51
|
Riffi R, Boughrara W, Chentouf A, Ilias W, Brahim NMT, Berrebbah AA, Belhoucine F. Pharmacogenetics of Carbamazepine: A Systematic Review on CYP3A4 and CYP3A5 Polymorphisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1463-1473. [PMID: 38859787 DOI: 10.2174/0118715273298953240529100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND OBJECTIVE The association between carbamazepine (CBZ) metabolism and resistance in epilepsy and the genetic polymorphisms of CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) has been the subject of previous investigations with controversial results. Hence, we conducted a systematic review to assess the potential link between these polymorphisms and CBZ metabolism and resistance. METHODS Identifying relevant studies was carried out by searching PubMed, Scopus, PharmGKB, EPIGAD, and PHARMAADME databases up until June 2023. The studies included in our analysis investigated the connection between CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) polymorphisms and CBZ metabolism and resistance. RESULTS This review included a total of 23 studies and more than 2177 epilepsy patients. It was found that the CYP3A4 (rs12721627 and rs28371759) polymorphisms are associated with reduced catalytic activity, whereas the CYP3A4 (rs2740574) polymorphism is linked to lower levels of CBZ-diol and decreased activity. It was also observed that the CYP3A5 (rs776746) polymorphism influences the dose-adjusted plasma levels of CBZ. CONCLUSION Although these findings highlight the impact of genetic variations in the CYP3A4 and CYP3A5 genes on CBZ pharmacokinetics and pharmacodynamics, further studies across diverse populations are essential to enhance personalized epilepsy therapy in clinical settings.
Collapse
Affiliation(s)
- Rachda Riffi
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | - Wefa Boughrara
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| | - Amina Chentouf
- Service de Neurologie, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
- Laboratoire de Recherche ACCIPED, Faculté de Médecine, Université Oran1, Oran, Algeria
| | - Wassila Ilias
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | | | | | - Fatma Belhoucine
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| |
Collapse
|
52
|
Hirota T, Ieiri I. Interindividual variability in statin pharmacokinetics and effects of drug transporters. Expert Opin Drug Metab Toxicol 2024; 20:37-43. [PMID: 38251424 DOI: 10.1080/17425255.2024.2305746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Statins are HMG-CoA reductase inhibitors that primarily lower plasma cholesterol levels. It has been suggested that the myotoxic response is a direct result of hydroxymethylglutaryl-CoA reductase inhibition and dose-dependent. Therefore, an accurate understanding of the combination of drugs that inhibit statin metabolism and factors that cause interindividual variability in the pharmacokinetics of statin is important to avoid serious side effects of statins. Relevant articles included in this review were identified through a PubMed search (through May 2023). AREAS COVERED This review provides an overview of hepatic and intestinal metabolism of statins, followed by a discussion of drug-drug interactions and interindividual variables that influence statin pharmacokinetics: gut bacteria, disease, and pharmacokinetics-related genetic polymorphisms. EXPERT OPINION Drug-drug interactions have a strong influence on statin pharmacokinetics, and gut microbiota, disease, and genetic polymorphisms all contribute significantly to interindividual variation in statin pharmacokinetics. Individual optimization of statin treatment requires studies that consider the progression of the disease and associated changes in concomitant medications.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
53
|
Tu ZH, Pierce BJ, Pasley T, Hutchins A, Huang H. Immune outcomes of lung transplant recipients with different cytochrome P450 3A5 phenotypes after discontinuation of voriconazole antifungal prophylaxis. Clin Transplant 2024; 38:e15235. [PMID: 38289893 DOI: 10.1111/ctr.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Tacrolimus forms the backbone of immunosuppression regimens in lung transplant recipients (LTRs). It is extensively metabolized by cytochrome P450 (CYP) 3A5 enzymes, of which polymorphisms can significantly affect tacrolimus dose requirements. It is unknown how coadministration of tacrolimus with voriconazole, a potent CYP3A5 inhibitor, affects rejection rates or empiric dose adjustments needed after voriconazole discontinuation. METHODS This retrospective cohort study compares LTRs with poor (PR) versus intermediate/extensive (IE) CYP3A5 metabolizer phenotypes. The primary endpoint is cumulative immune outcomes within three months of voriconazole discontinuation; secondary endpoints include change in tacrolimus dose-to-concentration ratios after voriconazole discontinuation. RESULTS Thirty-four patients underwent full analysis: 13 IE and 21 PR metabolizers. A higher proportion of IE metabolizers were African American (46.2% vs. 9.5%, p = .03). There was no significant difference in composite immune outcomes, though there was a proportionally higher frequency of new donor-specific antibody development in PR metabolizers (14.3% vs 7.7%, p = .56). Both groups required approximately 2.5 to 3-fold tacrolimus dose increases post-voriconazole discontinuation to re-attain therapeutic levels. CONCLUSION This novel investigation sheds light on how CYP3A5 phenotype could be used to guide tacrolimus dosing, with the goal of preventing both toxicity and organ rejection.
Collapse
Affiliation(s)
- Zoe H Tu
- Department of Pharmacy, Houston Methodist Hospital, Houston, Texas, USA
| | - Brett J Pierce
- Department of Pharmacy, Houston Methodist Hospital, Houston, Texas, USA
| | - Taylor Pasley
- Department of Pharmacy, Houston Methodist Hospital, Houston, Texas, USA
| | - Aaron Hutchins
- Department of Pharmacy, Houston Methodist Hospital, Houston, Texas, USA
| | - Howard Huang
- Department of Pulmonology, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
54
|
Eitan LA, Khair IY, Alahmad S. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Curr Drug Metab 2024; 25:465-478. [PMID: 39377381 DOI: 10.2174/0113892002323910240924145310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Drug metabolizing enzymes play a crucial role in the pharmacokinetics and pharmacodynamics of therapeutic drugs, influencing their efficacy and safety. This review explores the impact of genetic polymorphisms in drug-metabolizing genes on drug response within Arab populations. We examine the genetic diversity specific to Arab countries, focusing on the variations in key drug-metabolizing enzymes such as CYP450, GST, and UGT families. The review highlights recent research on polymorphisms in these genes and their implications for drug metabolism, including variations in allele frequencies and their effects on therapeutic outcomes. Additionally, the paper discusses how these genetic variations contribute to the variability in drug response and adverse drug reactions among individuals in Arab populations. By synthesizing current findings, this review aims to provide a comprehensive understanding of the pharmacogenetic landscape in Arab countries and offer insights into personalized medicine approaches tailored to genetic profiles. The findings underscore the importance of incorporating pharmacogenetic data into clinical practice to enhance drug efficacy and minimize adverse effects, ultimately paving the way for more effective and individualized treatment strategies in the region.
Collapse
Affiliation(s)
- Laith Al Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
55
|
Chen S, Li X, Li Y, He X, Bryant M, Qin X, Li F, Seo JE, Guo X, Mei N, Guo L. The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib. Toxicol Sci 2023; 197:69-78. [PMID: 37788138 PMCID: PMC10734604 DOI: 10.1093/toxsci/kfad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Lapatinib, an oral tyrosine kinase inhibitor used as a first-line treatment for HER2-positive breast cancer, has been reported to be associated with hepatotoxicity; however, the underlying mechanisms remain unclear. In this study, we report that lapatinib causes cytotoxicity in multiple types of hepatic cells, including primary human hepatocytes, HepaRG cells, and HepG2 cells. A 24-h treatment with lapatinib induced cell cycle disturbances, apoptosis, and DNA damage, and decreased the protein levels of topoisomerase in HepG2 cells. We investigated the role of cytochrome P450 (CYP)-mediated metabolism in lapatinib-induced cytotoxicity using our previously established HepG2 cell lines, which express each of 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrate that lapatinib is metabolized by CYP1A1, 3A4, 3A5, and 3A7. Among these, lapatinib-induced cytotoxicity and DNA damage were attenuated in cells overexpressing CYP3A5 or 3A7. Additionally, we measured the production of three primary metabolites of lapatinib (O-dealkylated lapatinib, N-dealkylated lapatinib, and N-hydroxy lapatinib) in CYP1A1-, 3A4-, 3A5-, and 3A7-overexpressing HepG2 cells. We compared the cytotoxicity of lapatinib and its 3 metabolites in primary human hepatocytes, HepaRG cells, and HepG2 cells and demonstrated that N-dealkylated lapatinib is more toxic than the parent drug and the other metabolites. Taken together, our results indicate that lapatinib-induced cytotoxicity involves multiple mechanisms, such as apoptosis and DNA damage; that N-dealkylated lapatinib is a toxic metabolite contributing to the toxic effect of lapatinib; and that CYP3A5- and 3A7-mediated metabolism plays a role in attenuating the cytotoxicity of lapatinib.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xuan Qin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079, USA
| |
Collapse
|
56
|
Diamond A, Karhadkar S, Chavin K, Constantinescu S, Lau KN, Perez-Leal O, Mohrien K, Sifontis N, Di Carlo A. Dosing strategies for de novo once-daily extended release tacrolimus in kidney transplant recipients based on CYP3A5 genotype. World J Transplant 2023; 13:368-378. [PMID: 38174147 PMCID: PMC10758687 DOI: 10.5500/wjt.v13.i6.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/15/2023] Open
Abstract
BACKGROUND Tacrolimus extended-release tablets have been Food and Drug Administration-approved for use in the de novo kidney transplant population. Dosing requi rements often vary for tacrolimus based on several factors including variation in metabolism based on CYP3A5 expression. Patients who express CYP3A5 often require higher dosing of immediate-release tacrolimus, but this has not been established for tacrolimus extended-release tablets in the de novo setting. AIM To obtain target trough concentrations of extended-release tacrolimus in de novo kidney transplant recipients according to CYP3A5 genotype. METHODS Single-arm, prospective, single-center, open-label, observational study (ClinicalTrials.gov: NCT037 13645). Life cycle pharma tacrolimus (LCPT) orally once daily at a starting dose of 0.13 mg/kg/day based on actual body weight. If weight is more than 120% of ideal body weight, an adjusted body weight was used. LCPT dose was adjusted to maintain tacrolimus trough concentrations of 8-10 ng/mL. Pharmacogenetic analysis of CYP3A5 genotype was performed at study conclusion. RESULTS Mean time to therapeutic tacrolimus trough concentration was longer in CYP3A5 intermediate and extensive metabolizers vs CYP3A5 non-expressers (6 d vs 13.5 d vs 4.5 d; P = 0.025). Mean tacrolimus doses and weight-based doses to achieve therapeutic concentration were higher in CYP3A5 intermediate and extensive metabolizers vs CYP3A5 non-expressers (16 mg vs 16 mg vs 12 mg; P = 0.010) (0.20 mg/kg vs 0.19 mg/kg vs 0.13 mg/kg; P = 0.018). CYP3A5 extensive metabolizers experienced lower mean tacrolimus trough concentrations throughout the study period compared to CYP3A5 intermediate metabolizers and non-expressers (7.98 ng/mL vs 9.18 ng/mL vs 10.78 ng/mL; P = 0 0.008). No differences were identified with regards to kidney graft function at 30-d post-transplant. Serious adverse events were reported for 13 (36%) patients. CONCLUSION Expression of CYP3A5 leads to higher starting doses and incremental dosage titration of extended-release tacro limus to achieve target trough concentrations. We suggest a higher starting dose of 0.2 mg/kg/d for CYP3A5 expressers.
Collapse
Affiliation(s)
- Adam Diamond
- Department of Pharmacy, Temple University Hospital, Philadelphia, PA 19140, United States
| | - Sunil Karhadkar
- Department of Surgery, Temple University Hospital, Philadelphia, PA 19140, United States
| | - Kenneth Chavin
- Department of Surgery, Temple University Hospital, Philadelphia, PA 19140, United States
| | - Serban Constantinescu
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Kwan N. Lau
- Department of Surgery, Temple University Hospital, Philadelphia, PA 19140, United States
| | - Oscar Perez-Leal
- Department of Pharmaceutical Sciences, Jayne Haines Center for Pharmacogenomics and Drug Safety, Temple University School of Pharmacy, Philadelphia, PA 19140, United States
| | - Kerry Mohrien
- Department of Pharmacy, Temple University Hospital, Philadelphia, PA 19140, United States
| | - Nicole Sifontis
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, PA 19140, United States
| | - Antonio Di Carlo
- Department of Surgery, Temple University Hospital, Philadelphia, PA 19140, United States
| |
Collapse
|
57
|
Paschier A, Destere A, Monchaud C, Labriffe M, Marquet P, Woillard JB. Tacrolimus population pharmacokinetics in adult heart transplant patients. Br J Clin Pharmacol 2023; 89:3584-3595. [PMID: 37477064 DOI: 10.1111/bcp.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Tacrolimus is an immunosuppressant largely used in heart transplantation. However, the calculation of its exposure based on the area under the curve (AUC) requires the use of a population pharmacokinetic (PK) model. The aims of this work were (i) to develop a population PK model for tacrolimus in heart transplant patients, (ii) to derive a maximum a posteriori Bayesian estimator (MAP-BE) based on a limited sampling strategy (LSS) and (iii) to estimate probabilities of target attainment (PTAs) for AUC and trough concentration (C0). MATERIAL AND METHODS Forty-seven PK profiles (546 concentrations) of 18 heart transplant patients of the Pharmacocinétique des Immunosuppresseurs chez les patients GREffés Cardiaques study receiving tacrolimus (Prograf®) were included. The database was split into a development (80%) and a validation (20%) set. PK parameters were estimated in MONOLIX® and based on this model a Bayesian estimator using an LSS was built. Simulations were performed to calculate the PTA for AUC and C0. RESULTS The best model to describe the tacrolimus PK was a two-compartment model with a transit absorption and a linear elimination. Only the CYP3A5 covariate was kept in the final model. The derived MAP-BE based on the LSS (0-1-2 h postdose) yielded an AUC bias ± SD = 2.7 ± 10.2% and an imprecision of 9.9% in comparison to the reference AUC calculated using the trapezoidal rule. PTAs based on AUC or C0 allowed new recommendations to be proposed for starting doses (0.11 mg·kg-1 ·12 h-1 for the CYP3A5 nonexpressor and 0.22 mg·kg1 ·12 h-1 for the CYP3A5 expressor). CONCLUSION The MAP-BE developed should facilitate estimation of tacrolimus AUC in heart transplant patients.
Collapse
Affiliation(s)
- Adrien Paschier
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
| | - Alexandre Destere
- Department of Pharmacology and Toxicology, University Hospital of Nice, Nice, France
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
- Université Côte d'Azur, Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai team, Nice, France
| | - Caroline Monchaud
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
| | - Marc Labriffe
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
| | - Pierre Marquet
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
| | - Jean-Baptiste Woillard
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, Limoges, France
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
| |
Collapse
|
58
|
Oda A, Suzuki Y, Yoshijima C, Sato H, Tanaka R, Ono H, Tatsuta R, Ando T, Shin T, Itoh H, Ohno K. Evaluation of effects of indoxyl sulfate and parathyroid hormone on CYP3A activity considering the influence of CYP3A5 gene polymorphisms. Br J Clin Pharmacol 2023; 89:3648-3658. [PMID: 37522799 DOI: 10.1111/bcp.15866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS Indoxyl sulfate and parathyroid hormone (PTH), which accumulate in chronic kidney disease (CKD), have been reported to reduce cytochrome P450(CYP)3A activity. Homozygotes of the CYP3A5*3 allele have reduced CYP3A5 activity compared to carriers of at least one CYP3A5*1 allele. 4β-Hydroxycholesterol (4β-OHC) has been established as an endogenous substrate reflecting CYP3A activity. 4β-OHC is produced through hydroxylation by CYP3A4 and CYP3A5 and by autoxidation of cholesterol, whereas 4α-hydroxycholesterol (4α-OHC) is produced solely by autoxidation of cholesterol. This study focused on CKD patients and evaluated the effects of plasma indoxyl sulfate and intact-PTH concentrations on plasma 4β-OHC concentration, 4β-OHC/total cholesterol ratio and 4β-OHC-4α-OHC, with consideration of the influence of CYP3A5 polymorphism. METHODS Sixty-three CKD patients were analysed and divided into CYP3A5 carrier group (n = 26) and non-carrier group (n = 37). RESULTS Plasma indoxyl sulfate significantly correlated inversely with 4β-OHC concentration and with 4β-OHC-4α-OHC in both the CYP3A5*1 carrier group (r = -0.42, P = .034; r = -0.39, P = .050, respectively) and the non-carrier group (r = -0.45, P = .0054; r = -0.39, P = .019, respectively). However, multiple regression analysis did not identify plasma indoxyl sulfate concentration as a significant independent factor associated with any of the CYP3A activity indices. There was no significant correlation between plasma intact-PTH concentration and any of the CYP3A activity indices. CONCLUSIONS The present results suggest that plasma indoxyl sulfate and intact-PTH concentrations do not have clinically significant effects on CYP3A activity in patients with CKD.
Collapse
Affiliation(s)
- Ayako Oda
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Chisato Yoshijima
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Haruki Sato
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Hiroyuki Ono
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Tadasuke Ando
- Department of Urology, Faculty of Medicine, Oita University, Yufu-shi, Oita, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Yufu-shi, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
59
|
Truby LK, Maamari D, Saha A, Farr M, Abdulrahim J, Billia F, Peltz M, Khush KK, Wang TJ. Towards Allograft Longevity: Leveraging Omics Technologies to Improve Heart Transplant Outcomes. Curr Heart Fail Rep 2023; 20:493-503. [PMID: 37966542 DOI: 10.1007/s11897-023-00631-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
PURPOSE OF REVIEW Heart transplantation (HT) remains the optimal therapy for patients living with end-stage heart disease. Despite recent improvements in peri-transplant management, the median survival after HT has remained relatively static, and complications of HT, including infection, rejection, and allograft dysfunction, continue to impact quality of life and long-term survival. RECENT FINDINGS Omics technologies are becoming increasingly accessible and can identify novel biomarkers for, and reveal the underlying biology of, several disease states. While some technologies, such as gene expression profiling (GEP) and donor-derived cell-free DNA (dd-cfDNA), are routinely used in the clinical care of HT recipients, a number of emerging platforms, including pharmacogenomics, proteomics, and metabolomics, hold great potential for identifying biomarkers to aid in the diagnosis and management of post-transplant complications. Omics-based assays can improve patient and allograft longevity by facilitating a personalized and precision approach to post-HT care. The following article is a contemporary review of the current and future opportunities to leverage omics technologies, including genomics, transcriptomics, proteomics, and metabolomics in the field of HT.
Collapse
Affiliation(s)
- Lauren K Truby
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Dimitri Maamari
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit Saha
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Maryjane Farr
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | | | | | - Matthias Peltz
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kiran K Khush
- Stanford University Medical Center, Palo Alto, CA, USA
| | - Thomas J Wang
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| |
Collapse
|
60
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
61
|
Lebedev SS, Tavobilov MM, Karpov AA, Abramov KA, Bochkov PO, Shevchenko RV, Denisenko NP, Shabunin AV, Sychev DA. Cytochrome P450 3A4 activity and genetic variants as predictors of liver failure in patients with obstructive jaundice. Free Radic Biol Med 2023; 208:229-235. [PMID: 37573895 DOI: 10.1016/j.freeradbiomed.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Liver failure in patients with obstructive jaundice is a significant contributor to mortality within this patient cohort. The exact mechanism and triggers of this occurrence are yet to be fully understood. With this in mind, our study aimed to assess the correlation between the urinary 6 β-OHC/C ratio and various biochemical parameters of liver function. Furthermore, we conducted genotyping of CYP3A4*22 (rs35599367), CYP3A5*3 (rs776746) polymorphic markers to investigate the potential effects of their variants on the probability of liver failure in obstructive jaundice. Our study included 75 patients diagnosed with severe obstructive jaundice. All test subjects underwent functional liver tests, and control blood tests were administered on the seventh day following biliary decompression. Patients were categorized into two groups: group 1 - patients without liver failure (n = 60) and group 2 - patients with liver failure (n = 15). Laboratory indexes such as 6 β -OHC concentration and 6 β- OHC/cortisol ratio can serve as significant predictors of liver failure in patients with moderate and severe degree obstructive jaundice after biliary decompression. Based on the study of "wild" and polymorphic variants of CYP3A4*22 (CC and CT) and polymorphism of CYP3A5*3A6986G (GG, GA, AA), it was discovered that liver failure in the CYP3A4*22 variant may be associated with the CC genotype, and in the CYP3A5*3 variant - with the GA genotype. Hence, the determination of 6β- OHC concentration and 6β- OHC/C ratio, as well as the analysis of polymorphic and "wild" variants of CYP3A4*22 (CC and CT) and CYP3A5*3 polymorphism A6986G (GG, GA, AA), may play a crucial role in predicting liver failure in patients with obstructive jaundice.
Collapse
Affiliation(s)
- Sergey S Lebedev
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia; Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Mikhail M Tavobilov
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia; Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Alexey A Karpov
- Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Kirill A Abramov
- Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia.
| | - Pavel O Bochkov
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| | - Roman V Shevchenko
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| | - Natalia P Denisenko
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| | - Alexey V Shabunin
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia; Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Dmitri A Sychev
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| |
Collapse
|
62
|
Nakagawa J, Takahata T, Chen Y, Saito K, Kamata K, Tachita T, Yamashita S, Saito K, Ueno K, Sato A, Sakuraba H, Niioka T. Influence of CYP3A5 and ABCB1 polymorphisms on the pharmacokinetics of vincristine in adult patients receiving CHOP therapy. Cancer Chemother Pharmacol 2023; 92:391-398. [PMID: 37610625 DOI: 10.1007/s00280-023-04580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE This study aims to clarify the impact of CYP3A5 and ABCB1 polymorphisms on the pharmacokinetics of vincristine (VCR) in adult patients receiving CHOP therapy. METHODS Plasma samples were collected immediately after the end of VCR administration and at 1.5, 2.5, 3.5, 5.5, 9.5, 13.5, and 25.5 h after the start of administration. Areas under the plasma concentration-time curves of VCR in the elimination phase (AUC1.5-25.5) were calculated using the linear trapezoidal rule. Half-lives of VCR during the early phase (1.5-5.5 h) and terminal phase (5.5-25.5 h; t1/2γ) were determined according to the log-linear regression of the concentration-time data for at least 3 sampling points. RESULTS A total of 41 adult patients were enrolled in this study. The median t1/2γ and AUC1.5-25.5 were significantly longer and higher in CYP3A5 non-expressers (CYP3A5*3/*3) than in CYP3A5 expressers (CYP3A5*1/*1 or *1/*3) (21.3 vs 13.8 h, P = 0.005 and 35.5 vs 30.0 ng・h/mL, P = 0.006, respectively). Conversely, there were no significant differences in pharmacokinetic parameters among the ABCB1 c.1236C>T, c.2677G>A/T, c.3435C>T genotype groups. A stepwise selection multiple linear regression analysis showed that the dose of VCR administered and CYP3A5 non-expresser status were independent factors influencing the AUC1.5-25.5 (partial R2 = 0.212, P = 0.002 and partial R2 = 0.143, P = 0.010, respectively). CONCLUSION The CYP3A5*3 polymorphism was found to be an indicator for predicting exposure to VCR in adult patients receiving CHOP therapy. This information may be useful for the individualization of VCR dosages.
Collapse
Affiliation(s)
- Junichi Nakagawa
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Takenori Takahata
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Yu Chen
- Department of Medical Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Kensuke Saito
- Department of Medical Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Kosuke Kamata
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Takuto Tachita
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Satoru Yamashita
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Keigo Saito
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Kayo Ueno
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan
| | - Atsushi Sato
- Department of Medical Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Takenori Niioka
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-cho, Hirosaki, Aomori, 036-8563, Japan.
- Department of Pharmaceutical Science, Hirosaki University Graduate School of Medicine, 53 Hon-cho, Hirosaki, Aomori, Japan.
| |
Collapse
|
63
|
Liu S, Zheng Q, Bai F. Differences of Atomic-Level Interactions between Midazolam and Two CYP Isoforms 3A4 and 3A5. Molecules 2023; 28:6900. [PMID: 37836743 PMCID: PMC10574787 DOI: 10.3390/molecules28196900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
CYP 3A4 and CYP 3A5 are two important members of the human cytochrome P450 family. Although their overall structures are similar, the local structures of the active site are different, which directly leads to obvious individual differences in drug metabolic efficacy and toxicity. In this work, midazolam (MDZ) was selected as the probe substrate, and its interaction with two proteins, CYP 3A4 and CYP 3A5, was studied by molecular dynamics simulation (MD) along with the calculation of the binding free energy. The results show that two protein-substrate complexes have some similarities in enzyme-substrate binding; that is, in both complexes, Ser119 forms a high occupancy hydrogen bond with MDZ, which plays a key role in the stability of the interaction between MDZ and the enzymes. However, the complex formed by CYP 3A4 and MDZ is more stable, which may be attributed to the sandwich structure formed by the fluorophenyl group of the substrate with Leu216 and Leu482. Our study interprets the binding differences between two isoform-substrate complexes and reveals a structure-function relationship from the atomic perspective, which is expected to provide a theoretical basis for accurately measuring the effectiveness and toxicity of drugs for individuals in the era of precision medicine.
Collapse
Affiliation(s)
- Shuhui Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
- School and Hospital of Stomatology, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| | - Fuquan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China;
| |
Collapse
|
64
|
Manuck TA, Gyamfi-Bannerman C, Saade G. What now? A critical evaluation of over 20 years of clinical and research experience with 17-alpha hydroxyprogesterone caproate for recurrent preterm birth prevention. Am J Obstet Gynecol MFM 2023; 5:101108. [PMID: 37527737 PMCID: PMC10591827 DOI: 10.1016/j.ajogmf.2023.101108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Spontaneous preterm birth is multifactorial, and underlying etiologies remain incompletely understood. Supplementation with progestogens, including 17-alpha hydroxyprogesterone caproate has been a mainstay of prematurity prevention strategies in the United States in the last 2 decades. Following a recent negative confirmatory trial, 17-alpha hydroxyprogesterone caproate was withdrawn from the US market and is currently available only through clinical research studies. This expert review summarized clinical and research data regarding the use of 17-alpha hydroxyprogesterone caproate in the United States from 2003 to 2023 for recurrent prematurity prevention. In 17-alpha hydroxyprogesterone caproate. The history of the use, mechanisms of action, clinical trial results, and efficacy by clinical and biologic criteria of 17-alpha hydroxyprogesterone caproate are presented. We report that disparate findings and conclusions between similarly designed rigorous studies may reflect differences in a priori risk and population incidence and extreme care should be taken in interpreting the studies and making decisions regarding efficacy of 17-alpha hydroxyprogesterone caproate for the prevention of preterm birth. The likelihood of improved obstetrical outcomes after receiving 17-alpha hydroxyprogesterone caproate may vary by clinical factors (eg, body mass index), plasma drug concentrations, and genetic factors, although the identification of individuals most likely to benefit remains imperfect. It is crucial for the medical community to recognize the importance of preserving the decades-long efforts invested in preventing recurrent preterm birth in the United States. Moreover, it is important that we thoroughly and thoughtfully evaluate 17-alpha hydroxyprogesterone caproate as a promising contender for future well-executed prematurity studies.
Collapse
Affiliation(s)
- Tracy A Manuck
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC (Dr Manuck); Institute for Environmental Health Solutions, Gillings School of Global Public Health, Chapel Hill, NC (Dr Manuck).
| | - Cynthia Gyamfi-Bannerman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, San Diego, CA (Dr Gyamfi-Bannerman)
| | - George Saade
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA (Dr Saade)
| |
Collapse
|
65
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
66
|
Pratt VM, Cavallari LH, Fulmer ML, Gaedigk A, Hachad H, Ji Y, Kalman LV, Ly RC, Moyer AM, Scott SA, van Schaik RHN, Whirl-Carrillo M, Weck KE. CYP3A4 and CYP3A5 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase. J Mol Diagn 2023; 25:619-629. [PMID: 37419245 PMCID: PMC10565868 DOI: 10.1016/j.jmoldx.2023.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/09/2023] Open
Abstract
The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum panel of variant alleles (tier 1) and an extended panel of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The Association for Molecular Pathology PGx Working Group considered functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. The goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This document will focus on clinical CYP3A4 and CYP3A5 PGx testing that may be applied to all CYP3A4- and CYP3A5-related medications. These recommendations are not to be interpreted as prescriptive but to provide a reference guide.
Collapse
Affiliation(s)
- Victoria M Pratt
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Larisa H Cavallari
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida
| | - Makenzie L Fulmer
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrea Gaedigk
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Research Institute and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Houda Hachad
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Clinical Operations, AccessDx, Houston, Texas
| | - Yuan Ji
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lisa V Kalman
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Reynold C Ly
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ann M Moyer
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stuart A Scott
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Stanford University, Stanford, California; Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, California
| | - Ron H N van Schaik
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Clinical Chemistry/International Federation of Clinical Chemistry and Laboratory Medicine Expert Center Pharmacogenetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Michelle Whirl-Carrillo
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Karen E Weck
- Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
67
|
Brady A, Misra S, Abdelmalek M, Kekic A, Kunze K, Lim E, Jakob N, Mour G, Keddis MT. The Value of Pharmacogenomics for White and Indigenous Americans after Kidney Transplantation. PHARMACY 2023; 11:125. [PMID: 37624080 PMCID: PMC10457738 DOI: 10.3390/pharmacy11040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND There is a paucity of evidence to inform the value of pharmacogenomic (PGx) results in patients after kidney transplant and how these results differ between Indigenous Americans and Whites. This study aims to identify the frequency of recommended medication changes based on PGx results and compare the pharmacogenomic (PGx) results and patients' perceptions of the findings between a cohort of Indigenous American and White kidney transplant recipients. METHODS Thirty-one Indigenous Americans and fifty White kidney transplant recipients were studied prospectively. Genetic variants were identified using the OneOme RightMed PGx test of 27 genes. PGx pharmacist generated a report of the genetic variation and recommended changes. Pre- and post-qualitative patient surveys were obtained. RESULTS White and Indigenous American subjects had a similar mean number of medications at the time of PGx testing (mean 13 (SD 4.5)). In the entire cohort, 53% received beta blockers, 30% received antidepressants, 16% anticoagulation, 47% pain medication, and 25% statin therapy. Drug-gene interactions that warranted a clinical action were present in 21.5% of patients. In 12.7%, monitoring was recommended. Compared to the Whites, the Indigenous American patients had more normal CYP2C19 (p = 0.012) and CYP2D6 (p = 0.012) activities. The Indigenous American patients had more normal CYP4F2 (p = 0.004) and lower VKORC (p = 0.041) activities, phenotypes for warfarin drug dosing, and efficacy compared to the Whites. SLC6A4, which affects antidepressant metabolism, showed statistical differences between the two cohorts (p = 0.017); specifically, SLC6A4 had reduced expression in 45% of the Indigenous American patients compared to 20% of the White patients. There was no significant difference in patient perception before and after PGx. CONCLUSIONS Kidney transplant recipients had several drug-gene interactions that were clinically actionable; over one-third of patients were likely to benefit from changes in medications or drug doses based on the PGx results. The Indigenous American patients differed in the expression of drug-metabolizing enzymes and drug transporters from the White patients.
Collapse
Affiliation(s)
- Alexandra Brady
- Department of Nephrology and Hypertension, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Suman Misra
- Department of Nephrology and Hypertension, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Mina Abdelmalek
- Department of Nephrology and Hypertension, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Adrijana Kekic
- Department of Pharmacy Clinical Practice, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Katie Kunze
- Department of Statistics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Elisabeth Lim
- Department of Statistics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Nicholas Jakob
- Department of Nephrology and Hypertension, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Girish Mour
- Department of Nephrology and Hypertension, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Mira T. Keddis
- Department of Nephrology and Hypertension, Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
68
|
Padmapriyadarsini C, Szumowski JD, Akbar N, Shanmugasundaram P, Jain A, Bathragiri M, Pattnaik M, Turuk J, Karunaianantham R, Balakrishnan S, Pati S, Agibothu Kupparam HK, Rathore MK, Raja J, Naidu KR, Horn J, Whitworth L, Sewell R, Ramakrishnan L, Swaminathan S, Edelstein PH. A dose-finding study to guide use of verapamil as an adjunctive therapy in tuberculosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.28.23293316. [PMID: 37577511 PMCID: PMC10418293 DOI: 10.1101/2023.07.28.23293316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Induction of mycobacterial efflux pumps is a cause of Mycobacterium tuberculosis (Mtb) drug tolerance, a barrier to shortening antitubercular treatment. Verapamil inhibits Mtb efflux pumps that mediate tolerance to rifampin, a cornerstone of tuberculosis treatment. Verapamil's mycobacterial efflux pump inhibition also limits Mtb growth in macrophages in the absence of antibiotic treatment. These findings suggest that verapamil could be used as an adjunctive therapy for TB treatment shortening. However, verapamil is rapidly and substantially metabolized when co-administered with rifampin. We determined in a dose-escalation clinical trial that rifampin-induced clearance of verapamil can be countered without toxicity by the administration of larger than usual doses of verapamil. An oral dosage of 360 mg sustained-release (SR) verapamil given every 12 hours concomitantly with rifampin achieved median verapamil exposures of 903.1 ng.h/ml (AUC 0-12h), similar to those in persons receiving daily doses of 240 mg verapamil SR but not rifampin. Norverapamil:verapamil, R:S verapamil and R:S norverapamil AUC ratios were all significantly greater than those of historical controls receiving SR verapamil in the absence of rifampin, suggesting that rifampin administration favors the less-cardioactive verapamil metabolites and enantiomers. Finally, rifampin exposures were significantly greater after verapamil administration. Our findings suggest that a higher dosage of verapamil can be safely used as adjunctive treatment in rifampin-containing treatment regimens.
Collapse
Affiliation(s)
| | - John D Szumowski
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, USA
| | - Nabila Akbar
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Anilkumar Jain
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | - John Horn
- Department of Pharmacy, University of Washington, Seattle, USA
| | - Laura Whitworth
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Paul H Edelstein
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
69
|
Alsultan A, Alalwan AA, Alshehri B, Jeraisy MA, Alghamdi J, Alqahtani S, Albassam AA. Interethnic differences in drug response: projected impact of genetic variations in the Saudi population. Pharmacogenomics 2023; 24:685-696. [PMID: 37610881 DOI: 10.2217/pgs-2023-0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Ethnicity is known to have an impact on drug responses. This is particularly important for drugs that have a narrow therapeutic window, nonlinearity in pharmacokinetics and are metabolized by enzymes that demonstrate genetic polymorphisms. However, most clinical trials are conducted among Caucasians, which might limit the usefulness of the findings of such studies for other ethnicities. The representation of participants from Saudi Arabia in global clinical trials is low. Therefore, there is a paucity of evidence to assess the impact of ethnic variability in the Saudi population on drug response. In this article, the authors assess the projected impact of genetic polymorphisms in drug-metabolizing enzymes and drug targets on drug response in the Saudi population.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alalwan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Bashayer Alshehri
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Majed Al Jeraisy
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Jahad Alghamdi
- Saudi Food and Drug Authority, Drug Sector, Riyadh, Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
70
|
Kim JS, Shim S, Yee J, Choi KH, Gwak HS. Effects of CYP3A4*22 polymorphism on trough concentration of tacrolimus in kidney transplantation: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1201083. [PMID: 37564175 PMCID: PMC10409991 DOI: 10.3389/fphar.2023.1201083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: Tacrolimus (Tac) is a widely used immunosuppressive agent in kidney transplantation. Cytochrome P450 (CYP), especially CYP3A4 enzymes are responsible for the metabolism of drugs. However, the correlation between plasma Tac concentration and CYP3A4*22 gene variants is controversial. This meta-analysis aims to evaluate the association between CYP3A4*22 polymorphism and the dose-adjusted trough concentration (C0/D) of Tac in adult kidney transplant patients. Methods: We conducted a literature review for qualifying studies using the PubMed, Web of Science, and Embase databases until July 2023. For the continuous variables (C0/D and daily dose), mean difference (MD) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the association between the CYP3A4 * 22 and Tac pharmacokinetics. We performed an additional analysis on the relationship of CYP3A5*3 with Tac PKs and analyzed the effects of CYP3A4*22 in CYP3A5 non-expressers. Results: Overall, eight eligible studies with 2,683 renal transplant recipients were included in this meta-analysis. The CYP3A4*22 allele was significantly associated with a higher C0/D (MD 0.57 ng/mL/mg (95% CI: 0.28 to 0.86; p = 0.0001) and lower mean daily dose requirement (MD -2.02 mg/day, 95% CI: -2.55 to -1.50; p < 0.00001). An additional meta-analysis demonstrated that carrying the CYP3A5*3 polymorphism greatly impacted Tac blood concentration. From the result with CYP3A5 non-expressers, CYP3A4*22 showed significant effects on the Tac C0/D and dose requirement even after adjusting the effect of CYP3A5*3. Conclusion: Patients with CYP3A4*22 allele showed significantly higher plasma C0/D of Tac and required lower daily dose to achieve the therapeutic trough level after kidney transplantation. These findings of our meta-analysis may provide further evidence for the effects of genetic polymorphism in CYP3A4 on the PKs of Tac, which will improve individualized treatment in a clinical setting.
Collapse
Affiliation(s)
- Jung Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sunyoung Shim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Hee Choi
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
71
|
Fashe MM, Miner TA, Fallon JK, Schauer AP, Sykes C, Smith PC, Lee CR. Pregnancy related hormones increase CYP3A mediated buprenorphine metabolism in human hepatocytes: a comparison to CYP3A substrates nifedipine and midazolam. Front Pharmacol 2023; 14:1218703. [PMID: 37475714 PMCID: PMC10354249 DOI: 10.3389/fphar.2023.1218703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Pregnancy increases the clearance of CYP3A4 substrate drugs and pregnancy-related hormones (PRHs) induce hepatic CYP3A4 expression and metabolism. However, it remains unclear to what extent the magnitude of PRH-evoked changes in hepatic CYP3A metabolism varies across multiple substrates. This study quantified the impact of PRHs on CYP3A protein concentrations and buprenorphine metabolism in human hepatocytes, and compared the magnitude of these effects to nifedipine and midazolam metabolism. Methods: Sandwich-cultured human hepatocytes (SCHH) from female donors were exposed to PRHs, administered in combination across a range of physiologically relevant concentrations, for 72 h. Absolute protein concentrations of CYP3A4, CYP3A5, and CYP3A7 in SCHH membrane fractions were quantified by nanoLC-MS/MS, and norbuprenorphine (nor-BUP), dehydro-nifedipine (dehydro-NIF), and 1-hydroxy-midazolam (1-OH-MDZ) formation was evaluated. Results: Compared to control, PRH exposure increased CYP3A4, CYP3A7, and total CYP3A protein concentrations, but not CYP3A5 concentrations, and increased nor-BUP, dehydro-NIF, and 1-OH-MDZ formation in a concentration-dependent manner. The formation of nor-BUP, dehydro-NIF, and 1-OH-MDZ each positively correlated with PRH-mediated changes in total CYP3A protein concentrations. The PRH-evoked increase in nor-BUP formation was evident in all donors; however, the PRH induction of dehydro-NIF and 1-OH-MDZ formation was diminished in a hepatocyte donor with high basal CYP3A5 expression. Discussion: These findings demonstrate that PRHs increase buprenorphine, nifedipine, and midazolam metabolism in SCHH via induction of CYP3A4 and total CYP3A protein concentrations, and the magnitude of these effects vary across hepatocyte donors in a substrate-specific manner. These data provide insight into the contribution of PRH induction of CYP3A4 metabolism to increased buprenorphine clearance during pregnancy.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taryn A. Miner
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda P. Schauer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
72
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
73
|
Kvitne KE, Drevland OM, Haugli N, Skadberg E, Zaré HK, Åsberg A, Robertsen I. Intraindividual Variability in Absolute Bioavailability and Clearance of Midazolam in Healthy Individuals. Clin Pharmacokinet 2023; 62:981-987. [PMID: 37162619 PMCID: PMC10338616 DOI: 10.1007/s40262-023-01257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Midazolam is the preferred clinical probe drug for assessing CYP3A activity. We have previously shown substantial intraindividual variability in midazolam absolute bioavailability and clearance in patients with obesity before and after weight loss induced by gastric bypass or a strict diet. The objective was to describe intraindividual variability in absolute bioavailability and clearance of midazolam in healthy individuals without obesity. METHODS This study included 33 healthy volunteers [28 ± 8 years, 21% males, body mass index (BMI) 23 ± 2.5 kg/m2] subjected to four pharmacokinetic investigations over a 2-month period (weeks 0, 2, 4, and 8). Semi-simultaneous oral (0 h) and intravenous (2 h later) midazolam dosing was used to assess absolute bioavailability and clearance of midazolam. RESULTS At baseline, mean absolute bioavailability and clearance were 46 ± 18% and 31 ± 10 L/h, respectively. The mean coefficient of variation (CV, %) for absolute bioavailability and clearance of midazolam was 26 ± 15% and 20 ± 10%, respectively. Approximately one-third had a CV > 30% for absolute bioavailability, while 13% had a CV > 30% for clearance. CONCLUSIONS On average, intraindividual variability in absolute bioavailability and clearance of midazolam was low to moderate; however, especially absolute bioavailability showed considerable variability in a relatively large proportion of the individuals.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Ole Martin Drevland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Nora Haugli
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Eline Skadberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | | | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
74
|
Kern C, Müller P, Chaccour C, Liechti ME, Hammann F, Duthaler U. Pharmacokinetics of ivermectin metabolites and their activity against Anopheles stephensi mosquitoes. Malar J 2023; 22:194. [PMID: 37355605 DOI: 10.1186/s12936-023-04624-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Ivermectin (22,23-dihydroavermectin B1a: H2B1a) is an endectocide used to treat worm infections and ectoparasites including lice and scabies mites. Furthermore, survival of malaria transmitting Anopheles mosquitoes is strongly decreased after feeding on humans recently treated with ivermectin. Currently, mass drug administration of ivermectin is under investigation as a potential novel malaria vector control tool to reduce Plasmodium transmission by mosquitoes. A "post-ivermectin effect" has also been reported, in which the survival of mosquitoes remains reduced even after ivermectin is no longer detectable in blood meals. In the present study, existing material from human clinical trials was analysed to understand the pharmacokinetics of ivermectin metabolites and feeding experiments were performed in Anopheles stephensi mosquitoes to assess whether ivermectin metabolites contribute to the mosquitocidal action of ivermectin and whether they may be responsible for the post-ivermectin effect. METHODS Ivermectin was incubated in the presence of recombinant human cytochrome P450 3A4/5 (CYP 3A4/5) to produce ivermectin metabolites. In total, nine metabolites were purified by semi-preparative high-pressure liquid chromatography. The pharmacokinetics of the metabolites were assessed over three days in twelve healthy volunteers who received a single oral dose of 12 mg ivermectin. Blank whole blood was spiked with the isolated metabolites at levels matching the maximal blood concentration (Cmax) observed in pharmacokinetics study samples. These samples were fed to An. stephensi mosquitoes, and their survival and vitality was recorded daily over 3 days. RESULTS Human CYP3A4 metabolised ivermectin more rapidly than CYP3A5. Ivermectin metabolites M1-M8 were predominantly formed by CYP3A4, whereas metabolite M9 (hydroxy-H2B1a) was mainly produced by CYP3A5. Both desmethyl-H2B1a (M1) and hydroxy-H2B1a (M2) killed all mosquitoes within three days post-feeding, while administration of desmethyl, hydroxy-H2B1a (M4) reduced survival to 35% over an observation period of 3 days. Ivermectin metabolites that underwent deglycosylation or hydroxylation at spiroketal moiety were not active against An. stephensi at Cmax levels. Interestingly, half-lives of M1 (54.2 ± 4.7 h) and M4 (57.5 ± 13.2 h) were considerably longer than that of the parent compound ivermectin (38.9 ± 20.8 h). CONCLUSION In conclusion, the ivermectin metabolites M1 and M2 contribute to the activity of ivermectin against An. stephensi mosquitoes and could be responsible for the "post-ivermectin effect".
Collapse
Affiliation(s)
- Charlotte Kern
- Division of Clinical Pharmacology & Toxicology, Department of Internal Medicine, University Hospital Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
- Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | - Matthias E Liechti
- Division of Clinical Pharmacology & Toxicology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Felix Hammann
- Division of Clinical Pharmacology & Toxicology, Department of Internal Medicine, University Hospital Bern, Bern, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland.
- Division of Clinical Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
75
|
Fabo T, Khavari P. Functional characterization of human genomic variation linked to polygenic diseases. Trends Genet 2023; 39:462-490. [PMID: 36997428 PMCID: PMC11025698 DOI: 10.1016/j.tig.2023.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
The burden of human disease lies predominantly in polygenic diseases. Since the early 2000s, genome-wide association studies (GWAS) have identified genetic variants and loci associated with complex traits. These have ranged from variants in coding sequences to mutations in regulatory regions, such as promoters and enhancers, as well as mutations affecting mediators of mRNA stability and other downstream regulators, such as 5' and 3'-untranslated regions (UTRs), long noncoding RNA (lncRNA), and miRNA. Recent research advances in genetics have utilized a combination of computational techniques, high-throughput in vitro and in vivo screening modalities, and precise genome editing to impute the function of diverse classes of genetic variants identified through GWAS. In this review, we highlight the vastness of genomic variants associated with polygenic disease risk and address recent advances in how genetic tools can be used to functionally characterize them.
Collapse
Affiliation(s)
- Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
76
|
Basso J, Schwartsmann G, Ibaldi MR, Schaefer VD, Pavei CC, Hahn RZ, Antunes MV, Linden R. Evaluation of UGT1A1 and CYP3A Genotyping and Single-Point Irinotecan and Metabolite Concentrations as Predictors of the Occurrence of Adverse Events in Cancer Treatment. J Gastrointest Cancer 2023; 54:589-599. [PMID: 35710870 DOI: 10.1007/s12029-022-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The variability on irinotecan (IRI) pharmacokinetics and toxicity has been attributed mostly to genetic variations in the UGT1A1 gene, responsible for conjugation of the active metabolite SN-38. Also, CYP3A mediates the formation of inactive oxidative metabolites of IRI. The association between the occurrence of severe adverse events, pharmacokinetics parameters, and UGT1A1 and CYP3A4 predicted phenotypes was evaluated, as the evaluation of [SN-38]/IRI dose ratio as predictor of severe adverse events. METHODS Forty-one patients undergoing IRI therapy were enrolled in the study. Blood samples were collected 15 min after the end of drug the infusion, for IRI, SN-38, SN-38G, bilirubin concentrations measurements, and UGT1A1 and CYP3A genotype estimation. Data on adverse event was reported. RESULTS Fifteen patients (36.5%) developed grade 3/4 adverse events. A total of 9.8% (n = 4) of the patients had UGT1A1 reduced activity phenotype, and 48.7% (n = 20) had UGT1A1 and 63.4% (n = 26) CYP3A intermediary phenotypes. Severe neutropenia and diarrhea were more prevalent in patients with reduced UGT1A1 in comparison with functional metabolism (50% and 75% versus 0% and 13%, respectively). SN-38 levels and its concentrations adjusted by IRI dose were significantly correlated to toxicity (rs = 0.31 (p = 0.05) and rs = 0.425 (p < 0.01)). The [SN-38]/IRI dose ratio had a ROC curve of 0.823 (95% CI 0.69-0.956) to detect any severe adverse event and 0.833 (95% CI 0.694-0.973) to detect severe diarrhea. The cut-off of 0.075 ng mL-1 mg-1 had 100% sensitivity and 65.7% specificity to predict severe diarrhea. CONCLUSION Our data confirmed the relevance of the pre-emptive genotypic information of UGT1A1. The [SN-38]/IRI ratio, measured 15 min after the end of the IRI infusion, was a strong predictor of severe toxicity and could be applied to minimize the burden of patients after IRI administration.
Collapse
Affiliation(s)
- Jeziel Basso
- Universidade Federal Do Rio Grande Do Sul, UFRGS, Postgraduate program, Porto Alegre, Brazil
| | - Gilberto Schwartsmann
- Universidade Federal Do Rio Grande Do Sul, UFRGS, Postgraduate program, Porto Alegre, Brazil
| | | | - Vitoria Daniela Schaefer
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil
- Graduate Program On Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Carla Casagrande Pavei
- Medical Residency in Oncology of Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roberta Zilles Hahn
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marina Venzon Antunes
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil
- Graduate Program On Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Rafael Linden
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil.
- Graduate Program On Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
77
|
Wiss FM, Stäuble CK, Meyer Zu Schwabedissen HE, Allemann SS, Lampert ML. Pharmacogenetic Analysis Enables Optimization of Pain Therapy: A Case Report of Ineffective Oxycodone Therapy. J Pers Med 2023; 13:jpm13050829. [PMID: 37240999 DOI: 10.3390/jpm13050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Patients suffering from chronic pain may respond differently to analgesic medications. For some, pain relief is insufficient, while others experience side effects. Although pharmacogenetic testing is rarely performed in the context of analgesics, response to opiates, non-opioid analgesics, and antidepressants for the treatment of neuropathic pain can be affected by genetic variants. We describe a female patient who suffered from a complex chronic pain syndrome due to a disc hernia. Due to insufficient response to oxycodone, fentanyl, and morphine in addition to non-steroidal anti-inflammatory drug (NSAID)-induced side effects reported in the past, we performed panel-based pharmacogenotyping and compiled a medication recommendation. The ineffectiveness of opiates could be explained by a combined effect of the decreased activity in cytochrome P450 2D6 (CYP2D6), an increased activity in CYP3A, and an impaired drug response at the µ-opioid receptor. Decreased activity for CYP2C9 led to a slowed metabolism of ibuprofen and thus increased the risk for gastrointestinal side effects. Based on these findings we recommended hydromorphone and paracetamol, of which the metabolism was not affected by genetic variants. Our case report illustrates that an in-depth medication review including pharmacogenetic analysis can be helpful for patients with complex pain syndrome. Our approach highlights how genetic information could be applied to analyze a patient's history of medication ineffectiveness or poor tolerability and help to find better treatment options.
Collapse
Affiliation(s)
- Florine M Wiss
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, 4600 Olten, Switzerland
| | - Céline K Stäuble
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, 4600 Olten, Switzerland
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | | - Samuel S Allemann
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus L Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Institute of Hospital Pharmacy, Solothurner Spitäler, 4600 Olten, Switzerland
| |
Collapse
|
78
|
Uno Y, Jikuya S, Noda Y, Oguchi A, Murayama N, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. Newly identified cytochrome P450 3A genes of tree shrews and pigs are expressed and encode functional enzymes. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109579. [PMID: 36822299 DOI: 10.1016/j.cbpc.2023.109579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Novel cytochrome P450 3A5 (CYP3A5) cDNA in tree shrews (which are non-rodent primate-like species) and pig CYP3A227 cDNA were identified, along with known pig CYP3A22, CYP3A29, and CYP3A46 cDNAs. All five cDNAs contained open reading frames encoding a polypeptide of 503 amino acids that shared high sequence identity (72-78 %) with human CYP3A4 and were more closely related to human CYP3As than rat CYP3As by phylogenetic analysis. CYP3A5 was the only CYP3A in the tree shrew genome, but pig CYP3A genes formed a CYP3A gene cluster in the genomic region corresponding to that of human CYP3A genes. Tree shrew CYP3A5 mRNA was predominantly expressed in liver and small intestine, among the tissues analyzed, whereas pig CYP3A227 mRNA was most abundantly expressed in jejunum, followed by liver. Metabolic assays established that tree shrew CYP3A5 and pig CYP3A proteins heterologously expressed in Escherichia coli metabolized typical human CYP3A4 substrates nifedipine and midazolam. These results suggest that novel tree shrew CYP3A5 and pig CYP3A227 were functional enzymes able to metabolize human CYP3A4 substrates in liver and small intestine, similar to human CYP3A4, although pig CYP3A227 mRNA was minimally expressed in all tissues analyzed.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Shiori Jikuya
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Yutaro Noda
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Asuka Oguchi
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Kawaguchi
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan; Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
79
|
Sanz-Solas A, Labrador J, Alcaraz R, Cuevas B, Vinuesa R, Cuevas MV, Saiz-Rodríguez M. Bortezomib Pharmacogenetic Biomarkers for the Treatment of Multiple Myeloma: Review and Future Perspectives. J Pers Med 2023; 13:jpm13040695. [PMID: 37109081 PMCID: PMC10145990 DOI: 10.3390/jpm13040695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple myeloma (MM) is a hematological neoplasm for which different chemotherapy treatments are used with several drugs in combination. One of the most frequently used drugs for the treatment of MM is the proteasome inhibitor bortezomib. Patients treated with bortezomib are at increased risk for thrombocytopenia, neutropenia, gastrointestinal toxicities, peripheral neuropathy, infection, and fatigue. This drug is almost entirely metabolized by cytochrome CYP450 isoenzymes and transported by the efflux pump P-glycoprotein. Genes encoding both enzymes and transporters involved in the bortezomib pharmacokinetic pathway are highly polymorphic. The response to bortezomib and the incidence of adverse drug reactions (ADRs) vary among patients, which could be due to interindividual variations in these possible pharmacogenetic biomarkers. In this review, we compiled all pharmacogenetic information relevant to the treatment of MM with bortezomib. In addition, we discuss possible future perspectives and the analysis of potential pharmacogenetic markers that could influence the incidence of ADR and the toxicity of bortezomib. It would be a milestone in the field of targeted therapy for MM to relate potential biomarkers to the various effects of bortezomib on patients.
Collapse
Affiliation(s)
- Antonio Sanz-Solas
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
- Facultad de Medicina, Campus de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Jorge Labrador
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
- Haematology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Raquel Alcaraz
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Beatriz Cuevas
- Haematology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
| | - Raquel Vinuesa
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
| | | | - Miriam Saiz-Rodríguez
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain
- Department of Health Sciences, Health Sciences Faculty, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
80
|
Impact of CYP3A5 genotype on de-novo LCP tacrolimus dosing and monitoring in kidney transplantation. Pharmacogenet Genomics 2023; 33:59-65. [PMID: 36877088 DOI: 10.1097/fpc.0000000000000494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
OBJECTIVES LCP tac has a recommended starting dose of 0.14 mg/kg/day in kidney transplant. The goal of this study was to assess the influence of CYP3A5 on perioperative LCP tac dosing and monitoring. METHODS This was a prospective observational cohort study of adult kidney recipients receiving de-novo LCP tac. CYP3A5 genotype was measured and 90-day pharmacokinetic and clinical were assessed. Patients were classified as CYP3A5 expressors (*1 homozygous or heterozygous) or nonexpressors (LOF *3/*6/*7 allele). RESULTS In this study, 120 were screened, 90 were contacted and 52 provided consent; 50 had genotype results, and 22 patients expressed CYP3A5*1. African Americans (AA) comprised 37.5% of nonexpressors versus 81.8% of expressors (P = 0.001). Initial LCP tac dose was similar between CYP3A5 groups (0.145 vs. 0.137 mg/kg/day; P = 0.161), whereas steady state dose was higher in expressors (0.150 vs. 0.117 mg/kg/day; P = 0.026). CYP3A5*1 expressors had significantly more tac trough concentrations of less than 6 ng/ml and significantly fewer tac trough concentrations of more than 14 ng/ml. Providers were significantly more likely to under-adjust LCP tac by 10 and 20% in CYP3A5 expressors versus nonexpressors (P < 0.03). In sequential modeling, CYP3A5 genotype status explained the LCP tac dosing requirements significantly more than AA race. CONCLUSION CYP3A5*1 expressors require higher doses of LCP tac to achieve therapeutic concentrations and are at higher risk of subtherapeutic trough concentrations, persisting for 30-day posttransplant. LCP tac dose changes in CYP3A5 expressors are more likely to be under-adjusted by providers.
Collapse
|
81
|
Yang W, Zhao H, Dou Y, Wang P, Chang Q, Qiao X, Wang X, Xu C, Zhang Z, Zhang L. CYP3A4 and CYP3A5 Expression is Regulated by C YP3A4*1G in CRISPR/Cas9-Edited HepG2 Cells. Drug Metab Dispos 2023; 51:492-498. [PMID: 36623883 DOI: 10.1124/dmd.122.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Functional CYP3A4*1G (G>A, rs2242480) in cytochrome P450 3A4 (CYP3A4) regulates the drug-metabolizing enzyme CYP3A4 expression. The objective of this study was to investigate whether CYP3A4*1G regulates both basal and rifampicin (RIF)-induced expression and enzyme activity of CYP3A4 and CYP3A5 in gene-edited human HepG2 cells. CYP3A4*1G GG and AA genotype HepG2 cells were established using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) single nucleotide polymorphism technology and homology-directed repair in the CYP3A4*1G GA HepG2 cell line. In CYP3A4*1G GG, GA, and AA HepG2 cells, CYP3A4*1G regulated expression of CYP3A4 and CYP3A5 mRNA and protein in an allele-dependent manner. Of note, significantly decreased expression level of CYP3A4 and CYP3A5 was observed in CYP3A4*1G AA HepG2 cells. Moreover, the results after RIF treatment showed that CYP3A4*1G decreased the induction level of CYP3A4 and CYP3A5 mRNA expression in CYP3A4*1G AA HepG2 cells. At the same time, CYP3A4*1G decreased CYP3A4 enzyme activity and tacrolimus metabolism, especially in CYP3A4*1G GA HepG2 cells. In summary, we successfully constructed CYP3A4*1G GG and AA homozygous HepG2 cell models and found that CYP3A4*1G regulates both basal and RIF-induced expression and enzyme activity of CYP3A4 and CYP3A5 in CRISPR/Cas9 CYP3A4*1G HepG2 cells. SIGNIFICANCE STATEMENT: Cytochrome P450 (CYP) 3A4*1G regulates both basal and rifampicin (RIF)-induced expression and enzyme activity of CYP3A4 and CYP3A5. This study successfully established CYP3A4*1G (G>A, rs2242480), GG, and AA HepG2 cell models using CRISPR/Cas9, thus providing a powerful tool for studying the mechanism by which CYP3A4*1G regulates the basal and RIF-induced expression of CYP3A4 and CYP3A5.
Collapse
Affiliation(s)
- Weihong Yang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Huan Zhao
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Yaojie Dou
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Pei Wang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Qi Chang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Xiaomeng Qiao
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Xiaofei Wang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Chen Xu
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Zhe Zhang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| | - Lirong Zhang
- Department of Forensic Medicine (W.Y., H.Z., Y.D., X.Q., C.X.) and Department of Pharmacology (P.W., Q.C., X.W., L.Z.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; and Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Z.Z.)
| |
Collapse
|
82
|
Kilpatrick MC, Givens SK, Watts Alexander CS. What Is Precision Medicine? PHYSICIAN ASSISTANT CLINICS 2023. [DOI: 10.1016/j.cpha.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
83
|
Hong E, Shi A, Beringer P. Drug-drug interactions involving CFTR modulators: a review of the evidence and clinical implications. Expert Opin Drug Metab Toxicol 2023; 19:203-216. [PMID: 37259485 DOI: 10.1080/17425255.2023.2220960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is characterized by mucus accumulation impairing the lungs, gastrointestinal tract, and other organs. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators (ivacaftor, tezacaftor, elexacaftor, and lumacaftor) significantly improve lung function and nutritional status; however, they are substrates, inhibitors, and/or inducers of certain CYP enzymes and transporters, raising the risk of drug-drug interactions (DDI) with common CF medications. AREAS COVERED A literature search was conducted for DDIs involving CFTR modulators by reviewing new drug applications, drug package inserts, clinical studies, and validated databases of substrates, inhibitors, and inducers. Clinically, CYP3A inducers and inhibitors significantly decrease and increase systemic concentrations of elexacaftor/tezacaftor/ivacaftor, respectively. Additionally, lumacaftor and ivacaftor alter concentrations of CYP3A and P-gp substrates. Potential DDIs without current clinical evidence include ivacaftor and elexacaftor's effect on CYP2C9 and OATP1B1/3 substrates, respectively, and OATP1B1/3 and P-gp inhibitors' effect on tezacaftor. A literature review was conducted using PubMed. EXPERT OPINION Dosing recommendations for CFTR modulators with DDIs are relatively comprehensive; however, recommendations on timing of dosing transition of CFTR modulators when CYP3A inhibitors are initiated or discontinued is incomplete. Certain drug interactions may be managed by choosing an alternative treatment to avoid/minimize DDIs. Next generation CFTR modulator therapies under development are expected to provide increased activity with reduced DDI risk.
Collapse
Affiliation(s)
- Eunjin Hong
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alan Shi
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Paul Beringer
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
- USC Anton Yelchin CF Clinic, Los Angeles, CA, USA
| |
Collapse
|
84
|
Shen G, Moua KTY, Perkins K, Johnson D, Li A, Curtin P, Gao W, McCune JS. Precision sirolimus dosing in children: The potential for model-informed dosing and novel drug monitoring. Front Pharmacol 2023; 14:1126981. [PMID: 37021042 PMCID: PMC10069443 DOI: 10.3389/fphar.2023.1126981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
The mTOR inhibitor sirolimus is prescribed to treat children with varying diseases, ranging from vascular anomalies to sporadic lymphangioleiomyomatosis to transplantation (solid organ or hematopoietic cell). Precision dosing of sirolimus using therapeutic drug monitoring (TDM) of sirolimus concentrations in whole blood drawn at the trough (before the next dose) time-point is the current standard of care. For sirolimus, trough concentrations are only modestly correlated with the area under the curve, with R 2 values ranging from 0.52 to 0.84. Thus, it should not be surprising, even with the use of sirolimus TDM, that patients treated with sirolimus have variable pharmacokinetics, toxicity, and effectiveness. Model-informed precision dosing (MIPD) will be beneficial and should be implemented. The data do not suggest dried blood spots point-of-care sampling of sirolimus concentrations for precision dosing of sirolimus. Future research on precision dosing of sirolimus should focus on pharmacogenomic and pharmacometabolomic tools to predict sirolimus pharmacokinetics and wearables for point-of-care quantitation and MIPD.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Kao Tang Ying Moua
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Perkins
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deron Johnson
- Clinical Informatics, City of Hope Medical Center, Duarte, CA, United States
| | - Arthur Li
- Division of Biostatistics, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Wei Gao
- Division of Engineering and Applied Science, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeannine S. McCune
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
85
|
Galvez C, Boza P, González M, Hormazabal C, Encina M, Azócar M, Castañeda LE, Rojo A, Ceballos ML, Krall P. Evaluation of limited-sampling strategies to calculate AUC(0–24) and the role of CYP3A5 in Chilean pediatric kidney recipients using extended-release tacrolimus. Front Pharmacol 2023; 14:1044050. [PMID: 36998611 PMCID: PMC10043346 DOI: 10.3389/fphar.2023.1044050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Kidney transplantation (KTx) requires immunosuppressive drugs such as Tacrolimus (TAC) which is mainly metabolized by CYP3A5. TAC is routinely monitored by trough levels (C0) although it has not shown to be a reliable marker. The area-under-curve (AUC) is a more realistic measure of drug exposure, but sampling is challenging in pediatric patients. Limited-sampling strategies (LSS) have been developed to estimate AUC. Herein, we aimed to determine AUC(0–24) and CYP3A5 genotype in Chilean pediatric kidney recipients using extended-release TAC, to evaluate different LSS-AUC(0–24) formulas and dose requirements.Patients and methods: We analyzed pediatric kidney recipients using different extended-release TAC brands to determine their trapezoidal AUC(0–24) and CYP3A5 genotypes (SNP rs776746). Daily TAC dose (TAC-D mg/kg) and AUC(0–24) normalized by dose were compared between CYP3A5 expressors (*1/*1 and *1/*3) and non-expressors (*3/*3). We evaluated the single and combined time-points to identify the best LSS-AUC(0–24) model. We compared the performance of this model with two pediatric LSS-AUC(0–24) equations for clinical validation.Results: Fifty-one pharmacokinetic profiles were obtained from kidney recipients (age 13.1 ± 2.9 years). When normalizing AUC(0–24) by TAC-D significant differences were found between CYP3A5 expressors and non-expressors (1701.9 vs. 2718.1 ng*h/mL/mg/kg, p < 0.05). C0 had a poor fit with AUC(0–24) (r2 = 0.5011). The model which included C0, C1 and C4, showed the best performance to predict LSS-AUC(0–24) (r2 = 0.8765) and yielded the lowest precision error (7.1% ± 6.4%) with the lowest fraction (9.8%) of deviated AUC(0–24), in comparison to other LSS equations.Conclusion: Estimation of LSS-AUC(0–24) with 3 time-points is an advisable and clinically useful option for pediatric kidney recipients using extended-release TAC to provide better guidance of decisions if toxicity or drug inefficacy is suspected. The different CYP3A5 genotypes associated with variable dose requirements reinforce considering genotyping before KTx. Further multi-centric studies with admixed cohorts are needed to determine the short- and long-term clinical benefits.
Collapse
Affiliation(s)
- Carla Galvez
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Pía Boza
- Laboratorio Clínico, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Mariluz González
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Catalina Hormazabal
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Marlene Encina
- Laboratorio Clínico, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Manuel Azócar
- Servicio de Farmacia Clínica, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - Luis E. Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Angélica Rojo
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
| | - María Luisa Ceballos
- Unidad de Nefrología, Hospital Luis Calvo Mackenna, Santiago de Chile, Chile
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- *Correspondence: María Luisa Ceballos, ; Paola Krall,
| | - Paola Krall
- Departamento de Pediatría y Cirugía Infantil Oriente, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: María Luisa Ceballos, ; Paola Krall,
| |
Collapse
|
86
|
Shi J, Wu T, Wu S, Chen X, Ye Q, Zhang J. Effect of Genotype on the Pharmacokinetics and Bleeding Events of Direct Oral Anticoagulants: A Systematic Review and Meta-analysis. J Clin Pharmacol 2023; 63:277-287. [PMID: 36309848 DOI: 10.1002/jcph.2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
This meta-analysis aimed to investigate the effect of the genotype on the pharmacokinetics and bleeding events of direct oral anticoagulants (DOACs) and comprehensively searched electronic databases. Weighted mean difference (WMD) was used to assess the kinetic indicators, odds ratio, and 95% confidence interval (CI) were used to calculate the clinical outcomes. Thirteen articles with 1543 participants were finally included in this study. The peak concentration (Cmax ) and area under the plasma concentration-time curve from time 0 to infinity of individuals with the ABCB1 rs 1045642 CT + TT were higher than that of the CC (WMD = -31.9, 95% CI [-49.94, -12.24], P = .02; WMD = -79.97, 95%CI [-152.38 to -7.56], P = .03, I2 = 0). The Cmax of individuals with mutated genes in ABCB1 2677-3435 is higher than that the wild type (WMD = -19.20, 95%CI [36.62 to -1.79], P = .03, I2 = 0). Carriers of the CYP3A5 rs776746 GG genotype had a higher Cmax than the GA gene (WMD = -51.22, 95%CI [-92.26 to -10.19], P = .01, I2 = 0). Bleeding events were more common in the CES1 rs 2244613 AA + AC than in the CC (odds ratio, 2.62, 95%CI [1.06, 6.47], P = .04; I2 = 0). The Cmax of DOACs was affected by individuals with ABCB1 rs 1045642, ABCB1 2677-343, and cytochrome P450 3A5 rs 776746. Carriers of the ABCB1 rs 1045642 affected the change of area under the plasma concentration-time curve from time 0 to infinity of DOACs. Bleeding events were affected by CES1 rs 2244613.
Collapse
Affiliation(s)
- Jinying Shi
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University, Fuzhou, China
| | - Tingting Wu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Shuyi Wu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.,Fujian Medical University, Fuzhou, China
| | | | - Qin Ye
- Department of Ultrasound, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Institute of Ultrasonic Medicine, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
87
|
Firasat S, Raza A, Khan AR, Abid A. The prevalence of pharmacogenetic variants of vitamin K epoxide reductase complex subunit 1 gene (rs9923231), cytochrome P450 family 2 subfamily C member 9 gene (rs1799853) and cytochrome P450 family 3 subfamily-A member-5 gene (rs776746) among 13 ethnic groups of Pakistan. Mol Biol Rep 2023; 50:4017-4027. [PMID: 36849858 DOI: 10.1007/s11033-023-08304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/26/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Pharmacogenomics (PGx) plays a central role in the selection of targeted therapies that underpins precision-medicine. We investigated the prevalence of three important pharmacogenetic variants of VKORC1, CYP2C9, and CYP3A5 genes among Pakistani populations. METHODS A total of 1104 individuals were included representing thirteen major ethnicities. Samples were genotyped by using PCR-RFLP analysis. The allelic and genotypic frequencies of the three SNV's were calculated and were compared with the world's population data (ALFA, gnomAD, and 1000Genome, 1 K databases), using the chi-square test. RESULTS We found overall frequencies of functional-alleles of VKORC1 0.43, CYP2C9 0.94, and CYP3A5 0.14 in our population. Data showed a low prevalence of homozygous functional genotypes of VKORC1 (0.18; 0.0-0.45) and CYP3A5 (0.04; 0.0-0.22), and a high frequency of CYP2C9 (0.885; 0.80-1.0) across ethnicities. Genotyping distribution of VKCOR1 functional genotype was varied across ethnic groups such as 0.0-0.10 in Brahuis and Mohanas, Sindhis, Rajputs, and Gujjars populations, 0.11-0.20 in Makranis, Parsis, and Burusho populations, and 0.20-0.30 in Kalash, Kashmiris and Baloch populations. The highest VKORC1 (CC) was found in Pathans (0.45) and Hazaras (0.39) populations. Interestingly, we found a high prevalence of functional genotype CYP2C9 (rs1799853; C) and non-functional genotype of CYP3A5 (rs776746; T) across various ethnic groups of Pakistan. CONCLUSION Data regarding prevalence of clinically important pharmacogenomics SNVs could be useful in drug adjustment and avoiding adverse drug reactions in a specific ethnic population. This could help in moving current medical practices toward precision medicine in our part of the world.
Collapse
Affiliation(s)
- Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Chand Bibi road, 74200, Karachi, Pakistan
| | - Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Chand Bibi road, 74200, Karachi, Pakistan
| | - Abdul Rafay Khan
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Chand Bibi road, 74200, Karachi, Pakistan
| | - Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Chand Bibi road, 74200, Karachi, Pakistan.
| |
Collapse
|
88
|
Fung J. Role of pharmacogenetics and tacrolimus dosing in liver transplantation. Hepatol Int 2023; 17:1-3. [PMID: 36284080 PMCID: PMC10064955 DOI: 10.1007/s12072-022-10437-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/08/2022] [Indexed: 02/07/2023]
Affiliation(s)
- James Fung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
- The Liver Transplant Centre, Queen Mary Hospital, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
89
|
Bellah SF, Salam MA, Billah SMS, Karim MR. Genetic association in CYP3A4 and CYP3A5 genes elevate the risk of prostate cancer. Ann Hum Biol 2023; 50:63-74. [PMID: 36688864 DOI: 10.1080/03014460.2023.2171122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND CYP3A4 and CYP3A5 are biologically potential genes responsible for prostate cancer. AIM We aimed to analyse the expression and association of CYP3A4 and CYP3A5 genes in prostate cancer. SUBJECTS AND METHODS Web-based bioinformatics tools were used to assess the association of CYP3A4 and CYP3A5 genes with prostate cancer risks. A case-control study of 210 prostate cancer cases and 207 controls was also approved to determine the allelic variants of the CYP3A4 gene- rs2740574 (CYP3A4*1B) and the variant of CYP3A5 gene-rs776746 (CYP3A5*3) using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). The risk of prostate cancer was estimated as odds ratio (OR) and 95% confidence interval (CI) using unrestricted logistic regression models. RESULTS Our in silico data confirmed that both CYP3A4 and CYP3A5 genes are significantly associated with higher prostate cancer risks. In the case of CYP3A4*1B polymorphism, the heterozygote (*1 A/*1B), mutant (*1B/*1B), and combined heterozygote plus mutant (*1A/*1B+*1B/*1B) genotypes showed 3.52-fold, 3.90-fold, and 3.67-fold increased risk of prostate cancer, respectively. In the case of CYP3A5*3 polymorphism, the heterozygote (*1/*3), mutant (*3/*3), and combined (*1/*3+*3/*3) genotypes were found to be significantly associated with 5.11-, 5.49-, and 5.28-fold greater risk of prostate cancer, respectively. CONCLUSION Our results indicate that CYP3A4*1B and CYP3A5*3 are significantly associated with increased prostate cancer risk.KEY MESSAGESBioinformatics tools were used and concluded that the CYP3A4 and CYP3A5 genes were significantly associated with the development and progression of prostate cancer.CYP3A4 and CYP3A5 polymorphisms were significantly associated with an increased risk of prostate cancer.Polymerase Chain Reaction (PCR)-Restriction Fragment Length Polymorphism (RFLP) was used to estimate polymorphisms of prostate cancer progression in the Bangladeshi population.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- School of Life Science, University of Science and Technology of China, Hefei, P.R. China
| | - Md Abdus Salam
- Department of Surgical Oncology, National Institute of Cancer Research & Hospital, Mohakhali, Bangladesh
| | - S M Saker Billah
- Department of Chemistry, M. M. College, National University, Gazipur, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Dhaka, Bangladesh
| |
Collapse
|
90
|
Lee J, Fallon JK, Smith PC, Jackson KD. Formation of CYP3A-specific metabolites of ibrutinib in vitro is correlated with hepatic CYP3A activity and 4β-hydroxycholesterol/cholesterol ratio. Clin Transl Sci 2023; 16:279-291. [PMID: 36350327 PMCID: PMC9926076 DOI: 10.1111/cts.13448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022] Open
Abstract
Ibrutinib is an orally administered Bruton's tyrosine kinase inhibitor approved for the treatment of B-cell malignancies, including chronic lymphocytic leukemia. Ibrutinib is metabolized primarily via oxidation by cytochrome P450 (CYP) 3A4/5 to M37 (the primary active metabolite), M34, and M25. The objectives of this study were to assess the relationship between formation of the major CYP3A-specific ibrutinib metabolites in vitro and hepatic CYP3A activity and protein abundance, and to evaluate the utility of the endogenous CYP3A biomarker, plasma 4β-hydroxycholesterol (4β-HC) to cholesterol ratio, to predict ibrutinib metabolite formation in individual cadaveric donors with matching hepatocytes. Ibrutinib (5 μM) was incubated with single-donor human liver microsomes (n = 20) and primary human hepatocytes (n = 15), and metabolites (M37, M34, and M25) were measured by liquid chromatography-tandem mass spectrometry analysis. CYP3A4/5 protein concentrations were measured by quantitative targeted absolute proteomics, and CYP3A activity was measured by midazolam 1'-hydroxylation. Ibrutinib metabolite formation positively correlated with midazolam 1'-hydroxylation in human liver microsomes and hepatocytes. Plasma 4β-HC and cholesterol concentrations were measured in plasma samples obtained at the time of liver harvest from the same 15 donors with matching hepatocytes. Midazolam 1'-hydroxylation in hepatocytes correlated with plasma 4β-HC/cholesterol ratio. When an infant donor (1 year old) was excluded based on previous ontogeny studies, M37 and M25 formation correlated with plasma 4β-HC/cholesterol ratio in the remaining 14 donors (Spearman correlation coefficients [r] 0.62 and 0.67, respectively). Collectively, these data indicate a positive association among formation of CYP3A-specific ibrutinib metabolites in human hepatocytes, hepatic CYP3A activity, and plasma 4β-HC/cholesterol ratio in the same non-infant donors.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental TherapeuticsUniversity of North Carolina at Chapel Hill Eshelman School of PharmacyChapel HillNorth CarolinaUSA
| |
Collapse
|
91
|
García-Pérez R, Ramirez JM, Ripoll-Cladellas A, Chazarra-Gil R, Oliveros W, Soldatkina O, Bosio M, Rognon PJ, Capella-Gutierrez S, Calvo M, Reverter F, Guigó R, Aguet F, Ferreira PG, Ardlie KG, Melé M. The landscape of expression and alternative splicing variation across human traits. CELL GENOMICS 2023; 3:100244. [PMID: 36777183 PMCID: PMC9903719 DOI: 10.1016/j.xgen.2022.100244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.
Collapse
Affiliation(s)
- Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Jose Miguel Ramirez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Aida Ripoll-Cladellas
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Ruben Chazarra-Gil
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Winona Oliveros
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Oleksandra Soldatkina
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Mattia Bosio
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Paul Joris Rognon
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
- Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Catalonia 08005, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia 08034, Spain
| | - Salvador Capella-Gutierrez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Miquel Calvo
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Ferran Reverter
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalonia 08003, Spain
| | | | - Pedro G. Ferreira
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | | | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
92
|
Chalabianloo F, Høiseth G, Vold JH, Johansson KA, Kringen MK, Dalgard O, Ohldieck C, Druckrey-Fiskaaen KT, Aas C, Løberg EM, Bramness JG, Fadnes LT. Impact of liver fibrosis and clinical characteristics on dose-adjusted serum methadone concentrations. J Addict Dis 2023; 41:53-63. [PMID: 35356868 DOI: 10.1080/10550887.2022.2057140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND There is limited knowledge on the causes of large variations in serum methadone concentrations and dose requirements. OBJECTIVES We investigated the impact of the degree of liver fibrosis on dose-adjusted steady-state serum methadone concentrations. METHODS We assessed the clinical and laboratory data of 155 Norwegian patients with opioid use disorder undergoing methadone maintenance treatment in outpatient clinics in the period 2016-2020. A possible association between the degree of liver fibrosis and dose-adjusted serum methadone concentration was explored using a linear mixed-model analysis. RESULTS When adjusted for age, gender, body mass index, and genotypes of CYP2B6 and CYP3A5, the concentration-to-dose ratio of methadone did not increase among the participants with liver fibrosis (Coefficient: 0.70; 95% CI: -2.16, 3.57; P: 0.631), even among those with advanced cirrhosis (-0.50; -4.59, 3.59; 0.810). CONCLUSIONS Although no correlation was found between the degree of liver stiffness and dose-adjusted serum methadone concentration, close clinical monitoring should be considered, especially among patients with advanced cirrhosis. Still, serum methadone measurements can be considered a supplement to clinical assessments, taking into account intra-individual variations.
Collapse
Affiliation(s)
- Fatemeh Chalabianloo
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Gudrun Høiseth
- Department of Forensic Medicine, Oslo University Hospital, Oslo, Norway.,Center for psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Norwegian Center for Addiction Research, University of Oslo, Oslo, Norway
| | - Jørn Henrik Vold
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kjell Arne Johansson
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Olav Dalgard
- Infectious Disease Department, Akershus University Hospital, Akerhus, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian Ohldieck
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl Trygve Druckrey-Fiskaaen
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Christer Aas
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Else-Marie Løberg
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Faculty of Psychology, Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Jørgen G Bramness
- Institute of Clinical Medicine, UiT - Norway's Arctic University, Tromsø, Norway.,Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, Oslo, Norway
| | - Lars Thore Fadnes
- Department of Addiction Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
93
|
Uno Y, Jikuya S, Noda Y, Murayama N, Yamazaki H. A Comprehensive Investigation of Dog Cytochrome P450 3A (CYP3A) Reveals a Functional Role of Newly Identified CYP3A98 in Small Intestine. Drug Metab Dispos 2023; 51:38-45. [PMID: 35772769 DOI: 10.1124/dmd.121.000749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Dogs are frequently used in drug metabolism studies, and their important drug-metabolizing enzymes, including cytochromes P450 (P450), have been analyzed. In humans, CYP3A4 is an especially important P450 due to its abundance and major roles in liver and intestine. In the present study, dog CYP3A98 and CYP3A99 were identified and characterized, along with previously identified CYP3A12 and CYP3A26. The dog CYP3A cDNAs contained open reading frames of 503 amino acids and shared high sequence identity (78%-80%) with human CYP3As. Among the dog CYP3A mRNAs, CYP3A98 mRNA was expressed most abundantly in small intestine. In contrast, dog CYP3A12 and CYP3A26 mRNAs were expressed in liver, where CYP3A12 mRNA was the most abundant. The four CYP3A genes had similar gene structures and formed a gene cluster in the dog and human genomes. Metabolic assays of dog CYP3A proteins heterologously expressed in Escherichia coli indicated that the dog CYP3As tested were functional enzymes with respect to typical human CYP3A4 substrates. Dog CYP3A98 efficiently catalyzed oxidations of nifedipine, alprazolam, and midazolam, indicating major roles of CYP3A98 in the small intestine. Dog CYP3A12 and CYP3A26 metabolizing nifedipine and/or midazolam would play roles in these reactions in the liver. In contrast, dog CYP3A99 showed minimal mRNA expression and minimal metabolic activity, and its contribution to overall drug metabolism is, therefore, negligible. These results indicated that newly identified dog CYP3A98, a testosterone 6 β - and estradiol 16 α -hydroxylase, was abundantly expressed in the small intestine and is likely the major CYP3A in the small intestine in combination with liver-specific CYP3A12. SIGNIFICANCE STATEMENT: Novel dog cytochromes P450 3A98 (CYP3A98) and CYP3A99 were identified and characterized to be functional and highly identical to human CYP3A4. Known CYP3A12 and new CYP3A98 efficiently catalyzed estradiol 16α-hydroxylation and midazolam 1'-hydroxylation. CYP3A98 mRNA was expressed in small intestine, whereas CYP3A12 mRNA was predominant in liver. Dog hepatic CYP3A12 and intestinal CYP3A98 are the enzymes likely responsible for the metabolic clearances of orally administered drugs, unlike human CYP3A4/5, which are in both the liver and intestine.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Shiori Jikuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Yutaro Noda
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| |
Collapse
|
94
|
Jiang Z, Wu Z, Liu R, Du Q, Fu X, Li M, Kuang Y, Lin S, Wu J, Xie W, Shi G, Peng Y, Zheng F. Effect of polymorphisms in drug metabolism and transportation on plasma concentration of atorvastatin and its metabolites in patients with chronic kidney disease. Front Pharmacol 2023; 14:1102810. [PMID: 36923356 PMCID: PMC10010391 DOI: 10.3389/fphar.2023.1102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Dyslipidemia due to renal insufficiency is a common complication in patients with chronic kidney diseases (CKD), and a major risk factor for the development of cardiovascular events. Atorvastatin (AT) is mainly used in the treatment of dyslipidemia in patients with CKD. However, response to the atorvastatin varies inter-individually in clinical applications. We examined the association between polymorphisms in genes involved in drug metabolism and transport, and plasma concentrations of atorvastatin and its metabolites (2-hydroxy atorvastatin (2-AT), 2-hydroxy atorvastatin lactone (2-ATL), 4-hydroxy atorvastatin (4-AT), 4-hydroxy atorvastatin lactone (4-ATL), atorvastatin lactone (ATL)) in kidney diseases patients. Genotypes were determined using TaqMan real time PCR in 212 CKD patients, treated with 20 mg of atorvastatin daily for 6 weeks. The steady state plasma concentrations of atorvastatin and its metabolites were quantified using ultraperformance liquid chromatography in combination with triple quadrupole mass spectrometry (UPLC-MS/MS). Univariate and multivariate analyses showed the variant in ABCC4 (rs3742106) was associated with decreased concentrations of AT and its metabolites (2-AT+2-ATL: β = -0.162, p = 0.028 in the dominant model; AT+2-AT+4-AT: β = -0.212, p = 0.028 in the genotype model), while patients carrying the variant allele ABCC4-rs868853 (β = 0.177, p = 0.011) or NR1I2-rs6785049 (β = 0.123, p = 0.044) had higher concentrations of 2-AT+2-ATL in plasma compared with homozygous wildtype carriers. Luciferase activity was enhanced in HepG2 cells harboring a construct expressing the rs3742106-T allele or the rs868853-G allele (p < 0.05 for each) compared with a construct expressing the rs3742106G or the rs868853-A allele. These findings suggest that two functional polymorphisms in the ABCC4 gene may affect transcriptional activity, thereby directly or indirectly affecting release of AT and its metabolites from hepatocytes into the circulation.
Collapse
Affiliation(s)
- Zebin Jiang
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zemin Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ruixue Liu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Qin Du
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xian Fu
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Min Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongjun Kuang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shen Lin
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jiaxuan Wu
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weiji Xie
- Department of Nephrology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanqiang Peng
- Department of Nephrology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| | - Fuchun Zheng
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| |
Collapse
|
95
|
Kaehler M, Cascorbi I. Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Handb Exp Pharmacol 2023; 280:65-83. [PMID: 36882601 DOI: 10.1007/164_2023_639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The hematopoietic neoplasm chronic myeloid leukemia (CML) is a rare disease caused by chromosomal reciprocal translocation t(9;22)(q34:q11) with subsequent formation of the BCR-ABL1 fusion gene. This fusion gene encodes a constitutively active tyrosine kinase, which results in malignant transformation of the cells. Since 2001, CML can be effectively treated using tyrosine kinase inhibitors (TKIs) such as imatinib, which prevent phosphorylation of downstream targets by blockade of the BCR-ABL kinase. Due to its tremendous success, this treatment became the role model of targeted therapy in precision oncology. Here, we review the mechanisms of TKI resistance focusing on BCR-ABL1-dependent and -independent mechanisms. These include the genomics of the BCR-ABL1, TKI metabolism and transport and alternative signaling pathways.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
96
|
Can the Area Under the Curve/Trough Level Ratio Be Used to Optimize Tacrolimus Individual Dose Adjustment? Transplantation 2023; 107:e27-e35. [PMID: 36508648 DOI: 10.1097/tp.0000000000004405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this work was to evaluate, in a large data set of renal transplant recipients, the intraindividual variability of the area under the curve (AUC)/predose concentration (C0) ratio in comparison with that of AUC, C0, AUC/dose, and C0/dose. METHODS Patients with at least 2 tacrolimus AUC estimation requests were extracted from the Immunosuppressant Bayesian dose Adjustment website, and relative variations between 2 consecutive visits for the different metrics were calculated and compared. RESULTS Data from 1325 patients on tacrolimus (3827 measured C0 and estimated AUC) showed that the lowest mean relative variation between 2 consecutives visits was for the AUC/C0 ratio (95% confidence interval [CI] relative fold change = -43% to 44% for AUC/C0; 95% CI, -77% to 72% for AUC; 95% CI, -82% to 98% for AUC/dose; 95% CI, -81% to 80% for C0 and 95% CI, -94% to 117% for C0/dose. The correlation between 2 consecutive requests, whether close or far apart, was also best for the AUC/C0 ratio ( r = 0.33 and r = 0.34, respectively) in comparison with C0 ( r = 0.21 and r = 0.22, respectively) and AUC ( r = 0.19 and 0.28, respectively). Regression analysis between AUC0-24 and C0 showed that for some patients, the usual C0 targets translated into some very unusual AUC values. As the AUC/C0 ratio is quite stable during large periods, individualized C0 targets can be derived from the AUC targets, and an algorithm that estimates the individualized C0 was developed for situations in which prior AUC estimates are available or not. CONCLUSIONS In this study, we confirmed in a large data set that the AUC/C0 ratio yields low intraindividual variability, whereas C0 shows the largest, and we propose to calculate individualized C0 targets based on this ratio.
Collapse
|
97
|
Hu YH, Li GZ, Long JY, Yang QY, Zhang Y, Chen F, Wang YR. Severe Vincristine-Induced Neuropathic Pain: A Case Report with Pharmacogenetic Analysis and Literature Review. Pharmgenomics Pers Med 2022; 15:1029-1035. [PMID: 36605068 PMCID: PMC9809358 DOI: 10.2147/pgpm.s389197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Vincristine-induced peripheral neuropathy (VIPN) is a common adverse effect of vincristine (VCR) for which there is no preventative or curative treatment. Here, we report a case of a patient suffering from severe VCR-related neurotoxicity. To explore the possible causes of severe VIPN in this patient, a set of genes involved in VCR metabolism, transport or are related to the cytoskeleton, microtubules, and inherited neurological diseases gene polymorphisms were examined via pharmacogenetic analyses. The genotyping results revealed the presence of a complex pattern of polymorphisms in CYP3A5, ABCC2, SYNE2, BAHD1, NPSR1, MTNR1B, CEP72, miR-4481 and miR-3117. A comprehensive understanding of all the pharmacogenetic risk factors for VIPN may explain the occurrence of severe neurotoxicity in our patient. This case brings to light the potential importance of pharmacogenetic testing in clinical practice. It also exemplifies the importance of developing early-detection strategies to optimize treatment regimens through prior risk stratification while reducing adverse drug reactions and personalizing therapy.
Collapse
Affiliation(s)
- Ya-Hui Hu
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Gui-Zhou Li
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jia-Yi Long
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Qing-Yan Yang
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yong Zhang
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Feng Chen
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yong-Ren Wang
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China,Correspondence: Yong-Ren Wang, Children’s Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People’s Republic of China, Email
| |
Collapse
|
98
|
Ebid AHIM, Ismail DA, Lotfy NM, Mahmoud MA, ELSharkawy M. Influence of CYP3A4*22 and CYP3A5*3 combined genotypes on tacrolimus dose requirements in Egyptian renal transplant patients. J Clin Pharm Ther 2022; 47:2255-2263. [PMID: 36379901 DOI: 10.1111/jcpt.13804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Tacrolimus is a widely prescribed immunosuppressant agent for kidney transplantation. However, optimal dosing is challenging due to its narrow therapeutic index, potentially serious adverse effects, and wide inter-individual variability in pharmacokinetics. Cytochrome P450 3A (CPY3A) enzymes metabolize tacrolimus, so allelic variants such as CYP3A4*22 and CYP3A5*3 may contribute to individual differences in pharmacokinetics and therapeutic efficacy of tacrolimus. This study assessed the frequency and influences of CYP3A4*22 and CYP3A5*3 genotypes, alone and combined, on tacrolimus pharmacokinetics and dose requirements in Egyptian kidney transplant patients. METHODS This is a prospective multicenter observational cohort study. Patients were genotyped for the CYP3A4*22 (rs35599367), and CYP3A5*3 (rs776746). Tacrolimus dose (mg), through blood level (ng/ml), and dose-adjusted trough concentration (C0/D) (ng/ml per mg/kg) were recorded during the first and third months post-transplantation and compared among genotype groups. RESULTS The CYP3A4*22 allele was rare (3.2% of subjects) while the CYP3A5*3 allele was widespread (90.38%) in this cohort. At the third month post-transplantation, median C0/D was significantly higher among CYP3A4*22 carriers than CYP3A4*1/*1 (146.25 [100-380] versus 85.57 [27-370] ng/ml per mg/kg, p = 0.028). Patients harbouring the one copy of the CYP3A4*22 allele and the CYP3A5*3/*3 genotype (n = 5) were classified as poor tacrolimus metabolizers, the CYP3A5*3/*3 plus CYP3A4*1/*1 genotype as intermediate metabolizers (n = 60), and the CYP3A4*1/*1 plus CYP3A5*1/*1 genotype as normal metabolizers (n = 13). During the first month post-transplantation, C0/D was significantly greater in poor metabolizers (113.07 ng/ml per mg/kg) than intermediate and normal metabolizers (90.380 and 49.09 ng/ml per mg/kg) (p < 0.0005). This rank order was also observed during the third month. Acute rejection rate and renal function at discharge did not differ among genotypes. CONCLUSION Pharmacogenetics testing for CYP3A4*22 and CYP3A5*3 before renal transplantation may help in the adjustment of tacrolimus starting dose and identify patients at risk of tacrolimus overexposure or underexposure.
Collapse
Affiliation(s)
| | - Dina Ahmed Ismail
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Neama M Lotfy
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Adel Mahmoud
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Magdy ELSharkawy
- Department of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
99
|
Rodriguez-Antona C, Savieo JL, Lauschke VM, Sangkuhl K, Drögemöller BI, Wang D, van Schaik RHN, Gilep AA, Peter AP, Boone EC, Ramey BE, Klein TE, Whirl-Carrillo M, Pratt VM, Gaedigk A. PharmVar GeneFocus: CYP3A5. Clin Pharmacol Ther 2022; 112:1159-1171. [PMID: 35202484 PMCID: PMC9399309 DOI: 10.1002/cpt.2563] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 01/31/2023]
Abstract
The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP3A5 gene. Genetic variation within the CYP3A5 gene locus impacts the metabolism of several clinically important drugs, including the immunosuppressants tacrolimus, sirolimus, cyclosporine, and the benzodiazepine midazolam. Variable CYP3A5 activity is of clinical importance regarding tacrolimus metabolism. This GeneFocus provides a CYP3A5 gene summary with a focus on aspects regarding standardized nomenclature. In addition, this review also summarizes recent changes and updates, including the retirement of several allelic variants and provides an overview of how PharmVar CYP3A5 star allele nomenclature is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
Collapse
Affiliation(s)
- Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrei A Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Arul P Peter
- Coriell Life Sciences, Philadelphia, Pennsylvania, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | | | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | | | - Victoria M Pratt
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
100
|
Campos-Staffico AM, Dorsch MP, Barnes GD, Zhu HJ, Limdi NA, Luzum JA. Eight pharmacokinetic genetic variants are not associated with the risk of bleeding from direct oral anticoagulants in non-valvular atrial fibrillation patients. Front Pharmacol 2022; 13:1007113. [PMID: 36506510 PMCID: PMC9730333 DOI: 10.3389/fphar.2022.1007113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Atrial fibrillation (AF) is the leading cause of ischemic stroke and treatment has focused on reducing this risk through anticoagulation. Direct Oral Anticoagulants (DOACs) are the first-line guideline-recommended therapy since they are as effective and overall safer than warfarin in preventing AF-related stroke. Although patients bleed less from DOACs compared to warfarin, bleeding remains the primary safety concern with this therapy. Hypothesis: Genetic variants known to modify the function of metabolic enzymes or transporters involved in the pharmacokinetics (PK) of DOACs could increase the risk of bleeding. Aim: To assess the association of eight, functional PK-related single nucleotide variants (SNVs) in five genes (ABCB1, ABCG2, CYP2J2, CYP3A4, CYP3A5) with the risk of bleeding from DOACs in non-valvular AF patients. Methods: A retrospective cohort study was carried out with 2,364 self-identified white non-valvular AF patients treated with either rivaroxaban or apixaban. Genotyping was performed with Illumina Infinium CoreExome v12.1 bead arrays by the Michigan Genomics Initiative biobank. The primary endpoint was a composite of major and clinically relevant non-major bleeding. Cox proportional hazards regression with time-varying analysis assessed the association of the eight PK-related SNVs with the risk of bleeding from DOACs in unadjusted and covariate-adjusted models. The pre-specified primary analysis was the covariate-adjusted, additive genetic models. Six tests were performed in the primary analysis as three SNVs are in the same haplotype, and thus p-values below the Bonferroni-corrected level of 8.33e-3 were considered statistically significant. Results: In the primary analysis, none of the SNVs met the Bonferroni-corrected level of statistical significance (all p > 0.1). In exploratory analyses with other genetic models, the ABCB1 (rs4148732) GG genotype tended to be associated with the risk of bleeding from rivaroxaban [HR: 1.391 (95%CI: 1.019-1.900); p = 0.038] but not from apixaban (p = 0.487). Conclusion: Eight functional PK-related genetic variants were not significantly associated with bleeding from either rivaroxaban or apixaban in more than 2,000 AF self-identified white outpatients.
Collapse
Affiliation(s)
| | - Michael P. Dorsch
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Geoffrey D. Barnes
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Nita A. Limdi
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jasmine A. Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States,*Correspondence: Jasmine A. Luzum,
| |
Collapse
|