51
|
Qi Y, Liu W, Wang X, Lu N, Yang M, Liu W, Ma J, Liu W, Zhang W, Li S. Adipose-derived mesenchymal stem cells from obese mice prevent body weight gain and hyperglycemia. Stem Cell Res Ther 2021; 12:277. [PMID: 33957965 PMCID: PMC8101155 DOI: 10.1186/s13287-021-02357-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
Changes that occur to the stem cell microenvironment with disease are a major consideration that may affect the behavior and potential therapeutic efficacy of mesenchymal stem cells (MSCs). The purpose of this study is to evaluate the effects of adipose-derived MSCs (ADSCs) from obese mice with hyperglycemia on body weight and glucose homeostasis. After 10 weeks of high-fat diet, mice were injected with phosphate-buffered saline (PBS) and ADSCs derived from normal mice (N-ADSCs) or obese mice (O-ADSCs), respectively. Mice fed with standard rodent chow were injected with PBS and served as normal controls. Obese mice treated with O-ADSCs showed less body weight gain than those receiving PBS or N-ADSCs. The mice that received ADSCs, especially O-ADSCs, also showed improvement in obesity-related hyperglycemia. In particular, the inguinal fat was reduced in obese mice receiving O-ADSCs compared with other groups, probably caused by the increased lipolysis of inguinal fat. Moreover, ADSC infusion restored insulin receptor (INSR) expression in the muscle of obese mice. Differential expression of the CD90 surface marker was slightly increased, while monocyte chemoattractant protein 1 (MCP-1) was reduced in O-ADSCs compared to N-ADSCs. These data provide a theoretical basis that autologous ADSCs from obese individuals may be more effective for treating obesity and related hyperglycemia.
Collapse
Affiliation(s)
- Yicheng Qi
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China
| | - Wen Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China
| | - Xiangsheng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory of Tissue Engineering, No. 639 Zhizaoju Road, Huangpu Area, Shanghai, 200011, China
| | - Nan Lu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China
| | - Minglan Yang
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory of Tissue Engineering, No. 639 Zhizaoju Road, Huangpu Area, Shanghai, 200011, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Key Laboratory of Tissue Engineering, No. 639 Zhizaoju Road, Huangpu Area, Shanghai, 200011, China.
| | - Shengxian Li
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai, 200127, China.
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Liver transplantation is the gold standard for the treatment of end-stage liver disease. However, a shortage of donor organs, high cost, and surgical complications limit the use of this treatment. Cellular therapies using hepatocytes, hematopoietic stem cells, bone marrow mononuclear cells, and mesenchymal stem cells (MSCs) are being investigated as alternative treatments to liver transplantation. The purpose of this review is to describe studies using MSC transplantation for liver diseases based on the reported literature and to discuss prospective research designed to improve the efficacy of MSC therapy. RECENT FINDINGS MSCs have several properties that show potential to regenerate injured tissues or organs, such as homing, transdifferentiation, immunosuppression, and cellular protective capacity. Additionally, MSCs can be noninvasively isolated from various tissues and expanded ex vivo in sufficient numbers for clinical evaluation. SUMMARY Currently, there is no approved MSC therapy for the treatment of liver disease. However, MSC therapy is considered a promising alternative treatment for end-stage liver diseases and is reported to improve liver function safely with no side effects. Further robust preclinical and clinical studies will be needed to improve the therapeutic efficacy of MSC transplantation.
Collapse
|
53
|
Yu Y, Chen M, Yang S, Shao B, Chen L, Dou L, Gao J, Yang D. Osthole enhances the immunosuppressive effects of bone marrow-derived mesenchymal stem cells by promoting the Fas/FasL system. J Cell Mol Med 2021; 25:4835-4845. [PMID: 33749126 PMCID: PMC8107110 DOI: 10.1111/jcmm.16459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Thanks to the advantages of easy harvesting and escape from immune rejection, autologous bone marrow-derived mesenchymal stem cells (BMSCs) are promising candidates for immunosuppressive therapy against inflammation and autoimmune diseases. However, the therapy is still challenging because the immunomodulatory properties of BMSCs are always impaired by immunopathogenesis in patients. Because of its reliable and extensive biological activities, osthole has received increased clinical attention. In this study, we found that BMSCs derived from osteoporosis donors were ineffective in cell therapy for experimental inflammatory colitis and osteoporosis. In vivo and in vitro tests showed that because of the down-regulation of Fas and FasL expression, the ability of osteoporotic BMSCs to induce T-cell apoptosis decreased. Through the application of osthole, we successfully restored the immunosuppressive ability of osteoporotic BMSCs and improved their treatment efficacy in experimental inflammatory colitis and osteoporosis. In addition, we found the immunomodulatory properties of BMSCs were enhanced after osthole pre-treatment. In this study, our data highlight a new approach of pharmacological modification (ie osthole) to improve the immune regulatory performance of BMSCs from a healthy or inflammatory microenvironment. The development of targeted strategies to enhance immunosuppressive therapy using BMSCs may be significantly improved by these findings.
Collapse
Affiliation(s)
- Yang Yu
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Meng Chen
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Shiyao Yang
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Bingyi Shao
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Liang Chen
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Lei Dou
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Jing Gao
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Deqin Yang
- Northern Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
54
|
Lou Q, Zhao M, Xu Q, Xie S, Liang Y, Chen J, Yuan L, Wang L, Jiang L, Mou L, Lin D, Zhao M. Retinoic Acid Inhibits Tumor-Associated Mesenchymal Stromal Cell Transformation in Melanoma. Front Cell Dev Biol 2021; 9:658757. [PMID: 33889575 PMCID: PMC8055950 DOI: 10.3389/fcell.2021.658757] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 01/05/2023] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs) can be transformed into tumor-associated MSCs (TA-MSCs) within the tumor microenvironment to facilitate tumor progression. However, the underline mechanism and potential therapeutic strategy remain unclear. Here, we explored that interleukin 17 (IL-17) cooperating with IFNγ transforms BMSCs into TA-MSCs, which promotes tumor progression by recruiting macrophages/monocytes and myeloid-derived suppressor cells (MDSCs) in murine melanoma. IL-17 and IFNγ transformed TA-MSCs have high expression levels of myelocyte-recruiting chemokines (CCL2, CCL5, CCL7, and CCL20) mediated by activated NF-κB signaling pathway. Furthermore, retinoic acid inhibits NF-κB signaling, decreases chemokine expression, and suppresses the tumor-promoting function of transformed TA-MSCs by prohibiting the recruitment of macrophages/monocytes and MDSCs in the tumor microenvironment. Overall, our findings demonstrate that IL-17 collaborating with IFNγ to induce TA-MSC transformation, which can be targeted by RA for melanoma treatment.
Collapse
Affiliation(s)
- Qi Lou
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China.,Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Minyi Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Quanhui Xu
- Sun Yat-sen Memorial Hospital, RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Siyu Xie
- Sun Yat-sen Memorial Hospital, RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
| | - Yingying Liang
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China.,Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jian Chen
- Sun Yat-sen Memorial Hospital, RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
| | - Lisha Yuan
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lingling Wang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Linjia Jiang
- Sun Yat-sen Memorial Hospital, RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China
| | - Lisha Mou
- Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Meng Zhao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China.,Sun Yat-sen Memorial Hospital, RNA Biomedical Institute, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Strategies to Potentiate Paracrine Therapeutic Efficacy of Mesenchymal Stem Cells in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22073397. [PMID: 33806241 PMCID: PMC8037333 DOI: 10.3390/ijms22073397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering.
Collapse
|
56
|
Liu Q, Chen X, Liu C, Pan L, Kang X, Li Y, Du C, Dong S, Xiang AP, Xu Y, Zhang Q. Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis 2021; 12:240. [PMID: 33664231 PMCID: PMC7933182 DOI: 10.1038/s41419-021-03524-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Liver diseases with different pathogenesis share common pathways of immune-mediated injury. Chitinase-3-like protein 1 (CHI3L1) was induced in both acute and chronic liver injuries, and recent studies reported that it possesses an immunosuppressive ability. CHI3L1 was also expressed in mesenchymal stem cells (MSCs), thus we investigates the role of CHI3L1 in MSC-based therapy for immune-mediated liver injury here. We found that CHI3L1 was highly expressed in human umbilical cord MSCs (hUC-MSCs). Downregulating CHI3L1 mitigated the ability of hUC-MSCs to inhibit T cell activation, proliferation and inflammatory cytokine secretion in vitro. Using Concanavalin A (Con A)-induced liver injury mouse model, we found that silencing CHI3L1 significantly abrogated the hUC-MSCs-mediated alleviation of liver injury, accompanying by weakened suppressive effects on infiltration and activation of hepatic T cells, and secretion of pro-inflammatory cytokines. In addition, recombinant CHI3L1 (rCHI3L1) administration inhibited the proliferation and function of activated T cells, and alleviated the Con A-induced liver injury in mice. Mechanistically, gene set enrichment analysis showed that JAK/STAT signalling pathway was one of the most significantly enriched gene pathways in T cells co-cultured with hUC-MSCs with CHI3L1 knockdown, and further study revealed that CHI3L1 secreted by hUC-MSCs inhibited the STAT1/3 signalling in T cells by upregulating peroxisome proliferator-activated receptor δ (PPARδ). Collectively, our data showed that CHI3L1 was a novel MSC-secreted immunosuppressive factor and provided new insights into therapeutic treatment of immune-mediated liver injury.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China (2017YFA0106100, 2018YFA0107203, 2017YFA010550), National Natural Science Foundation of China (81971526, 81670601, 81760112, 31601184, 81870449, 81970537, 81970109), Guangdong Basic and Applied Basic Research Foundation (2020A1515010272, 2020A1515011385), Key project fund of Guangdong Natural Science Foundation (2017A030311034), Special fund for frontier and key technology innovation of Guangdong (2015B020226004) and National Keypoint Research and Invention program of the thirteenth (2018ZX10723203), the Key Scientific and Technological Projects of Guangdong Province (2019B020236004, 2019B020234001, 2019B020235002, 2017B020230004), Key Scientific and Technological Program of Guangzhou City (201803040011, 201802020023), Pearl River S&T Nova Program of Guangzhou (201906010095), Fundamental Research Funds for the Central Universities (20ykpy149).
Collapse
Affiliation(s)
- Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaoyong Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Lijie Pan
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xinmei Kang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yanli Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Cong Du
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Andy Peng Xiang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
57
|
Chen J, Zheng CX, Jin Y, Hu CH. Mesenchymal stromal cell-mediated immune regulation: A promising remedy in the therapy of type 2 diabetes mellitus. STEM CELLS (DAYTON, OHIO) 2021; 39:838-852. [PMID: 33621403 DOI: 10.1002/stem.3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases,Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, People's Republic of China
| |
Collapse
|
58
|
Zhang Y, Ravikumar M, Ling L, Nurcombe V, Cool SM. Age-Related Changes in the Inflammatory Status of Human Mesenchymal Stem Cells: Implications for Cell Therapy. Stem Cell Reports 2021; 16:694-707. [PMID: 33636113 PMCID: PMC8072029 DOI: 10.1016/j.stemcr.2021.01.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem/stromal cell (hMSC)-based cell therapies are promising for treating a variety of diseases. The unique immunomodulatory properties of hMSCs have extended their therapeutic potential beyond tissue regeneration. However, extensive pre-clinical culture expansion inevitably drives cells toward replicative “aging” and a consequent decline in quality. These “in vitro-aged” hMSCs resemble biologically aged cells, which have been reported to show senescence signatures, diminished immunosuppressive capacity, and weakened regenerative potential as well as pro-inflammatory features. In this review, we have surveyed the literature to explore the intimate relationship between the inflammatory status of hMSCs and their in vitro aging process. We posit that a shift from an anti-inflammatory to a pro-inflammatory phenotype of culture-expanded hMSCs contributes to a deterioration in their therapeutic efficacy. Potential molecular and cellular mechanisms underpinning this phenomenon have been discussed. We have also highlighted studies that leverage these mechanisms to make culture-expanded hMSCs more amenable for clinical use. Aged MSCs have reduced immunosuppressive potential Chronic inflammatory microenvironments can exacerbate MSC senescence and aging The immunomodulatory potential of MSCs should be assessed prior to clinical use MSC immunomodulatory properties may be modified in vitro by bioengineering means
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Maanasa Ravikumar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore
| | - Ling Ling
- Institute of Medical Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore 636921, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore.
| |
Collapse
|
59
|
Russell T, Watad A, Bridgewood C, Rowe H, Khan A, Rao A, Loughenbury P, Millner P, Dunsmuir R, Cuthbert R, Altaie A, Jones E, McGonagle D. IL-17A and TNF Modulate Normal Human Spinal Entheseal Bone and Soft Tissue Mesenchymal Stem Cell Osteogenesis, Adipogenesis, and Stromal Function. Cells 2021; 10:cells10020341. [PMID: 33562025 PMCID: PMC7915379 DOI: 10.3390/cells10020341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: The spondylarthritides (SpA) are intimately linked to new bone formation and IL-17A and TNF pathways. We investigated spinal soft tissue and bone mesenchymal stem cell (MSC) responses to IL-17A and TNF, including their osteogenesis, adipogenesis, and stromal supportive function and ability to support lymphocyte recruitment. Methods: Normal spinal peri-entheseal bone (PEB) and entheseal soft tissue (EST) were characterized for MSCs by immunophenotypic, osteogenic, chondrogenic, and adipogenic differentiation criteria. Functional and gene transcriptomic analysis was carried out on undifferentiated, adipo- differentiated, and osteo-differentiated MSCs. The enthesis C-C Motif Chemokine Ligand 20-C-C Motif Chemokine Receptor 6 (CCL20-CCR6) axis was investigated at transcript and protein levels to ascertain whether entheseal MSCs influence local immune cell populations. Results: Cultured MSCs from both PEB and EST displayed a tri-lineage differentiation ability. EST MSCs exhibited 4.9-fold greater adipogenesis (p < 0.001) and a 3-fold lower osteogenic capacity (p < 0.05). IL-17A induced greater osteogenesis in PEB MSCs compared to EST MSCs. IL-17A suppressed adipogenic differentiation, with a significant decrease in fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activated receptor gamma (PPARγ), Cell Death Inducing DFFA Like Effector C (CIDEC), and Perilipin-1 (PLIN1). IL-17A significantly increased the CCL20 transcript (p < 0.01) and protein expression (p < 0.001) in MSCs supporting a role in type 17 lymphocyte recruitment. Conclusions: Normal spinal enthesis harbors resident MSCs with different in vitro functionalities in bone and soft tissue, especially in response to IL-17A, which enhanced osteogenesis and CCL20 production and reduced adipogenesis compared to unstimulated MSCs. This MSC-stromal-enthesis immune system may be a hitherto unappreciated mechanism of “fine tuning” tissue repair responses at the enthesis in health and could be relevant for SpA understanding.
Collapse
Affiliation(s)
- Tobias Russell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
- Zabludowicz Center for Autoimmune Diseases, Department of Medicine “B”, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 69978, Israel
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
| | - Hannah Rowe
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
| | - Almas Khan
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (A.K.); (A.R.); (P.L.); (P.M.); (R.D.)
| | - Abhay Rao
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (A.K.); (A.R.); (P.L.); (P.M.); (R.D.)
| | - Peter Loughenbury
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (A.K.); (A.R.); (P.L.); (P.M.); (R.D.)
| | - Peter Millner
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (A.K.); (A.R.); (P.L.); (P.M.); (R.D.)
| | - Robert Dunsmuir
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (A.K.); (A.R.); (P.L.); (P.M.); (R.D.)
| | - Richard Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
| | - Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds LS7 4SA, UK; (T.R.); (A.W.); (C.B.); (H.R.); (R.C.); (A.A.); (E.J.)
- Correspondence: ; Tel.: +44(0)-113-392-4747
| |
Collapse
|
60
|
Lin Y, Ren X, Chen Y, Chen D. Interaction Between Mesenchymal Stem Cells and Retinal Degenerative Microenvironment. Front Neurosci 2021; 14:617377. [PMID: 33551729 PMCID: PMC7859517 DOI: 10.3389/fnins.2020.617377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible vision loss with yet limited therapies. Stem cell-based therapy is a promising novel therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have emerged as a leading cell source due to their neurotrophic and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical studies have shown that MSCs have the potential to delay retinal degeneration, and recent clinical trials have demonstrated promising safety profiles for the application of MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been unable to meet primary efficacy end points, and severe side effects were reported in some retinal “stem cell” clinics. In this review, we provide an update of the interaction between MSCs and the RDD microenvironment and discuss how to balance the therapeutic potential and safety concerns of MSCs' ocular application.
Collapse
Affiliation(s)
- Yu Lin
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
61
|
IL-17 Triggers Invasive and Migratory Properties in Human MSCs, while IFNy Favors their Immunosuppressive Capabilities: Implications for the "Licensing" Process. Stem Cell Rev Rep 2020; 16:1266-1279. [PMID: 33067729 PMCID: PMC7667142 DOI: 10.1007/s12015-020-10051-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) were first used as a source for cell therapy in 1995; however, despite their versatility and unambiguous demonstration of efficacy and safety in preclinical/phase I studies, the positive effect of MSCs in human phase III studies did not resemble the success obtained in mouse models of disease. This dissonance highlights the need to more thoroughly study the immunobiology of MSCs to make better use of these cells. Thus, we aimed to study the immunobiology of MSCs by using chip array analysis as a method for general screening to obtain a global picture in our model study and found IFNy and IL-17 signaling as the first two “top canonical pathways” involved in MSCs immunomodulation. The role of IFNy in triggering the immunosuppressive properties of MSCs is well recognized by many groups; however, the role of IL-17 in this process remains uncertain. Interestingly, in contrast to IFNy, which actively improved the MSCs-mediated immunosuppression, IL-17 did not improve directly the MSCs-mediated immunosuppression. Instead, IL-17 signaling induced the migration of MSCs and inflammatory cells, bringing these cell types together and increasing the likelihood of the lymphocytes sensing the immunosuppressive molecules produced by the MSCs. These effects also correlated with high levels of cytokine/chemokine production and metalloprotease activation by MSCs. Importantly, this treatment maintained the MSCs safety profile by not inducing the expression of molecules related to antigen presentation. In this way, our findings highlight the possibility of using IL-17, in combination with IFNy, to prime MSCs for cell therapy to improve their biological properties and thus their therapeutic efficacy. Finally, the use of preactivated MSCs may also minimize variations among MSCs to produce more uniform therapeutic products. In the not-so-distant future, we envisage a portfolio of MSCs activated by different cocktails specifically designed to target and treat specific diseases. Graphical abstract ![]()
Collapse
|
62
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
63
|
Byrnes D, Masterson CH, Artigas A, Laffey JG. Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med 2020; 42:20-39. [PMID: 32767301 DOI: 10.1055/s-0040-1713422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis and acute respiratory distress syndrome (ARDS) constitute devastating conditions with high morbidity and mortality. Sepsis results from abnormal host immune response, with evidence for both pro- and anti-inflammatory activation present from the earliest phases. The "proinflammatory" response predominates initially causing host injury, with later-phase sepsis characterized by immune cell hypofunction and opportunistic superinfection. ARDS is characterized by inflammation and disruption of the alveolar-capillary membrane leading to injury and lung dysfunction. Sepsis is the most common cause of ARDS. Approximately 20% of deaths worldwide in 2017 were due to sepsis, while ARDS occurs in over 10% of all intensive care unit patients and results in a mortality of 30 to 45%. Given the fact that sepsis and ARDS share some-but not all-underlying pathophysiologic injury mechanisms, the lack of specific therapies, and their frequent coexistence in the critically ill, it makes sense to consider therapies for both conditions together. In this article, we will focus on the therapeutic potential of mesenchymal stem/stromal cells (MSCs). MSCs are available from several tissues, including bone marrow, umbilical cord, and adipose tissue. Allogeneic administration is feasible, an important advantage for acute conditions like sepsis or ARDS. They possess diverse mechanisms of action of relevance to sepsis and ARDS, including direct and indirect antibacterial actions, potent effects on the innate and adaptive response, and pro-reparative effects. MSCs can be preactivated thereby potentiating their effects, while the use of their extracellular vesicles can avoid whole cell administration. While early-phase clinical trials suggest safety, considerable challenges exist in moving forward to phase III efficacy studies, and to implementation as a therapy should they prove effective.
Collapse
Affiliation(s)
- Declan Byrnes
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Claire H Masterson
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Antonio Artigas
- Critical Care Center, Corporació Sanitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - John G Laffey
- Department of Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Department of Anaesthesia, SAOLTA University Health Group, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
64
|
Abstract
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article: Bone Joint Res 2020;9(7):368–385.
Collapse
Affiliation(s)
- Simon K-H Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yu-Ning Chim
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jin-Yu Wang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ronald M-Y Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Victoria M-H Choy
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
65
|
Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 2020; 78:447-467. [PMID: 32699947 PMCID: PMC7375036 DOI: 10.1007/s00018-020-03600-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche.
Collapse
Affiliation(s)
- Luis A Costa
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - María Fraile
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Luis O Gonzalez
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.,Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge Saá
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Pablo Garcia-Portabella
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Belén Vega
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - José Schneider
- Department of Obstetrics and Gynecology, University of Valladolid, Valladolid, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
66
|
Terraza-Aguirre C, Campos-Mora M, Elizondo-Vega R, Contreras-López RA, Luz-Crawford P, Jorgensen C, Djouad F. Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells 2020; 9:cells9071660. [PMID: 32664207 PMCID: PMC7408034 DOI: 10.3390/cells9071660] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.
Collapse
Affiliation(s)
- Claudia Terraza-Aguirre
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
| | | | - Roberto Elizondo-Vega
- Facultad de Ciencias Biológicas, Departamento de Biología Celular, Laboratorio de Biología Celular, Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Patricia Luz-Crawford
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago 7620001, Chile;
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- CHU Montpellier, F-34295 Montpellier, France
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| |
Collapse
|
67
|
Wang S, Wang G, Zhang L, Li F, Liu K, Wang Y, Shi Y, Cao K. Interleukin-17 promotes nitric oxide-dependent expression of PD-L1 in mesenchymal stem cells. Cell Biosci 2020; 10:73. [PMID: 32509271 PMCID: PMC7249370 DOI: 10.1186/s13578-020-00431-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Interleukin-17A (IL-17) is an evolutionary conserved cytokine and best known for its role in boosting immune response. However, recent clinical researches showed that abundant IL-17 in tumor microenvironment was often associated with poor prognosis and reduced cytotoxic T cell infiltration. These contradictory phenomena suggest that IL-17 may have unique target cells in tumor microenvironment which switch its biological consequences from pro-inflammatory to anti-inflammatory. Mesenchymal stem/stromal cells (MSCs) are a major component of the tumor microenvironment. Upon cytokine stimulation, MSCs can express a plenary of inhibitory molecules, playing a critical role in tumor development and progression. Therefore, we aim to investigate the role of IL-17 in MSC-mediated immunosuppression. Results We found IFNγ and TNFα, two major cytokines in tumor microenvironment, could induce programmed death-ligand 1 (PD-L1) expression in MSCs. Interestingly, IL-17 has a synergistic effect with IFNγ and TNFα in elevating PD-L1 expression in MSCs. The presence of IL-17 empowered MSCs with strong immunosuppression abilities and enabled MSCs to promote tumor progression in a PD-L1 dependent manner. The upregulated PD-L1 expression in MSCs was due to the accumulation of nitric oxide (NO). On one hand, NO donor could mimic the effects of IL-17 on MSCs; on the other hand, IL-17 failed to enhance PD-L1 expression in inducible nitric oxide synthase (iNOS) deficient MSCs or with iNOS inhibitor presence. Conclusions Our study demonstrates that IL-17 can significantly increase the expression of PD-L1 by MSCs through iNOS induction. This IL-17-MSCs-PD-L1 axis shapes the immunosuppressive tumor microenvironment and facilitates tumor progression.
Collapse
Affiliation(s)
- Shijia Wang
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Academy of Sciences (CAS), Shanghai, 200031 China
| | - Guan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Liying Zhang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123 China
| | - Fengying Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Academy of Sciences (CAS), Shanghai, 200031 China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123 China
| | - Kai Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
68
|
Wang S, Cai S, Zhang W, Liu X, Li Y, Zhang C, Zeng Y, Xu M, Rong R, Yang T, Shi B, Chandraker A, Yang C, Zhu T. High-mobility group box 1 protein antagonizes the immunosuppressive capacity and therapeutic effect of mesenchymal stem cells in acute kidney injury. J Transl Med 2020; 18:175. [PMID: 32312307 PMCID: PMC7169035 DOI: 10.1186/s12967-020-02334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Kidney ischemia reperfusion injury (IRI) is a common cause of acute kidney injury and an unavoidable consequence of kidney transplantation and still lacks specific therapeutics. Recently, mesenchymal stem cell (MSC) has been emerging as a promising cell-based therapy for IRI in the context of transplantation. MSC negatively regulates the secretion of pro-inflammatory as well as the activation of immune cells during IRI through its unique immunosuppressive property. Methods We employed mice kidney IRI model and MSC cell line to monitor the IRI related checkpoints. siRNAs were utilized to knock down the potential key factors for mechanistic analysis. Statistical analysis was performed by using one-way ANOVA with Tukey’s post hoc procedure by SPSS. Results The expression of high-mobility group box 1 protein (HMGB1) is increased in the acute phase as well as the recovery stage of IRI. Importantly, the HMGB1 upregulation is correlated with the injury severity. HMGB1 diminishes the MSC induced immunosuppressive capacity in the presence of pro-inflammatory cytokines in vitro. Toll like receptor 4 (TLR4)-mediated inducible nitric oxide synthase (iNOS) inhibition contributes to the negative effect of HMGB1 on MSCs. HMGB1-TLR4 signaling inhibition augments the therapeutic efficacy of MSCs in mice renal IRI model. Conclusions These findings demonstrate that HMGB1 plays a crucial role in shaping the immunoregulatory property of MSCs within the microenvironments, providing novel insights into the crosstalk between MSCs and microenvironment components, suggesting HMGB1 signals as a promising target to improve MSC-based therapy.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China.,Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Songjie Cai
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, LRMC 301, Boston, MA, 02115, USA
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China
| | - Xigao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China
| | - Yigang Zeng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave, LRMC 301, Boston, MA, 02115, USA.
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China. .,Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
69
|
Ceccarelli S, Pontecorvi P, Anastasiadou E, Napoli C, Marchese C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front Cell Dev Biol 2020; 8:236. [PMID: 32363193 PMCID: PMC7180192 DOI: 10.3389/fcell.2020.00236] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) represent a promising tool for soft tissue engineering as well as for clinical treatment of inflammatory and autoimmune pathologies. The well-characterized multi-differentiation potential and self-renewal properties of ASCs are coupled with their immunomodulatory ability in providing therapeutic efficacy. Yet, their impact in immune or inflammatory disorders might rely both on cell contact-dependent mechanisms and paracrine effects, resulting in the release of various soluble factors that regulate immune cells functions. Despite the widespread use of ASCs in clinical trials addressing several pathologies, the pathophysiological mechanisms at the basis of their clinical use have been not yet fully investigated. In particular, a thorough analysis of ASC immunomodulatory potential is mandatory. Here we explore such molecular mechanisms involved in ASC immunomodulatory properties, emphasizing the relevance of the milieu composition. We review the potential clinical use of ASC secretome as a mediator for immunomodulation, with a focus on in vitro and in vivo environmental conditions affecting clinical outcome. We describe some potential strategies for optimization of ASCs immunomodulatory capacity in clinical settings, which act either on adult stem cells gene expression and local microenvironment. Finally, we discuss the limitations of both allogeneic and autologous ASC use, highlighting the issues to be fixed in order to significantly improve the efficacy of ASC-based cell therapy.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, Università della Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
70
|
Fang J, Zhang S, Liu Z, Pan Y, Cao L, Hou P, Chen Y, Zhang Y, Li X, Liu R, Shang Q, Zheng Z, Song L, Li Y, Fu Z, Lin L, Melino G, Wang Y, Shao C, Shi Y. Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2. Stem Cells Transl Med 2020; 9:773-785. [PMID: 32176461 PMCID: PMC7308640 DOI: 10.1002/sctm.19-0447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cytokines produced by immune cells have been demonstrated to act on muscle stem cells (MuSCs) and direct their fate and behavior during muscle repair and regeneration. Nevertheless, it is unclear whether and how MuSCs can also in turn modulate the properties of immune cells. Here, we showed that in vitro expanded MuSCs exhibited a potent anti‐inflammatory effect when infused into mice suffering from inflammatory bowel disease (IBD). Supernatant conditioned by MuSCs similarly ameliorated IBD. This beneficial effect of MuSCs was not observed when macrophages were depleted. The MuSC supernatant was found to greatly attenuate the expression of inflammatory cytokines but increase the expression of programmed death‐ligand 1 in macrophages treated with lipopolysaccharide and interferon gamma. Further analysis revealed that MuSCs produce a large amount of insulin‐like growth factor‐2 (IGF‐2) that instructs maturing macrophages to undergo oxidative phosphorylation and thus acquire anti‐inflammatory properties. Interestingly, the IGF‐2 production by MuSCs is much higher than by mesenchymal stem cells. Knockdown or neutralization of IGF‐2 abrogated the anti‐inflammatory effects of MuSCs and their therapeutic efficacy on IBD. Our study demonstrated that MuSCs possess a strong anti‐inflammatory property and the bidirectional interactions between immune cells and MuSCs have important implications in muscle‐related physiological and pathological conditions.
Collapse
Affiliation(s)
- Jiankai Fang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Shengchao Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhanhong Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongsha Pan
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Pengbo Hou
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yuyan Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Xiaolei Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Lin Song
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Zhonglin Fu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Liangyu Lin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Suzhou, People's Republic of China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
71
|
Mesenchymal Stromal Cells from the Epidermis and Dermis of Psoriasis Patients: Morphology, Immunophenotype, Differentiation Patterns, and Regulation of T Cell Proliferation. Stem Cells Int 2019; 2019:4541797. [PMID: 31885608 PMCID: PMC6914887 DOI: 10.1155/2019/4541797] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Psoriasis is a skin disease characterized by hyperproliferation of keratinocytes and chronic inflammation. Mesenchymal stem/stromal cells (MSCs) exhibit an immunoregulatory function that can be altered in the skin of these patients. However, to date, the presence and functional capacity of MSCs in the dermis and epidermis of patients with psoriasis have not been fully established. In the present study, we evaluated the presence of MSCs in the skin of patients by obtaining adherent cells from the dermis and epidermis of lesional and nonlesional areas and characterizing them in a comparative manner with corresponding cells obtained from the dermis (HD-MSCs) and epidermis (HE-MSCs) of healthy donors. We determined whether the adherent cells had immunophenotypic profiles and differentiation potentials that were characteristic of MSCs. In addition, we analyzed their immunosuppression function by evaluating their capacity to decrease T cell proliferation. Our results indicate the presence of MSCs in the dermis and epidermis of healthy donors and patients with psoriasis; adherent cells from all skin sources exhibited MSC characteristics, such as expression of CD73, CD90, and CD105 markers and a lack of hematopoietic and endothelial marker expression. However, the cell populations obtained showed differences in differentiation potential toward adipogenic, osteogenic, and chondrogenic lineages. In addition, we observed a low MSC obtention frequency in nonlesional epidermal samples (NLE-MSCs), which also showed alterations in morphology and proliferation rate. Interestingly, MSCs from both the nonlesional dermis (NLD-MSCs) and lesional dermis (LD-MSCs) showed higher HLA class I antigen (HLA-I) expression than HD-MSCs. Moreover, NLD-MSCs showed a low T cell proliferation suppression capacity. In summary, this study demonstrates the presence of MSCs in the epidermis and dermis of patients with psoriasis and suggests that such cells may favor the inflammatory process and thus psoriatic lesion development through high HLA-I expression and low immunosuppression capacity.
Collapse
|
72
|
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2019; 53:e12712. [PMID: 31730279 PMCID: PMC6985662 DOI: 10.1111/cpr.12712] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be derived from various adult tissues with multipotent and self‐renewal abilities. The characteristics of presenting no major ethical concerns, having low immunogenicity and possessing immune modulation functions make MSCs promising candidates for stem cell therapies. MSCs could promote inflammation when the immune system is underactivated and restrain inflammation when the immune system is overactivated to avoid self‐overattack. These cells express many immune suppressors to switch them from a pro‐inflammatory phenotype to an anti‐inflammatory phenotype, resulting in immune effector cell suppression and immune suppressor cell activation. We would discuss the mechanisms governing the immune modulation function of these cells in this review, especially the immune‐suppressive effects of MSCs.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
73
|
Medhat D, Rodríguez CI, Infante A. Immunomodulatory Effects of MSCs in Bone Healing. Int J Mol Sci 2019; 20:ijms20215467. [PMID: 31684035 PMCID: PMC6862454 DOI: 10.3390/ijms20215467] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into multilineage cells, thus making them a significant prospect as a cell source for regenerative therapy; however, the differentiation capacity of MSCs into osteoblasts seems to not be the main mechanism responsible for the benefits associated with human mesenchymal stem cells hMSCs when used in cell therapy approaches. The process of bone fracture restoration starts with an instant inflammatory reaction, as the innate immune system responds with cytokines that enhance and activate many cell types, including MSCs, at the site of the injury. In this review, we address the influence of MSCs on the immune system in fracture repair and osteogenesis. This paradigm offers a means of distinguishing target bone diseases to be treated with MSC therapy to enhance bone repair by targeting the crosstalk between MSCs and the immune system.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| |
Collapse
|
74
|
Wang HY, Li C, Liu WH, Deng FM, Ma Y, Guo LN, Kong DH, Hu KA, Liu Q, Wu J, Sun J, Liu YL. Autophagy inhibition via Becn1 downregulation improves the mesenchymal stem cells antifibrotic potential in experimental liver fibrosis. J Cell Physiol 2019; 235:2722-2737. [PMID: 31508820 PMCID: PMC6916329 DOI: 10.1002/jcp.29176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Liver fibrosis (LF) is the result of a vicious cycle between inflammation-induced chronic hepatocyte injury and persistent activation of hepatic stellate cells (HSCs). Mesenchymal stem cell (MSC)-based therapy may represent a potential remedy for treatment of LF. However, the fate of transplanted MSCs in LF remains largely unknown. In the present study, the fate and antifibrotic effect of MSCs were explored in a LF model induced by CCl4 in mouse. Additionally, MSCs were stimulated in vitro with LF-associated factors, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β1 (TGF-β1), to mimic the LF microenvironment. We unveiled that MSCs exhibited autophagy in response to the LF microenvironment through Becn1 upregulation both in vivo and in vitro. However, autophagy suppression induced by Becn1 knockdown in MSCs resulted in enhanced antifibrotic effects on LF. The improved antifibrotic potential of MSCs may be attributable to their inhibitory effects on T lymphocyte infiltration, HSCs proliferation, as well as production of TNF-α, IFN-γ, and TGF-β1, which may be partially mediated by elevated paracrine secretion of PTGS2/PGE2 . Thus, autophagy manipulation in MSCs may be a novel strategy to promote their antifibrotic efficacy.
Collapse
Affiliation(s)
- Hang Yu Wang
- Key Laboratory of Xingjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Can Li
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Hua Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng Mei Deng
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yan Ma
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Na Guo
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - De Hua Kong
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kang An Hu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qin Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiang Wu
- Deep-Underground Medicine Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Sun
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Lun Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
75
|
Qi Y, Ma J, Li S, Liu W. Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 2019; 10:274. [PMID: 31455405 PMCID: PMC6712852 DOI: 10.1186/s13287-019-1362-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) and impaired insulin secretion. The chronic inflammatory process contributed to IR and could also hamper pancreatic β cell function. However, currently applied treatment cannot reverse β cell damage or alleviate inflammation. Mesenchymal stem cells (MSCs), the cell-based therapy for their self-renewable, differentiation potential, and immunosuppressive properties, have been demonstrated in displaying therapeutic effects in T2DM. Adipose-derived MSCs (AD-MSCs) attracted more attention due to less harvested inconvenience and ethical issues commonly accompany with bone marrow-derived MSCs (BM-MSCs) and fetal annex-derived MSCs. Both AD-MSC therapy studies and mechanism explorations in T2DM animals presented that AD-MSCs could translate to clinical application. However, hyperglycemia, hyperinsulinemia, and metabolic disturbance in T2DM are crucial for impairment of AD-MSC function, which may limit the therapeutical effects of MSCs. This review focuses on the outcomes and the molecular mechanisms of MSC therapies in T2DM which light up the hope of AD-MSCs as an innovative strategy to cure T2DM.
Collapse
Affiliation(s)
- Yicheng Qi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Jing Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Shengxian Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, RenJi Hospital, School of Medicine, Shanghai Jiaotong University, 160# Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
76
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
77
|
Monteran L, Erez N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Front Immunol 2019; 10:1835. [PMID: 31428105 PMCID: PMC6688105 DOI: 10.3389/fimmu.2019.01835] [Citation(s) in RCA: 441] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are prominent components of the microenvironment in most types of solid tumors, and were shown to facilitate cancer progression by supporting tumor cell growth, extracellular matrix remodeling, promoting angiogenesis, and by mediating tumor-promoting inflammation. In addition to an inflammatory microenvironment, tumors are characterized by immune evasion and an immunosuppressive milieu. In recent years, CAFs are emerging as central players in immune regulation that shapes the tumor microenvironment. CAFs contribute to immune escape of tumors via multiple mechanisms, including secretion of multiple cytokines and chemokines and reciprocal interactions that mediate the recruitment and functional differentiation of innate and adaptive immune cells. Moreover, CAFs directly abrogate the function of cytotoxic lymphocytes, thus inhibiting killing of tumor cells. In this review, we focus on recent advancements in our understanding of how CAFs drive the recruitment and functional fate of tumor-infiltrating immune cells toward an immunosuppressive microenvironment, and provide outlook on future therapeutic implications that may lead to integration of preclinical findings into the design of novel combination strategies, aimed at impairing the tumor-supportive function of CAFs.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
78
|
Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev 2019; 47:32-42. [DOI: 10.1016/j.cytogfr.2019.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
79
|
Huang Y, Li Q, Zhang K, Hu M, Wang Y, Du L, Lin L, Li S, Sorokin L, Melino G, Shi Y, Wang Y. Single cell transcriptomic analysis of human mesenchymal stem cells reveals limited heterogeneity. Cell Death Dis 2019; 10:368. [PMID: 31068579 PMCID: PMC6506509 DOI: 10.1038/s41419-019-1583-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs) are a population of multipotent cells with a superior ability to promote tissue repair by regulating regeneration and inflammation. Effective application of MSCs in disease treatment relies on the production of relatively homogeneous cell population. However, the cellular heterogeneity and the differentiation trajectories of in vitro expanded MSCs remain largely unclear. We profiled the transcriptomes of 361 single MSCs derived from two umbilical cords (UC-MSCs). These UC-MSCs were harvested at different passages and stimulated with or without inflammatory cytokines. Weighted gene correlation network analysis revealed that UC-MSCs surprisingly possess only limited heterogeneity, regardless of donors, and passages. We also found that upon pretreatment with inflammatory cytokines (IFNγ and TNFα), a classical strategy that can improve the efficiency of MSC-based therapy, MSCs exhibited uniformed changes in gene expression. Cell cycle-based principal component analysis showed that the limited heterogeneity identified in these UC-MSCs was strongly associated with their entrance into the G2/M phase. This was further proven by the observation that one featured gene, CD168, was expressed in a cell cycle-dependent manner. When CD168high UC-MSCs were sorted and cultured in vitro, they again showed similar CD168 expression patterns. Our results demonstrated that in vitro expanded UC-MSCs are a well-organized population with limited heterogeneity dominated by cell cycle status. Thus, our studies provided information for standardization of MSCs for disease treatment.
Collapse
Affiliation(s)
- Yin Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Kunshan Zhang
- Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Siguang Li
- Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Gerry Melino
- Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, 00133, Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China. .,Soochow University Institutes for Translational Medicine, Soochow University, Suzhou, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
80
|
Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10:131. [PMID: 31046833 PMCID: PMC6498654 DOI: 10.1186/s13287-019-1224-y] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives.
Collapse
Affiliation(s)
- Nádia de Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Juçara Gastaldi Cominal
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Lucas M Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP, 14010-903, Brazil.
| |
Collapse
|
81
|
Abstract
Mesenchymal stem cells (MSCs) are multipotent tissue stem cells that differentiate into a number of mesodermal tissue types, including osteoblasts, adipocytes, chondrocytes and myofibroblasts. MSCs were originally identified in the bone marrow (BM) of humans and other mammals, but recent studies have shown that they are multilineage progenitors in various adult organs and tissues. MSCs that localize at perivascular sites function to rapidly respond to external stimuli and coordinate with the vascular and immune systems to accomplish the wound healing process. Cancer, considered as wounds that never heal, is also accompanied by changes in MSCs that parallels the wound healing response. MSCs are now recognized as key players at distinct steps of tumorigenesis. In this review, we provide an overview of the function of MSCs in wound healing and cancer progression with the goal of providing insight into the development of novel MSC-manipulating strategies for clinical cancer treatment.
Collapse
|
82
|
Najar M, Ouhaddi Y, Bouhtit F, Melki R, Afif H, Boukhatem N, Merimi M, Fahmi H. Empowering the immune fate of bone marrow mesenchymal stromal cells: gene and protein changes. Inflamm Res 2018; 68:167-176. [PMID: 30426152 DOI: 10.1007/s00011-018-1198-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Bone marrow mesenchymal stromal cells (BM-MSCs) are referred as a promising immunotherapeutic cell product. New approaches using empowered MSCs should be developed as for the treatment or prevention of different immunological diseases. Such preconditioning by new licensing stimuli will empower the immune fate of BM-MSCs and, therefore, promote a better and more efficient biological. Here, our main goal was to establish the immunological profile of BM-MSCs following inflammatory priming and in particular their capacity to adjust their immune-related proteome and transcriptome. MATERIAL AND METHODS To run this study, we have used BM-MSC cell cultures, a pro-inflammatory cytokine cocktail priming, flow cytometry analysis, qPCR and ELISA techniques. RESULTS Different expression levels of several immunological mediators such as COX-1, COX-2, LIF, HGF, Gal-1, HO-1, IL-11, IL-8, IL-6 and TGF-β were constitutively observed in BM-MSCs. Inflammation priming substantially but differentially modulated the gene and protein expression profiles of these mediators. Thus, expressions of COX-2, LIF, HGF, IL-11, IL-8 and IL-6 were highly increased/induced and those of COX-1, Gal-1, and TGF-β were reduced. CONCLUSIONS Collectively, we demonstrated that BM-MSCs are endowed with a specific and modular regulatory machinery which is potentially involved in immunomodulation. Moreover, BM-MSCs are highly sensitive to inflammation and respond to such signal by properly adjusting their gene and protein expression of regulatory factors. Using such preconditioning may empower the immune fate of MSCs and, therefore, enhance their value for cell-based immunotherapy.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada.
| | - Yassine Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| | - Fatima Bouhtit
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rahma Melki
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Hassan Afif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| | - Noureddine Boukhatem
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Makram Merimi
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
83
|
Sivanathan KN, Coates PT. IL-17A-induced mesenchymal stem cells have promising therapeutic value for clinical translation. Kidney Int 2018; 93:771-773. [PMID: 29571447 DOI: 10.1016/j.kint.2017.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Interferon (IFN) gamma is the prototypic proinflammatory cytokine used to preactivate the immunomodulatory properties of mesenchymal stem cells (MSC). IFN-gamma, however, converts MSC into a cell therapy that can be immunogenic, detrimental, and hence nonfeasible for clinical application. The article by Bai et al. is an in vivo proof-of-concept study that interleukin-17A (IL-17A) enhances the immunosuppressive, tolerance-promoting, and renoprotective properties of MSC. IL-17A is an alternative cytokine to preactivate MSC. IL-17A enhances the therapeutic efficacy of MSC for renal diseases.
Collapse
Affiliation(s)
- Kisha Nandini Sivanathan
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Patrick Toby Coates
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital, South Australia, Australia.
| |
Collapse
|
84
|
Ma T, Wang X, Jiao Y, Wang H, Qi Y, Gong H, Zhang L, Jiang D. Interleukin 17 (IL-17)-Induced Mesenchymal Stem Cells Prolong the Survival of Allogeneic Skin Grafts. Ann Transplant 2018; 23:615-621. [PMID: 30166501 PMCID: PMC6248056 DOI: 10.12659/aot.909381] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have the potential of self-renewal and multi-differentiation and have a wide application prospect in organ transplantation for the effect of inducing immune tolerance. It has found that interleukin 17 (IL-17) could enhance the inhibition effect of MSCs on T cell proliferation and increase the immunosuppressive effect of MSCs. In this study, we aimed to investigate the effect of IL-17-induced MSCs on allograft survival time after transplantation. MATERIAL AND METHODS BMSCs were characterized by differential staining. The allogenic skin transplantations were performed and the BMSCs pre-treated by IL-17 were injected. To assess the immunosuppressive function of IL-17-induced BMSCs, the morphology of the grafts, the homing ability of the BMSCs, and the survival time of the grafts were analyzed. RESULTS BMSCs from BALB/c have multidirectional differentiation potential to differentiate into osteogenic, chondrogenic, and adipogenic lineage cells. IL-17-induced BMSCs prolonged the survival time of allogeneic skin grafts dramatically. We found that there were more labeled MSCs in the skin grafts, and the Treg subpopulations percentage, IL-10, and TGF-β were significantly increased, while the IFN-γ level was decreased compared to the control group and MSCs group. In conclusion, IL-17 can enhance the homing ability of MSCs and regulate the immunosuppressive function of MSC. CONCLUSIONS Our data demonstrate that IL-17 plays the crucial role in MSC homing behaviors and promotes immunosuppression of MSCs during transplantation procedures, suggesting that IL-17-pre-treated MSCs have potential to prolong graft survival and reduce transplant rejection.
Collapse
Affiliation(s)
- Tengxiao Ma
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland).,Department of Plastic Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Xiao Wang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Ya Jiao
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Haitao Wang
- School of Medicine, Shandong University, Jinan, Shandong, China (mainland).,Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongjun Qi
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Hongmin Gong
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Longxiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Duyin Jiang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
85
|
Alfaifi M, Eom YW, Newsome PN, Baik SK. Mesenchymal stromal cell therapy for liver diseases. J Hepatol 2018; 68:1272-1285. [PMID: 29425678 DOI: 10.1016/j.jhep.2018.01.030] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
The therapeutic potential of mesenchymal stromal cells (MSCs) in the treatment of liver fibrosis is predominantly based on their immunosuppressive properties, and their ability to secrete various trophic factors. This potential has been investigated in clinical and preclinical studies. Although the therapeutic mechanisms of MSC transplantation are still not fully characterised, accumulating evidence has revealed that various trophic factors secreted by MSCs play key therapeutic roles in regeneration by alleviating inflammation, apoptosis, and fibrosis as well as stimulating angiogenesis and tissue regeneration in damaged liver. In this review, we summarise the safety, efficacy, potential transplantation routes and therapeutic effects of MSCs in patients with liver fibrosis. We also discuss some of the key strategies to enhance the functionality of MSCs, which include sorting and/or priming with factors such as cytokines, as well as genetic engineering.
Collapse
Affiliation(s)
- Mohammed Alfaifi
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Philip N Newsome
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK; National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, UK; Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
86
|
Therapeutic Delivery Specifications Identified Through Compartmental Analysis of a Mesenchymal Stromal Cell-Immune Reaction. Sci Rep 2018; 8:6816. [PMID: 29717209 PMCID: PMC5931547 DOI: 10.1038/s41598-018-24971-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Despite widespread preclinical success, mesenchymal stromal cell (MSC) therapy has not reached consistent pivotal clinical endpoints in primary indications of autoinflammatory diseases. Numerous studies aim to uncover specific mechanisms of action towards better control of therapy using in vitro immunomodulation assays. However, many of these immunomodulation assays are imperfectly designed to accurately recapitulate microenvironment conditions where MSCs act. To increase our understanding of MSC efficacy, we herein conduct a systems level microenvironment approach to define compartmental features that can influence the delivery of MSCs' immunomodulatory effect in vitro in a more quantitative manner than ever before. Using this approach, we notably uncover an improved MSC quantification method with predictive cross-study applicability and unveil the key importance of system volume, time exposure to MSCs, and cross-communication between MSC and T cell populations to realize full therapeutic effect. The application of these compartmental analysis can improve our understanding of MSC mechanism(s) of action and further lead to administration methods that deliver MSCs within a compartment for predictable potency.
Collapse
|
87
|
Gu Y, Ding X, Huang J, Xue M, Zhang J, Wang Q, Yu H, Wang Y, Zhao F, Wang H, Jin M, Wu Y, Zhang Y. The deubiquitinating enzyme UCHL1 negatively regulates the immunosuppressive capacity and survival of multipotent mesenchymal stromal cells. Cell Death Dis 2018; 9:459. [PMID: 29686406 PMCID: PMC5913136 DOI: 10.1038/s41419-018-0532-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
It is known that proinflammatory cytokines empower multipotent mesenchymal stromal cells (MSCs) the immunosuppressive capacity to treat various inflammatory diseases. Nevertheless, how the proinflammatory cytokines modulate the immunosuppressive capacity of MSCs is poorly understood. In the present study, we identified that the deubiquitinating enzyme ubiquitin C-terminal hydrolase 1 (UCHL1) was upregulated in MSCs upon stimulation of proinflammatory cytokines IFN-γ plus TNF-α. Interestingly, through intervening UCHL1 by shRNA knockdown or its inhibitor LDN57444 or overexpression, we found that UCHL1 played a critical role in suppressing cytokines-induced inducible nitric oxide synthase expression in murine MSCs and indoleamine 2,3-dioxygenase expression in human MSCs, thereby restrained their immunosuppressive capacity. This effect of UCHL1 was attributed to the negative role in regulating NF-κB and STAT1 signaling, as exhibited by promoting NF-κB and STAT1 activation upon inhibition of UCHL1. Besides, inhibition of UCHL1 suppressed cytokines-induced MSC apoptosis via upregulation of Bcl-2. As a consequence, UCHL1-inhibited MSCs effectively alleviated concanavalin A-induced inflammatory liver injury. Therefore, our study demonstrates a novel role of UCHL1 in regulating the immunosuppressive capacity and survival of MSCs, which further affects their immunotherapy for inflammatory diseases.
Collapse
Affiliation(s)
- Yuting Gu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiefang Huang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongshuang Yu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Wang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Fang Zhao
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hui Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Jin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. .,Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.
| |
Collapse
|
88
|
Kurte M, Luz-Crawford P, Vega-Letter AM, Contreras RA, Tejedor G, Elizondo-Vega R, Martinez-Viola L, Fernández-O'Ryan C, Figueroa FE, Jorgensen C, Djouad F, Carrión F. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:802. [PMID: 29760692 PMCID: PMC5936796 DOI: 10.3389/fimmu.2018.00802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA-/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA-/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA-/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.
Collapse
Affiliation(s)
- Mónica Kurte
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Rafael A Contreras
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Gautier Tejedor
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Roberto Elizondo-Vega
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Luna Martinez-Viola
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Catalina Fernández-O'Ryan
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Fernando E Figueroa
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | | | - Farida Djouad
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
89
|
Abstract
PURPOSE OF REVIEW Bone fracture healing is a complex physiological process relying on numerous cell types and signals. Inflammatory factors secreted by immune cells help to control recruitment, proliferation, differentiation, and activation of hematopoietic and mesenchymal cells. Within this review we will discuss the functional role of immune cells as it pertains to bone fracture healing. In doing so, we will outline the cytokines secreted and their effects within the healing fracture callus. RECENT FINDINGS Macrophages have been found to play an important role in fracture healing. These immune cells signal to other cells of the fracture callus, modulating bone healing. Cytokines and cellular signals within fracture healing continue to be studied. The findings from this work have helped to reinforce the importance of osteoimmunity in bone fracture healing. Owing to these efforts, immunomodulation is emerging as a potential therapeutic target to improve bone fracture healing.
Collapse
Affiliation(s)
- Gurpreet S Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, DUMC 104775, 300 North Duke Street, Durham, NC, 27701, USA.
- Duke Molecular Physiology Institute, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University, 200 Trent Drive, Orange Zone 5th floor, Durham, NC, 27710, USA.
| | - Linda Vi
- University of Toronto, Toronto, Canada
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University, DUMC 104775, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Orthopaedic Surgery, Duke University, 200 Trent Drive, Orange Zone 5th floor, Durham, NC, 27710, USA.
| |
Collapse
|
90
|
Kaundal U, Bagai U, Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med 2018; 16:31. [PMID: 29448956 PMCID: PMC5815241 DOI: 10.1186/s12967-018-1403-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation remains to be a treatment of choice for patients suffering from irreversible organ failure. Immunosuppressive (IS) drugs employed to maintain the allograft have shown excellent short-term graft survival, but, their long-term use could contribute to immunological and non-immunological risk factors, resulting in graft dysfunctionalities. Upcoming IS regimes have highlighted the use of cell-based therapies, which can eliminate the risk of drug-borne toxicities while maintaining efficacy of the treatment. Mesenchymal stem cells (MSCs) have been considered as an invaluable cell type, owing to their unique immunomodulatory properties, which makes them desirable for application in transplant settings, where hyper-activation of the immune system is evident. The immunoregulatory potential of MSCs holds true for preclinical studies while achieving it in clinical studies continues to be a challenge. Understanding the biological factors responsible for subdued responses of MSCs in vivo would allow uninhibited use of this therapy for countless conditions. In this review, we summarize the variations in the preclinical and clinical studies utilizing MSCs, discuss the factors which might be responsible for variability in outcome and propose the advancements likely to occur in future for using this as a "boutique/personalised therapy" for patient care.
Collapse
Affiliation(s)
- Urvashi Kaundal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Upma Bagai
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| |
Collapse
|
91
|
Yu Y, Zhang Q, Meng Q, Zong C, Liang L, Yang X, Lin R, Liu Y, Zhou Y, Zhang H, Hou X, Han Z, Cheng J. Mesenchymal stem cells overexpressing Sirt1 inhibit prostate cancer growth by recruiting natural killer cells and macrophages. Oncotarget 2018; 7:71112-71122. [PMID: 27764779 PMCID: PMC5342066 DOI: 10.18632/oncotarget.12737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 10/13/2016] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PCa) has become the second leading cause of male cancer-related mortality in the United States. Mesenchymal stem cells (MSCs) are able to migrate to tumor tissues, and are thus considered to be novel antitumor carriers. However, due to their immunosuppressive nature, the application of MSCs in PCa therapy remains limited. In this study, we investigated the effect of MSCs overexpressing an NAD-dependent deacetylase sirtuin 1 (MSCs-Sirt1) on prostate tumor growth, and we analyzed the underlying mechanisms. Our results show that MSCs accelerate prostate tumor growth, whereas MSCs-Sirt1 significantly suppresses tumor growth. Natural killer (NK) cells and macrophages are the prominent antitumor effectors of the MSCs-Sirt1-induced antitumor activity. IFN-γ and C-X-C motif chemokine ligand 10 (CXCL10) are highly expressed in MSCs-Sirt1 mice. The antitumor effect of MSCs-Sirt1 is weakened when CXCL10 and IFN-γ are inhibited. These results show that MSCs-Sirt1 can effectively inhibit prostate cancer growthrecruiting NK cells and macrophages in a tumor inflammatory microenvironment.
Collapse
Affiliation(s)
- Yang Yu
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qingyun Zhang
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qinggui Meng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Liang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Rui Lin
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yang Zhou
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hongxiang Zhang
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Jiwen Cheng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
92
|
Abstract
Achieving satisfactory reconstruction of bone remains an important goal in orthopedic and dental conditions such as bone trauma, osteoporosis, arthritis, osteonecrosis, and periodontitis. Appropriate temporal and spatial differentiation of mesenchymal stem cells (MSCs) is essential for postnatal bone regeneration. Additionally, an acute inflammatory response is crucial at the onset of bone repair, while an adaptive immune response has important implications during late bone remodeling. Various reports have indicated bidirectional interactions between MSCs and inflammatory cells or molecules. For example, inflammatory cells can recruit MSCs, direct their migration and differentiation, so as to exert anabolic effects on bone repair. Furthermore, both pro-inflammatory and anti-inflammatory cytokines can regulate MSCs properties and subsequent bone regeneration. MSCs have demonstrated highly immunosuppressive functions, such as inhibiting the differentiation of monocytes/hematopoietic precursors and suppressing the secretion of pro-inflammatory cytokines. This review emphasizes the important interactions between inflammatory stimuli, MSCs, and bone regeneration as well as the underlying regulatory mechanisms. Better understanding of these principles will provide new opportunities for promoting bone regeneration and the treatment of bone loss associated with immunological diseases.
Collapse
|
93
|
Liao L, Yu Y, Shao B, Su X, Wang H, Kuang H, Jing H, Situai Y, Yang D, Jin Y. Redundant let‐7a suppresses the immunomodulatory properties of BMSCs by inhibiting the Fas/FasL system in osteoporosis. FASEB J 2018; 32:1982-1992. [DOI: 10.1096/fj.201700885r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Liao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Yang Yu
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Bingyi Shao
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Xiaoxia Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
| | - Han Wang
- Department of StomatologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huijuan Kuang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Huan Jing
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| | - Yi Situai
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Department of StomatologyNanjing General Hospital of Nanjing Military Command, People's Liberation ArmyNanjingChina
| | - Deqin Yang
- Department of EndodonticsStomatological Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yan Jin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical UniversityXi'anChina
- Xi'an Institute of Tissue Engineering and Regenerative MedicineXiœanChina
| |
Collapse
|
94
|
Bai M, Zhang L, Fu B, Bai J, Zhang Y, Cai G, Bai X, Feng Z, Sun S, Chen X. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int 2017; 93:814-825. [PMID: 29132705 DOI: 10.1016/j.kint.2017.08.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are effective for the management of experimental ischemia-reperfusion acute kidney injury (IRI-AKI). Immune modulation is one of the important mechanisms of MSCs treatment. Interleukin-17A (IL-17A) pretreated MSCs are more immunosuppressive with minimal changes in immunogenicity in vitro. Here, we demonstrated that administration of IL-17A-pretreated MSCs resulted in significantly lower acute tubular necrosis scores, serum creatinine, and BUN of mice with IRI-AKI, compared with the administration of MSCs. Of the co-cultured splenocytes, IL-17A-pretreated MSCs significantly increased the percentages of CD4+Foxp3+ Tregs and decreased concanavalin A-induced T cell proliferation. Furthermore, mice with IRI-AKI that underwent IL-17A-pretreated MSC therapy had significantly lower serum IL-6, TNF-α, and IFN-γ levels, a higher serum IL-10 level, and higher spleen and kidney Treg percentages than the mice that underwent MSCs treatment. Additionally, the depletion of Tregs by PC61 (anti-CD25 antibody) reversed the enhanced treatment efficacy of the IL-17A-pretreatedMSCs on mice with IRI-AKI. Additionally, IL-17A upregulated COX-2 expression and increased PGE2 production. The blockage of COX-2 by celecoxib reversed the benefit of IL-pretreated 17A-MSCs on the serum PGE2 concentration, spleen and kidney Tregs percentages, serum creatinine and BUN levels, renal acute tubular necrosis scores, and serum IL-6, TNF-α, IFN-γ, and IL-10 levels of IRI-pretreated mice with AKI, compared with MSCs. Thus, our results suggest that IL-17A pretreatment enhances the efficacy of MSCs on mice with IRI-AKI by increasing the Treg percentages through the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Ming Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China; Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Li Zhang
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Bo Fu
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Jiuxu Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Guangyan Cai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Xueyuan Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Zhe Feng
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.
| | - Xiangmei Chen
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China.
| |
Collapse
|
95
|
He T, Huang Y, Zhang C, Liu D, Cheng C, Xu W, Zhang X. Interleukin-17A-promoted MSC2 polarization related with new bone formation of ankylosing spondylitis. Oncotarget 2017; 8:96993-97008. [PMID: 29228588 PMCID: PMC5722540 DOI: 10.18632/oncotarget.20823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/19/2017] [Indexed: 12/16/2022] Open
Abstract
It’s still unknown how over-hyperplasia of tissue such like new bone formation (NBF) developed in ankylosing spondylitis (AS). We found low level of IL-17A promoted TLR4+MSC1 polarization with suppressed osteogenic differentiation through JAK2/STAT3 pathway, while high level of IL-17A promoted TLR3+MSC2 polarization with enhanced osteogenic differentiation through WNT10b/RUNX2 pathway. Furthermore, both proteoglycan-induced spondylitis (PGISp) mouse model and AS patients without NBF showed MSC1 polarization, up-regulated JAK2/STAT3 pathway and high level of IL-17A (peripherally, but not locally), but those with NBF showed MSC2 polarization, up-regulated WNT10b/RUNX2 pathway and high expression of IL-17A at local site. Results showed NBF of AS was induced by MSC2 polarization that was promoted by high level of IL-17A, and may be treated by suppressing local MSC2 polarization.
Collapse
Affiliation(s)
- Tao He
- Department of Joint Surgery and Sports Medicine, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Yan Huang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chen Zhang
- Department of Joint Surgery and Sports Medicine, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Denghui Liu
- Department of Joint Surgery and Sports Medicine, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Chao Cheng
- Department of Nuclear Medicine, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Weidong Xu
- Department of Joint Surgery and Sports Medicine, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaoling Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.,Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
96
|
Rui K, Lin X, Tian J, Wang X, Sun L, Hong X, Liu D, Wang S, Lu L. Ecto-mesenchymal stem cells: a new player for immune regulation and cell therapy. Cell Mol Immunol 2017; 15:82-84. [PMID: 28782759 DOI: 10.1038/cmi.2017.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Laboratory Medicine, and Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University Medical School, Zhenjiang, China
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shengjun Wang
- Department of Laboratory Medicine, and Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University Medical School, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
97
|
Cagliani J, Grande D, Molmenti EP, Miller EJ, Rilo HL. Immunomodulation by Mesenchymal Stromal Cells and Their Clinical Applications. JOURNAL OF STEM CELL AND REGENERATIVE BIOLOGY 2017; 3:10.15436/2471-0598.17.022. [PMID: 29104965 PMCID: PMC5667922 DOI: 10.15436/2471-0598.17.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that can be isolated and expanded from various sources. MSCs modulate the function of immune cells, including T and B lymphocytes, dendritic cells, and natural killer cells. An understanding of the interaction between MSCs and the inflammatory microenvironment will provide critical information in revealing the precise in vivo mechanisms involved in MSCs-mediated therapeutic effects, and for designing more practical protocols for the clinical use of these cells. In this review we describe the current knowledge of the unique biological properties of MSCs, the immunosuppressive effects on immune-competent cells and the paracrine role of soluble factors. A summary of the participation of MSCs in preclinical and clinical studies in treating autoimmune diseases and other diseases is described. We also discuss the current challenges of their use and their potential roles in cell therapies.
Collapse
Affiliation(s)
- Joaquin Cagliani
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health System, Manhasset, NY, USA
| | - Daniel Grande
- The Feinstein Institute for Medical Research, Orthopedic Research Laboratory, Northwell Health System, Manhasset, N Y, USA
| | - Ernesto P Molmenti
- Transplantation of Surgery, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| | - Edmund J. Miller
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
| | - Horacio L.R. Rilo
- Pancreas Disease Center, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
98
|
Sudres M, Maurer M, Robinet M, Bismuth J, Truffault F, Girard D, Dragin N, Attia M, Fadel E, Santelmo N, Sicsic C, Brenner T, Berrih-Aknin S. Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model. JCI Insight 2017; 2:e89665. [PMID: 28405609 DOI: 10.1172/jci.insight.89665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myasthenia gravis (MG) with anti-acetylcholine receptor (AChR) Abs is an autoimmune disease characterized by severe defects in immune regulation and thymic inflammation. Because mesenchymal stem cells (MSCs) display immunomodulatory features, we investigated whether and how in vitro-preconditioned human MSCs (cMSCs) could treat MG disease. We developed a new humanized preclinical model by subcutaneously grafting thymic MG fragments into immunodeficient NSG mice (NSG-MG model). Ninety percent of the animals displayed human anti-AChR Abs in the serum, and 50% of the animals displayed MG-like symptoms that correlated with the loss of AChR at the muscle endplates. Interestingly, each mouse experiment recapitulated the MG features of each patient. We next demonstrated that cMSCs markedly improved MG, reducing the level of anti-AChR Abs in the serum and restoring AChR expression at the muscle endplate. Resting MSCs had a smaller effect. Finally, we showed that the underlying mechanisms involved (a) the inhibition of cell proliferation, (b) the inhibition of B cell-related and costimulatory molecules, and (c) the activation of the complement regulator DAF/CD55. In conclusion, this study shows that a preconditioning step promotes the therapeutic effects of MSCs via combined mechanisms, making cMSCs a promising strategy for treating MG and potentially other autoimmune diseases.
Collapse
Affiliation(s)
- Muriel Sudres
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Marie Maurer
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Marieke Robinet
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Jacky Bismuth
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Frédérique Truffault
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Diane Girard
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Nadine Dragin
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Mohamed Attia
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| | - Elie Fadel
- Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | | | - Camille Sicsic
- Department of Neurology, Agnes Ginges Center for human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Talma Brenner
- Department of Neurology, Agnes Ginges Center for human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,INSERM U974, Paris, France.,AIM, Institute of Myology, Paris, France
| |
Collapse
|
99
|
Sivanathan KN, Gronthos S, Grey ST, Rojas-Canales D, Coates PT. Immunodepletion and Hypoxia Preconditioning of Mouse Compact Bone Cells as a Novel Protocol to Isolate Highly Immunosuppressive Mesenchymal Stem Cells. Stem Cells Dev 2017; 26:512-527. [PMID: 27998209 DOI: 10.1089/scd.2016.0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Compact bones (CB) are major reservoirs of mouse mesenchymal stem cells (mMSC). Here, we established a protocol to isolate MSC from CB and tested their immunosuppressive potential. Collagenase type II digestion of BM-flushed CB from C57B/6 mice was performed to liberate mMSC precursors from bone surfaces to establish nondepleted mMSC. CB cells were also immunodepleted based on the expression of CD45 (leukocytes) and TER119 (erythroid cells) to eliminate hematopoietic cells. CD45-TER119- CB cells were subsequently used to generate depleted mMSC. CB nondepleted and depleted mMSC progenitors were cultured under hypoxic conditions to establish primary mMSC cultures. CB depleted mMSC compared to nondepleted mMSC showed greater cell numbers at subculturing and had increased functional ability to differentiate into adipocytes and osteoblasts. CB depleted mMSC had high purity and expressed key mMSC markers (>85% Sca-1, CD29, CD90) with no mature hematopoietic contaminating cells (<5% CD45, CD11b) when subcultured to passage 5 (P5). Nondepleted mMSC cultures, however, were less pure and heterogenous with <72% Sca-1+, CD29+, and CD90+ cells at early passages (P1 or P2), along with high percentages of contaminating CD11b+ (35.6%) and CD45+ (39.2%) cells that persisted in culture long term. Depleted and nondepleted mMSC nevertheless exhibited similar potency to suppress total (CD3+), CD4+ and CD8+ T cell proliferation, in a dendritic cell allostimulatory one-way mixed lymphocyte reaction. CB depleted mMSC, pretreated with proinflammatory cytokines IFN-γ, TNF-α, and IL-17A, showed superior suppression of CD8+ T cell, but not CD4+ T cell proliferation, relative to untreated-mMSC. In conclusion, CB depleted mMSC established under hypoxic conditions and treated with selective cytokines represent a novel source of potent immunosuppressive MSC. As these cells have enhanced immune modulatory function, they may represent a superior product for use in clinical allotransplantation.
Collapse
Affiliation(s)
- Kisha Nandini Sivanathan
- 1 School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia .,2 Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital , Adelaide, Australia
| | - Stan Gronthos
- 3 South Australian Health and Medical Research Institute , Adelaide, Australia .,4 Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia
| | - Shane T Grey
- 5 Transplantation Immunology Group, Garvan Institute of Medical Research , Sydney, Australia
| | - Darling Rojas-Canales
- 1 School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia .,2 Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital , Adelaide, Australia
| | - Patrick T Coates
- 1 School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, Australia .,2 Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital , Adelaide, Australia .,6 Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital , Adelaide, Australia
| |
Collapse
|
100
|
Vas WJ, Shah M, Al Hosni R, Owen HC, Roberts SJ. Biomimetic strategies for fracture repair: Engineering the cell microenvironment for directed tissue formation. J Tissue Eng 2017; 8:2041731417704791. [PMID: 28491274 PMCID: PMC5406151 DOI: 10.1177/2041731417704791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing ability to recapitulate native tissue environments. This coupled with advances in the understanding of stem cell biology and technology has opened new avenues for regenerative strategies with true clinical translatability. These advances have provided the impetus to develop alternative approaches to enhance the fracture repair process. We provide an update on these advances, with a focus on the development of novel biomimetic approaches for bone regeneration and their translational potential.
Collapse
Affiliation(s)
- Wollis J Vas
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Mittal Shah
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Rawiya Al Hosni
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| | - Helen C Owen
- Department of Natural Sciences, School of Science & Technology, Middlesex University, London, UK
| | - Scott J Roberts
- Department of Materials & Tissue, Institute of Orthopaedics & Musculoskeletal Science, University College London, Stanmore, UK
| |
Collapse
|