51
|
Lombó M, Fernández-Díez C, González-Rojo S, Herráez MP. Genetic and epigenetic alterations induced by bisphenol A exposure during different periods of spermatogenesis: from spermatozoa to the progeny. Sci Rep 2019; 9:18029. [PMID: 31792261 PMCID: PMC6889327 DOI: 10.1038/s41598-019-54368-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to bisphenol A (BPA) has been related to male reproductive disorders. Since this endocrine disruptor also displays genotoxic and epigenotoxic effects, it likely alters the spermatogenesis, a process in which both hormones and chromatin remodeling play crucial roles. The hypothesis of this work is that BPA impairs early embryo development by modifying the spermatic genetic and epigenetic information. Zebrafish males were exposed to 100 and 2000 μg/L BPA during early spermatogenesis and during the whole process. Genotoxic and epigenotoxic effects on spermatozoa (comet assay and immunocytochemistry) as well as progeny development (mortality, DNA repairing activity, apoptosis and epigenetic profile) were evaluated. Exposure to 100 µg/L BPA during mitosis slightly increased sperm chromatin fragmentation, enhancing DNA repairing activity in embryos. The rest of treatments promoted high levels of sperm DNA damage, triggering apoptosis in early embryo and severely impairing survival. Regarding epigenetics, histone acetylation (H3K9Ac and H3K27Ac) was similarly enhanced in spermatozoa and embryos from males exposed to all the treatments. Therefore, BPA male exposure jeopardizes embryonic survival and development due to the transmission of a paternal damaged genome and of a hyper-acetylated histone profile, both alterations depending on the dose of the toxicant and the temporal window of exposure.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Cristina Fernández-Díez
- Instituto Ganadero de Motaña (IGM), Finca Marzanas-Grulleros Vega de Infanzones, León, 24346, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain.
| |
Collapse
|
52
|
Doxorubicin-induced testicular damage is related to PARP-1 signaling molecules in mice. Pharmacol Rep 2019; 71:591-602. [DOI: 10.1016/j.pharep.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
|
53
|
Chemical Analysis of Lepidium meyenii (Maca) and Its Effects on Redox Status and on Reproductive Biology in Stallions †. Molecules 2019; 24:molecules24101981. [PMID: 31126050 PMCID: PMC6571579 DOI: 10.3390/molecules24101981] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
The present study was conducted to assess the chemical composition of Yellow Maca (Lepidium meyenii) and its biological activity on stallions following oral administration of hypocotyl powder. Maca was subjected to methanolic extraction and the chemical analysis was carried out by LC-MS-QTOF (liquid chromatography-mass spectrometry). Our results showed that Maca contains some effective antioxidants, a high percentage of glucosinolates, and other important components with a high antioxidant capacity. To evaluate the plant biological activity in stallions fed with Maca powder for 60 days, the redox status and some reproductive parameters were investigated. Blood and semen samples were collected at 0, 30, 60, and 90 days from the beginning of this study. Blood samples showed a decrease of the reactive oxygen metabolites, evaluated by d-ROMs test, and an increase of the antioxidant barrier in terms of biological antioxidant potential (BAP test), powerful oxidant capacity (OXY-Adsorbent test), and thiols evaluation (-SHp test). Furthermore, semen samples showed a positive trend during Maca administration in the following parameters: ejaculate volumes and sperm concentrations, total and progressive motility, and acrosome integrity.
Collapse
|
54
|
Olugbodi JO, Uzunuigbe EO, David O, Ojo OA. Effect of
Glyphaea brevis
twigs extract on cell viability, apoptosis induction and mitochondrial membrane potential in TM3 Leydig cells. Andrologia 2019; 51:e13312. [DOI: 10.1111/and.13312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Oladipupo David
- Department of Medical Bioscience University of the Western Cape Bellville Cape Town South Africa
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Reproductive and Biochemical Toxicology Unit, Department of Biochemistry Afe Babalola University Ado‐Ekiti Nigeria
- Department of Biochemistry University of Ilorin Ilorin Nigeria
| |
Collapse
|
55
|
Hou X, Zhu L, Zhang X, Zhang L, Bao H, Tang M, Wei R, Wang R. Testosterone disruptor effect and gut microbiome perturbation in mice: Early life exposure to doxycycline. CHEMOSPHERE 2019; 222:722-731. [PMID: 30738315 DOI: 10.1016/j.chemosphere.2019.01.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Veterinary tetracyclines drugs are emerging organic pollutants detected at high concentrations in the urine of school children and a potential public health risk. However, the implications of early-life exposure to tetracyclines on testosterone production, being new endocrine disruptors, remain unknown. We investigated whether the early-life exposure to low-doxycycline, a widely used tetracycline, on mitochondria dysfunction and testosterone disruption in Leydig cells in vitro and in vivo. Next, we determined the mRNA levels of testis cells markers for early-life exposure to low-doxycycline outcomes of testis health in later-life. Finally, we compared the weight gain performance exposed to low- and therapeutic-doses through 15 weeks and examined the role of the microbiota during development. Our results showed doxycycline disturbed steroidogenesis process by mitochondrial dysfunction in mouse Leydig tumor cell line (MLTC-1) cells in vitro. Leydig cells mitochondrial function was disrupted by early-life exposure to low-doxycycline from birth to 49 days, causing testosterone deficiency and decreased quality of the sperm in mice. Early-life exposure to low-doxycycline significantly altered the mRNA levels of key genes in Leydig cells (Cyp11a1, Cyp17a1 and 17β-HSD) and spermatogenic cells (Grfal, Plzf, and Stra8) in later-life in mice. Subchronic low- and therapeutic-doses doxycycline changed gut microbiota differences in diversity reduction and compositional alteration. Moreover, the weight gain effects of doxycycline were only observed in low-dose in male mice. Overall, these results provide insight into the effects of doxycycline on both testis and gut microbiota health. The results provide insight that environmental antibiotics are needed additional research to classify as ECDs.
Collapse
Affiliation(s)
- Xiang Hou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Lei Zhu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xianwei Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lili Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hongduo Bao
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Minmin Tang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Ruicheng Wei
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Risk Assessment Laboratory of Agro-Products Processing Quality and Safety (Nanjing), Ministry of Agriculture, Nanjing, Jiangsu, China.
| |
Collapse
|
56
|
Singh S, Singh SK. Prepubertal exposure to perfluorononanoic acid interferes with spermatogenesis and steroidogenesis in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:590-599. [PMID: 30576894 DOI: 10.1016/j.ecoenv.2018.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 05/15/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial and commercial products and possess endocrine disrupting properties. Perfluorononanoic acid (PFNA), one of PFAAs, has been mainly reported to produce testicular toxicity in adult animals. The objective of the present study was to examine the effect of acute exposure of PFNA to prepubertal male Parkes (P) mice on spermatogenesis and testicular steroidogenesis, and to study the possible mechanism(s) of its action. PFNA (2 and 5 mg/kg) was orally administered to male P mice for 14 days from postnatal day 25-38. Histologically, testis in PFNA-treated mice showed non-uniform diverse degenerative changes in the seminiferous tubules; both normal and affected tubules were seen in the same testicular sections. The treatment caused a reduction in intra-testicular and serum testosterone levels accompanied by a decrease in testicular expression of SF1, StAR, CYP11A1, and 3β- and17β-HSD. Further, the activity of antioxidant enzymes and expression of Nrf2 and HO-1 in the testis were markedly decreased, while the level of lipid peroxidation and expression of IKKβ, NF-κB and caspase-3 were significantly increased in testis of PFNA-treated mice. There was also a decrease in PCNA expression and in PCNA-index and an increase in TUNEL-positive germ cells in testes of PFNA-treated mice. In conclusion, the results suggest that PFNA exposure to prepubertal male mice altered antioxidant enzymes activity and Nrf2-HO-1 signaling, leading to oxidative stress and a decrease in testosterone biosynthesis in the testis; these changes, in turn, caused increased apoptosis and decreased proliferation of germ cells, thereby suppression of spermatogenesis.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
57
|
El-Demerdash FM, Jebur AB, Nasr HM, Hamid HM. Modulatory effect of Turnera diffusa against testicular toxicity induced by fenitrothion and/or hexavalent chromium in rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:330-339. [PMID: 30578656 DOI: 10.1002/tox.22688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/10/2018] [Accepted: 11/18/2018] [Indexed: 05/27/2023]
Abstract
Oxidative stress and increased production of reactive oxygen species have been implicated in pesticides and heavy metals toxicity. The objective of this study was to investigate the efficacy of Turnera diffusa Willd (damiana) on counteracting fenitrothion (FNT) and/or potassium dichromate (CrVI)-induced testicular toxicity and oxidative injury in rats. FNT and/or CrVI intoxicated animals revealed a significant increase in thiobarbituric acid reactive substances and hydrogen peroxide levels. While, reduced glutathione and protein content, as well as antioxidant enzymes, phosphatases, and aminotransferases activities, were significantly decreased. In addition, significant changes in testosterone and follicle-stimulating hormone levels were detected. Furthermore, histological and immunohistochemical alterations were observed in rat testes and this supported the observed biochemical changes. On the other hand, rats treated with damiana alone decreased lipid peroxidation and increased most of the examined parameters. Moreover, damiana pretreatment to FNT and/or CrVI-intoxicated rats showed significant improvement in lipid peroxidation, enzyme activities, and hormones as compared with their respective treated groups. Conclusively, rats treated with both FNT and/or CrVI showed pronounced hazardous effect especially in their combination group in addition, Turnera diffusa had a potential protective role against FNT and/or CrVI induced testicular toxicity.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Ali B Jebur
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Hoda M Nasr
- Department of Pest Control and Environmental Protection, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Hanin M Hamid
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
58
|
Luddi A, Governini L, Wilmskötter D, Gudermann T, Boekhoff I, Piomboni P. Taste Receptors: New Players in Sperm Biology. Int J Mol Sci 2019; 20:E967. [PMID: 30813355 PMCID: PMC6413048 DOI: 10.3390/ijms20040967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Taste receptors were first described as sensory receptors located on the tongue, where they are expressed in small clusters of specialized epithelial cells. However, more studies were published in recent years pointing to an expression of these proteins not only in the oral cavity but throughout the body and thus to a physiological role beyond the tongue. The recent observation that taste receptors and components of the coupled taste transduction cascade are also expressed during the different phases of spermatogenesis as well as in mature spermatozoa from mouse to humans and the overlap between the ligand spectrum of taste receptors with compounds in the male and female reproductive organs makes it reasonable to assume that sperm "taste" these different cues in their natural microenvironments. This assumption is assisted by the recent observations of a reproductive phenotype of different mouse lines carrying a targeted deletion of a taste receptor gene as well as the finding of a significant correlation between human male infertility and some polymorphisms in taste receptors genes. In this review, we depict recent findings on the role of taste receptors in male fertility, especially focusing on their possible involvement in mechanisms underlying spermatogenesis and post testicular sperm maturation. We also highlight the impact of genetic deletions of taste receptors, as well as their polymorphisms on male reproduction.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Dorke Wilmskötter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Ingrid Boekhoff
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| |
Collapse
|
59
|
Zare S, Hossein Dabbaghmanesh M, Noorafshan A, Koohpeyma F, Bakhshayeshkaram M, Montazeri-Najafabady N. Protective effect of vitamin E and vitamin C alone and in combination on testicular damage induced by sodium metabisulphite in rats: A stereological study. Andrologia 2018; 51:e13193. [PMID: 30478946 DOI: 10.1111/and.13193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
The existing investigation was directed to consider the protective role of vitamin C and E alone and in combination on sodium metabisulphite-induced damage on testicular. Experimental animals were received sodium metabisulphite (520 mg/kg) alone and in combination with vitamin E (100 mg/kg), vitamin C (100 mg/kg) and vitamin E + C, while the control groups received 0.9% saline solution and olive oil (the solvent of the vitamin E). Finally, the changes in the testis histology were examined stereologically. Lipid peroxidation was assessed through the measurement of malondialdehyde (MDA) levels in testis tissues. Also, serum testosterone concentrations were measured. The results indicated that 80%-90% (spermatogonia A and B, spermatocyte and Leydig) and 40% of the Sertoli cells were missed in the rats that received sodium metabisulphite, respectively, compared with the controls. The co-supplementation of vitamin E with vitamin C significantly decreased MDA (p = 0.006) and increased testosterone (p = 0.001) concentrations in the rats received SMB which were as much as control and olive groups. Co-supplementation of vitamin E and vitamin C due to their synergistic effects could be an appropriate strategy in preventing testicular from sodium metabisulphite-induced damage.
Collapse
Affiliation(s)
- Shiva Zare
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
60
|
Yahyazadeh A, Deniz ÖG, Kaplan AA, Altun G, Yurt KK, Davis D. The genomic effects of cell phone exposure on the reproductive system. ENVIRONMENTAL RESEARCH 2018; 167:684-693. [PMID: 29884549 DOI: 10.1016/j.envres.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Humans are exposed to increasing levels of electromagnetic fields (EMF) at various frequencies as technology advances. In this context, improving understanding of the biological effects of EMF remains an important, high priority issue. Although a number of studies in this issue and elsewhere have focused on the mechanisms of the oxidative stress caused by EMF, the precise understanding of the processes involved remains to be elucidated. Due to unclear results among the studies, the issue of EMF exposure in the literature should be evaluated at the genomic level on the reproductive system. Based on this requirement, a detail review of recently published studies is necessary. The main objectives of this study are to show differences between negative and positive effect of EMF on the reproductive system of animal and human. Extensive review of literature has been made based on well known data bases like Web of Science, PubMed, MEDLINE, Google Scholar, Science Direct, Scopus. This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects. Although the cellular targets of global system for mobile communications (GSM)-modulated EMF are associated with the cell membrane, the subject is still controversial. Studies regarding the genotoxic effects of EMF have generally focused on DNA damage. Possible mechanisms are related to ROS formation due to oxidative stress. EMF increases ROS production by enhancing the activity of nicotinamide adenine dinucleotide (NADH) oxidase in the cell membrane. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells exposed to EMF.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| | - Devra Davis
- Environmental Health Trust, P.O. Box 58, Teton Village, WY 83025, United States
| |
Collapse
|
61
|
Mohamed DA, Abdelrahman SA. The possible protective role of zinc oxide nanoparticles (ZnONPs) on testicular and epididymal structure and sperm parameters in nicotine-treated adult rats (a histological and biochemical study). Cell Tissue Res 2018; 375:543-558. [DOI: 10.1007/s00441-018-2909-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
|
62
|
Avdatek F, Birdane YO, Türkmen R, Demirel HH. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate-based herbicide-exposed rats. Andrologia 2018; 50:e13036. [PMID: 29761542 DOI: 10.1111/and.13036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/30/2022] Open
Abstract
In this study, the reproductive impacts of being exposed to glyphosate (GLF) and the protective impacts of resveratrol (RES) were assessed in 28 Wistar male rats, which were equally separated into four groups. Control group were fed normal diet without GLF or RES, group II received normal feed containing 20 mg kg-1 daily-1 RES, group III received normal feed containing 375 mg kg-1 daily-1 GLF, and group IV received normal feed containing 375 mg kg-1 daily-1 GLF+20 mg kg-1 daily-1 RES. GLF administration decreased sperm motility, sperm plasma membrane integrity, glutathione level and superoxide dismutase in the testicular tissue of rats. On the other hand, abnormal sperm rate, malondialdehyde level, and DNA damage were detected to be high in the group treated with GLF. The findings indicate that RES protects spermatological parameters and DNA damage, decreases GLF-induced lipid peroxidation, improves the antioxidant defence mechanism and regenerates tissue damage in the testis of rats.
Collapse
Affiliation(s)
- F Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Y O Birdane
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - R Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - H H Demirel
- Department of Laborant and Veterinary Health, Bayat Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
63
|
Mahajan L, Verma PK, Raina R, Sood S. Potentiating effect of imidacloprid on arsenic-induced testicular toxicity in Wistar rats. BMC Pharmacol Toxicol 2018; 19:48. [PMID: 30064523 PMCID: PMC6069554 DOI: 10.1186/s40360-018-0239-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 07/20/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is an established fact that humans and animals are exposed to more than one chemical concurrently from various sources such as food, air and water. In the past, much emphasis was laid on evaluating the toxic effects of a single chemical. Nowadays an increased attention is being paid to the interaction of xenobiotics with one another. Therefore, a study was aimed to evaluate the potentiating effect of imidacloprid (IMI) on arsenic-induced testicular toxicity in rats. METHODS Adult male Wistar rats randomly divided into eight groups with six in each were subjected to daily oral administrations for 28 days. Group I served as control, group II received IMI at the dose rate of 16.9 mg/kg body weight, group III, IV and V received arsenic at the dose rate of 50, 100 and 150 ppb in drinking water whereas group VI, VII and VIII received both arsenic and IMI. RESULTS Repeated oral administrations of IMI or arsenic (150 ppb) alone resulted in a significant (P < 0.05) elevation in the levels of malondialdehyde (MDA) and advanced oxidation protein product (AOPP) along with significant (P < 0.05) decline in total thiols and antioxidant enzymatic activities indicating reduced antioxidant defense in testicular tissue of exposed rats. These findings were further corroborated with histological alterations in testes like fluid accumulation in interstitial spaces in IMI administered rats. Similarly, rats provided access exclusively to arsenic-containing drinking water induced degenerative changes in seminiferous tubules in a concentration-dependent manner. Concurrent administration of IMI and arsenic produced more severe antioxidant and histopathological alterations of testes as compared to exposure to either toxicant. CONCLUSIONS Reduced antioxidant activities, increased MDA and AOPP levels with severe histopathological alterations in testes of rats on concurrent exposure indicated that IMI potentiated the arsenic-induced testicular toxicity in Wistar rats.
Collapse
Affiliation(s)
- Lakshay Mahajan
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, Jammu, 181102 India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, Jammu, 181102 India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, Jammu, 181102 India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, Jammu, 181102 India
| |
Collapse
|
64
|
Yi WEI, Xiang-Liang T, Yu Z, Bin L, Lian-Ju S, Chun-Lan L, Tao LIN, Da-Wei HE, Sheng-de WU, Guang-Hui WEI. DEHP exposure destroys blood-testis barrier (BTB) integrity of immature testes through excessive ROS-mediated autophagy. Genes Dis 2018; 5:263-274. [PMID: 30320191 PMCID: PMC6176266 DOI: 10.1016/j.gendis.2018.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), is known to impair testicular functions and reproduction. However, its effects on immature testis Blood-testis barrier (BTB) and the underlying mechanisms remain obscure. We constructed a rat model to investigate the roles of autophagy in BTB toxicity induced by DEHP. Sprague–Dawley rats were developmentally exposed to 0, 250 and 500 mg/kg DEHP via intragastric administration from postnatal day (PND) 1 to PND 35. Testicular morphology, expressions of BTB junction proteins and autophagy related proteins were detected. In addition, expressions of oxidative stress markers were also analyzed. Our results demonstrated that developmental DEHP exposure induced decreasing organ coefficients of immature testes and severe testicular damage in histomorphology. The expressions of junctional proteins were down-regulated significantly after DEHP treatment. Intriguingly, DEHP simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II and p62, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation. Moreover, the expressions of HO-1 and SOD levels remarkably decreased after DEHP exposure. Vitamins E and C could alleviate the DEHP-induced oxidative stress, reverse the autophagy defect and restore the BTB impairment. Taken together, DEHP exposure destroys immature testis blood-testis barrier (BTB) integrity through excessive ROS-mediated autophagy.
Collapse
Affiliation(s)
- W E I Yi
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China.,Chongqing Key Laboratory of Pediatrics Chongqing, China
| | - Tang Xiang-Liang
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Zhou Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Liu Bin
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China.,Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Shen Lian-Ju
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China.,Chongqing Key Laboratory of Pediatrics Chongqing, China
| | - Long Chun-Lan
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - L I N Tao
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - H E Da-Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - W U Sheng-de
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - W E I Guang-Hui
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2RD, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China.,Ministry of Education Key Laboratory of Child Development and Disorders, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.,Chongqing Key Laboratory of Pediatrics Chongqing, China
| |
Collapse
|
65
|
Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice. Sci Rep 2018; 8:5423. [PMID: 29615664 PMCID: PMC5882662 DOI: 10.1038/s41598-018-23484-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) may affect male reproductive function. 4-bromodiphenyl ether (BDE-3), the photodegradation products of higher brominated PBDEs, is the most fundamental mono-BDE in environment but is less studied. The purpose of this study was to investigate the reproductive toxicity induced by BDE-3 and explore the mechanism by metabolomics approach. In this study, mice were treated intragastrically with BDE-3 for consecutive six weeks at the dosages of 0.0015, 1.5, 10 and 30 mg/kg. The reproductive toxicity was evaluated by sperm analysis and histopathology examinations. UPLC-Q-TOF/MS was applied to profile the metabolites of testis tissue, urine and serum samples in the control and BDE-3 treated mice. Results showed the sperm count was dose-dependently decreased and percentage of abnormal sperms increased by the treatment of BDE-3. Histopathology examination also revealed changes in seminiferous tubules and epididymides in BDE-3 treated mice. Metabolomics analysis revealed that different BDE-3 groups showed metabolic disturbances to varying degrees. We identified 76, 38 and 31 differential metabolites in testis tissue, urine and serum respectively. Pathway analysis revealed several pathways including Tyrosine metabolism, Purine metabolism and Riboflavin metabolism, which may give a possible explanation for the toxic mechanism of BDE-3. This study indicates that UHPLC-Q-TOFMS-based metabolomics approach provided a better understanding of PBDEs-induced toxicity dynamically.
Collapse
|
66
|
Marat I, Arstan M, Galymzhan Y, Timur J, Yerbolat I, Almasbek Y. Impact of chromium and boron compounds on the reproductive function in rats. Toxicol Ind Health 2018; 34:365-374. [PMID: 29591889 DOI: 10.1177/0748233718759162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this research is to study the process of mutagenesis and the reproductive function in male rats under separate and combined exposure to chromium and boron compounds. The experiment was conducted on two groups of animals. The first group was used to assess the ability of potassium dichromate and boric acid to induce mutation in germ and somatic cells under isolated and combined administration with the use of the dominant lethal mutations test and the micronuclei test in the polychromatophilic erythrocytes of the bone marrow. The second group was used to test the combined and separate effect of the compounds under consideration on the reproductive function of male rats during the spermatogenesis cycle. When used in specific doses, boron compounds are a promising means of preventing and correcting chromium-induced effects in chromium production facility workers and people who live in ecologically adverse regions.
Collapse
Affiliation(s)
- Iztleuov Marat
- Department of Natural Sciences, West Kazakhstan Marat Ospanov State Medical University, Aktobe, The Republic of Kazakhstan
| | - Mamyrbayev Arstan
- Department of Hygiene and Occupational Diseases, West Kazakhstan Marat Ospanov State Medical University, Aktobe, The Republic of Kazakhstan
| | - Yeleuov Galymzhan
- LLP “Rehabilitation Medical Center,” Clinic Daru, Aktobe, The Republic of Kazakhstan
| | - Jarkenov Timur
- West Kazakhstan Marat Ospanov State Medical University, Aktobe, The Republic of Kazakhstan
| | - Iztleuov Yerbolat
- Department of Obstetrics and Gynecology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, The Republic of Kazakhstan
| | - Yeleuov Almasbek
- “Republican Center for Health Development” of the MHSD, Business Center “Altyn Orda,” Astana, The Republic of Kazakhstan
| |
Collapse
|
67
|
Del Prete C, Tafuri S, Ciani F, Pasolini MP, Ciotola F, Albarella S, Carotenuto D, Peretti V, Cocchia N. Influences of dietary supplementation withLepidium meyenii(Maca) on stallion sperm production and on preservation of sperm quality during storage at 5 °C. Andrology 2018; 6:351-361. [DOI: 10.1111/andr.12463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023]
Affiliation(s)
- C. Del Prete
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| | - S. Tafuri
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| | - F. Ciani
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| | - M. P. Pasolini
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| | - F. Ciotola
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| | - S. Albarella
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| | - D. Carotenuto
- UNMSM; Universidad Nacional Mayor San Marcos; Lima Peru
| | - V. Peretti
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| | - N. Cocchia
- Department of Veterinary Medicine and Animal Productions; University of Naples ‘Federico II’; Naples Italy
| |
Collapse
|
68
|
Zhang L, Li H, Gao M, Zhang T, Wu Z, Wang Z, Chong T. Genistein attenuates di‑(2‑ethylhexyl) phthalate-induced testicular injuries via activation of Nrf2/HO‑1 following prepubertal exposure. Int J Mol Med 2018; 41:1437-1446. [PMID: 29328408 PMCID: PMC5819899 DOI: 10.3892/ijmm.2018.3371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/21/2017] [Indexed: 01/10/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and genistein (GEN) are of the most common endocrine disrupting chemicals (EDCs) present in the environment or the diet. However, investigation of the effects of acute exposure to these two EDCs during prepuberty has been lacking. In this study, DEHP and GEN were administrated to prepubertal male Sprague-Dawley rats by gavage from PND22 to PND35 with vehicle control, GEN 50 mg/kg body weight (bw)/day, DEHP50, 150 and 450 mg/kg bw/day, and combined treatment. Reproductive parameters including testis weight, anogenital distance and organ coefficient were evaluated on PND36. Enzyme activity involved in the regulation of testicular redox state as well as expression of genes and proteins related to anti-oxidative ability and apoptosis were also investigated. The results revealed that by PND36, DEHP treatment had significantly decreased the testis weight, organ coefficient, testicular anti-oxidative enzyme activities and caused tubular vacuolation; however, co-administration of GEN partially alleviated DEHP-induced testicular injuries and enhanced testicular anti-oxidative enzyme activities and upregulated the expression of NF-E2 related factor 2 and heme oxygenase-1, which indicated that GEN partially attenuated DEHP-induced male reproductive system damage through anti-oxidative action following acute prepubertal exposure to DEHP. Thus, GEN may have use in attenuating the damaging effects of other EDCs that lead to reproductive disorders.
Collapse
Affiliation(s)
- Liandong Zhang
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hecheng Li
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Gao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Tongdian Zhang
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhizhong Wu
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
69
|
Wang M, Su P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst Biol Reprod Med 2018; 64:93-102. [DOI: 10.1080/19396368.2017.1422046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mei Wang
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| | - Ping Su
- Family Planning Research Institute of Tongji Medical College, Huazhong University of Science and Technology, Hubei, P.R. China
| |
Collapse
|
70
|
Wei Y, Cao XN, Tang XL, Shen LJ, Lin T, He DW, Wu SD, Wei GH. Urban fine particulate matter (PM2.5) exposure destroys blood–testis barrier (BTB) integrity through excessive ROS-mediated autophagy. Toxicol Mech Methods 2017; 28:302-319. [PMID: 29179619 DOI: 10.1080/15376516.2017.1410743] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yi Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Xi-Ning Cao
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiang-Liang Tang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing, China
| | - Lian-Ju Shen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Tao Lin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Da-Wei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Sheng-De Wu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing, China
| | - Guang-Hui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Urogenital Development and Tissue Engineering, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
71
|
The In Vitro Impact of the Herbicide Roundup on Human Sperm Motility and Sperm Mitochondria. TOXICS 2017; 6:toxics6010002. [PMID: 29267194 PMCID: PMC5874775 DOI: 10.3390/toxics6010002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/12/2023]
Abstract
Toxicants, such as herbicides, have been hypothesized to affect sperm parameters. The most common method of exposure to herbicides is through spraying or diet. The aim of the present study was to investigate the effect of direct exposure of sperm to 1 mg/L of the herbicide Roundup on sperm motility and mitochondrial integrity. Sperm samples from 66 healthy men who were seeking semen analysis were investigated after written informed consent was taken. Semen analysis was performed according to the World Health Organization guidelines (WHO, 2010). Mitochondrial integrity was assessed through mitochondrial staining using a mitochondria-specific dye, which is exclusively incorporated into functionally active mitochondria. A quantity of 1 mg/L of Roundup was found to exert a deleterious effect on sperm’s progressive motility, after 1 h of incubation (mean difference between treated and control samples = 11.2%) in comparison with the effect after three hours of incubation (mean difference = 6.33%, p < 0.05), while the relative incorporation of the mitochondrial dye in mitochondria of the mid-piece region of Roundup-treated spermatozoa was significantly reduced compared to relative controls at the first hour of incubation, indicating mitochondrial dysfunction by Roundup. Our results indicate that the direct exposure of semen samples to the active constituent of the herbicide Roundup at the relatively low concentration of 1 mg/L has adverse effects on sperm motility, and this may be related to the observed reduction in mitochondrial staining.
Collapse
|
72
|
Palermo GD, O'Neill CL, Chow S, Cheung S, Parrella A, Pereira N, Rosenwaks Z. Intracytoplasmic sperm injection: state of the art in humans. Reproduction 2017; 154:F93-F110. [PMID: 29158352 PMCID: PMC5719728 DOI: 10.1530/rep-17-0374] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
Among infertile couples, 25% involve both male and female factors, while male factor alone accounts for another 25% due to oligo-, astheno-, teratozoospermia, a combination of the three, or even a complete absence of sperm cells in the ejaculate and can lead to a poor prognosis even with the help of assisted reproductive technology (ART). Intracytoplasmic sperm injection (ICSI) has been with us now for a quarter of a century and in spite of the controversy generated since its inception, it remains in the forefront of the techniques utilized in ART. The development of ICSI in 1992 has drastically decreased the impact of male factor, resulting in millions of pregnancies worldwide for couples who, without ICSI, would have had little chance of having their own biological child. This review focuses on the state of the art of ICSI regarding utility of bioassays that evaluate male factor infertility beyond the standard semen analysis and describes the current application and advances in regard to ICSI, particularly the genetic and epigenetic characteristics of spermatozoa and their impact on reproductive outcome.
Collapse
Affiliation(s)
- G D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - C L O'Neill
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - S Chow
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - S Cheung
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - A Parrella
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - N Pereira
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - Z Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| |
Collapse
|
73
|
El-Sisi AE, El-Sayad ME, Abdelsalam NM. Protective effects of mirtazapine and chrysin on experimentally induced testicular damage in rats. Biomed Pharmacother 2017; 95:1059-1066. [DOI: 10.1016/j.biopha.2017.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/18/2023] Open
|
74
|
Wang Y, Chen F, Ye L, Zirkin B, Chen H. Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction 2017; 154:R111-R122. [PMID: 28747539 DOI: 10.1530/rep-17-0064] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/14/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022]
Abstract
Serum testosterone (TS) levels decrease with aging in both humans and rodents. Using the rat as a model system, it was found that age-related reductions in serum TS were not due to loss of Leydig cells, but rather to the reduced ability of the Leydig cells to produce TS in response to luteinizing hormone (LH). Detailed analyses of the steroidogenic pathway have suggested that two defects along the pathway, LH-stimulated cAMP production and cholesterol transport to and into the mitochondria, are of particular importance in age-related reductions in TS production. Although the mechanisms involved in these defects are far from certain, increasing oxidative stress appears to play a particularly important role. Interestingly, increased oxidative stress also appears to be involved in the suppressive effects of endocrine disruptors on Leydig cell TS production.
Collapse
Affiliation(s)
- Yiyan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, China.,Department of Biochemistry and Molecular BiologyJohns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fenfen Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, China
| | - Leping Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, China
| | - Barry Zirkin
- Department of Biochemistry and Molecular BiologyJohns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Haolin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, China .,Department of Biochemistry and Molecular BiologyJohns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
75
|
Abstract
BACKGROUND Recent evidence highlights the reality of unprecedented human exposure to toxic chemical agents found throughout our environment - in our food and water supply, in the air we breathe, in the products we apply to our skin, in the medical and dental materials placed into our bodies, and even within the confines of the womb. With biomonitoring confirming the widespread bioaccumulation of myriad toxicants among population groups, expanding research continues to explore the pathobiological impact of these agents on human metabolism. METHODS This review was prepared by assessing available medical and scientific literature from Medline as well as by reviewing several books, toxicology journals, government publications, and conference proceedings. The format of a traditional integrated review was chosen. RESULTS Toxicant exposure and accrual has been linked to numerous biochemical and pathophysiological mechanisms of harm. Some toxicants effect metabolic disruption via multiple mechanisms. CONCLUSIONS As a primary causative determinant of chronic disease, toxicant exposures induce metabolic disruption in myriad ways, which consequently result in varied clinical manifestations, which are then categorized by health providers into innumerable diagnoses. Chemical disruption of human metabolism has become an etiological determinant of much illness throughout the lifecycle, from neurodevelopmental abnormalities in-utero to dementia in the elderly.
Collapse
Affiliation(s)
- Stephen J Genuis
- a Faculty of Medicine, University of Alberta , Edmonton , Alberta , Canada
| | - Edmond Kyrillos
- b Department of Family Medicine , Faculty of Medicine, University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
76
|
Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol 2017; 233:R109-R129. [PMID: 28356401 PMCID: PMC5479690 DOI: 10.1530/joe-17-0023] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 01/10/2023]
Abstract
Endocrine disrupting chemicals are ubiquitous chemicals that exhibit endocrine disrupting properties in both humans and animals. Female reproduction is an important process, which is regulated by hormones and is susceptible to the effects of exposure to endocrine disrupting chemicals. Disruptions in female reproductive functions by endocrine disrupting chemicals may result in subfertility, infertility, improper hormone production, estrous and menstrual cycle abnormalities, anovulation, and early reproductive senescence. This review summarizes the effects of a variety of synthetic endocrine disrupting chemicals on fertility during adult life. The chemicals covered in this review are pesticides (organochlorines, organophosphates, carbamates, pyrethroids, and triazines), heavy metals (arsenic, lead, and mercury), diethylstilbesterol, plasticizer alternatives (di-(2-ethylhexyl) phthalate and bisphenol A alternatives), 2,3,7,8-tetrachlorodibenzo-p-dioxin, nonylphenol, polychlorinated biphenyls, triclosan, and parabens. This review focuses on the hypothalamus, pituitary, ovary, and uterus because together they regulate normal female fertility and the onset of reproductive senescence. The literature shows that several endocrine disrupting chemicals have endocrine disrupting abilities in females during adult life, causing fertility abnormalities in both humans and animals.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Changqing Zhou
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Catheryne Chiang
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sharada Mahalingam
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Emily Brehm
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative BiosciencesUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
77
|
Nirmal NK, Awasthi KK, John PJ. Effects of Nano-Graphene Oxide on Testis, Epididymis and Fertility of Wistar Rats. Basic Clin Pharmacol Toxicol 2017; 121:202-210. [PMID: 28371123 DOI: 10.1111/bcpt.12782] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
Abstract
Nanoscale graphene oxide (NGO) has great potential in biomedicine by the virtue of its facile functionalization and tunable characteristics. Toxicity assessments have therefore become essential prior to its biomedical applications. This study examined the effects of NGO exposure on male reproductive function of adult Wistar rats. Rats were exposed intraperitoneally to three increasing doses, namely low-dose (0.4 mg/kg BW), mid-dose (2.0 mg/kg BW) and high-dose (10.0 mg/kg BW) of NGO. Repeated exposure of NGO for 15 and 30 days resulted in decreased epididymal sperm counts and elevated sperm abnormalities. Percentage of motile sperms was also significantly reduced due to the exposure. Activities of SOD, GPx and malondialdehyde concentration in the testes increased in a dose-specific manner. Results of the study demonstrated that high-dose of NGO resulted in considerable histological damage to testicular tissue which included atrophy of seminiferous tubules with reduction in germinal epithelium, germ cell loss and vacuolization. Low and mid-doses of NGO were not associated with sperm dysfunction or testis damage. Withdrawal of treatment for 30 days demonstrated significant recovery potential. Histology of epididymis and male fertility potential were not affected due to the NGO exposure. These findings are important for assessment of the risk involved in manufacturing, use and processing of the graphene oxide-based materials towards male reproductive function.
Collapse
Affiliation(s)
- Naresh Kumar Nirmal
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| | - Kumud Kant Awasthi
- National Institute of Animal Welfare, MoEF & CC, Ballabhgarh, Haryana, India
| | - Placheril Joseph John
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, India
| |
Collapse
|
78
|
El Arem A, Lahouar L, Saafi EB, Thouri A, Ghrairi F, Houas Z, Neffati F, Achour L. Dichloroacetic acid-induced testicular toxicity in male rats and the protective effect of date fruit extract. BMC Pharmacol Toxicol 2017; 18:17. [PMID: 28431577 PMCID: PMC5401463 DOI: 10.1186/s40360-017-0127-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Background The present study was designed to investigate the protective effect of aqueous date extract (ADE) against the dichloroacetic acid (DCA)-induced testicular injury in rats. Methods Forty-eight male Wistar rats were randomly divided into six groups of eight: group I served as the control; group II was given ADE (4 ml/kg) by gavage; groups III and IV received DCA at 0.5 and 2 g/L drinking water, respectively; and groups V and VI received DCA at 0.5 and 2 g/L drinking water, respectively, before ADE administration. The experiment was performed for two months. Results Results showed that the absolute weights of testes and epididymis were decreased following the DCA administration. The testosterone, FSH and LH levels were also decreased. Severe histopathological changes in testes were observed including degeneration of seminiferous tubules and depletion of germ cells. These changes were associated with alterations of oxidative stress markers. Levels of lipid peroxidation and SOD and CAT activities were increased, while activity of GPx and GSH levels were decreased. Pretreatment with ADE has effectively alleviated the oxidative stress induced by DCA thereby restoring these parameters to normal values. Conclusions These results suggest that ADE has a protective effect over DCA-induced oxidative damage in rat testes.
Collapse
Affiliation(s)
- Amira El Arem
- Laboratory of Bioressources, Biology Integrative and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia.
| | - Lamia Lahouar
- Laboratory of Bioressources, Biology Integrative and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Emna Behija Saafi
- Laboratory of Bioressources, Biology Integrative and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Amira Thouri
- Laboratory of Bioressources, Biology Integrative and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Fatma Ghrairi
- Laboratory of Bioressources, Biology Integrative and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | - Zohra Houas
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, University of Monastir, Monastir, 5019, Tunisia
| | - Fadoua Neffati
- Department of Biochemistry-Toxicology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Lotfi Achour
- Laboratory of Bioressources, Biology Integrative and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia.
| |
Collapse
|
79
|
Sun J, Yu G, Zhang Y, Liu X, Du C, Wang L, Li Z, Wang C. Heavy Metal Level in Human Semen with Different Fertility: a Meta-Analysis. Biol Trace Elem Res 2017; 176:27-36. [PMID: 27444304 DOI: 10.1007/s12011-016-0804-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/06/2016] [Indexed: 11/30/2022]
Abstract
There are conflicting reports on the heavy metal levels in human semen with different fertilities. The purpose of this analysis is to merge and analyze the differences of heavy metal lead (Pb), cadmium (Cd), zinc (Zn), and copper (Cu) levels in male semen with normal and low fertilities. All documents in both Chinese and English were collected from the PubMed, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) database from inception date to February 19, 2016. We have used RevMan software (version 5.2) for the meta-analysis and Stata software (version 12.0) for the meta-regression and sensitivity analyses. A total of 20 literatures were included in the study. The results of the meta-analysis indicate a significant difference between fertility with three metal ions (Pb, Cd, Zn) while no significant difference with copper, detailed as follows: (i) 10 studies on the lead concentrations with a standardized mean difference (SMD) = 2.07, 95 %CI (0.97, 3.17), P < 0.01; (ii) 13 studies on the cadmium concentrations with an SMD = 0.75, 95 %CI (0.44, 1.07), P < 0.01; (iii) 8 studies on the concentrations of zinc with an SMD = -0.61, 95 %CI (-1.08, -0.14), P < 0.01; and (iv) 9 studies on the copper concentrations with an SMD = 0.42, 95 %CI (-0.29, 1.13), P = 0.247. The results indicate that the men with low fertility have higher semen Pb and Cd levels and lower semen Zn levels; more studies are needed to indicate the association of the semen copper level with fertility.
Collapse
Affiliation(s)
- Jiantao Sun
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Guangxia Yu
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Yucheng Zhang
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Xi Liu
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Chuang Du
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Lu Wang
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Zhen Li
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China
| | - Chunhong Wang
- Department of Toxicology, School of Public Health, Wuhan University, DongHu Road 115, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
80
|
Abdel-Rahman Mohamed A, Mohamed WAM, Khater SI. Imidacloprid induces various toxicological effects related to the expression of 3β-HSD, NR5A1, and OGG1 genes in mature and immature rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:15-25. [PMID: 27914857 DOI: 10.1016/j.envpol.2016.08.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the adverse effects of the insecticide imidacloprid (IMI) on male spermatogenesis, steroidogenesis, and DNA damage in sexually mature and immature rats. Forty male rats (mature and immature) were equally divided into four groups: two mature and two immature groups. IMI groups of both ages were orally administered IMI in corn oil at a concentration of 1 mg/mL for kg BW/day, whereas their respective controls were orally administered corn oil only (1 mL/kg of body weight) daily for 65 days. On day 66, the rats were lightly anesthetized and then euthanized by cervical dislocation. Whole blood was collected for hemogram, serum for hormonal profile, semen for sperm profile, and testes for gene expression and histopathological, and immunohistochemical examinations. The obtained results revealed that both sexually mature and immature rats orally exposed to IMI showed serious abnormalities in sperm morphology and concentrations, with an imbalance of sexual hormones. There were increases in the level of serum 8-hydroxy-2'-deoxyguanosine and in the percentage of comet (tailed) sperm DNA in the IMI-treated groups. The results exhibited the upregulation of a DNA damage tolerance gene (8-oxoguanine glycosylase 1) and downregulation of the activity of steroidogenic genes (nuclear receptor subfamily 5, group A, member 1 and 3β-hydroxysteroid dehydrogenase). Immunohistochemical examination of the B-cell lymphoma 2-associated X apoptotic protein in testicular sections showed various degrees of apoptosis in the spermatogonial cells of the IMI-treated rats compared to the control groups. These damaging effects of IMI were more pronounced in the sexually mature rats than in the immature rats. In conclusion, despite using a low dose of IMI in the present study, there were noticeable harmful consequences on the reproductive system at different stages of sexual maturity in male rats.
Collapse
Affiliation(s)
- Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Clinical Pathology and Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt.
| | - Wafaa A M Mohamed
- Department of Forensic Medicine and Toxicology, Clinical Pathology and Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Safaa I Khater
- Department of Forensic Medicine and Toxicology, Clinical Pathology and Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| |
Collapse
|
81
|
Rizzetti DA, Martinez CS, Escobar AG, da Silva TM, Uranga-Ocio JA, Peçanha FM, Vassallo DV, Castro MM, Wiggers GA. Egg white-derived peptides prevent male reproductive dysfunction induced by mercury in rats. Food Chem Toxicol 2016; 100:253-264. [PMID: 28043836 DOI: 10.1016/j.fct.2016.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Oxidative stress in known to contribute to the male reproductive dysfunction induced by mercury (Hg). Our study tested the hypothesis that the egg white hydrolysate (EWH), a potent antioxidant in vitro, is able to prevent the effects of prolonged Hg exposure on male reproductive system in rats. For this, rats were treated for 60 days with: a) Untreated - saline solution (i.m.); b) Hydrolysate - EWH (1 g/kg/day, gavage); c) Mercury - HgCl2 (1st dose 4.6 μg/kg, subsequent doses 0.07 μg/kg/day, i.m.); d) Hydrolysate-Mercury. At the end of the treatment, sperm motility, count and morphological studies were performed; Reactive Oxygen Species (ROS) levels, lipid peroxidation, antioxidant capacity, histological and immunohistochemical assays on testis and epididymis were also carried out. As results, HgCl2-treatment decreased sperm number, increased sperm transit time in epididymis and impaired sperm morphology. However, these harmful effects were prevented by EWH. HgCl2-treatment also increased ROS levels, lipid peroxidation and antioxidant capacity in testis and epididymis as well as promoted testicular inflammation and histological changes in epididymis. EWH improved histological and immunohistochemical alterations, probably due to its antioxidant property. In conclusion, the EWH could represent a powerful natural alternative to protect the male reproductive system against Hg-induced sperm toxicity.
Collapse
Affiliation(s)
- Danize Aparecida Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Caroline Silveira Martinez
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne Goulart Escobar
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Taiz Martins da Silva
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | | | - Franck Maciel Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468, Vitória, Espírito Santo, Brazil
| | - Marta Miguel Castro
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
82
|
Singh RP, Shafeeque CM, Sharma SK, Singh R, Kannan M, Sastry KVH, Raghunandanan S, Mohan J, Azeez PA. Effects of bisphenol-A on male reproductive success in adult Kadaknath chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:61-66. [PMID: 26895245 DOI: 10.1016/j.ecoenv.2016.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Bisphenol-A (BPA) adversely affects human and animal reproductive success in many ways, but this information is scant on birds. In the present study, we investigated the reproductive toxicity of BPA in adult Kadaknath chicken using two BPA dosages orally (1 or 5 mg/kg body weight) for seven weeks. In order to assess BPA toxicity, sperm functions, fertilizing ability, serum testosterone concentration and testis histopathology were measured in treated and control chickens. The semen volume was highest in birds exposed to 1mg/kg body weight BPA compared to other groups. 5 mg/kg body weight BPA reduced sperm concentration significantly more than other treatment and controls. However, overall fertility and testis histology were unaffected. These results indicate that BPA adversely affects sperm characteristics in adult kadaknath chicken without affecting fertilization potential.
Collapse
Affiliation(s)
- Ram P Singh
- Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty, 641108 Coimbatore, India.
| | - Chathathayil M Shafeeque
- Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty, 641108 Coimbatore, India
| | | | - Renu Singh
- Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | | | | - Sajith Raghunandanan
- Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695 014, India
| | - Jag Mohan
- Central Avian Research Institute, Izatnagar 243 122, India
| | - Parappurath A Azeez
- Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty, 641108 Coimbatore, India
| |
Collapse
|
83
|
Chojnacka K, Bilinska B, Mruk DD. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal 2016; 28:469-480. [DOI: 10.1016/j.cellsig.2016.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/08/2016] [Indexed: 01/09/2023]
|
84
|
Rungsung S, Khan AM, Sood NK, Rampal S, Singh Saini SP. Evaluation of ameliorative potential of supranutritional selenium on enrofloxacin-induced testicular toxicity. Chem Biol Interact 2016; 252:87-92. [DOI: 10.1016/j.cbi.2016.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
|
85
|
Protective Effect of Adrenomedullin on Rat Leydig Cells from Lipopolysaccharide-Induced Inflammation and Apoptosis via the PI3K/Akt Signaling Pathway ADM on Rat Leydig Cells from Inflammation and Apoptosis. Mediators Inflamm 2016; 2016:7201549. [PMID: 27212810 PMCID: PMC4861819 DOI: 10.1155/2016/7201549] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 01/09/2023] Open
Abstract
This study was carried out to investigate whether ADM can modulate LPS-induced inflammation and apoptosis in rat Leydig cells. Leydig cells were treated with ADM before LPS-induced cytotoxicity. We determined the concentrations of ROS, MDA, GSH, LDH, and testosterone and the MMP. The mRNA levels of IL-1, IL-6, iNOS, and COX-2 were obtained, and the concentrations of IL-1, IL-6, NO, and PGE2 were determined. Apoptosis was assessed by TUNEL and detection of DNA fragmentation. The levels of mRNA and protein were determined for Bcl-2, Bax, caspase-3, and PARP. The protein contents for total and p-Akt were measured. ADM pretreatment significantly elevated the MMP and testosterone concentration and reduced the levels of ROS, MDA, GSH, and LDH. ADM pretreatment significantly decreased the mRNA levels of IL-1, IL-6, iNOS, and COX-2 and the concentrations of IL-1, IL-6, NO, and PGE2. LPS-induced TUNEL-positive Leydig cells were significantly decreased by ADM pretreatment, a result further confirmed by decreased DNA fragmentation. ADM pretreatment decreased apoptosis by significantly promoting Bcl-2 and inhibiting Bax, caspase-3, and PARP expressions. The LPS activity that reduced p-Akt level was significantly inhibited by ADM pretreatment. ADM protected rat Leydig cells from LPS-induced inflammation and apoptosis, which might be associated with PI3K/Akt mitochondrial signaling pathway.
Collapse
|
86
|
Buck Louis GM, Barr DB, Kannan K, Chen Z, Kim S, Sundaram R. Paternal exposures to environmental chemicals and time-to-pregnancy: overview of results from the LIFE study. Andrology 2016; 4:639-47. [PMID: 27061873 DOI: 10.1111/andr.12171] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 11/30/2022]
Abstract
Published findings from the Longitudinal Investigation of Fertility and the Environment (LIFE) Study regarding the relation between environmental chemicals and couple fecundity, as measured by time-to-pregnancy (TTP), are reviewed with a particular focus on role of the male partner. The LIFE Study recruited 501 couples from 16 counties in two U.S. states upon discontinuing contraception for purposes of becoming pregnant. Upon enrollment, couples provided a blood and urine sample for the quantification of persistent and non-persistent environmental chemicals, respectively, and then completed daily journals until pregnant or up to one year of trying. Female partners used fertility monitors to aid the timing of intercourse relative to ovulation, and digital home pregnancy test kits on the day of expected menses. Chemical classes included: metals, persistent organic pollutants, environmental phenols, and phthalates that were quantified using inductively coupled plasma mass spectrometry or isotope dilution high-resolution or tandem mass spectrometry. Time-to-pregnancy (TTP) was defined as the number of prospectively observed menstrual cycles required for pregnancy. Fecundability odds ratios (FORs) and 95% confidence intervals (CIs) were estimated for each chemical and partner after adjusting for potential confounders and accounting for right censoring and time off contraception. FORs < 1 are suggestive of diminished fecundity or a longer TTP. Significant reductions (ranging from 17-31%) in couple fecundity were observed for male partners' concentration of lead (0.83; 0.70, 0.98), 2,2',4,4'-tetrahydroxybenzophenone (0.69; 0.49, 0.97), monobenzyl (0.80; 0.67, 0.97), and monomethyl (0.81; 0.70, 0.94) phthalates after adjusting for the female partners' concentrations. Seven PCB congeners quantified in men's serum were associated with a 17-29% reduction in couple fecundity. Our findings underscore the importance of a couple-based exposure design, inclusive of the male partner, when assessing couple-dependent outcomes such as TTP to avoid misinterpretation of results based only upon the female partner.
Collapse
Affiliation(s)
- G M Buck Louis
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Rockville, MD, USA
| | - D B Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - K Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Z Chen
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Rockville, MD, USA
| | - S Kim
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Rockville, MD, USA
| | - R Sundaram
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
87
|
Devillers J, Bro E, Millot F. Prediction of the endocrine disruption profile of pesticides. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:831-852. [PMID: 26548639 DOI: 10.1080/1062936x.2015.1104809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Numerous manmade chemicals released into the environment can interfere with normal, hormonally regulated biological processes to adversely affect the development and reproductive functions of living species. Various in vivo and in vitro tests have been designed for detecting endocrine disruptors, but the number of chemicals to test is so high that to save time and money, (quantitative) structure-activity relationship ((Q)SAR) models are increasingly used as a surrogate for these laboratory assays. However, most of them focus only on a specific target (e.g. estrogenic or androgenic receptor) while, to be more efficient, endocrine disruption modelling should preferentially consider profiles of activities to better gauge this complex phenomenon. In this context, an attempt was made to evaluate the endocrine disruption profile of 220 structurally diverse pesticides using the Endocrine Disruptome simulation (EDS) tool, which simultaneously predicts the probability of binding of chemicals on 12 nuclear receptors. In a first step, the EDS web-based system was successfully applied to 16 pharmaceutical compounds known to target at least one of the studied receptors. About 13% of the studied pesticides were estimated to be potential disruptors of the endocrine system due to their high predicted affinity for at least one receptor. In contrast, about 55% of them were unlikely to be endocrine disruptors. The simulation results are discussed and some comments on the use of the EDS tool are made.
Collapse
Affiliation(s)
| | - E Bro
- b Research Department , National Game and Wildlife Institute (ONCFS) , Le Perray en Yvelines , France
| | - F Millot
- b Research Department , National Game and Wildlife Institute (ONCFS) , Le Perray en Yvelines , France
| |
Collapse
|
88
|
Gress S, Lemoine S, Puddu PE, Séralini GE, Rouet R. Cardiotoxic Electrophysiological Effects of the Herbicide Roundup(®) in Rat and Rabbit Ventricular Myocardium In Vitro. Cardiovasc Toxicol 2015; 15:324-35. [PMID: 25448876 DOI: 10.1007/s12012-014-9299-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Roundup (R), a glyphosate (G)-based herbicide (GBH), containing unknown adjuvants is widely dispersed around the world. Used principally by farmers, intoxications have increasingly been reported. We have studied R effects (containing 36 % of G) on right ventricular tissues (male Sprague-Dawley rats, up to 20,000 ppm and female New Zealand rabbits, at 25 and 50 ppm), to investigate R cardiac electrophysiological actions in vitro. We tested the reduced Ca(++) intracellular uptake mechanism as one potential cause of the electrical abnormalities after GBH superfusion, using the Na(+)/K(+)-ATPase inhibitor ouabain or the 1,4-dihydropyridine L-type calcium channel agonist BAY K 8644 which increases I Ca. R concentrations were selected based on human blood ranges found after acute intoxication. The study showed dose-dependent V max, APD50 and APD90 variations during 45 min of R superfusion. At the highest concentrations tested, there was a high incidence of conduction blocks, and 30-min washout with normal Tyrode solution did not restore excitability. We also observed an increased incidence of arrhythmias at different doses of R. Ouabain and BAY K 8644 prevented V max decrease, APD90 increase and the cardiac inexcitability induced by R 50 ppm. Glyphosate alone (18 and 180 ppm) had no significant electrophysiological effects. Thus, the action potential prolonging effect of R pointing to I Ca interference might explain both conduction blocks and proarrhythmia in vitro. These mechanisms may well be causative of QT prolongation, atrioventricular conduction blocks and arrhythmias in man after GBH acute intoxications as reported in retrospective hospital records.
Collapse
Affiliation(s)
- Steeve Gress
- Institute of Biology, Risk Pole, MRSH-CNRS, EA 2608 Estrogen, Reproduction and Cancer, University of Caen, Esplanade de la Paix, 14032, Caen Cedex, France
- Institute of Biology, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, University of Caen, Esplanade de la Paix, 14032, Caen Cedex, France
| | - Sandrine Lemoine
- Institute of Biology, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, University of Caen, Esplanade de la Paix, 14032, Caen Cedex, France
- Department of Anesthesiology and Critical Care Medicine, University Hospital of Caen, 14033, Caen Cedex, France
- Faculty of Medicine, University of Caen, Caen, France
| | - Paolo-Emilio Puddu
- Laboratory of Biotechnologies Applied to Cardiovascular Medicine, Department of Cardiovascular Sciences, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Gilles-Eric Séralini
- Institute of Biology, Risk Pole, MRSH-CNRS, EA 2608 Estrogen, Reproduction and Cancer, University of Caen, Esplanade de la Paix, 14032, Caen Cedex, France
| | - René Rouet
- Institute of Biology, EA 4650 Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, University of Caen, Esplanade de la Paix, 14032, Caen Cedex, France
| |
Collapse
|
89
|
Saber TM, Abd El-Aziz RM, Ali HA. Quercetin mitigates fenitrothion-induced testicular toxicity in rats. Andrologia 2015; 48:491-500. [PMID: 26264430 DOI: 10.1111/and.12467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 01/21/2023] Open
Abstract
Fenitrothion (FNT) is a widely used organophosphorus pesticide in agriculture. Quercetin (QR), a plant-derived flavonoid, has a free radical scavenging property. This study investigated the protective effect of QR on FNT-induced testicular toxicity in rats. Twenty-four male rats were divided into four groups. Group I (control) received normal saline. Group II was administered QR at the dose of 50 mg kg(-1) b.wt. Group III was orally administered FNT (20 mg kg(-1) b.wt). Group IV was gavaged FNT and QR together at the same doses. All administrations were performed daily by gavage and maintained for 70 days. Sperm parameters and histopathological changes in testes were investigated. Serum testosterone and luteinising hormone were estimated using radioimmunoassay kits. In testes, expressions of steroidogenic genes (3β-hydroxysteroid dehydrogenase type 6, 17 β-hydroxysteroid dehydrogenase type 3 and steroidogenic factor-1) and oxidative stress genes (catalase and superoxide dismutase) were determined using real-time PCR. FNT administration caused significant decreases in sperm count, motility and hormonal levels, a significant increase in abnormal sperm morphology and a significant down-regulation of steroidogenic and antioxidant genes in the testis. However, QR administration ameliorated FNT-induced toxic effects. Our results concluded that QR effectively mitigated testicular damage induced by FNT in rats.
Collapse
Affiliation(s)
- T M Saber
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - R M Abd El-Aziz
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - H A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
90
|
Mohammad NS, Arafa MH, Atteia HH. Coenzyme Q10 and fish oil synergistically alleviate aluminum chloride-induced suppression of testicular steroidogenesis and antioxidant defense. Free Radic Res 2015; 49:1319-34. [DOI: 10.3109/10715762.2015.1069290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
91
|
Abolaji AO, Kamdem JP, Lugokenski TH, Farombi EO, Souza DO, da Silva Loreto ÉL, Rocha JBT. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol 2015; 5:328-339. [PMID: 26117601 PMCID: PMC4491645 DOI: 10.1016/j.redox.2015.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
Abstract
The compounds 4-vinylcyclohexene 1,2-monoepoxide (VCM) and 4-Vinylcyclohexene diepoxide (VCD) are the two downstream metabolites of 4-vinylcyclohexene (VCH), an ovotoxic agent in mammals. In addition, VCM and VCD may be found as by-products of VCH oxidation in the environment. Recently, we reported the involvement of oxidative stress in the toxicity of VCH in Drosophila melanogaster. However, it was not possible to determine the individual contributions of VCM and VCD in VCH toxicity. Hence, we investigated the toxicity of VCM and VCD (10–1000 µM) in flies after 5 days of exposure via the diet. Our results indicated impairments in climbing behaviour and disruptions in antioxidant balance and redox status evidenced by an increase in DCFH oxidation, decreases in total thiol content and glutathione-S-transferase (GST) activity in the flies exposed to VCM and VCD (p<0.05). These effects were accompanied by disruptions in the transcription of the genes encoding the proteins superoxide dismutase (SOD1), kelch-like erythroid-derived cap-n-collar (CNC) homology (ECH)-associated protein 1 (Keap-1), mitogen activated protein kinase 2 (MAPK-2), catalase, Cyp18a1, JAFRAC 1 (thioredoxin peroxidase 1) and thioredoxin reductase 1 (TrxR-1) (p<0.05). VCM and VCD inhibited acetylcholinesterase (AChE) and delta aminolevulinic acid dehydratase (δ-ALA D) activities in the flies (p<0.05). Indeed, here, we demonstrated that different target enzymes and genes were modified by the electrophiles VCM and VCD in the flies. Thus, D. melanogaster has provided further lessons on the toxicity of VCM and VCD which suggest that the reported toxicity of VCH may be mediated by its transformation to VCM and VCD.
Collapse
Affiliation(s)
- Amos O Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Jean P Kamdem
- Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil; Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 90035-003, Brazil
| | | | - Ebenezer O Farombi
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 90035-003, Brazil
| | - Élgion L da Silva Loreto
- Laboratório de Biologia Molecular-LabDros, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - João B T Rocha
- Departamento de Bioquimica e Biologia Molecular, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
92
|
Spörndly-Nees E, Ekstedt E, Magnusson U, Fakhrzadeh A, Luengo Hendriks CL, Holm L. Effect of pre-fixation delay and freezing on mink testicular endpoints for environmental research. PLoS One 2015; 10:e0125139. [PMID: 25933113 PMCID: PMC4416813 DOI: 10.1371/journal.pone.0125139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/16/2015] [Indexed: 12/01/2022] Open
Abstract
There is growing interest in using wild animals to monitor the real-life cocktail effect of environmental chemicals on male reproduction. However, practical difficulties, such as long distances to the laboratory, generally prolong the time between euthanisation and specimen handling. For instance, tissue fixation is often performed on frozen material or on material where deterioration has started, which may affect tissue morphology. This study examined the effect of pre-fixation delay and freezing on mink testicular endpoints in order to determine robust endpoints in suboptimally handled specimens. Sexually mature farmed mink (n=30) selected at culling were divided into six groups and subjected to different time intervals between euthanisation and fixation or freezing: 0 hours (fixed immediately post mortem), 6 hours, 18 hours, 30 hours, 42 hours, or frozen 6 hours post mortem and thawed overnight. Unaffected endpoints when pre-fixation storage was extended to 30 hours included: area and diameter of the seminiferous tubules, length and weight of the testes, and acrosomes marked with Gata-4. Epithelial height, Sertoli cells marked with Gata-4 and cell morphology were affected endpoints after 6 hours of storage. Freezing the tissue prior to fixation severely altered cell morphology and reduced testicular weight, tubular diameter and area. Morphological changes seen after 6 hours included shredded germ cells and excess cytoplasm in seminiferous tubular lumen, chromatin rearrangements and increased germ cell death. Extended delay before fixation and freezing affected many endpoints in the mink testicular tissue. Some of these endpoints may mimic chemically induced effects, which is important to consider when evaluating specimens from wild animals for environmental toxicity.
Collapse
Affiliation(s)
- Ellinor Spörndly-Nees
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
- * E-mail:
| | - Elisabeth Ekstedt
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Ulf Magnusson
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Azadeh Fakhrzadeh
- Department of Information Technology, Division of Visual Information and Interaction, Centre for Image Analysis, Uppsala University, Uppsala, Sweden
| | - Cris L. Luengo Hendriks
- Department of Information Technology, Division of Visual Information and Interaction, Centre for Image Analysis, Uppsala University, Uppsala, Sweden
| | - Lena Holm
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Science, Uppsala, Sweden
| |
Collapse
|
93
|
Reis MMS, Moreira AC, Sousa M, Mathur PP, Oliveira PF, Alves MG. Sertoli cell as a model in male reproductive toxicology: Advantages and disadvantages. J Appl Toxicol 2015; 35:870-83. [DOI: 10.1002/jat.3122] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/21/2014] [Accepted: 12/26/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Mariana M. S. Reis
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Ana C. Moreira
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, UMIB-FCT, Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - Premendu P. Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences; Pondicherry University, Pondicherry, India & KIIT University; Bhubaneswar India
| | - Pedro F. Oliveira
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - Marco G. Alves
- CICS - UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
94
|
Jenardhanan P, Mathur PP. Kinases as targets for chemical modulators: Structural aspects and their role in spermatogenesis. SPERMATOGENESIS 2015; 4:e979113. [PMID: 26413395 DOI: 10.4161/21565562.2014.979113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 01/18/2023]
Abstract
Protein phosphorylation and de-phosphorylation events are crucial in deciding the fate of cells. They regulate cellular growth, differentiation and cell death, and kinases are the key players of these events. The members of ser/thr kinases and tyrosine kinases form the majority of protein kinase family, exerting their regulatory mechanism in almost all cells. In testis, they impact signal transduction events, regulate all stages of sperm development from mitosis through fertilization. Understanding the function of these kinases at the structural level and studying their interactions with inhibitors can help in understanding the machinery of spermatogenesis. In view of this, we have reviewed some of the prominent kinases that are known to play a role in spermatogenesis. A better understanding of the impacts of kinase inhibition on spermatogenesis should aid in the interpretation of lesions and hopefully further the development of more efficient and potent drug candidates.
Collapse
Affiliation(s)
- Pranitha Jenardhanan
- Centre for Bioinformatics; School of Life Sciences; Pondicherry University ; Puducherry, India
| | - Premendu P Mathur
- Centre for Bioinformatics; School of Life Sciences; Pondicherry University ; Puducherry, India ; Department of Biochemistry & Molecular Biology; School of Life Sciences; Pondicherry University ; Puducherry, India ; KIIT University ; Bhubaneshwar, Odisha, India
| |
Collapse
|
95
|
Avci B, Bahadir A, Tuncel OK, Bilgici B. Influence of α-tocopherol and α-lipoic acid on bisphenol-A-induced oxidative damage in liver and ovarian tissue of rats. Toxicol Ind Health 2014; 32:1381-1390. [PMID: 25548375 DOI: 10.1177/0748233714563433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bisphenol A (BPA) is a commonly used material in daily life, and it is argued to cause oxidative stress in liver and ovarian tissue. α-Lipoic acid (ALA) and α-tocopherol (ATF), two of the most effective antioxidants, may play a role in preventing the toxic effect. Therefore, the purpose of this study was to examine the beneficial effects of ALA, ATF, and that of ALA + ATF combination on oxidative damage induced by BPA. Female Wistar rats were divided into five groups (control, BPA, BPA + ALA, BPA + ATF, and BPA + ALA + ATF). BPA (25 mg/kg/day), ALA (100 mg/kg/day), and ATF (20 mg/kg/day) were administered for 30 days. The levels of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), liver malondialdehyde (L-MDA) and glutathione peroxidase (L-GPx), and ovarian malondialdehyde (Ov-MDA) and nitric oxide (Ov-NO) were significantly higher in the BPA-treated groups compared with the control group. The levels of AST and ALT decreased in the BPA + ALA, BPA + ATF, and BPA + ALA + ATF groups compared with the BPA group. Similarly, BPA + ALA or BPA + ATF led to decreases in L-MDA and Ov-MDA levels compared with the BPA group. However, the BPA + ALA + ATF group showed a significant decrease in L-MDA levels compared with the BPA + ALA group and the BPA + ATF group. The levels of L-GPx decreased in the BPA + ATF and the BPA + ALA + ATF groups compared with the BPA group. The administration of ATF and ALA + ATF significantly decreased the Ov-NO levels. This study demonstrates that BPA causes oxidative damage in liver and ovarian tissues. ALA, ATF, or their combination were found to be beneficial in preventing BPA-induced oxidative stress.
Collapse
Affiliation(s)
- Bahattin Avci
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Aysegul Bahadir
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ozgur Korhan Tuncel
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Birsen Bilgici
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
96
|
Palermo GD, Neri QV, Cozzubbo T, Rosenwaks Z. Perspectives on the assessment of human sperm chromatin integrity. Fertil Steril 2014; 102:1508-17. [DOI: 10.1016/j.fertnstert.2014.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
|
97
|
Maeda N, Okumura K, Tanaka E, Suzuki T, Miyasho T, Haeno S, Ueda H, Hoshi N, Yokota H. Downregulation of cytochrome P450scc as an initial adverse effect of adult exposure to diethylstilbestrol on testicular steroidogenesis. ENVIRONMENTAL TOXICOLOGY 2014; 29:1452-1459. [PMID: 23873838 DOI: 10.1002/tox.21875] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/01/2013] [Accepted: 05/12/2013] [Indexed: 06/02/2023]
Abstract
Reproductive toxicities and endocrine disruptions caused by chemicals in adult males are still poorly understood. It is our objectives to understand further details of the initial adverse effects leading severe testicular toxicities of a pharmaceutical endocrine disruptor, diethylstilbestrol (DES). Downregulations of both testicular regulatory proteins, such as the steroidogenic acute regulatory protein (StAR) and the peripheral benzodiazepine receptor (PBR), which play important roles in the transport of cholesterol into the mitochondria, and cytochrome P450 mediating the cholesterol side chain cleavage reaction (P450scc), were observed in the rat orally administered DES (340 μg/kg/2 days) for 2 weeks. We found that after only 1 week treatment with DES, the blood and testicular testosterone (TS) levels were drastically decreased without abnormalities of the StAR and PBR; however, the protein and mRNA levels of P450scc were diminished. Decrease in the conversion rate of cholesterol to pregnenolone was delayed in the in vitro assay using the testicular mitochondrial fraction from the rat treated with DES for 1 week. When the precursors in TS biosynthesis containing the testis were identified and determined by liquid chromatography-mass spectrometry analysis, decreased levels of all precursors except cholesterol were observed. In conclusion, suppressed cytochrome P450scc expression in adult male rat was identified as an initial target of DES in testicular steroidogenesis disorder leading reproductive toxicities.
Collapse
Affiliation(s)
- Naoyuki Maeda
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan; Japan Meat Science and Technology Institute, Ebisu, Shibuya-ku, Tokyo, 150-0013, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Prepubertal exposure to genistein alleviates di-(2-ethylhexyl) phthalate induced testicular oxidative stress in adult rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:598630. [PMID: 25530965 PMCID: PMC4228721 DOI: 10.1155/2014/598630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plastizer in the world and can suppress testosterone production via activation of oxidative stress. Genistein (GEN) is one of the isoflavones ingredients exhibiting weak estrogenic and potentially antioxidative effects. However, study on reproductive effects following prepubertal multiple endocrine disrupters exposure has been lacking. In this study, DEHP and GEN were administrated to prepubertal male Sprague-Dawley rats by gavage from postnatal day 22 (PND22) to PND35 with vehicle control, GEN at 50 mg/kg body weight (bw)/day (G), DEHP at 50, 150, 450 mg/kg bw/day (D50, D150, D450) and their mixture (G + D50, G + D150, G + D450). On PND90, general morphometry (body weight, AGD, organ weight, and organ coefficient), testicular redox state, and testicular histology were studied. Our results indicated that DEHP could significantly decrease sex organs weight, organ coefficient, and testicular antioxidative ability, which largely depended on the dose of DEHP. However, coadministration of GEN could partially alleviate DEHP-induced reproductive injuries via enhancement of testicular antioxidative enzymes activities, which indicates that GEN has protective effects on DEHP-induced male reproductive system damage after prepubertal exposure and GEN may have promising future in its curative antioxidative role for reproductive disorders caused by other environmental endocrine disruptors.
Collapse
|
99
|
Celik-Ozenci C, Tasatargil A. Role of poly(ADP-ribose) polymerases in male reproduction. SPERMATOGENESIS 2014; 3:e24194. [PMID: 23885303 PMCID: PMC3710221 DOI: 10.4161/spmg.24194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/05/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a wide variety of biological processes, including DNA repair and maintenance of genomic stability following genotoxic stress, and regulates the expression of various proteins at the transcriptional level as well as replication and differentiation. However, excessive activation of PARP has been shown to contribute to the pathogenesis of several diseases associated with oxidative stress (OS), which has been known to play a fundamental role in the etiology of male infertility. Based on the degree and type of the stress stimulus, PARP directs cells to specific fates (such as, DNA repair vs. cell death). A large volume of accumulated evidence indicates the presence of PARP and its homologs in testicular germ line cells and its activity may offer a key mechanism for keeping DNA integrity in spermatogenesis. On the other hand, a possible role of PARP overactivation in OS-induced male reproductive disorders and in human sperm is gaining significance in recent years. In this review, we focus on the findings about the importance of PARP-1 and PARP-2 in male reproduction and possible involvement of PARP overactivation in various clinical conditions associated with male infertility.
Collapse
Affiliation(s)
- Ciler Celik-Ozenci
- Akdeniz University Medical Faculty Department of Histology and Embryology; Antalya, Turkey
| | | |
Collapse
|
100
|
Green tea potentially ameliorates bisphenol a-induced oxidative stress: an in vitro and in silico study. Biochem Res Int 2014. [PMID: 25180096 DOI: 10.1155/2014/259763]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present investigation was an attempt to elucidate oxidative stress induced by bisphenol A on erythrocytes and its amelioration by green tea extract. For this, venous blood samples from healthy human adults were collected in EDTA vials and used for preparation of erythrocytes suspension. When erythrocyte suspensions were treated with different concentrations of BPA/H2O2, a dose-dependent increase in hemolysis occurred. Similarly, when erythrocytes suspensions were treated with either different concentrations of H2O2 (0.05-0.25 mM) along with BPA (50 μg/mL) or 0.05 mM H2O2 along with different concentrations of BPA (50-250 μg/mL), dose-dependent significant increase in hemolysis occurred. The effect of BPA and H2O2 was found to be additive. For the confirmation, binding capacity of bisphenol A with erythrocyte proteins (hemoglobin, catalase, and glutathione peroxidase) was inspected using molecular docking tool, which showed presence of various hydrogen bonds of BPA with the proteins. The present data clearly indicates that BPA causes oxidative stress in a similar way as H2O2 . Concurrent addition of different concentrations (10-50 μg/mL) of green tea extract to reaction mixture containing high dose of bisphenol A (250 μg/mL) caused concentration-dependent amelioration in bisphenol A-induced hemolysis. The effect was significant (P < 0.05). It is concluded that BPA-induced oxidative stress could be significantly mitigated by green tea extract.
Collapse
|