench. Zippering movement, with forming Brachet's cleft, gradually closes the gap to establish the contact between them. The contact is completed at the equator of early gastrulae and it continues throughout the gastrulation. After the contact is established, the dorsal axis is formed posteriorly, but not anteriorly. The model also implies the possibility of constructing a common model of gastrulation among chordate species.
Collapse
Affiliation(s)
- Takanori Yanagi
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|
87
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|
88
|
Xu X, He Y, Sun L, Ma S, Luo C. Maternal Vsx1 plays an essential role in regulating prechordal mesendoderm and forebrain formation in zebrafish. Dev Biol 2014; 394:264-76. [PMID: 25150888 DOI: 10.1016/j.ydbio.2014.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
Abstract
Prechordal mesendoderm (PME) is a derivative of gastrula organizer underlying the anterior neural plate of vertebrate embryos. It has been firmly established that PME is critical for head induction and anterior-posterior patterning. Therefore, the establishment of PME in a desired shape and size at a correct position during early embryogenesis is crucial for normal head patterning. However, it remains largely unclear how the desired form and size of PME is generated at a predestined position during early embryogenesis. Here we show that in zebrafish a maternal transcription repressor Vsx1 is essential for this early developmental regulation. Knocking down maternal vsx1 resulted in impaired PME formation and progression associated with a deficient and posteriorized forebrain. Loss- and gain-of-function experiments showed that maternal Vsx1 is essential for repressing ntl ectopic expression in more animal region at early gastrula stages. Chromatin immunoprecipitation assay in combination with core consensus sequence mutation analysis further revealed that maternal Vsx1 can directly repress ntl transcription by binding to the proximal promoter at a specific site. Simultaneous inhibition of ntl function could successfully suppress the defects of both PME and forebrain formation in maternal Vsx1 knockdown embryos. Our results reveal a pivotal role for maternal Vsx1 as a direct transcriptional repressor of ntl expression at the margin of the zebrafish gastrula to ensure directional cell polarization and migration of PME cells.
Collapse
Affiliation(s)
- Xiaofeng Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ying He
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lei Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shanshan Ma
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Chen Luo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
89
|
Aguiar DP, Sghari S, Creuzet S. The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity. Development 2014; 141:2494-505. [PMID: 24917504 DOI: 10.1242/dev.101790] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The facial neural crest (FNC), a pluripotent embryonic structure forming craniofacial structures, controls the activity of brain organisers and stimulates cerebrum growth. To understand how the FNC conveys its trophic effect, we have studied the role of Smad1, which encodes an intracellular transducer, to which multiple signalling pathways converge, in the regulation of Foxg1. Foxg1 is a transcription factor essential for telencephalic specification, the mutation of which leads to microcephaly and mental retardation. Smad1 silencing, based on RNA interference (RNAi), was performed in pre-migratory FNC cells. Soon after electroporation of RNAi molecules, Smad1 inactivation abolished the expression of Foxg1 in the chick telencephalon, resulting in dramatic microcephaly and partial holoprosencephaly. In addition, the depletion of Foxg1 activity altered the expression Otx2 and Foxa2 in di/mesencephalic neuroepithelium. However, when mutated forms of Smad1 mediating Fgf and Wnt signalling were transfected into FNC cells, these defects were overcome. We also show that, downstream of Smad1 activity, Dkk1, a Wnt antagonist produced by the FNC, initiated the specification of the telencephalon by regulating Foxg1 activity. Additionally, the activity of Cerberus in FNC-derived mesenchyme synergised with Dkk1 to control Foxg1 expression and maintain the balance between Otx2 and Foxa2.
Collapse
Affiliation(s)
- Diego P Aguiar
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Soufien Sghari
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Sophie Creuzet
- Institut de Neurobiologie, Laboratoire de Neurobiologie et Développement, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
90
|
Schlosser G. Early embryonic specification of vertebrate cranial placodes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:349-63. [PMID: 25124756 DOI: 10.1002/wdev.142] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Cranial placodes contribute to many sensory organs and ganglia of the vertebrate head. The olfactory, otic, and lateral line placodes form the sensory receptor cells and neurons of the nose, ear, and lateral line system; the lens placode develops into the lens of the eye; epibranchial, profundal, and trigeminal placodes contribute sensory neurons to cranial nerve ganglia; and the adenohypophyseal placode gives rise to the anterior pituitary, a major endocrine control organ. Despite these differences in fate, all placodes are now known to originate from a common precursor, the preplacodal ectoderm (PPE). The latter is a horseshoe-shaped domain of ectoderm surrounding the anterior neural plate and neural crest and is defined by expression of transcription factor Six1, its cofactor Eya1, and other members of the Six and Eya families. Studies in zebrafish, Xenopus, and chick reveal that the PPE is specified together with other ectodermal territories (epidermis, neural crest, and neural plate) during early embryogenesis. During gastrulation, domains of ventrally (e.g., Dlx3/Dlx5, GATA2/GATA3, AP2, Msx1, FoxI1, and Vent1/Vent2) and dorsally (e.g., Zic1, Sox3, and Geminin) restricted transcription factors are established in response to a gradient of BMP and help to define non-neural and neural competence territories, respectively. At neural plate stages, the PPE is then induced in the non-neural competence territory by signals from the adjacent neural plate and mesoderm including FGF, BMP inhibitors, and Wnt inhibitors. Subsequently, signals from more localized signaling centers induce restricted expression domains of various transcription factors within the PPE, which specify multiplacodal areas and ultimately individual placodes. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The author has declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
91
|
van der Meulen T, Huising MO. Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev Diabet Stud 2014; 11:115-32. [PMID: 25148370 DOI: 10.1900/rds.2014.11.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts.
Collapse
Affiliation(s)
- Talitha van der Meulen
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
92
|
Cai W, Albini S, Wei K, Willems E, Guzzo RM, Tsuda M, Giordani L, Spiering S, Kurian L, Yeo GW, Puri PL, Mercola M. Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment. Genes Dev 2013; 27:2332-44. [PMID: 24186978 PMCID: PMC3828519 DOI: 10.1101/gad.225144.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart formation and regeneration require cardiomyocyte commitment. Cai et al. show that the dual Nodal/BMP antagonist Cerberus-1 (Cer1) directs the SWI/SNF chromatin remodeling complex to cardiomyogenic loci in multipotent progenitors. Blocking Nodal and BMP induces Baf60c and lineage-specific transcription factors that interact with Baf60c. Knockdown of Cer1, Baf60c, or the catalytic SWI/SNF subunit Brg1 prevented cardiomyocyte differentiation. These results demonstrate how external signals from the progenitor cell environment can direct lineage-specific chromatin remodeling in order to commit cell fate. A critical but molecularly uncharacterized step in heart formation and regeneration is the process that commits progenitor cells to differentiate into cardiomyocytes. Here, we show that the endoderm-derived dual Nodal/bone morphogenetic protein (BMP) antagonist Cerberus-1 (Cer1) in embryonic stem cell cultures orchestrates two signaling pathways that direct the SWI/SNF chromatin remodeling complex to cardiomyogenic loci in multipotent (KDR/Flk1+) progenitors, activating lineage-specific transcription. Transient inhibition of Nodal by Cer1 induces Brahma-associated factor 60c (Baf60c), one of three Baf60 variants (a, b, and c) that are mutually exclusively assembled into SWI/SNF. Blocking Nodal and BMP also induces lineage-specific transcription factors Gata4 and Tbx5, which interact with Baf60c. siRNA to Cer1, Baf60c, or the catalytic SWI/SNF subunit Brg1 prevented the developmental opening of chromatin surrounding the Nkx2.5 early cardiac enhancer and cardiomyocyte differentiation. Overexpression of Baf60c fully rescued these deficits, positioning Baf60c and SWI/SNF function downstream from Cer1. Thus, antagonism of Nodal and BMP coordinates induction of the myogenic Baf60c variant and interacting transcription factors to program the developmental opening of cardiomyocyte-specific loci in chromatin. This is the first demonstration that cues from the progenitor cell environment direct the subunit variant composition of SWI/SNF to remodel the transcriptional landscape for lineage-specific differentiation.
Collapse
Affiliation(s)
- Wenqing Cai
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Profile of Edward M. De Robertis. Proc Natl Acad Sci U S A 2013; 110:20349-51. [DOI: 10.1073/pnas.1320552110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
94
|
A functional genome-wide in vivo screen identifies new regulators of signalling pathways during early Xenopus embryogenesis. PLoS One 2013; 8:e79469. [PMID: 24244509 PMCID: PMC3828355 DOI: 10.1371/journal.pone.0079469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023] Open
Abstract
Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more of these pathways may result in a variety of congenital defects and diseases. Consequently, investigating how these signalling pathways are regulated at the molecular level is essential to understanding the mechanisms underlying vertebrate embryogenesis, as well as developing treatments for human diseases. Here, we designed and performed a large-scale gain-of-function screen in Xenopus embryos aimed at identifying new regulators of MAPK/Erk, PI3K/Akt, BMP, and TGF-β/Nodal signalling pathways. Our gain-of-function screen is based on the identification of gene products that alter the phosphorylation state of key signalling molecules, which report the activation state of the pathways. In total, we have identified 20 new molecules that regulate the activity of one or more signalling pathways during early Xenopus development. This is the first time that such a functional screen has been performed, and the findings pave the way toward a more comprehensive understanding of the molecular mechanisms regulating the activity of important signalling pathways under normal and pathological conditions.
Collapse
|
95
|
McIntyre DC, Seay NW, Croce JC, McClay DR. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 2013; 140:4881-9. [PMID: 24227654 DOI: 10.1242/dev.095844] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The border between the posterior ectoderm and the endoderm is a location where two germ layers meet and establish an enduring relationship that also later serves, in deuterostomes, as the anatomical site of the anus. In the sea urchin, a prototypic deuterostome, the ectoderm-endoderm boundary is established before gastrulation, and ectodermal cells at the boundary are thought to provide patterning inputs to the underlying mesenchyme. Here we show that a short-range Wnt5 signal from the endoderm actively patterns the adjacent boundary ectoderm. This signal activates a unique subcircuit of the ectoderm gene regulatory network, including the transcription factors IrxA, Nk1, Pax2/5/8 and Lim1, which are ultimately restricted to subregions of the border ectoderm (BE). Surprisingly, Nodal and BMP2/4, previously shown to be activators of ectodermal specification and the secondary embryonic axis, instead restrict the expression of these genes to subregions of the BE. A detailed examination showed that endodermal Wnt5 functions as a short-range signal that activates only a narrow band of ectodermal cells, even though all ectoderm is competent to receive the signal. Thus, cells in the BE integrate positive and negative signals from both the primary and secondary embryonic axes to correctly locate and specify the border ectoderm.
Collapse
|
96
|
Mancini P, Castelli M, Vignali R. Identification and evolution of molecular domains involved in differentiating the cement gland-promoting activity of Otx proteins in Xenopus laevis. Mech Dev 2013; 130:628-39. [DOI: 10.1016/j.mod.2013.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
|
97
|
Abstract
Osteoporosis is a skeletal disorder characterized by bone loss, which results in architectural deterioration of the skeleton, compromised bone strength and an increased risk of fragility fractures. Most current therapies for osteoporosis stabilize the skeleton by inhibiting bone resorption (antiresorptive agents), but the development of anabolic therapies that can increase bone formation and bone mass is of great interest. Wnt signalling induces differentiation of bone-forming cells (osteoblasts) and suppresses the development of bone-resorbing cells (osteoclasts). The Wnt pathway is controlled by antagonists that interact either directly with Wnt proteins or with Wnt co-receptors. The importance of Wnt signalling in bone formation is indicated by skeletal disorders such as sclerosteosis and van Buchem syndrome, which are caused by mutations in the gene encoding the Wnt antagonist sclerostin (SOST). Experiments in mice have shown that downregulation or neutralization of Wnt antagonists enhances bone formation. Phase II clinical trials show that 1-year treatment with antisclerostin antibodies increases bone formation, decreases bone resorption and leads to a substantial increase in BMD. Consequently, Wnt signalling can be targeted by the neutralization of its extracellular antagonists to obtain a skeletal anabolic response.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Centre, 114 Woodland Street, Hartford, CT 06105-1299, USA.
| |
Collapse
|
98
|
Andoniadou CL, Martinez-Barbera JP. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70:3739-52. [PMID: 23397132 PMCID: PMC3781296 DOI: 10.1007/s00018-013-1269-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022]
Abstract
Research from the last 15 years has provided a working model for how the anterior forebrain is induced and specified during the early stages of embryogenesis. This model relies on three basic processes: (1) induction of the neural plate from naive ectoderm requires the inhibition of BMP/TGFβ signaling; (2) induced neural tissue initially acquires an anterior identity (i.e., anterior forebrain); (3) maintenance and expansion of the anterior forebrain depends on the antagonism of posteriorizing signals that would otherwise transform this tissue into posterior neural fates. In this review, we present a historical perspective examining some of the significant experiments that have helped to delineate this molecular model. In addition, we discuss the function of the relevant tissues that act prior to and during gastrulation to ensure proper anterior forebrain formation. Finally, we elaborate data, mainly obtained from the analyses of mouse mutants, supporting a role for transcriptional repressors in the regulation of cell competence within the anterior forebrain. The aim of this review is to provide the reader with a general overview of the signals as well as the signaling centers that control the development of the anterior neural plate.
Collapse
Affiliation(s)
- Cynthia Lilian Andoniadou
- Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | | |
Collapse
|
99
|
Arkell RM, Tam PPL. Initiating head development in mouse embryos: integrating signalling and transcriptional activity. Open Biol 2013; 2:120030. [PMID: 22754658 PMCID: PMC3382960 DOI: 10.1098/rsob.120030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/06/2012] [Indexed: 11/12/2022] Open
Abstract
The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior–posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.
Collapse
Affiliation(s)
- Ruth M Arkell
- Early Mammalian Development Laboratory, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
100
|
Macrì S, Sgarra R, Ros G, Maurizio E, Zammitti S, Milani O, Onorati M, Vignali R, Manfioletti G. Expression and functional characterization of Xhmg-at-hook genes in Xenopus laevis. PLoS One 2013; 8:e69866. [PMID: 23936116 PMCID: PMC3723657 DOI: 10.1371/journal.pone.0069866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023] Open
Abstract
High Mobility Group A proteins (HMGA1 and HMGA2) are architectural nuclear factors involved in development, cell differentiation, and cancer formation and progression. Here we report the cloning, developmental expression and functional analysis of a new multi-AT-hook factor in Xenopus laevis (XHMG-AT-hook) that exists in three different isoforms. Xhmg-at-hook1 and 3 isoforms, but not isoform 2, are expressed throughout the entire development of Xenopus, both in the maternal and zygotic phase. Localized transcripts are present in the animal pole in the early maternal phase; during the zygotic phase, mRNA can be detected in the developing central nervous system (CNS), including the eye, and in the neural crest. We show evidence that XHMG-AT-hook proteins differ from typical HMGA proteins in terms of their properties in DNA binding and in protein/protein interaction. Finally, we provide evidence that they are involved in early CNS development and in neural crest differentiation.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Biology, University of Pisa, Pisa, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gloria Ros
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elisa Maurizio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Salvina Zammitti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marco Onorati
- Department of Biology, University of Pisa, Pisa, Italy
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy
- * E-mail: (GM); (RV)
| | | |
Collapse
|