51
|
Sabrautzki S, Kaiser G, Przemeck GKH, Gerst F, Lorza-Gil E, Panse M, Sartorius T, Hoene M, Marschall S, Häring HU, Hrabě de Angelis M, Ullrich S. Point mutation of Ffar1 abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance. Mol Metab 2017; 6:1304-1312. [PMID: 29031729 PMCID: PMC5641630 DOI: 10.1016/j.molmet.2017.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Objective The fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-dependent augmentation of glucose-induced insulin secretion (GIIS) in pancreatic β-cells. Genetically engineered Ffar1-knockout/congenic mice univocally displayed impaired fatty acid-mediated insulin secretion, but in vivo experiments delivered controversial results regarding the function of FFAR1 in glucose homeostasis and liver steatosis. This study presents a new coisogenic mouse model carrying a point mutation in Ffar1 with functional consequence. These mice reflect the situations in humans in which point mutations can lead to protein malfunction and disease development. Methods The Munich N-ethyl-N-nitrosourea (ENU) mutagenesis-derived F1 archive containing over 16,800 sperms and corresponding DNA samples was screened for mutations in the coding region of Ffar1. Two missense mutations (R258W and T146S) in the extracellular domain of the protein were chosen and homozygote mice were generated. The functional consequence of these mutations was examined in vitro in isolated islets and in vivo in chow diet and high fat diet fed mice. Results Palmitate, 50 μM, and the FFAR1 agonist TUG-469, 3 μM, stimulated insulin secretion in islets of Ffar1T146S/T146S mutant mice and of wild-type littermates, while in islets of Ffar1R258W/R258W mutant mice, these stimulatory effects were abolished. Insulin content and mRNA levels of Ffar1, Glp1r, Ins2, Slc2a2, Ppara, and Ppard were not significantly different between wild-type and Ffar1R258W/R258W mouse islets. Palmitate exposure, 600 μM, significantly increased Ppara mRNA levels in wild-type but not in Ffar1R258W/R258W mouse islets. On the contrary, Slc2a2 mRNA levels were significantly reduced in both wild-type and Ffar1R258W/R258W mouse islets after palmitate treatment. HFD feeding induced glucose intolerance in wild-type mice. Ffar1R258W/R258W mutant mice remained glucose tolerant although their body weight gain, liver steatosis, insulin resistance, and plasma insulin levels were not different from those of wild-type littermates. Worth mentioning, fasting plasma insulin levels were lower in Ffar1R258W/R258W mice. Conclusion A point mutation in Ffar1 abrogates the stimulatory effect of palmitate on GIIS, an effect that does not necessarily translate to HFD-induced glucose intolerance. Generation of mice carrying point mutations in Ffar1 using ENU. FFAR1 point mutation R258W abrogates fatty acid-induced insulin secretion. Dysfunctional FFAR1 inhibits the development of diet-induced glucose intolerance.
Collapse
Affiliation(s)
- Sibylle Sabrautzki
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany; Research Unit Comparative Medicine, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Kaiser
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Gerhard K H Przemeck
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Estela Lorza-Gil
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany
| | - Madhura Panse
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Tina Sartorius
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Miriam Hoene
- University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Susan Marschall
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany; University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and the German Mouse Clinic, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technische Universität München, Alte Akademie 8, 85354 München, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), 72076 Tübingen, Germany; University Hospital Tübingen, Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany.
| |
Collapse
|
52
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
53
|
Hai T, Cao C, Shang H, Guo W, Mu Y, Yang S, Zhang Y, Zheng Q, Zhang T, Wang X, Liu Y, Kong Q, Li K, Wang D, Qi M, Hong Q, Zhang R, Wang X, Jia Q, Wang X, Qin G, Li Y, Luo A, Jin W, Yao J, Huang J, Zhang H, Li M, Xie X, Zheng X, Guo K, Wang Q, Zhang S, Li L, Xie F, Zhang Y, Weng X, Yin Z, Hu K, Cong Y, Zheng P, Zou H, Xin L, Xia J, Ruan J, Li H, Zhao W, Yuan J, Liu Z, Gu W, Li M, Wang Y, Wang H, Yang S, Liu Z, Wei H, Zhao J, Zhou Q, Meng A. Pilot study of large-scale production of mutant pigs by ENU mutagenesis. eLife 2017. [PMID: 28639938 PMCID: PMC5505698 DOI: 10.7554/elife.26248] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.26248.001
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Haitao Shang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Yanshuang Mu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Shulin Yang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yu Liu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Qingran Kong
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Kui Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dayu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Meng Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiupeng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Weiwu Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Menghua Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiangmo Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xuejuan Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Kenan Guo
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Qinghua Wang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Shibin Zhang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Liang Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Fei Xie
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Yu Zhang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Xiaogang Weng
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Zhi Yin
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Kui Hu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Yimei Cong
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Peng Zheng
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Hailong Zou
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Leilei Xin
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jihan Xia
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxue Ruan
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hegang Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiming Zhao
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yuan
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zizhan Liu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiwang Gu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Pearl Laboratory Animal Sci. & Tech. Co. Ltd, Guangzhou, China
| | - Ming Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Pearl Laboratory Animal Sci. & Tech. Co. Ltd, Guangzhou, China
| | - Yong Wang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Anming Meng
- Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
54
|
Hashimoto H, Kawabe T, Fukuda T, Kusakabe M. A Novel Ataxic Mutant Mouse Line Having Sensory Neuropathy Shows Heavy Iron Deposition in Kidney. NEURODEGENER DIS 2017; 17:181-198. [DOI: 10.1159/000457126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/20/2017] [Indexed: 01/11/2023] Open
|
55
|
Novel insights into SLC25A46-related pathologies in a genetic mouse model. PLoS Genet 2017; 13:e1006656. [PMID: 28376086 PMCID: PMC5380310 DOI: 10.1371/journal.pgen.1006656] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/26/2017] [Indexed: 11/19/2022] Open
Abstract
The mitochondrial protein SLC25A46 has been recently identified as a novel pathogenic cause in a wide spectrum of neurological diseases, including inherited optic atrophy, Charcot-Marie-Tooth type 2, Leigh syndrome, progressive myoclonic ataxia and lethal congenital pontocerebellar hypoplasia. SLC25A46 is an outer membrane protein, member of the Solute Carrier 25 (SLC25) family of nuclear genes encoding mitochondrial carriers, with a role in mitochondrial dynamics and cristae maintenance. Here we identified a loss-of-function mutation in the Slc25a46 gene that causes lethal neuropathology in mice. Mutant mice manifest the main clinical features identified in patients, including ataxia, optic atrophy and cerebellar hypoplasia, which were completely rescued by expression of the human ortholog. Histopathological analysis revealed previously unseen lesions, most notably disrupted cytoarchitecture in the cerebellum and retina and prominent abnormalities in the neuromuscular junction. A distinct lymphoid phenotype was also evident. Our mutant mice provide a valid model for understanding the mechanistic basis of the complex SLC25A46-mediated pathologies, as well as for screening potential therapeutic interventions. Neurodegenerative diseases encompass a wide range of clinical conditions remaining incurable while the genetic and molecular basis of most of these conditions remains unknown due to their heterogeneity and the lack of animal models. Mutations in nuclear genes encoding mitochondrial proteins have recently emerged as novel causalities in diseases affecting the nervous system. SLC25A46, a novel mitochondrial protein, has recently been identified as a pathogenic target in a wide spectrum of rare genetic neurological diseases, including optic atrophy, Charcot-Marie-Tooth type 2, Leigh syndrome, progressive myoclonic ataxia and lethal congenital pontocerebellar hypoplasia. Following a genetic approach, we identified a novel neurological mouse model caused by a functional mutation in the Slc25a46 gene. Our SLC25A46 mutant mice constitute the first genetic animal model for this disease and represent an ideal tool for elucidating the underlying molecular mechanisms. The aim of this study was to characterize the complex phenotype displayed by the mutant mice in order to understand the mechanistic basis of the SLC25A46-mediated pathologies.
Collapse
|
56
|
Perez-Rivas LG, Rhayem Y, Sabrautzki S, Hantel C, Rathkolb B, Hrabě de Angelis M, Reincke M, Beuschlein F, Spyroglou A. Genetic characterization of a mouse line with primary aldosteronism. J Mol Endocrinol 2017; 58:67-78. [PMID: 27965370 DOI: 10.1530/jme-16-0200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
Abstract
In an attempt to define novel genetic loci involved in the pathophysiology of primary aldosteronism, a mutagenesis screen after treatment with the alkylating agent N-ethyl-N-nitrosourea was established for the parameter aldosterone. One of the generated mouse lines with hyperaldosteronism was phenotypically and genetically characterized. This mouse line had high aldosterone levels but normal creatinine and urea values. The steroidogenic enzyme expression levels in the adrenal gland did not differ significantly among phenotypically affected and unaffected mice. Upon exome sequencing, point mutations were identified in seven candidate genes (Sspo, Dguok, Hoxaas2, Clstn3, Atm, Tipin and Mapk6). Subsequently, animals were stratified into wild-type and mutated groups according to their genotype for each of these candidate genes. A correlation of their genotypes with the respective aldosterone, aldosterone-to-renin ratio (ARR), urea and creatinine values as well as steroidogenic enzyme expression levels was performed. Aldosterone values were significantly higher in animals carrying mutations in four different genes (Sspo, Dguok, Hoxaas2 and Clstn3) and associated statistically significant adrenal Cyp11b2 overexpression as well as increased ARR was present only in mice with Sspo mutation. In contrast, mutations of the remaining candidate genes (Atm, Tipin and Mapk6) were associated with lower aldosterone values and lower Hsd3b6 expression levels. In summary, these data demonstrate association between the genes Sspo, Dguok, Hoxaas2 and Clstn3 and hyperaldosteronism. Final proofs for the causative nature of the mutations have to come from knock-out and knock-in experiments.
Collapse
Affiliation(s)
- L G Perez-Rivas
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - Y Rhayem
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - S Sabrautzki
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Research Unit Comparative Medicine, Neuherberg, Germany
| | - C Hantel
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - B Rathkolb
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD)Neuherberg, Germany
- Ludwig-Maximilians-Universität MünchenChair for Molecular Animal Breeding and Biotechnology, Gene Center of the München, Germany
| | - M Hrabě de Angelis
- Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD)Neuherberg, Germany
- Lehrstuhl für Experimentelle GenetikTechnische Universität München, Freising-Weihenstephan, Germany
| | - M Reincke
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - F Beuschlein
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| | - A Spyroglou
- Medizinische Klinik und Poliklinik IVEndocrine Research Unit, Klinikum der Universität München, LMU, Munich, Germany
| |
Collapse
|
57
|
The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations. G3 (BETHESDA, MD.) 2016; 6:4035-4046. [PMID: 27815347 PMCID: PMC5144972 DOI: 10.1534/g3.116.033670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.
Collapse
|
58
|
Seedorf H, Springer IN, Grundner-Culemann E, Albers HK, Reis A, Fuchs H, Hrabe de Angelis M, Açil Y. Amelogenesis Imperfecta in a New Animal Model—a Mutation in Chromosome 5 (human 4q21). J Dent Res 2016; 83:608-12. [PMID: 15271968 DOI: 10.1177/154405910408300805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Candidate genes for amelogenesis imperfecta (AI) and dentinogenesis imperfecta (DI) are located on 4q21 in humans. We tested our hypothesis that mutations in the portion of mouse chromosome 5 corresponding to human chromosome 4q21 would cause enamel and dentin abnormalities. Male C3H mice were injected with ethylnitrosourea (ENU). Within a dominant ENU mutagenesis screen, a mouse mutant was isolated with an abnormal tooth enamel (ATE) phenotype. The structure and ultrastructure of teeth were studied. The mutation was located on mouse chromosome 5 in an interval of 9 cM between markers D5Mit18 and D5Mit10. Homozygotic mutants showed total enamel aplasia with exposed dentinal tubules, while heterozygotic mutants showed a significant reduction in enamel width. Dentin of mutant mice showed a reduced content of mature collagen cross-links. We were able to demonstrate that a mutation on chromosome 5 corresponding to human chromosome 4q21 can cause amelogenesis imperfecta and changes in dentin composition.
Collapse
Affiliation(s)
- H Seedorf
- Department of Prosthetic Dentistry, University Hospital Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Congenital Cataracts and Gut Dysmotility in a DYNC1H1 Dyneinopathy Patient. Genes (Basel) 2016; 7:genes7100085. [PMID: 27754416 PMCID: PMC5083924 DOI: 10.3390/genes7100085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/20/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022] Open
Abstract
Whole exome sequencing continues to end the diagnostic odyssey for a number of patients and expands our knowledge of phenotypes associated with gene mutations. We describe an 11-year-old female patient with a constellation of symptoms including congenital cataracts, gut dysmotility, sensory neuropathy, and bifrontal polymicrogyria. Whole exome sequencing was performed and identified a de novo heterozygous missense mutation in the ATPase motor domain of cytoplasmic dynein heavy chain 1 (DYNC1H1), which is known to be involved in neuronal migration and retrograde axonal transport. The mutation was found to be highly damaging by multiple prediction programs. The residue is highly conserved, and reported mutations in this gene result in a variety of phenotypes similar to that of our patient. We report only the second case of congenital cataracts and the first of gut dysmotility in a patient with DYNC1H1, thus expanding the spectrum of disease seen in DYNC1H1 dyneinopathies.
Collapse
|
60
|
Viable Ednra Y129F mice feature human mandibulofacial dysostosis with alopecia (MFDA) syndrome due to the homologue mutation. Mamm Genome 2016; 27:587-598. [PMID: 27671791 PMCID: PMC5110705 DOI: 10.1007/s00335-016-9664-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/21/2016] [Indexed: 12/24/2022]
Abstract
Animal models resembling human mutations are valuable tools to research the features of complex human craniofacial syndromes. This is the first report on a viable dominant mouse model carrying a non-synonymous sequence variation within the endothelin receptor type A gene (Ednra c.386A>T, p.Tyr129Phe) derived by an ENU mutagenesis program. The identical amino acid substitution was reported recently as disease causing in three individuals with the mandibulofacial dysostosis with alopecia (MFDA, OMIM 616367) syndrome. We performed standardized phenotyping of wild-type, heterozygous, and homozygous EdnraY129F mice within the German Mouse Clinic. Mutant mice mimic the craniofacial phenotypes of jaw dysplasia, micrognathia, dysplastic temporomandibular joints, auricular dysmorphism, and missing of the squamosal zygomatic process as described for MFDA-affected individuals. As observed in MFDA-affected individuals, mutant EdnraY129F mice exhibit hearing impairment in line with strong abnormalities of the ossicles and further, reduction of some lung volumetric parameters. In general, heterozygous and homozygous mice demonstrated inter-individual diversity of expression of the craniofacial phenotypes as observed in MFDA patients but without showing any cleft palates, eyelid defects, or alopecia. Mutant EdnraY129F mice represent a valuable viable model for complex human syndromes of the first and second pharyngeal arches and for further studies and analysis of impaired endothelin 1 (EDN1)–endothelin receptor type A (EDNRA) signaling. Above all, EdnraY129F mice model the recently published human MFDA syndrome and may be helpful for further disease understanding and development of therapeutic interventions.
Collapse
|
61
|
Potter PK, Bowl MR, Jeyarajan P, Wisby L, Blease A, Goldsworthy ME, Simon MM, Greenaway S, Michel V, Barnard A, Aguilar C, Agnew T, Banks G, Blake A, Chessum L, Dorning J, Falcone S, Goosey L, Harris S, Haynes A, Heise I, Hillier R, Hough T, Hoslin A, Hutchison M, King R, Kumar S, Lad HV, Law G, MacLaren RE, Morse S, Nicol T, Parker A, Pickford K, Sethi S, Starbuck B, Stelma F, Cheeseman M, Cross SH, Foster RG, Jackson IJ, Peirson SN, Thakker RV, Vincent T, Scudamore C, Wells S, El-Amraoui A, Petit C, Acevedo-Arozena A, Nolan PM, Cox R, Mallon AM, Brown SDM. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nat Commun 2016; 7:12444. [PMID: 27534441 PMCID: PMC4992138 DOI: 10.1038/ncomms12444] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/01/2016] [Indexed: 12/19/2022] Open
Abstract
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Collapse
Affiliation(s)
- Paul K. Potter
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Prashanthini Jeyarajan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Laura Wisby
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Blease
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | | | - Michelle M. Simon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Simon Greenaway
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | - Alun Barnard
- The Nuffield Laboratory of Ophthalmology & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Thomas Agnew
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Blake
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Lauren Chessum
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Joanne Dorning
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sara Falcone
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Laurence Goosey
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Shelley Harris
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andy Haynes
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Ines Heise
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Tertius Hough
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Angela Hoslin
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Ruairidh King
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Saumya Kumar
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Heena V. Lad
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gemma Law
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Robert E. MacLaren
- The Nuffield Laboratory of Ophthalmology & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Susan Morse
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Thomas Nicol
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Karen Pickford
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Siddharth Sethi
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Becky Starbuck
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Femke Stelma
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael Cheeseman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sally H. Cross
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Russell G. Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ian J. Jackson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Stuart N. Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Rajesh V. Thakker
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Tonia Vincent
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Cheryl Scudamore
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Sara Wells
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, INSERM UMR-S 1120, Sorbonne Universités, UPMC Univ Paris 06, Collège de France, 25 rue Dr Roux, Paris 75015, France
| | | | - Patrick M. Nolan
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Roger Cox
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Anne-Marie Mallon
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Steve D. M. Brown
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
62
|
Cabrera-Quio LE, Herberg S, Pauli A. Decoding sORF translation - from small proteins to gene regulation. RNA Biol 2016; 13:1051-1059. [PMID: 27653973 DOI: 10.1080/15476286.2016.1218589] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.
Collapse
Affiliation(s)
| | - Sarah Herberg
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| | - Andrea Pauli
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| |
Collapse
|
63
|
Larribère L, Utikal J. Multiple roles of NF1 in the melanocyte lineage. Pigment Cell Melanoma Res 2016; 29:417-25. [PMID: 27155159 DOI: 10.1111/pcmr.12488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/29/2016] [Indexed: 08/30/2023]
Abstract
NF1 is a tumour suppressor gene, germline mutations of which lead to neurofibromatosis type 1 syndrome. Patients develop benign tumours from several types of cells including neural crest-derived cells. NF1 somatic mutations also occur in 15% of sporadic melanoma, a cancer originating from melanocytes. Evidence now suggests the involvement of NF1 mutations in melanoma resistance to targeted therapies. Although NF1 is ubiquitously expressed, genetic links between NF1 and genes involved in melanocyte biology have been described, implying the lineage-specific mechanisms. In this review, we summarize and discuss the latest advances related to the roles of NF1 in melanocyte biology and in cutaneous melanoma.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
64
|
Urtatiz O, Van Raamsdonk CD. Gnaq and Gna11 in the Endothelin Signaling Pathway and Melanoma. Front Genet 2016; 7:59. [PMID: 27148356 PMCID: PMC4837292 DOI: 10.3389/fgene.2016.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
In this article, we first briefly outline the function of G protein coupled receptors in cancer, and then specifically examine the roles of the seven transmembrane G protein coupled Endothelin B receptor (Ednrb) and the G proteins, GNAQ and GNA11, in both melanocyte development and melanoma. Ednrb plays an essential role in melanocyte development. GNAQ and GNA11 are oncogenes when mutated in certain types of melanocytic lesions, being extremely frequent in uveal melanoma, which forms from melanocytes located in the eye. Previously, we reported that in mice, Schwann cell precursor derived melanocytes colonize the dermis and hair follicles, while the inter-follicular epidermis is populated by other melanocytes. A pattern has emerged whereby melanocytes whose activities are affected by gain-of-function mutations of the Endothelin 3 ligand and Gαq/11 are the same subset that arise from Schwann cell precursors. Furthermore, the forced expression of the constitutively active human GNAQQ209L oncogene in mouse melanocytes only causes hyper-proliferation in the subset that arise from Schwann cell precursors. This has led us to hypothesize that in Schwann cell precursor derived melanocytes, Ednrb signals through Gαq/11. Ednrb is promiscuous and may signal through other G protein alpha subunits in melanomas located in the inter-follicular epidermis.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
65
|
Generation and Standardized, Systemic Phenotypic Analysis of Pou3f3L423P Mutant Mice. PLoS One 2016; 11:e0150472. [PMID: 27003440 PMCID: PMC4803225 DOI: 10.1371/journal.pone.0150472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/14/2016] [Indexed: 12/12/2022] Open
Abstract
Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU mouse mutagenesis project. The phenotypically recessive mutant line HST011 was established and further analyzed. The causative mutation was detected in the POU domain, class 3 transcription factor 3 (Pou3f3) gene, which leads to the amino acid exchange Pou3f3L423P thereby affecting the conserved homeobox domain of the protein. Pou3f3 homozygous knockout mice are published and show perinatal death. Line Pou3f3L423P is a viable mouse model harboring a homozygous Pou3f3 mutation. Standardized, systemic phenotypic analysis of homozygous mutants was carried out in the German Mouse Clinic. Main phenotypic changes were low body weight and a state of low energy stores, kidney dysfunction and secondary effects thereof including low bone mineralization, multiple behavioral and neurological defects including locomotor, vestibular, auditory and nociceptive impairments, as well as multiple subtle changes in immunological parameters. Genome-wide transcriptome profiling analysis of kidney and brain of Pou3f3L423P homozygous mutants identified significantly regulated genes as compared to wild-type controls.
Collapse
|
66
|
Zhan T, Boutros M. Towards a compendium of essential genes - From model organisms to synthetic lethality in cancer cells. Crit Rev Biochem Mol Biol 2015; 51:74-85. [PMID: 26627871 PMCID: PMC4819810 DOI: 10.3109/10409238.2015.1117053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential genes are defined by their requirement to sustain life in cells or whole organisms. The systematic identification of essential gene sets not only allows insights into the fundamental building blocks of life, but may also provide novel therapeutic targets in oncology. The discovery of essential genes has been tightly linked to the development and deployment of various screening technologies. Here, we describe how gene essentiality was addressed in different eukaryotic model organisms, covering a range of organisms from yeast to mouse. We describe how increasing knowledge of evolutionarily divergent genomes facilitate identification of gene essentiality across species. Finally, the impact of gene essentiality and synthetic lethality on cancer research and the clinical translation of screening results are highlighted.
Collapse
Affiliation(s)
- Tianzuo Zhan
- a Department of Cell and Molecular Biology , Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University , Heidelberg , Germany and.,b Department of Medicine II , Medical Faculty Mannheim, University Hospital Mannheim, Heidelberg University , Mannheim , Germany
| | - Michael Boutros
- a Department of Cell and Molecular Biology , Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center (DKFZ), Heidelberg University , Heidelberg , Germany and
| |
Collapse
|
67
|
El Hakam Kamareddin C, Magnol L, Blanquet V. A new Otogelin ENU mouse model for autosomal-recessive nonsyndromic moderate hearing impairment. SPRINGERPLUS 2015; 4:730. [PMID: 26636018 PMCID: PMC4659790 DOI: 10.1186/s40064-015-1537-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Approximately 10 % of the population worldwide suffers from hearing loss (HL) and about 60 % of persons with early onset HL have hereditary hearing loss due to genetic mutations. Highly efficient mutagenesis in mice with the chemical mutagen, ethylnitrosourea (ENU), associated with relevant phenotypic tools represents a powerful approach in producing mouse models for hearing impairment. A benefit of this strategy is to generate alleles to form a series revealing the full spectrum of gene function in vivo. It can also mimic the range of human mutations and polymorphisms for HL. In the course of a genome ENU mutagenesis program, we selected a new mouse model for hearing defect based on a dysmorphological screen. We identified by gene mapping the mutation responsible for this phenotype and characterized it at the histological level of the inner ear and evaluated the vestibule by following the recommendations of the standard operating procedures, IMPReSS. We have identified and characterized a new recessive allele of the otogelin gene, Otogvbd/vbd, due to a homozygous one base pair substitution at the splice donor site of intron 29. This mutation leads to a frame-shift and a premature stop codon. We observed a decrease in the amount of sensory cells in the maculae of Otogvbd/vbd mice as well as an apparent drastically decreased density to almost absence of the otoconial membrane. Compared to Otogtm1Prs and twister, the two other existing otogelin alleles, the detailed analysis of Otogvbd/vbd revealed that these mice share some common behavioural characteristics either with Otogtm1Prs or twister whereas the fine vestibular phenotype and the hearing defect are different. Our results emphasize the importance of detecting and characterizing a new allele of a gene in order to get comprehensive information about the gene function.
Collapse
Affiliation(s)
- Carole El Hakam Kamareddin
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| | - Laetitia Magnol
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| | - Veronique Blanquet
- Univ. Limoges, INRA, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, Avenue Albert Thomas, 87060 Limoges, France
| |
Collapse
|
68
|
Loss of function mutation of the Slc38a3 glutamine transporter reveals its critical role for amino acid metabolism in the liver, brain, and kidney. Pflugers Arch 2015; 468:213-27. [PMID: 26490457 DOI: 10.1007/s00424-015-1742-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 01/10/2023]
Abstract
Glutamine, the most abundant amino acid in mammals, is critical for cell and organ functions. Its metabolism depends on the ability of cells to take up or release glutamine by transporters located in the plasma membrane. Several solute carrier (SLC) families transport glutamine, but the SLC38 family has been thought to be mostly responsible for glutamine transport. We demonstrate that despite the large number of glutamine transporters, the loss of Snat3/Slc38a3 glutamine transporter has a major impact on the function of organs expressing it. Snat3 mutant mice were generated by N-ethyl-N-nitrosurea (ENU) mutagenesis and showed stunted growth, altered amino acid levels, hypoglycemia, and died around 20 days after birth. Hepatic concentrations of glutamine, glutamate, leucine, phenylalanine, and tryptophan were highly reduced paralleled by downregulation of the mTOR pathway possibly linking reduced amino acid availability to impaired growth and glucose homeostasis. Snat3-deficient mice had altered urea levels paralleled by dysregulation of the urea cycle, gluconeogenesis, and glutamine synthesis. Mice were ataxic with higher glutamine but reduced glutamate and gamma-aminobutyric acid (GABA) levels in brain consistent with a major role of Snat3 in the glutamine-glutamate cycle. Renal ammonium excretion was lower, and the expression of enzymes and amino acid transporters involved in ammoniagenesis were altered. Thus, SNAT3 is a glutamine transporter required for amino acid homeostasis and determines critical functions in various organs. Despite the large number of glutamine transporters, loss of Snat3 cannot be compensated, suggesting that this transporter is a major route of glutamine transport in the liver, brain, and kidney.
Collapse
|
69
|
Simon MM, Moresco EMY, Bull KR, Kumar S, Mallon AM, Beutler B, Potter PK. Current strategies for mutation detection in phenotype-driven screens utilising next generation sequencing. Mamm Genome 2015; 26:486-500. [PMID: 26449678 PMCID: PMC4602060 DOI: 10.1007/s00335-015-9603-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Mutagenesis-based screens in mice are a powerful discovery platform to identify novel genes or gene functions associated with disease phenotypes. An N-ethyl-N-nitrosourea (ENU) mutagenesis screen induces single nucleotide variants randomly in the mouse genome. Subsequent phenotyping of mutant and wildtype mice enables the identification of mutated pathways resulting in phenotypes associated with a particular ENU lesion. This unbiased approach to gene discovery conducts the phenotyping with no prior knowledge of the functional mutations. Before the advent of affordable next generation sequencing (NGS), ENU variant identification was a limiting step in gene characterization, akin to ‘finding a needle in a haystack’. The emergence of a reliable reference genome alongside advances in NGS has propelled ENU mutation discovery from an arduous, time-consuming exercise to an effective and rapid form of mutation discovery. This has permitted large mouse facilities worldwide to use ENU for novel mutation discovery in a high-throughput manner, helping to accelerate basic science at the mechanistic level. Here, we describe three different strategies used to identify ENU variants from NGS data and some of the subsequent steps for mutation characterisation.
Collapse
Affiliation(s)
- Michelle M Simon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Katherine R Bull
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Saumya Kumar
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Paul K Potter
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
70
|
Eppig JT, Motenko H, Richardson JE, Richards-Smith B, Smith CL. The International Mouse Strain Resource (IMSR): cataloging worldwide mouse and ES cell line resources. Mamm Genome 2015; 26:448-55. [PMID: 26373861 PMCID: PMC4602064 DOI: 10.1007/s00335-015-9600-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 11/04/2022]
Abstract
The availability of and access to quality genetically defined, health-status known mouse resources is critical for biomedical research. By ensuring that mice used in research experiments are biologically, genetically, and health-status equivalent, we enable knowledge transfer, hypothesis building based on multiple data streams, and experimental reproducibility based on common mouse resources (reagents). Major repositories for mouse resources have developed over time and each has significant unique resources to offer. Here we (a) describe The International Mouse Strain Resource that offers users a combined catalog of worldwide mouse resources (live, cryopreserved, embryonic stem cells), with direct access to repository sites holding resources of interest and (b) discuss the commitment to nomenclature standards among resources that remain a challenge in unifying mouse resource catalogs.
Collapse
Affiliation(s)
- Janan T Eppig
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - Howie Motenko
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - Joel E Richardson
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | | | - Cynthia L Smith
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
71
|
Wright GJ, Bianchi E. The challenges involved in elucidating the molecular basis of sperm-egg recognition in mammals and approaches to overcome them. Cell Tissue Res 2015. [PMID: 26224538 PMCID: PMC4700105 DOI: 10.1007/s00441-015-2243-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sexual reproduction is used by many different organisms to create a new generation of genetically distinct progeny. Cells originating from separate sexes or mating types segregate their genetic material into haploid gametes which must then recognize and fuse with each other in a process known as fertilization to form a diploid zygote. Despite the central importance of fertilization, we know remarkably little about the molecular mechanisms that are involved in how gametes recognize each other, particularly in mammals, although the proteins that are displayed on their surfaces are almost certainly involved. This paucity of knowledge is largely due to both the unique biological properties of mammalian gametes (sperm and egg) which make them experimentally difficult to manipulate, and the technical challenges of identifying interactions between membrane-embedded cell surface receptor proteins. In this review, we will discuss our current knowledge of animal gamete recognition, highlighting where important contributions to our understanding were made, why particular model systems were helpful, and why progress in mammals has been particularly challenging. We discuss how the development of mammalian in vitro fertilization and targeted gene disruption in mice were important technological advances that triggered progress. We argue that approaches employed to discover novel interactions between cell surface gamete recognition proteins should account for the unusual biochemical properties of membrane proteins and the typically highly transient nature of their interactions. Finally, we describe how these principles were applied to identify Juno as the egg receptor for sperm Izumo1, an interaction that is essential for mammalian fertilization.
Collapse
Affiliation(s)
- Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| |
Collapse
|
72
|
New mutation in the mouse Xpd/Ercc2 gene leads to recessive cataracts. PLoS One 2015; 10:e0125304. [PMID: 25951169 PMCID: PMC4423972 DOI: 10.1371/journal.pone.0125304] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/12/2015] [Indexed: 02/04/2023] Open
Abstract
Cataracts are the major eye disorder and have been associated mainly with mutations in lens-specific genes, but cataracts are also frequently associated with complex syndromes. In a large-scale high-throughput ENU mutagenesis screen we analyzed the offspring of paternally treated C3HeB/FeJ mice for obvious dysmorphologies. We identified a mutant suffering from rough coat and small eyes only in homozygotes; homozygous females turned out to be sterile. The mutation was mapped to chromosome 7 between the markers 116J6.1 and D7Mit294;4 other markers within this interval did not show any recombination among 160 F2-mutants. The critical interval (8.6 Mb) contains 3 candidate genes (Apoe, Six5, Opa3); none of them showed a mutation. Using exome sequencing, we identified a c.2209T>C mutation in the Xpd/Ercc2 gene leading to a Ser737Pro exchange. During embryonic development, the mutant eyes did not show major changes. Postnatal histological analyses demonstrated small cortical vacuoles; later, cortical cataracts developed. Since XPD/ERCC2 is involved in DNA repair, we checked also for the presence of the repair-associated histone γH2AX in the lens. During the time, when primary lens fiber cell nuclei are degraded, γH2AX was strongly expressed in the cell nuclei; later, it demarcates clearly the border of the lens cortex to the organelle-free zone. Moreover, we analyzed also whether seemingly healthy heterozygotes might be less efficient in repair of DNA damage induced by ionizing radiation than wild types. Peripheral lymphocytes irradiated by 1Gy Cs137 showed 6 hrs after irradiation significantly more γH2AX foci in heterozygotes than in wild types. These findings demonstrate the importance of XPD/ERCC2 not only for lens fiber cell differentiation, but also for the sensitivity to ionizing radiation. Based upon these data, we hypothesize that variations in the human XPD/ERCC2 gene might increase the susceptibility for several disorders besides Xeroderma pigmentosum in heterozygotes under particular environmental conditions.
Collapse
|
73
|
Derdak S, Sabrautzki S, de Angelis MH, Gut M, Gut IG, Beltran S. Genomic characterization of mutant laboratory mouse strains by exome sequencing and annotation lift-over. BMC Genomics 2015; 16:351. [PMID: 25943197 PMCID: PMC4422528 DOI: 10.1186/s12864-015-1548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
Background Exome sequencing has become a popular method to evaluate undirected mutagenesis experiments in mice. However, the most suitable mouse strain for the biological model may be relatively distant from the standard mouse reference genome. For pinpointing causative variants, a matching reference with gene annotations is essential, but not always readily available. Results We present an approach that allows to use murine Ensembl annotations on alternative mouse strain assemblies. We resolved ENU-induced mutation screening for 8 phenotypic mutant lines generated on C3HeB/FeJ background aligning the sequences against the closely related, but not annotated reference of C3H/HeJ. Variants occurring in all strains were filtered out as specific for the C3HeB/FeJ strain but unrelated to mutagenesis. Variants occurring exclusively in all individuals of one mutant line and matching the inheritance model were selected as mutagenesis-related. These variants were annotated with gene and exon names lifted over from the standard murine reference mm9 to C3H/HeJ using megablast. For each mutant line, we could restrict the results to exonic variants in between 1 and 23 genes. Conclusions The presented method of exonic annotation lift-over proved to be a valuable tool in the search for mutagenesis-derived coding genomic variants and the assessment of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Sophia Derdak
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Sibylle Sabrautzki
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Ingolstädter Landstr.1, 85764, Neuherberg, Germany. .,Member of German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics and German Mouse Clinic, Ingolstädter Landstr.1, 85764, Neuherberg, Germany. .,Member of German Center for Diabetes Research (DZD), Neuherberg, Germany. .,Technische Universität München, Lehrstuhl für Experimentelle Genetik, 85350, Freising-Weihenstephan, Germany.
| | - Marta Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona - Torre I, Baldiri Reixac, 4, 08028, Barcelona, Spain.
| |
Collapse
|
74
|
Maslov AY, Quispe-Tintaya W, Gorbacheva T, White RR, Vijg J. High-throughput sequencing in mutation detection: A new generation of genotoxicity tests? Mutat Res 2015; 776:136-43. [PMID: 25934519 DOI: 10.1016/j.mrfmmm.2015.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/07/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
The advent of next generation sequencing (NGS) technology has provided the means to directly analyze the genetic material in primary cells or tissues of any species in a high throughput manner for mutagenic effects of potential genotoxic agents. In principle, direct, genome-wide sequencing of human primary cells and/or tissue biopsies would open up opportunities to identify individuals possibly exposed to mutagenic agents, thereby replacing current risk assessment procedures based on surrogate markers and extrapolations from animal studies. NGS-based tests can also precisely characterize the mutation spectra induced by genotoxic agents, improving our knowledge of their mechanism of action. Thus far, NGS has not been widely employed in genetic toxicology due to the difficulties in measuring low-abundant somatic mutations. Here, we review different strategies to employ NGS for the detection of somatic mutations in a cost-effective manner and discuss the potential applicability of these methods in testing the mutagenicity of genotoxic agents.
Collapse
Affiliation(s)
- Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA.
| | - Wilber Quispe-Tintaya
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Tatyana Gorbacheva
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Ryan R White
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA.
| |
Collapse
|
75
|
Cheng CY, Wu JC, Tsai JW, Nian FS, Wu PC, Kao LS, Fann MJ, Tsai SJ, Liou YJ, Tai CY, Hong CJ. ENU mutagenesis identifies mice modeling Warburg Micro Syndrome with sensory axon degeneration caused by a deletion in Rab18. Exp Neurol 2015; 267:143-51. [PMID: 25779931 DOI: 10.1016/j.expneurol.2015.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022]
Abstract
Mutations in the gene of RAB18, a member of Ras superfamily of small G-proteins, cause Warburg Micro Syndrome (WARBM) which is characterized by defective neurodevelopmental and ophthalmological phenotypes. Despite loss of Rab18 had been reported to induce disruption of the endoplasmic reticulum structure and neuronal cytoskeleton organization, parts of the pathogenic mechanism caused by RAB18 mutation remain unclear. From the N-ethyl-N-nitrosourea (ENU)-induced mutagenesis library, we identified a mouse line whose Rab18 was knocked out. This Rab18(-/-) mouse exhibited stomping gait, smaller testis and eyes, mimicking several features of WARBM. Rab18(-/-) mice were obviously less sensitive to pain and touch than WT mice. Histological examinations on Rab18(-/-) mice revealed progressive axonal degeneration in the optic nerves, dorsal column of the spinal cord and sensory roots of the spinal nerves while the motor roots were spared. All the behavioral and pathological changes that resulted from abnormalities in the sensory axons were prevented by introducing an extra copy of Rab18 transgene in Rab18(-/-) mice. Our results reveal that sensory axonal degeneration is the primary cause of stomping gait and progressive weakness of the hind limbs in Rab18(-/-) mice, and optic nerve degeneration should be the major pathology of progressive optic atrophy in children with WARBM. Our results indicate that the sensory nervous system is more vulnerable to Rab18 deficiency and WARBM is not only a neurodevelopmental but also neurodegenerative disease.
Collapse
Affiliation(s)
- Chih-Ya Cheng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine and Cancer Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Shin Nian
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chun Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Lung-Sen Kao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ji Fann
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Jay Liou
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Yin Tai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Chen-Jee Hong
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
76
|
Rathkolb B, Klempt M, Sabrautzki S, Michel D, Klaften M, Laufs J, Sedlmeier R, Hans W, Fuchs H, Muckenthaler MU, Horsch M, Campagna DR, Fleming M, Hrabé de Angelis M, Wolf E, Aigner B. Screen for alterations of iron related parameters in N-ethyl-N-nitrosourea-treated mice identified mutant lines with increased plasma ferritin levels. Biometals 2015; 28:293-306. [DOI: 10.1007/s10534-015-9824-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
|
77
|
Yan X, Sabrautzki S, Horsch M, Fuchs H, Gailus-Durner V, Beckers J, Hrabě de Angelis M, Graw J. Peroxidasin is essential for eye development in the mouse. Hum Mol Genet 2014; 23:5597-614. [PMID: 24895407 PMCID: PMC4189897 DOI: 10.1093/hmg/ddu274] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
Mutations in Peroxidasin (PXDN) cause severe inherited eye disorders in humans, such as congenital cataract, corneal opacity and developmental glaucoma. The role of peroxidasin during eye development is poorly understood. Here, we describe the first Pxdn mouse mutant which was induced by ENU (N-ethyl-N-nitrosourea) and led to a recessive phenotype. Sequence analysis of cDNA revealed a T3816A mutation resulting in a premature stop codon (Cys1272X) in the peroxidase domain. This mutation causes severe anterior segment dysgenesis and microphthalmia resembling the manifestations in patients with PXDN mutations. The proliferation and differentiation of the lens is disrupted in association with aberrant expression of transcription factor genes (Pax6 and Foxe3) in mutant eyes. Additionally, Pxdn is involved in the consolidation of the basement membrane and lens epithelium adhesion in the ocular lens. Lens material including γ-crystallin is extruded into the anterior and posterior chamber due to local loss of structural integrity of the lens capsule as a secondary damage to the anterior segment development leading to congenital ocular inflammation. Moreover, Pxdn mutants exhibited an early-onset glaucoma and progressive retinal dysgenesis. Transcriptome profiling revealed that peroxidasin affects the transcription of developmental and eye disease-related genes at early eye development. These findings suggest that peroxidasin is necessary for cell proliferation and differentiation and for basement membrane consolidation during eye development. Our studies provide pathogenic mechanisms of PXDN mutation-induced congenital eye diseases.
Collapse
Affiliation(s)
- Xiaohe Yan
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | | | - Marion Horsch
- Institute of Experimental Genetics, Neuherberg, Germany, German Mouse Clinic, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Neuherberg, Germany, German Mouse Clinic, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, Neuherberg, Germany, German Mouse Clinic, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Neuherberg, Germany, German Mouse Clinic, Neuherberg, Germany, German Center for Diabetes Research (DZD), Neuherberg, Germany and Chair of Experimental Genetics, Technische Universität München, Center of Life and Food Sciences, Freising-Weihenstephan, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Neuherberg, Germany, German Mouse Clinic, Neuherberg, Germany, German Center for Diabetes Research (DZD), Neuherberg, Germany and Chair of Experimental Genetics, Technische Universität München, Center of Life and Food Sciences, Freising-Weihenstephan, Germany
| | - Jochen Graw
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany, German Mouse Clinic, Neuherberg, Germany,
| |
Collapse
|
78
|
Ioakeimidis F, Ott C, Kozjak-Pavlovic V, Violitzi F, Rinotas V, Makrinou E, Eliopoulos E, Fasseas C, Kollias G, Douni E. A splicing mutation in the novel mitochondrial protein DNAJC11 causes motor neuron pathology associated with cristae disorganization, and lymphoid abnormalities in mice. PLoS One 2014; 9:e104237. [PMID: 25111180 PMCID: PMC4128653 DOI: 10.1371/journal.pone.0104237] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases.
Collapse
Affiliation(s)
- Fotis Ioakeimidis
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Christine Ott
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Foteini Violitzi
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Vagelis Rinotas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Eleni Makrinou
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Elias Eliopoulos
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Costas Fasseas
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Division of Immunology, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- * E-mail:
| |
Collapse
|
79
|
Kemter E, Rathkolb B, Becker L, Bolle I, Busch DH, Dalke C, Elvert R, Favor J, Graw J, Hans W, Ivandic B, Kalaydjiev S, Klopstock T, Rácz I, Rozman J, Schrewe A, Schulz H, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wolf E, Aigner B. Standardized, systemic phenotypic analysis of Slc12a1I299F mutant mice. J Biomed Sci 2014; 21:68. [PMID: 25084970 PMCID: PMC4237776 DOI: 10.1186/s12929-014-0068-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Type I Bartter syndrome is a recessive human nephropathy caused by loss-of-function mutations in the SLC12A1 gene coding for the Na+-K+-2Cl- cotransporter NKCC2. We recently established the mutant mouse line Slc12a1I299F exhibiting kidney defects highly similar to the late-onset manifestation of this hereditary human disease. Besides the kidney defects, low blood pressure and osteopenia were revealed in the homozygous mutant mice which were also described in humans. Beside its strong expression in the kidney, NKCC2 has been also shown to be expressed in other tissues in rodents i.e. the gastrointestinal tract, pancreatic beta cells, and specific compartments of the ear, nasal tissue and eye. RESULTS To examine if, besides kidney defects, further organ systems and/or metabolic pathways are affected by the Slc12a1I299F mutation as primary or secondary effects, we describe a standardized, systemic phenotypic analysis of the mutant mouse line Slc12a1I299F in the German Mouse Clinic. Slc12a1I299F homozygous mutant mice and Slc12a1I299F heterozygous mutant littermates as controls were tested at the age of 4-6 months. Beside the already published changes in blood pressure and bone metabolism, a significantly lower body weight and fat content were found as new phenotypes for Slc12a1I299F homozygous mutant mice. Small additional effects included a mild erythropenic anemia in homozygous mutant males as well as a slight hyperalgesia in homozygous mutant females. For other functions, such as immunology, lung function and neurology, no distinct alterations were observed. CONCLUSIONS In this systemic analysis no clear primary effects of the Slc12a1I299F mutation appeared for the organs other than the kidneys where Slc12a1 expression has been described. On the other hand, long-term effects additional and/or secondary to the kidney lesions might also appear in humans harboring SLC12A1 mutations.
Collapse
|
80
|
Stottmann R, Beier DR. ENU Mutagenesis in the Mouse. CURRENT PROTOCOLS IN HUMAN GENETICS 2014; 82:15.4.1-15.4.10. [PMID: 25042716 PMCID: PMC4113905 DOI: 10.1002/0471142905.hg1504s82] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This unit describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - David R. Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute
| |
Collapse
|
81
|
Public Attitudes toward Animal Research: A Review. Animals (Basel) 2014; 4:391-408. [PMID: 26480314 PMCID: PMC4494309 DOI: 10.3390/ani4030391] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Public engagement on issues related to animal research, including exploration of public attitudes, provides a means of achieving socially acceptable scientific practice and oversight through an understanding of societal values and concerns. Numerous studies have been conducted to explore public attitudes toward animal use, and more specifically the use of animals in research. This paper reviews relevant literature using three categories of influential factors: personal and cultural characteristics, animal characteristics, and research characteristics. Abstract The exploration of public attitudes toward animal research is important given recent developments in animal research (e.g., increasing creation and use of genetically modified animals, and plans for progress in areas such as personalized medicine), and the shifting relationship between science and society (i.e., a move toward the democratization of science). As such, public engagement on issues related to animal research, including exploration of public attitudes, provides a means of achieving socially acceptable scientific practice and oversight through an understanding of societal values and concerns. Numerous studies have been conducted to explore public attitudes toward animal use, and more specifically the use of animals in research. This paper reviews relevant literature using three categories of influential factors: personal and cultural characteristics, animal characteristics, and research characteristics. A critique is given of survey style methods used to collect data on public attitudes, and recommendations are given on how best to address current gaps in public attitudes literature.
Collapse
|
82
|
Abstract
This article describes the treatment of laboratory mice with the mutagen N-ethyl-N-nitrosourea (ENU) to induce very highly increased rates of mutation throughout the genome. Further, it describes several popular mating schemes designed to produce animals displaying phenotypes associated with the induced mutations.
Collapse
Affiliation(s)
- Rolf Stottmann
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
83
|
A novel DFNA36 mutation in TMC1 orthologous to the Beethoven (Bth) mouse associated with autosomal dominant hearing loss in a Chinese family. PLoS One 2014; 9:e97064. [PMID: 24827932 PMCID: PMC4020765 DOI: 10.1371/journal.pone.0097064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
Abstract
Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing loss. Auditory brainstem response (ABR) test of the youngest patient showed a special result with nearly normal threshold but prolonged latency, decreased amplitude, and the abnormal waveform morphology. Exome sequencing of the proband found four candidate variants in known hearing loss genes. Sanger sequencing in all family members found a novel variant c.1253T>A (p.M418K) in TMC1 at DFNA36 that co-segregated with the phenotype. This mutation in TMC1 is orthologous to the mutation found in the hearing loss mouse model named Bth ten years ago. In another 51 Chinese autosomal dominant hearing loss families, we screened the segments containing the dominant mutations of TMC1 and no functional variants were found. TMC1 is expressed in the hair cells in inner ear. Given the already known roles of TMC1 in the mechanotransduction in the cochlea and its expression in inner ear, our results may provide an interesting perspective into its function in inner ear.
Collapse
|
84
|
High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. J Comp Physiol B 2014; 184:763-75. [PMID: 24788387 DOI: 10.1007/s00360-014-0830-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Mice with genetic alterations are used in heart research as model systems of human diseases. In the last decade there was a marked increase in the recognition of genetic diversity within inbred mouse strains. Increasing numbers of inbred mouse strains and substrains and analytical variation of cardiac phenotyping methods require reproducible, high-throughput methods to standardize murine cardiovascular physiology. We describe methods for non-invasive, reliable, easy and fast to perform echocardiography and electrocardiography on awake mice. This method can be used for primary screening of the murine cardiovascular system in large-scale analysis. We provide insights into the physiological divergence of C57BL/6N, C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd mouse hearts and define the expected normal values. Our report highlights that compared to the other three strains tested C57BL/6N hearts reveal features of heart failure such as hypertrophy and reduced contractile function. We found several features of the mouse ECG to be under genetic control and obtained several strain-specific differences in cardiac structure and function.
Collapse
|
85
|
Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mamm Genome 2014; 25:304-16. [PMID: 24760582 DOI: 10.1007/s00335-014-9515-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
Thyroid hormone is essential for inner ear development and is required for auditory system maturation. Human mutations in SLC26A4 lead to a syndromic form of deafness with enlargement of the thyroid gland (Pendred syndrome) and non-syndromic deafness (DFNB4). We describe mice with an Slc26a4 mutation, Slc26a4 (loop/loop) , which are profoundly deaf but show a normal sized thyroid gland, mimicking non-syndromic clinical signs. Histological analysis of the thyroid gland revealed defective morphology, with a majority of atrophic microfollicles, while measurable thyroid hormone in blood serum was within the normal range. Characterization of the inner ear showed a spectrum of morphological and molecular defects consistent with inner ear pathology, as seen in hypothyroidism or disrupted thyroid hormone action. The pathological inner ear hallmarks included thicker tectorial membrane with reduced β-tectorin protein expression, the absence of BK channel expression of inner hair cells, and reduced inner ear bone calcification. Our study demonstrates that deafness in Slc26a4 (loop/loop) mice correlates with thyroid pathology, postulating that sub-clinical thyroid morphological defects may be present in some DFNB4 individuals with a normal sized thyroid gland. We propose that insufficient availability of thyroid hormone during inner ear development plays an important role in the mechanism underlying deafness as a result of SLC26A4 mutations.
Collapse
|
86
|
CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance. Hum Genet 2014; 133:997-1009. [PMID: 24728844 DOI: 10.1007/s00439-014-1444-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022]
Abstract
Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 (Whi/+) and Chd7 (Whi/Whi)) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 (Whi/Whi) embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the pathogenesis of this multiple malformation syndrome.
Collapse
|
87
|
Erickson RP, Mitchison NA. The low frequency of recessive disease: insights from ENU mutagenesis, severity of disease phenotype, GWAS associations, and demography: an analytical review. J Appl Genet 2014; 55:319-27. [PMID: 24652618 DOI: 10.1007/s13353-014-0203-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
Abstract
A survey of a select panel of 14 genetic diseases with mixed inheritance confirms that, while autosomal recessive (AR) disease genes are more numerous than autosomal dominant (AD) or X-linked (XL) ones, they make a smaller average contribution to disease. Data collected from N-ethyl-N-nitrosourea (ENU) mutagenesis studies show a similar excess of AR mutations. The smaller AR contribution may partially reflect disease severity, but only in the comparison of AR with AD mutations. On the contrary, XL mutations for the 14 diseases are generally more severe. Genome-wide associations studies (GWAS) data provide fresh insight into the shortage, with a limited negative selection effect mediated by the pleiotropic expression of recessive disease genes in other deleterious phenotypes. Genomic data provide further evidence of purging selection in a past European population bottleneck followed by a dramatic population explosion, now more clearly associated with past climate change. We consider these likely to be the main factors responsible for the low AR to AD/XL inheritance ratio.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ, 85724, USA,
| | | |
Collapse
|
88
|
Ivics Z, Mátés L, Yau TY, Landa V, Zidek V, Bashir S, Hoffmann OI, Hiripi L, Garrels W, Kues WA, Bösze Z, Geurts A, Pravenec M, Rülicke T, Izsvák Z. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 2014; 9:773-93. [PMID: 24625778 DOI: 10.1038/nprot.2014.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in two important biomedical models, the mouse and the rat, by using the Sleeping Beauty transposon system. The procedure is based on co-injection of synthetic mRNA encoding the SB100X hyperactive transposase, together with circular plasmid DNA carrying a transgene construct flanked by binding sites for the transposase, into the pronuclei of fertilized oocytes. Upon translation of the transposase mRNA, enzyme-mediated excision of the transgene cassettes from the injected plasmids followed by permanent genomic insertion produces stable transgenic animals. Generation of a germline-transgenic founder animal by using this protocol takes ∼3 months. Transposon-mediated transgenesis compares favorably in terms of both efficiency and reliable transgene expression with classic pronuclear microinjection, and it offers comparable efficacies to lentiviral approaches without limitations on vector design, issues of transgene silencing, and the toxicity and biosafety concerns of working with viral vectors.
Collapse
Affiliation(s)
- Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Lajos Mátés
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tien Yin Yau
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vladimír Landa
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vaclav Zidek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sanum Bashir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | - Wiebke Garrels
- Friedrich Loeffler Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Wilfried A Kues
- Friedrich Loeffler Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | | | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
89
|
Ricketts T, McGoldrick P, Fratta P, de Oliveira HM, Kent R, Phatak V, Brandner S, Blanco G, Greensmith L, Acevedo-Arozena A, Fisher EMC. A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects. PLoS One 2014; 9:e85962. [PMID: 24465814 PMCID: PMC3897576 DOI: 10.1371/journal.pone.0085962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are freely available to the community.
Collapse
Affiliation(s)
- Thomas Ricketts
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Philip McGoldrick
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Pietro Fratta
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | | | - Rosie Kent
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Vinaya Phatak
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | - Sebastian Brandner
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Gonzalo Blanco
- Biology Department, University of York, York, United Kingdom
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| | - Abraham Acevedo-Arozena
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| | - Elizabeth M. C. Fisher
- MRC Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
- Department of Neurodegenerative Diseases and MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- * E-mail: (LG); (AA-A); (EF)
| |
Collapse
|
90
|
Ding S, Xu T, Wu X. Generation of genetically engineered mice by the piggyBac transposon system. Methods Mol Biol 2014; 1194:171-85. [PMID: 25064103 DOI: 10.1007/978-1-4939-1215-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetically engineered mice (GEM) are invaluable tools not only for understanding mammalian biology but also for modeling human diseases. Here we present protocols to generate GEM with the piggyBac (PB) transposon system. In the first part, we describe a transgenic procedure that co-injects the transgene carried by a PB donor plasmid and a PB transposase (PBase)-expressing helper plasmid into the pronuclei of fertilized eggs. In the second part, we provide a large-scale, cost-effective insertional mutagenesis strategy that remobilizes single-copy PB transposons in the male germ line. Given that PB can transpose in a broad spectrum of eukaryotic hosts, the protocols described here could be adapted for other species in the future.
Collapse
Affiliation(s)
- Sheng Ding
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Biomedical Research Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | |
Collapse
|
91
|
Abstract
Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, San Diego, California, USA.
| | | |
Collapse
|
92
|
Morioka Y, Fujihara Y, Okabe M. Generation of precise point mutation mice by footprintless genome modification. Genesis 2013; 52:68-77. [PMID: 24265262 DOI: 10.1002/dvg.22727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Accepted: 11/09/2013] [Indexed: 11/09/2022]
Abstract
Point mutation mice are a key tool in the study of biological functions of genomic DNA sequences and the creation of human disease models. These mice are produced by homologous recombination combined with site-specific recombinase, which allows removal of drug selection cassettes. However, the methods currently available leave ectopic sequences in the "inactive" intron region of the targeted genome in addition to the desired mutation. Since recent research suggests that the intron region may actually have some functionality, these sequences could potentially interfere with neighboring gene expression and, as a result, affect the mouse phenotype. To completely avoid this issue, we used the PiggyBac transposon to remove selection cassettes and achieve precise genome modification without leaving behind a footprint. This PiggyBac system allowed us to successfully generate mice carrying an artificially introduced W(v) point mutation in the Kit gene, and these mice were confirmed to have phenotypes identical to spontaneous W(v) mutation mice. Generation of W(v) -mutation corrected mice was also possible, and phenotypes were completely restored. Our footprintless genome modification technology can generate precise point mutation mice with only the desired mutation, and they reflect an accurate phenotype that makes these mice a reliable and "worry-free" research resource.
Collapse
Affiliation(s)
- Yuka Morioka
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | |
Collapse
|
93
|
Zhang G, Vemulapalli TH, Yang JY. Phylooncogenomics: Examining the cancer genome in the context of vertebrate evolution. Appl Transl Genom 2013; 2:48-54. [PMID: 27896055 PMCID: PMC5121254 DOI: 10.1016/j.atg.2013.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 06/06/2023]
Abstract
Currently, human cancer genomics is making great progress, and many mutations of new cancer driver genes have been detected at an unprecedented rate in a variety of human cancers. Many details of the genetic alterations in cancer cell genomes have been revealed by the massively parallel sequencing. Long-lasting aneuploidy caused large-scale somatic copy number alterations remains a difficulty as there are too many genes located on such big chromosomal fragments, and this cannot simply be solved by increasing sequencing depth and tumor sample numbers. Comparative oncogenomics may provide us with a solution to this problem. Here, we review some of the common animal cancer models and propose to analyze cancer cell genomics in vertebrate phylogenetic backgrounds. Thus phylooncogenomics may provide us with a unique perspective on he nature of cancer biology unattainable by single species studies.
Collapse
Affiliation(s)
- GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, United States
- Purdue University Center for Cancer Research, United States
| | - Tracy H. Vemulapalli
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, United States
| | - Jer-Yen Yang
- Purdue University Center for Cancer Research, United States
- Department of Basic Medical Sciences, Purdue University, College of Veterinary Medicine, United States
| |
Collapse
|
94
|
Kemter E, Prückl P, Rathkolb B, Micklich K, Adler T, Becker L, Beckers J, Busch DH, Götz AA, Hans W, Horsch M, Ivandic B, Klingenspor M, Klopstock T, Rozman J, Schrewe A, Schulz H, Fuchs H, Gailus-Durner V, Hrabé de Angelis M, Wolf E, Aigner B. Standardized, systemic phenotypic analysis of Umod(C93F) and Umod(A227T) mutant mice. PLoS One 2013; 8:e78337. [PMID: 24205203 PMCID: PMC3813435 DOI: 10.1371/journal.pone.0078337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
Uromodulin-associated kidney disease (UAKD) summarizes different clinical features of an autosomal dominant heritable disease syndrome in humans with a proven uromodulin (UMOD) mutation involved. It is often characterized by hyperuricemia, gout, alteration of urine concentrating ability, as well as a variable rate of disease progression inconstantly leading to renal failure and histological alterations of the kidneys. We recently established the two Umod mutant mouse lines Umod(C93F) and Umod(A227T) on the C3H inbred genetic background both showing kidney defects analogous to those found in human UAKD patients. In addition, disease symptoms were revealed that were not yet described in other published mouse models of UAKD. To examine if further organ systems and/or metabolic pathways are affected by Umod mutations as primary or secondary effects, we describe a standardized, systemic phenotypic analysis of the two mutant mouse lines Umod(A227T) and Umod(C93F) in the German Mouse Clinic. Different genotypes as well as different ages were tested. Beside the already published changes in body weight, body composition and bone metabolism, the influence of the Umod mutation on energy metabolism was confirmed. Hematological analysis revealed a moderate microcytic and erythropenic anemia in older Umod mutant mice. Data of the other analyses in 7-10 month-old mutant mice showed single small additional effects.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Munich, Germany
| | - Petra Prückl
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Munich, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Munich, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kateryna Micklich
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Munich, Germany
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Microbiology, Immunology, and Hygiene, TU, Munich, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Neurology, Friedrich-Baur-Institut, LMU, Munich, Munich, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, TU, Munich, Freising-Weihenstephan, Germany
| | - Dirk H. Busch
- Institute of Medical Microbiology, Immunology, and Hygiene, TU, Munich, Munich, Germany
| | - Alexander A. Götz
- German Mouse Clinic, Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Boris Ivandic
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TU, Munich, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, LMU, Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TU, Munich, Freising-Weihenstephan, Germany
| | - Anja Schrewe
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabé de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, TU, Munich, Freising-Weihenstephan, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Munich, Germany
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
95
|
Fuchs H, Gau C, Hans W, Gailus-Durner V, Hrabě de Angelis M. Long-term experiment to study the development, interaction, and influencing factors of DEXA parameters. Mamm Genome 2013; 24:376-88. [PMID: 24096374 DOI: 10.1007/s00335-013-9477-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/10/2013] [Indexed: 12/26/2022]
Abstract
Dual-energy X-ray absorption (DEXA) is commonly used to measure bone mineral density (BMD), bone mineral content (BMC), and body composition data (fat mass and lean mass) for phenotype assessment in mice. We were interested in the long-term development of BMD, BMC, lean mass, and fat mass of mice, also taking into account sex and genetic background. The dataset was used to analyze correlations among the different parameters. We analyzed males and females from inbred strains C3HeB/FeJ and C57BL/6J, starting from 42 until 528 days of age. To evaluate the effect of husbandry systems, we repeated a part of the study in a second facility with a different caging system. We also assessed different DEXA settings and repeatability of the scans. The results of this study were used to draw conclusions for the use of DEXA analysis in mouse phenotyping approaches.
Collapse
Affiliation(s)
- Helmut Fuchs
- Helmholtz Zentrum München, German Mouse Clinic, Institute of Experimental Genetics, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany,
| | | | | | | | | |
Collapse
|
96
|
Schiavo G, Greensmith L, Hafezparast M, Fisher EMC. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci 2013; 36:641-51. [PMID: 24035135 PMCID: PMC3824068 DOI: 10.1016/j.tins.2013.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
The cytoplasmic dynein complex is the main retrograde motor in all eukaryotic cells. This complex is built around a dimer of cytoplasmic dynein heavy chains (DYNC1H1). Mouse DYNC1H1 mutants have sensory defects, but motor defects have been controversial. Now human DYNC1H1 mutations with sensory, motor, and cognitive deficits are being found. The study of these mutations will give us new insight into DYNC1H1 function in the nervous system.
Cytoplasmic dynein is the main retrograde motor in all eukaryotic cells. This complex comprises different subunits assembled on a cytoplasmic dynein heavy chain 1 (DYNC1H1) dimer. Cytoplasmic dynein is particularly important for neurons because it carries essential signals and organelles from distal sites to the cell body. In the past decade, several mouse models have helped to dissect the numerous functions of DYNC1H1. Additionally, several DYNC1H1 mutations have recently been found in human patients that give rise to a broad spectrum of developmental and midlife-onset disorders. Here, we discuss the effects of mutations of mouse and human DYNC1H1 and how these studies are giving us new insight into the many critical roles DYNC1H1 plays in the nervous system.
Collapse
Affiliation(s)
- Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London WC1N 3BG, UK; Molecular NeuroPathobiology, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | | | | | |
Collapse
|
97
|
McGoldrick P, Joyce PI, Fisher EMC, Greensmith L. Rodent models of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1421-36. [PMID: 23524377 DOI: 10.1016/j.bbadis.2013.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Philip McGoldrick
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
98
|
Higdon CW, Mitra RD, Johnson SL. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLoS One 2013; 8:e67801. [PMID: 23874447 PMCID: PMC3706446 DOI: 10.1371/journal.pone.0067801] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/23/2013] [Indexed: 01/05/2023] Open
Abstract
In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.
Collapse
Affiliation(s)
- Charles W. Higdon
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| | - Robi D. Mitra
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Stephen L. Johnson
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| |
Collapse
|
99
|
Toki H, Inoue M, Motegi H, Minowa O, Kanda H, Yamamoto N, Ikeda A, Karashima Y, Matsui J, Kaneda H, Miura I, Suzuki T, Wakana S, Masuya H, Gondo Y, Shiroishi T, Akiyama T, Yao R, Noda T. Novel mouse model for Gardner syndrome generated by a large-scale N-ethyl-N-nitrosourea mutagenesis program. Cancer Sci 2013; 104:937-44. [PMID: 23551873 PMCID: PMC7657124 DOI: 10.1111/cas.12161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 12/26/2022] Open
Abstract
Mutant mouse models are indispensable tools for clarifying the functions of genes and elucidating the underlying pathogenic mechanisms of human diseases. We carried out large-scale mutagenesis using the chemical mutagen N-ethyl-N-nitrosourea. One specific aim of our mutagenesis project was to generate novel cancer models. We screened 7012 animals for dominant traits using a necropsy test and thereby established 17 mutant lines predisposed to cancer. Here, we report on a novel cancer model line that developed osteoma, trichogenic tumor, and breast cancer. Using fine mapping and genomic sequencing, we identified a point mutation in the adenomatous polyposis coli (Apc) gene. The Apc1576 mutants bear a nonsense mutation at codon 1576 in the Apc gene. Although most Apc mutant mice established thus far have multifocal intestinal tumors, mice that are heterozygous for the Apc1576 mutation do not develop intestinal tumors; instead, they develop multifocal breast cancers and trichogenic tumors. Notably, the osteomas that develop in the Apc1576 mutant mice recapitulate the lesion observed in Gardner syndrome, a clinical variant of familial adenomatous polyposis. Our Apc1576 mutant mice will be valuable not only for understanding the function of the Apc gene in detail but also as models of human Gardner syndrome.
Collapse
Affiliation(s)
- Hideaki Toki
- Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants. Acta Biomater 2013; 9:7580-9. [PMID: 23518475 DOI: 10.1016/j.actbio.2013.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/07/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
Abstract
Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants.
Collapse
|