51
|
Agostini M, Annicchiarico-Petruzzelli M, Melino G, Rufini A. Metabolic pathways regulated by TAp73 in response to oxidative stress. Oncotarget 2017; 7:29881-900. [PMID: 27119504 PMCID: PMC5058650 DOI: 10.18632/oncotarget.8935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Rufini
- Department of Cancer Studies, CRUK Leicester Cancer Centre, University of Leicester, Leicester, UK
| |
Collapse
|
52
|
Geoghegan F, Buckland RJ, Rogers ET, Khalifa K, O'Connor EB, Rooney MF, Behnam-Motlagh P, Nilsson TK, Grankvist K, Porter RK. Bioenergetics of acquired cisplatin resistant H1299 non-small cell lung cancer and P31 mesothelioma cells. Oncotarget 2017; 8:94711-94725. [PMID: 29212260 PMCID: PMC5706906 DOI: 10.18632/oncotarget.21885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/21/2017] [Indexed: 01/31/2023] Open
Abstract
Acquired cisplatin resistance is a common feature of tumours following cancer treatment with cisplatin and also of non-small cell lung cancer (H1299) and mesothelioma (P31) cell lines exposed to cisplatin. To elucidate the cellular basis of acquired cisplatin resistance, a comprehensive bioenergetic analysis was undertaken. We demonstrate that cellular oxygen consumption was significantly decreased in cisplatin resistant cells and that the reduction was primarily due to reduced mitochondrial activity as a result of reduced mitochondrial abundance. The differential mitochondrial abundance was supported by data showing reduced sirtuin 1 (SIRT1), peroxisome-proliferator activator receptor-γ co-activator 1-alpha (PGC1α), sirtuin 3 (SIRT3) and mitochondrial transcription factor A (TFAM) protein expression in resistant cells. Consistent with these data we observed increased reactive oxygen species (ROS) production and increased hypoxia inducible factor 1-alpha (HIF1α) stabilization in cisplatin resistant cells when compared to cisplatin sensitive controls. We also observed an increase in AMP kinase subunit α2 (AMPKα2) transcripts and protein expression in resistant H1299 cells. mRNA expression was also reduced for cisplatin resistant H1299 cells in these genes, however the pattern was not consistent in resistant P31 cells. There was very little change in DNA methylation of these genes, suggesting that the cells are not stably reprogrammed epigenetically. Taken together, our data demonstrate reduced oxidative metabolism, reduced mitochondrial abundance, potential for increased glycolytic flux and increased ROS production in acquired cisplatin resistant cells. This suggests that the metabolic changes are a result of reduced SIRT3 expression and increased HIF-1α stabilization.
Collapse
Affiliation(s)
- Fintan Geoghegan
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland
| | - Robert J Buckland
- Dept of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Eric T Rogers
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland
| | - Karima Khalifa
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland
| | - Emma B O'Connor
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland
| | - Mary F Rooney
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland
| | | | - Torbjörn K Nilsson
- Dept of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Kjell Grankvist
- Dept of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute (TBSI), Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
53
|
Guan S, Zhou J. Frizzled-7 mediates TGF-β-induced pulmonary fibrosis by transmitting non-canonical Wnt signaling. Exp Cell Res 2017; 359:226-234. [DOI: 10.1016/j.yexcr.2017.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022]
|
54
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
55
|
Murley JS, Miller RC, Weichselbaum RR, Grdina DJ. TP53 Mutational Status and ROS Effect the Expression of the Survivin-Associated Radio-Adaptive Response. Radiat Res 2017; 188:579-590. [PMID: 28813624 DOI: 10.1667/rr14831.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A survivin-associated radio-adaptive response, characterized by increased radiation resistance or sensitization, was induced by exposure to 5 mGy of ionizing radiation and was correlated to the TP53 mutational status of exposed cells. Ten human cancer lines were investigated: colorectal carcinomas HCT116 and RKO [TP53 wild-type (WT)] and their respective TP53 null isogenic lines; breast adenocarcinomas MCF7 (TP53 WT) and MDA-MB-231 (TP53 Mut); lung carcinomas A549 (TP53 WT) and NCI-H1975 (TP53 Mut); and pancreatic carcinomas Hs766T (TP53 WT) and Panc-1 (TP53 Mut). Radiation induced (5 mGy) changes in the subsequent responses to 2 Gy in a multi-dose paradigm. Effects on radiation sensitivity were associated with changes in survivin's intracellular translocation to the cytoplasm (TP53 WT) or nucleus (TP53 Mut). Survival responses were determined using a colony forming assay. Intracellular localization of survivin was determined by ELISA and correlated with survival response. Two 2 Gy doses had minimal effects on the intracellular translocation of survivin. When preceded 15 min earlier by a 5 mGy exposure, survivin translocated to the cytoplasm in all of the TP53 WT cell lines, and to the nuclei in the TP53 null and Mut cells. All TP53 WT cells were protected (P < 0.001) by 5 mGy exposures, while Mut cells were sensitized (P < 0.001). HCT116 and RKO TP53 WT cells were admixed with their respective isogenic TP53 null counterparts in different proportions: 75% to 25%, 50% to 50% and 25% to 75%, respectively. All mixed confluent cultures expressed enhanced radio-sensitization (P ≤ 0.047) characteristic of TP53 Mut cells, which could be inhibited by their exposure to the antioxidant N-acetyl-l-cysteine (NAC) indicating a role for intercellular signaling by reactive oxygen species (ROS). ROS signaling in propagating the survivin-mediated response is involved in both intra- and intercellular communication processes.
Collapse
Affiliation(s)
- Jeffrey S Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - Richard C Miller
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - David J Grdina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
56
|
Jhou BY, Song TY, Lee I, Hu ML, Yang NC. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6893-6903. [PMID: 28723216 DOI: 10.1021/acs.jafc.7b03036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P < 0.05) at 2.5 μM lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.
Collapse
Affiliation(s)
- Bo-Yi Jhou
- Department of Food Science and Biotechnology, National Chung Hsing University , Taichung, Taiwan
| | - Tuzz-Ying Song
- Department of BioIndustry Technology, Dayeh University , Changhua, Taiwan
| | - Inn Lee
- Department of Nutrition, Chung Shan Medical University , Taichung, Taiwan
| | - Miao-Lin Hu
- Department of Food Science and Biotechnology, National Chung Hsing University , Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University , Taichung, Taiwan
| | - Nae-Cherng Yang
- Department of Nutrition, Chung Shan Medical University , Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital , Taichung, Taiwan
| |
Collapse
|
57
|
GLP-1 Inhibits High-Glucose-Induced Oxidative Injury of Vascular Endothelial Cells. Sci Rep 2017; 7:8008. [PMID: 28808291 PMCID: PMC5555999 DOI: 10.1038/s41598-017-06712-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/16/2017] [Indexed: 01/07/2023] Open
Abstract
The aim of this work was to evaluate the effects of glucagon-like peptide-1 (GLP-1) on high-glucose-induced oxidative stress and investigate the possible mechanisms underlying this process. We measured reactive oxygen species (ROS) production, cell apoptosis, the expression of NOX4 and its subunits, and p47phox translocation in human umbilical vein endothelial cells (HUVECs). An experimental type 2 diabetes model was induced using streptozotocin in male Sprague-Dawley rats. Fasting blood glucose (FBG), fasting insulin (FINS), total cholesterol (TC), triglycerides (TGs), and free fatty acid (FFA) were measured. Histomorphological analysis of the aorta was performed using hematoxylin-eosin staining. NOX4 and VCAM-1 expression in the aorta was measured. We found that high-glucose-induced ROS production and apoptosis were inhibited by GLP-1 treatment. High glucose caused upregulation of NOX4, p47phox, and Rac-1 and translocation of p47phox but had no effect on the cells pretreated with GLP-1. Furthermore, in the diabetic group, FBG, FINS, TG, TC, and FFA were increased, and NOX4 and VCAM-1 levels were also elevated. However, GLP-1 attenuated all these changes. GLP-1 ameliorated high-glucose-induced oxidative stress by inhibiting NOX4, p47phox, and Rac-1 expression and translocation of p47phox, suggesting its clinical usefulness in diabetic vascular complications.
Collapse
|
58
|
Teixeira G, Szyndralewiez C, Molango S, Carnesecchi S, Heitz F, Wiesel P, Wood JM. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br J Pharmacol 2017; 174:1647-1669. [PMID: 27273790 PMCID: PMC5446584 DOI: 10.1111/bph.13532] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
The NADPH oxidase (NOX) family of enzymes produces ROS as their sole function and is becoming recognized as key modulators of signal transduction pathways with a physiological role under acute stress and a pathological role after excessive activation under chronic stress. The seven isoforms differ in their regulation, tissue and subcellular localization and ROS products. The most studied are NOX1, 2 and 4. Genetic deletion of NOX1 and 4, in contrast to NOX2, has revealed no significant spontaneous pathologies and a pathogenic relevance of both NOX1 and 4 across multiple organs in a wide range of diseases and in particular inflammatory and fibrotic diseases. This has stimulated interest in NOX inhibitors for therapeutic application. GKT136901 and GKT137831 are two structurally related compounds demonstrating a preferential inhibition of NOX1 and 4 that have suitable properties for in vivo studies and have consequently been evaluated across a range of disease models and compared with gene deletion. In contrast to gene deletion, these inhibitors do not completely suppress ROS production, maintaining some basal level of ROS. Despite this and consistent with most gene deletion studies, these inhibitors are well tolerated and slow or prevent disease progression in a range of models of chronic inflammatory and fibrotic diseases by modulating common signal transduction pathways. Clinical trials in patients with GKT137831 have demonstrated excellent tolerability and reduction of various markers of chronic inflammation. NOX1/4 inhibition may provide a safe and effective therapeutic strategy for a range of inflammatory and fibrotic diseases. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Teixeira
- Evotec International GmbHGoettingenGermany
| | | | - S Molango
- Genkyotex SAPlan les OuatesSwitzerland
| | | | - F Heitz
- Genkyotex SAPlan les OuatesSwitzerland
| | - P Wiesel
- Genkyotex SAPlan les OuatesSwitzerland
| | | |
Collapse
|
59
|
Ungefroren H, Witte D, Lehnert H. The role of small GTPases of the Rho/Rac family in TGF-β-induced EMT and cell motility in cancer. Dev Dyn 2017; 247:451-461. [DOI: 10.1002/dvdy.24505] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine; University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck; Lübeck Germany
- Department of General and Thoracic Surgery; UKSH, Campus Kiel; Kiel Germany
| | - David Witte
- First Department of Medicine; University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck; Lübeck Germany
| | - Hendrik Lehnert
- First Department of Medicine; University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, and University of Lübeck; Lübeck Germany
| |
Collapse
|
60
|
Hua L, Xia H, Zheng WY, An L. Gene Regulation Network Based Analysis Associated with TGF-βeta Stimulation in Lung Adenocarcinoma Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:1-9. [PMID: 28959347 PMCID: PMC5582248 DOI: 10.15171/ijb.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background
Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and
the effect of TGF-β stimulation on tumor micro-environment.
Objectives
To address this issue, in the present study we used two time-course microarray data in human lung adenocarcinoma
cells and applied bioinformatics methods to explore the gene regulation network responding to TGF-β stimulation in lung
adenocarcinoma cells.
Materials and Methods
The time-dependent reverse-engineering method, protein-protein interaction network analyses,
and calculation of the similarity measures between the links were used to construct gene regulatory network and to extract
gene clusters.
Results
Utilizing the constructed gene regulation network, we predicted NEFL and LUC7A show the opposite and the same
change with C21orf90 if HAND2 is knocked-out after treatment with TGF-β1 for 4 hours and for 12 hours respectively.
FGG and HSPC009 are predicted to display the opposite change with NEFL if CSMD1 is knocked out after treatment
with TGF-β1 for 12 hours. Additionally, by integrating two datasets, we specially identified several nested clusters which
included those genes regulated by TGF-β stimulation in lung adenocarcinoma cells.
Conclusions
Our analysis can help a better understanding regarding how TGF-β stimulation causes the expression change
of a number of the genes and provide a novel insight into TGF-β stimulation effect on lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Lin Hua
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Hong Xia
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Wei-Ying Zheng
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Li An
- Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100028, China
| |
Collapse
|
61
|
Crosas-Molist E, Bertran E, Rodriguez-Hernandez I, Herraiz C, Cantelli G, Fabra À, Sanz-Moreno V, Fabregat I. The NADPH oxidase NOX4 represses epithelial to amoeboid transition and efficient tumour dissemination. Oncogene 2017; 36:3002-3014. [PMID: 27941881 PMCID: PMC5354266 DOI: 10.1038/onc.2016.454] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
Epithelial to mesenchymal transition is a common event during tumour dissemination. However, direct epithelial to amoeboid transition has not been characterized to date. Here we provide evidence that cells from hepatocellular carcinoma (HCC), a highly metastatic cancer, undergo epithelial to amoeboid transition in physiological environments, such as organoids or three-dimensional complex matrices. Furthermore, the NADPH oxidase NOX4 inhibits this transition and therefore suppresses efficient amoeboid bleb-based invasion. Moreover, NOX4 expression is associated with E-cadherin levels and inversely correlated with invasive features. NOX4 is necessary to maintain parenchymal structures, increase cell-cell and cell-to-matrix adhesion, and impair actomyosin contractility and amoeboid invasion. Importantly, NOX4 gene deletions are frequent in HCC patients, correlating with higher tumour grade. Contrary to that observed in mesenchymal cell types, here NOX4 suppresses Rho and Cdc42 GTPase expression and downstream actomyosin contractility. In HCC patients, NOX4 expression inversely correlates with RhoC and Cdc42 levels. Moreover, low expression of NOX4 combined with high expression of either RhoC or Cdc42 is associated with worse prognosis. Therefore, loss of NOX4 increases actomyosin levels and favours an epithelial to amoeboid transition contributing to tumour aggressiveness.
Collapse
Affiliation(s)
- E Crosas-Molist
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - E Bertran
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - I Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - C Herraiz
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - G Cantelli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - À Fabra
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - V Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - I Fabregat
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques II, University of Barcelona, Barcelona, Spain
| |
Collapse
|
62
|
NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626501 PMCID: PMC5463201 DOI: 10.1155/2017/9420539] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers.
Collapse
|
63
|
Azouzi N, Cailloux J, Cazarin JM, Knauf JA, Cracchiolo J, Al Ghuzlan A, Hartl D, Polak M, Carré A, El Mzibri M, Filali-Maltouf A, Al Bouzidi A, Schlumberger M, Fagin JA, Ameziane-El-Hassani R, Dupuy C. NADPH Oxidase NOX4 Is a Critical Mediator of BRAF V600E-Induced Downregulation of the Sodium/Iodide Symporter in Papillary Thyroid Carcinomas. Antioxid Redox Signal 2017; 26:864-877. [PMID: 27401113 PMCID: PMC5444494 DOI: 10.1089/ars.2015.6616] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS The BRAFV600E oncogene, reported in 40%-60% of papillary thyroid cancer (PTC), has an important role in the pathogenesis of PTC. It is associated with the loss of thyroid iodide-metabolizing genes, such as sodium/iodide symporter (NIS), and therefore with radioiodine refractoriness. Inhibition of mitogen-activated protein kinase (MAPK) pathway, constitutively activated by BRAFV600E, is not always efficient in resistant tumors suggesting that other compensatory mechanisms contribute to a BRAFV600E adaptive resistance. Recent studies pointed to a key role of transforming growth factor β (TGF-β) in BRAFV600E-induced effects. The reactive oxygen species (ROS)-generating NADPH oxidase NOX4, which is increased in PTC, has been identified as a new key effector of TGF-β in cancer, suggestive of a potential role in BRAFV600E-induced thyroid tumors. RESULTS Here, using two human BRAFV600E-mutated thyroid cell lines and a rat thyroid cell line expressing BRAFV600E in a conditional manner, we show that NOX4 upregulation is controlled at the transcriptional level by the oncogene via the TGF-β/Smad3 signaling pathway. Importantly, treatment of cells with NOX4-targeted siRNA downregulates BRAFV600E-induced NIS repression. Innovation and Conclusion: Our results establish a link between BRAFV600E and NOX4, which is confirmed by a comparative analysis of NOX4 expression in human (TCGA) and mouse thyroid cancers. Remarkably, analysis of human and murine BRAFV600E-mutated thyroid tumors highlights that the level of NOX4 expression is inversely correlated to thyroid differentiation suggesting that other genes involved in thyroid differentiation in addition to NIS might be silenced by a mechanism controlled by NOX4-derived ROS. This study opens a new opportunity to optimize thyroid cancer therapy. Antioxid. Redox Signal. 26, 864-877.
Collapse
Affiliation(s)
- Naïma Azouzi
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France .,4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Jérémy Cailloux
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - Juliana M Cazarin
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France .,5 Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Brazil
| | - Jeffrey A Knauf
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Jennifer Cracchiolo
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Abir Al Ghuzlan
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - Dana Hartl
- 2 Institut Gustave Roussy , Villejuif, France
| | - Michel Polak
- 7 INSERM U1016 , Paris, France .,8 Imagine Institute , Paris, France .,9 Pediatric Endocrinology, Gynaecology and Diabetology Unit, Hôpital Universitaire Necker-Enfants Malades , AP-HP, Paris, France .,10 Université Paris Descartes-Sorbonne Paris Cité , Paris, France
| | - Aurore Carré
- 7 INSERM U1016 , Paris, France .,8 Imagine Institute , Paris, France
| | - Mohammed El Mzibri
- 4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- 11 Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V , Rabat, Morocco
| | - Abderrahmane Al Bouzidi
- 12 Equipe de recherche en pathologie tumorale, Faculté de Médecine et de Pharmacie, Université Mohammed V , Rabat, Morocco
| | - Martin Schlumberger
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| | - James A Fagin
- 6 Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | - Rabii Ameziane-El-Hassani
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,4 Unité de Biologie et Recherche Médicale, Centre National de l'Energie , des Sciences et des Techniques Nucléaires, Rabat, Morocco
| | - Corinne Dupuy
- 1 UMR 8200 CNRS , Villejuif, France .,2 Institut Gustave Roussy , Villejuif, France .,3 Université Paris-Saclay , Orsay, France
| |
Collapse
|
64
|
Melzer C, Hass R, von der Ohe J, Lehnert H, Ungefroren H. The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma. Cell Commun Signal 2017; 15:19. [PMID: 28499439 PMCID: PMC5429551 DOI: 10.1186/s12964-017-0175-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
This article focusses on the role of TGF-β and its signaling crosstalk with the RHO family GTPases RAC1 and RAC1b in the progression of breast and pancreatic carcinoma. The aggressive nature of these tumor types is mainly due to metastatic dissemination. Metastasis is facilitated by desmoplasia, a peculiar tumor microenvironment and the ability of the tumor cells to undergo epithelial-mesenchymal transition (EMT) and to adopt a motile and invasive phenotype. These processes are controlled entirely or in part by TGF-β and the small RHO GTPase RAC1 with both proteins acting as tumor promoters in late-stage cancers. Data from our and other studies point to signaling crosstalk between TGF-β and RAC1 and the related isoform, RAC1b, in pancreatic and mammary carcinoma cells. Based on the exciting observation that RAC1b functions as an endogenous inhibitor of RAC1, we propose a model on how the relative abundance or activity of RAC1 and RAC1b in the tumor cells may determine their responses to TGF-β and, ultimately, the metastatic capacity of the tumor.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Hendrik Lehnert
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.,First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Hendrik Ungefroren
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. .,First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany. .,Department of General and Thoracic Surgery, UKSH, Campus Kiel, Kiel, Germany.
| |
Collapse
|
65
|
Chang CJ, Chen YL, Hsieh CH, Liu YJ, Yu SL, Chen JJW, Wang CC. HOXA5 and p53 cooperate to suppress lung cancer cell invasion and serve as good prognostic factors in non-small cell lung cancer. J Cancer 2017; 8:1071-1081. [PMID: 28529621 PMCID: PMC5436261 DOI: 10.7150/jca.17295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide and tumor metastasis is the major cause of cancer-related death. Our previous study suggested that Homeobox A5 (HOXA5) could inhibit lung cancer cell invasion via regulating cytoskeletal remodeling and involved in tumor metastasis. Recently, consensus HOX binding sites was found in the p53 gene promoter region. However, whether the HOXA5 could cooperate with p53 and contribute the inhibition of lung cancer cell invasion is still unclear. The aim of the current study is to elucidate the correlation of HOXA5 and p53 in tumor invasion and its prognostic influence in lung cancer patient specimens. Totally 71 cases of primary non-small cell lung cancer (NSCLC) were collected. The median follow-up period is 6.8 years. Immunohistochemical stain for p53 and HOXA5 were performed. Kaplan-Meier plot was done for overall survival analysis. In addition, lung cancer cell lines transfected with wild-type or mutated p53 constructs were overexpressed with HOXA5 for invasion assay. In human specimens, HOXA5 expressed mainly in the cytoplasm (54.1%) rather than nuclei (14.6%) of the NSCLC tumor part. The HOXA5 expression is higher in adenocarcinoma than in squamous cell carcinoma (P < 0.001). In addition, poor prognosis is seen in group with both non-immunoreactive for p53 and HOXA5. HOXA5 and p53 could cooperate to inhibit tumor cell invasion significantly partly by decreasing MMP2 activity in a concentration-dependent manner. Our studies provide new insights into how HOXA5 and p53 cooperate to contribute to the suppression of lung cancer cell invasion and play good prognostic roles in NSCLC.
Collapse
Affiliation(s)
- Chi-Jen Chang
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Division of Pediatric Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yen-Lin Chen
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Department of Pathology, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ya-Jung Liu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.,NTU Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
66
|
Murley JS, Miller RC, Senlik RR, Rademaker AW, Grdina DJ. Altered expression of a metformin-mediated radiation response in SA-NH and FSa tumor cells treated under in vitro and in vivo growth conditions. Int J Radiat Biol 2017; 93:665-675. [PMID: 28281393 DOI: 10.1080/09553002.2017.1304592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To assess the radiosensitizing effect of the biguanide drug metformin used alone or in combination with reactive oxygen species (ROS) modifying agents N-acetyl-L-cysteine (NAC) or emodin, and contrasted to the mitochondrial complex 1 inhibitor rotenone in altering the radiation responses of the p53 wild-type SA-NH and p53 mutant FSa mouse tumor lines grown either in vitro or in vivo. MATERIALS AND METHODS Tumor cells were grown to confluence in vitro and exposed to a single 4 Gy dose in the presence or absence of metformin (5 mM) and ROS modifiers or to 10 Gy with or without metformin as tumors in the flanks of C3H mice using a tumor growth delay assay. RESULTS Both metformin and rotenone protected SA-NH (p < .001) while sensitizing FSa (p < .001) to 4 Gy. Neither NAC nor emodin altered metformin's action. Metformin was also directly toxic to FSa cells (p = .002). In contrast, in vivo metformin (250 mg/kg) sensitized both SA-NH (9-day growth delay, p < .05) and FSa (4-day growth delay, p < .05) tumors if administered 1 h before irradiation. CONCLUSION Metformin effects on tumor cells measured under in vitro conditions may differ from those determined in vivo due to p53 and heterogeneous environmental factors.
Collapse
Affiliation(s)
- Jeffrey S Murley
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| | - Richard C Miller
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| | - Raziye Rana Senlik
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| | - Alfred W Rademaker
- b Department of Preventive Medicine , Northwestern University, Feinberg School of Medicine , Chicago , IL , USA
| | - David J Grdina
- a Department of Radiation and Cellular Oncology , The University of Chicago , Chicago , IL , USA
| |
Collapse
|
67
|
Tamura RE, Hunger A, Fernandes DC, Laurindo FR, Costanzi-Strauss E, Strauss BE. Induction of Oxidants Distinguishes Susceptibility of Prostate Carcinoma Cell Lines to p53 Gene Transfer Mediated by an Improved Adenoviral Vector. Hum Gene Ther 2017; 28:639-653. [PMID: 28181816 DOI: 10.1089/hum.2016.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, the authors developed an adenoviral vector, Ad-PG, where transgene expression is regulated by a p53-responsive promoter. When used to transfer the p53 cDNA, a positive feedback mechanism is established. In the present study, a critical comparison is performed between Ad-PGp53 and AdRGD-PGp53, where the RGD motif was incorporated in the adenoviral fiber protein. AdRGD-PGp53 provided superior transgene expression levels and resulted in the killing of prostate carcinoma cell lines DU145 and PC3. In vitro, this effect was associated with increased production of cytoplasmic and mitochondrial oxidants, DNA damage as revealed by detection of phosphorylated H2AX, as well as cell death consistent with apoptosis. Differential gene expression of key mediators of reactive oxygen species pathways was also observed. Specifically, it was noted that induction of known p53-target genes Sestrin2 and PIG3, as well as a novel target, NOX1, occurred in PC3 cells only when transduced with the improved vector, AdRGD-PGp53. The participation of NOX1 was confirmed upon its inhibition using a specific peptide, resulting in reduced cell death. In situ gene therapy also resulted in significantly improved inhibition of tumor progression consistent with oxidant-induced DNA damage only when treated with the novel AdRGD-PGp53 vector. The study shows that the improved adenovirus overcomes limitations associated with other p53-expressing vectors and induces oxidant-mediating killing, thus supporting its further development for cancer gene therapy.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Aline Hunger
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Denise C Fernandes
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Francisco R Laurindo
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Eugenia Costanzi-Strauss
- 3 Gene Therapy Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo , São Paulo, Brazil
| | - Bryan E Strauss
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| |
Collapse
|
68
|
Wu M, An J, Zheng Q, Xin X, Lin Z, Li X, Li H, Lu D. Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR. Oncotarget 2016; 7:66525-66539. [PMID: 27167190 PMCID: PMC5341818 DOI: 10.18632/oncotarget.9089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/17/2016] [Indexed: 12/12/2022] Open
Abstract
P53 is frequently mutated in human tumors as a novel gain-of-function to promote tumor development. Although dimeric (M340Q/L344R) influences on tetramerisation on site-specific post-translational modifications of p53, it is not clear how dimeric (M340Q/L344R) plays a role during hepatocarcinogenesis. Herein, we reveal that P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of PKM2. Mechanistically, P53 (N340Q/L344R) forms complex with CUDR and the complex binds to the promoter regions of PKM2 which enhances the expression, phosphorylation of PKM2 and its polymer formation. Thereby, the polymer PKM2 (tetramer) binds to the eleventh threonine on histone H3 that increases the phosphorylation of the eleventh threonine on histone H3 (pH3T11). Furthermore, pH3T11 blocks HDAC3 binding to H3K9Ac that prevents H3K9Ac from deacetylation and stabilizes the H3K9Ac modification. On the other hand, it also decreased tri-methylation of histone H3 on the ninth lysine (H3K9me3) and increases one methylation of histone H3 on the ninth lysine (H3K9me1). Moreover, the combination of H3K9me1 and HP1 α forms more H3K9me3-HP1α complex which binds to the promoter region of Pim1, enhancing the expression of Pim1 that enhances the expression of TERT, oncogenic lncRNA HOTAIR and reduces the TERRA expression. Ultimately, P53 (N340Q/L344R) accerlerates the growth of liver cancer cells Hep3B by activating telomerase and prolonging telomere through the cascade of P53 (N340Q/L344R)-CUDR-PKM2-pH3T11- (H3K9me1-HP1α)-Pim1- (TERT-HOTAIR-TERRA). Understanding the novel functions of P53 (N340Q/L344R) will help in the development of new liver cancer therapeutic approaches that may be useful in a broad range of cancer types.
Collapse
Affiliation(s)
- Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoru Xin
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Zhuojia Lin
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
69
|
Miller RC, Murley JS, Rademaker AW, Woloschak GE, Li JJ, Weichselbaum RR, Grdina DJ. Very low doses of ionizing radiation and redox associated modifiers affect survivin-associated changes in radiation sensitivity. Free Radic Biol Med 2016; 99:110-119. [PMID: 27427516 PMCID: PMC6764831 DOI: 10.1016/j.freeradbiomed.2016.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022]
Abstract
Exposure of cells to a dose of ionizing radiation as low as 5mGy can induce changes in radiation sensitivity expressed by cells exposed to subsequent higher doses at later times. This is referred to as an adaptive effect. We describe a unique survivin-associated adaptive response in which increased radiation resistance or sensitization of cells can be induced by exposure to 5mGy or to the reactive oxygen species (ROS) generating drug Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a naturally occurring anthraquinone. The purpose of this study was to determine the role of ROS generating processes in affecting both the intracellular localization of the inhibitor of apoptosis protein survivin and its subsequent effect on radiation response in the presence or absence of the anti-oxidant N-acetyl-L-cysteine (NAC). Experiments were performed using two well characterized murine sarcomas: SA-NH p53 wild-type (WT) and FSa p53 mutant (Mut), grown either in culture or as solid tumors in the right hind legs of C3H mice. Doses of 5mGy or 50μM Emodin were used to induce changes in the response of these tumor cells to higher radiation exposures using a multi-dosing paradigm. Effects on radiation sensitivity were determined for SA-NH and FSa cells as a function of survivin translocation either to the cytoplasm or nucleus in the presence or absence of 10mM NAC treatment. In vitro survival assays (2Gy per fraction, two once daily fractions) and tumor growth delay (TGD) (5Gy per fraction, five once daily fractions) studies were performed. Intracellular localization of survivin was determined by enzyme-linked immunosorbent assay (ELISA) and correlated to survival response and treatment conditions. 2Gy alone had no effect on intracellular translocation of survivin. When preceded 15min earlier by 5mGy or Emodin exposures, survivin became elevated in the cytoplasm of p53 WT SA-NH as compared to the nuclei of p53 Mut FSa cells. SA-NH cells transfected with p53 small interfering RNA (siRNA), in contrast, responded similarly to p53 Mut FSa cells by becoming more radiation sensitive if exposed to 5mGy prior to each 2Gy irradiation. In contrast to their respective responses to five once daily 5Gy fractions, SA-NH tumors were protected by 5mGy exposures administered 15min prior to each daily 5Gy dose as evidenced by a more rapid growth (1.9 day decrease in TGD, P=0.032), while FSa tumors were sensitized, growing at a much slower rate (4.5 day increase in TGD, P<0.001). Exposure of SA-NH and FSa tumor cells to 10mM NAC inhibited the ability of 5mGy and Emodin to induce intracellular translocation of survivin and the corresponding altered adaptive survival response. The survivin-associated adaptive response can be induced following a multi-dosing scheme in which very low radiation doses are followed shortly thereafter by higher doses consistent with a standard image guided radiotherapy protocol that is currently widely used in the treatment of cancer. While induced by exposure to ROS generating stresses, the ultimate expression of changes in radiation response is dependent upon the bi-functionality of the tumor associated protein survivin and its intracellular translocation.
Collapse
Affiliation(s)
- Richard C Miller
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | - Jeffrey S Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | - Alfred W Rademaker
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jian Jian Li
- Department of Radiation Oncology, The University of California Davis, Sacramento, CA, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | - David J Grdina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
70
|
Seo YS, Yim MJ, Kim BH, Kang KR, Lee SY, Oh JS, You JS, Kim SG, Yu SJ, Lee GJ, Kim DK, Kim CS, Kim JS, Kim JS. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells. Oncol Rep 2016; 34:3025-34. [PMID: 26503508 DOI: 10.3892/or.2015.4312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 11/06/2022] Open
Abstract
In the present study, we investigated berberine‑induced apoptosis and the signaling pathways underlying its activity in FaDu head and neck squamous cell carcinoma cells. Berberine did not affect the viability of primary human normal oral keratinocytes. In contrast, the cytotoxicity of berberine was significantly increased in FaDu cells stimulated with berberine for 24 h. Furthermore, berberine increased nuclear condensation and apoptosis rates in FaDu cells than those in untreated control cells. Berberine also induced the upregulation of apoptotic ligands, such as FasL and TNF-related apoptosis-inducing ligand, and triggered the activation of caspase-8, -7 and -3, and poly(ADP ribose) polymerase, characteristic of death receptor-dependent extrinsic apoptosis. Moreover, berberine activated the mitochondria‑dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bax, Bad, Apaf-1, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. In addition, berberine increased the expression of the tumor suppressor p53 in FaDu cells. The pan-caspase inhibitor Z-VAD-fmk suppressed the activation of caspase-3 and prevented cytotoxicity in FaDu cells treated with berberine. Interestingly, berberine suppressed cell migration through downregulation of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and MMP-9. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38, components of the mitogen-activated protein kinase pathway that are associated with the expression of MMP and VEGF, was suppressed in FaDu cells treated with berberine for 24 h. Therefore, these data suggested that berberine exerted anticancer effects in FaDu cells through induction of apoptosis and suppression of migration. Berberine may have potential applications as a chemotherapeutic agent for the management of head and neck squamous carcinoma.
Collapse
|
71
|
Han M, Zhang T, Yang L, Wang Z, Ruan J, Chang X. Association between NADPH oxidase (NOX) and lung cancer: a systematic review and meta-analysis. J Thorac Dis 2016; 8:1704-11. [PMID: 27499960 DOI: 10.21037/jtd.2016.06.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lung cancer is a leading cause of death worldwide. Considerable studies have reported that NADPH oxidase (NOX) expression or activity may play an important role in the tumorigenesis of lung cancer. However, the results are inconsistent. Thus, a systematic review and meta-analysis were conducted in this study. METHODS A systematic search of electronic databases was performed. Statistical analysis was performed using the Comprehensive Meta-Analysis software (Version 3). The pooled Hedges's g with 95% confidence intervals (95% CIs) or rate ratio with 95% CIs was adopted to assess the effect size. Fixed or random effect model was separately used based on the heterogeneity between the studies. RESULTS A total of ten eligible studies were included in the current systematic review and overall meta-analysis showed that NOX/DUOX activity and mRNA were significantly in favor of lung cancer (Hedges's g =1.216, P=0.034). Suppression of NOX function by pharmacologic inhibitor or expression by siRNA resulted in significant inhibition of lung cancer cell invasion and migration in in vitro experiments (Hedges's g =2.422, P<0.001) and lung cancer formation in vivo studies (rate ratio =0.366, P=0.002). CONCLUSIONS Findings of this systematic review indicate that NOX activity and expression is associated with tumorigenesis of lung cancer and inhibition of NOX function or mRNA expression significantly blocks lung cancer formation and invasion. Suppressing NOX up-regulation or interfering NOX function in tumor microenvironment may be one important approach to prevent oxidative-stress-related carcinogenesis in the lung.
Collapse
Affiliation(s)
- Ming Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Tianhui Zhang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Lei Yang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zitong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Junzhong Ruan
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xiujun Chang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
72
|
Elsherbiny NM, Al-Gayyar MM. Anti-tumor activity of arjunolic acid against Ehrlich Ascites Carcinoma cells in vivo and in vitro through blocking TGF-β type 1 receptor. Biomed Pharmacother 2016; 82:28-34. [DOI: 10.1016/j.biopha.2016.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
|
73
|
Jin MS, Park IA, Kim JY, Chung YR, Im SA, Lee KH, Moon HG, Han W, Noh DY, Ryu HS. New insight on the biological role of p53 protein as a tumor suppressor: re-evaluation of its clinical significance in triple-negative breast cancer. Tumour Biol 2016; 37:11017-24. [DOI: 10.1007/s13277-016-4990-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/10/2016] [Indexed: 01/04/2023] Open
|
74
|
Ma W, Li J, Hu J, Cheng Y, Wang J, Zhang X, Xu M. miR214-regulated p53-NOX4/p66shc pathway plays a crucial role in the protective effect of Ginkgolide B against cisplatin-induced cytotoxicity in HEI-OC1 cells. Chem Biol Interact 2016; 245:72-81. [DOI: 10.1016/j.cbi.2016.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
|
75
|
The role of oxidative stress on breast cancer development and therapy. Tumour Biol 2016; 37:4281-91. [PMID: 26815507 DOI: 10.1007/s13277-016-4873-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are produced by both enzymatic and non-enzymatic systems within eukaryotic cells and play important roles in cellular physiology and pathophysiology. Although physiological concentrations are crucial for ensuring cell survival, ROS overproduction is detrimental to cells, and considered key-factors for the development of several diseases, such as neurodegenerative diseases, cardiovascular disorders, and cancer. Cancer cells are usually submitted to higher ROS levels that further stimulate malignant phenotype through stimulus to sustained proliferation, death evasion, angiogenesis, invasiveness, and metastasis. The role of ROS on breast cancer etiology and progression is being progressively elucidated. However, less attention has been given to the development of redox system-targeted strategies for breast cancer therapy. In this review, we address the basic mechanisms of ROS production and scavenging in breast tumor cells, and the emerging possibilities of breast cancer therapies targeting ROS homeostasis.
Collapse
|
76
|
A. Downs C, A. Alli A, M. Johnson N, N. Helms M. Cigarette smoke extract is a Nox agonist and regulates ENaC in alveolar type 2 cells. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
77
|
Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:654594. [PMID: 26078812 PMCID: PMC4452864 DOI: 10.1155/2015/654594] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies.
Collapse
|
78
|
Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and regulates cancer cell migration and invasion. Cell Signal 2015; 27:1198-207. [PMID: 25728512 DOI: 10.1016/j.cellsig.2015.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
The p53 transcription factor is a critical regulator of the cell cycle, DNA repair, and apoptosis. Recent evidences suggest that p53 may contribute to the regulation of cell invasion and migration. Rap2a, a member of the small GTPase superfamily, mediates diverse cellular events such as cell adhesion, migration and proliferation through various signaling pathways. In this study, we identify that Rap2a is a novel target of p53 and is induced upon DNA damage in a p53-dependent manner. Upon DNA damage, p53 directly binds to the promoter of Rap2a and activates its transcription. We show that Rap2a is significantly upregulated in many types of tumors. In addition, the ectopic expression of Rap2a enhances the migration and invasive ability of cancer cells and increases activities of matrix metalloproteinase MMP2 and MMP9. In contrast, the inactivation of Rap2a inhibits cell invasion and activities of MMP2 and MMP9. We also show that Rap2a regulates the phosphorylation level of Akt. Collectively, our results show that ectopic expression of Rap2a has a key role in enhancing migration, invasion and metastasis by upregulating p-Akt.
Collapse
Affiliation(s)
- Jin-Xia Wu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Ding-Guo Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China.
| |
Collapse
|