51
|
Tang J, Zhu J, Ye Y, Liu Y, He Y, Zhang L, Tang D, Qiao C, Feng X, Li J, Kan Y, Li X, Jin X, Kong D. Inhibition LC3B can increase chemosensitivity of ovarian cancer cells. Cancer Cell Int 2019; 19:199. [PMID: 31384174 PMCID: PMC6664537 DOI: 10.1186/s12935-019-0921-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Ovarian cancer is often accompanied by the production of ascites, and patients with repeated ascites are associated with chemotherapy resistance. The previous study confirmed that the ovarian cancer patients who developed ascites after chemotherapy had elevated autophagy levels in the ascites and precipitated cells, which was positively correlated with MDR1 expression in the blood of patients. Methods In order to explore the correlation between autophagy and chemoresistant, we searched TCGA and GEO database to analyze the correlation between LC3B and MDR1, and identified the targeting miRNA of LC3B. It was verified by dual luciferase that miR-204 can target LC3B. The ovarian cancer cell line and the BALB/c nude mice tumor-bearing model were selected for in vitro and in vivo verification. In vitro studies confirmed that ovarian cancer cells were more sensitive to cisplatin by inhibiting LC3B. Results Overexpression of miR-204 reduced the expression of LC3B, Atg7, and MDR1, and promoted apoptosis. In vivo studies have also confirmed that reducing the level of autophagy in ovarian cancer cells increases the sensitivity to cisplatin. Conclusions It suggests that miR-204 can be used as a tumor suppressor gene and LC3B expression level can be used as a potential molecular marker to guide the diagnosis and treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Jing Tang
- 1Department of Bioinformatics, Southern Medical University, Guangzhou, 510515 China.,2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Jiang Zhu
- 3Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Yuguang Ye
- 4Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 China
| | - Yu Liu
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Yan He
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Lei Zhang
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Dai Tang
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Cong Qiao
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Xinxin Feng
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Junyi Li
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Yanni Kan
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Xiaobo Li
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Xiaoming Jin
- 2Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 China
| | - Dan Kong
- 4Department of Gynecology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 China
| |
Collapse
|
52
|
Deng Z, Cai H, Lin L, Zhu L, Wu W, Yang S, Cai J, Tan J. lncRNA ATXN8OS promotes breast cancer by sequestering miR‑204. Mol Med Rep 2019; 20:1057-1064. [PMID: 31173245 PMCID: PMC6625414 DOI: 10.3892/mmr.2019.10367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer (BC) is a common malignancy among women and the leading cause of female cancer mortality worldwide. In recent years, increasing evidence has shown that long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) in human cancer and that they are involved in many biological processes, including proliferation, migration, apoptosis and invasion. In the present study, the biological function and molecular mechanism of ataxin 8 opposite strand (ATXN8OS) in BC tissue and cell lines were investigated. It was found that ATXN8OS was markedly up-regulated in BC tissue and cell lines, and that its level of overexpression was inversely linked with the overall survival rate of patients with BC. Knockdown of ATXN8OS inhibited proliferation, viability and invasion in the human MCF7 and MDA-MB-231 BC cell lines. In addition, microRNA-204 (miR-204) was negatively associated with the expression of ATXN8OS in BC tissues and cell lines. A luciferase assay demonstrated a direct binding site for miR-204 within ATXN8OS, and inhibition of miR-204 stimulated the tumour-promoting effect of ATXN8OS on BC cells. In conclusion, the present study suggested that ATXN8OS acts as a tumour promoter by sequestering miR-204 during the development of BC, therefore providing a mechanistic insight which may facilitate the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Zhen Deng
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Huayu Cai
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Liying Lin
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Lingfeng Zhu
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Weizhen Wu
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Shunliang Yang
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Jinquan Cai
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Jianming Tan
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
53
|
Mohamed WA, Schaalan MF, Ramadan B. The expression profiling of circulating miR-204, miR-182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem 2019; 120:13464-13477. [PMID: 30945348 DOI: 10.1002/jcb.28620] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Deregulation of noncoding RNAs, microRNAs (miRNAs) and long noncoding RNA (lncRNA), are implicated in the initiation and progression of gastric cancer (GC). This study is a pilot case-control study carried out on 75 subjects, 40 of them were Helicobacter pylori-gastric ulcer patients and 35 were GC patients recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, Cairo University in Egypt. Real-time PCR was performed to evaluate the expression level of serum miR-204, miR-182, and lncRNA H19 in patients with peptic ulcer-progressed GC vs nonprogressed peptic ulcer patients. Fibroblast growth factor 18 (FGF-18)/FGF receptor 2 (FGFR2) expression and their downstream immunological and inflammatory signaling markers were assessed and their association with the addressed noncoding RNAs investigated. As regards miR-204 and miR-182, they were significantly increased (12.5 and 2.6 folds, respectively) in GU samples, compared with those of healthy control levels. The elevated levels of these miRNAs were significantly de-escalated in GC samples compared with GU and the fold decrease valued 2.2 fold for miR-204 and 1.8 folds for miR-182. On the other hand, the significant escalation in the level of lnRNA H19 in GU recorded a 16.6 fold increase and further elevation in its levels was evident in GC samples. The herein assessed miRNAs are correlated with disease duration and FGFR2 with miR-182 being significantly correlated with all inflammatory markers, TAC, INF-γ, matrix metallopeptidase 9, and FGF-18. In terms of diagnostic accuracy of assessed miRNAs (stages III to IV), the receiver operating characteristic analysis indicated that serum lncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%), compared with miR-204 and miR-182, which showed the same specificity (60%), sensitivity (72.7%), and diagnostic accuracy (68.8%). Our findings conclude that lnRNA H19, miR-204, and miR-182 may function as novel prospective plasma biomarkers to detect GC and its progression from H. pylori-peptic ulcer, which would be helpful to improve the theranostics of GC.
Collapse
Affiliation(s)
- Waleed A Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospital, Cairo University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Basma Ramadan
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
54
|
Wu X, Shen J, Xiao Z, Li J, Zhao Y, Zhao Q, Cho CH, Li M. An overview of the multifaceted roles of miRNAs in gastric cancer: Spotlight on novel biomarkers and therapeutic targets. Biochem Pharmacol 2019; 163:425-439. [PMID: 30857828 DOI: 10.1016/j.bcp.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that have displayed strong association with gastric cancer (GC). Through the repression of target mRNAs, miRNAs regulate many biological pathways that are involved in cell proliferation, apoptosis, migration, invasion, metastasis as well as drug resistance. The detection of miRNAs in tissues and in body fluids emerges as a promising method in the diagnosis and prognosis of GC, due to their unique expression pattern in correlation with GC. Notably, miRNAs are also identified as potential therapeutic targets for GC therapy. The present review is thus to highlight the multifaceted roles of miRNAs in GC and in GC therapies, which would give indications for future research.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
55
|
Yu Y, Wang Y, Xiao X, Cheng W, Hu L, Yao W, Qian Z, Wu W. MiR-204 inhibits hepatocellular cancer drug resistance and metastasis through targeting NUAK1. Biochem Cell Biol 2019; 97:563-570. [PMID: 30807203 DOI: 10.1139/bcb-2018-0354] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liver cancer is a leading cause of cancer-related deaths globally. Tumor response rate of liver cancer patients towards systemic chemotherapy is low and chemoresistance can easily develop. Identifying novel molecules that can repress drug resistance and metastasis of liver cancer will facilitate the development of new therapeutic strategies. The aim of this study is to determine the roles of NUAK1 and miR-204 in the drug resistance and metastasis of liver cancer and to reveal their relationship. We found that NUAK1 was increased in the tumor of primary liver cancer. Knockdown of NUAK1 significantly inhibited cell growth and migration. Moreover, NUAK1 was the direct downstream target of miR-204, and there was clinical relevance between miR-204 down-regulation and NUAK1 up-regulation in liver cancer. Furthermore, we found that miR-204 increased drug sensitivity by down-regulating NUAK1 expression. Based on these results, we identified miR-204 as a tumor suppressor by inhibiting NUAK1 expression in liver cancer, indicating both miR-204 and NUAK1 may act as promising targets for liver cancer therapy.
Collapse
Affiliation(s)
- Yuhui Yu
- Department of General Surgery, Changxing County People's Hospital, Huzhou City, Zhejiang Province, 313000, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing, 210008, China
| | - Xiangying Xiao
- Department of Internal Medicine, Changxing County People's Hospital, Huzhou City, Zhejiang Province, 313000, China
| | - Wei Cheng
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Liqiang Hu
- Department of Central Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Weiyun Yao
- Department of General Surgery, Changxing County People's Hospital, Huzhou City, Zhejiang Province, 313000, China
| | - Zhangxuan Qian
- Department of General Surgery, Changxing County People's Hospital, Huzhou City, Zhejiang Province, 313000, China
| | - Wei Wu
- Department of General Surgery, Changxing County People's Hospital, Huzhou City, Zhejiang Province, 313000, China
| |
Collapse
|
56
|
Jin Y, Wang J, Zhang M, Zhang S, Lei C, Chen H, Guo W, Lan X. Role of bta‐miR‐204 in the regulation of adipocyte proliferation, differentiation, and apoptosis. J Cell Physiol 2019; 234:11037-11046. [DOI: 10.1002/jcp.27928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yunyun Jin
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Jian Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Meng Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Sihuan Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Wei Guo
- Department of Animal Science College of Agriculture and Natural Resources University of Wyoming Laramie Wyoming
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| |
Collapse
|
57
|
Semaphorin 5A drives melanoma progression: role of Bcl-2, miR-204 and c-Myb. J Exp Clin Cancer Res 2018; 37:278. [PMID: 30454024 PMCID: PMC6245779 DOI: 10.1186/s13046-018-0933-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022] Open
Abstract
Background Melanoma, the most aggressive form of skin cancer, is characterized by high rates of metastasis, drug resistance and mortality. Here we investigated the role of Semaphorin 5A (Sema5A) on the properties associated with melanoma progression and the factors involved in Sema5A regulation. Methods Western blotting, qRT-PCR, Chromatin immunoprecipitation (ChIP) assay, immunohistochemistry of melanoma patient specimens and xenograft tissues, in vitro Transwell assay for cell migration and invasion evaluation, in vitro capillary-like structure formation analysis. Results A significant correlation of Sema5A mRNA expression and melanoma progression was observed by analyzing GEO profile dataset. Endogenous Sema5A protein was detected in 95% of human melanoma cell lines tested, in 70% of metastatic specimens from patients affected by melanoma, and 16% of in situ melanoma specimens showed a focal positivity. We demonstrated that Sema5A regulates in vitro cell migration and invasion and the formation of vasculogenic structures. We also found an increase of Sema5A at both mRNA and protein level after forced expression of Bcl-2. By use of transcriptional and proteasome inhibitors, we showed that Bcl-2 increases the stability of Sema5A mRNA and protein. Moreover, by ChIP we demonstrated that Sema5A expression is under the control of the transcription factor c-Myb and that c-Myb recruitment on Sema5A promoter is increased after Bcl-2 overexpression. Finally, a concomitant decrease in the expression of Sema5A, Bcl-2 and c-Myb proteins was observed in melanoma cells after miR-204 overexpression. Conclusion Overall our data provide evidences supporting the role of Sema5A in melanoma progression and the involvement of Bcl-2, miR-204 and c-Myb in regulating its expression. Electronic supplementary material The online version of this article (10.1186/s13046-018-0933-x) contains supplementary material, which is available to authorized users.
Collapse
|
58
|
Stojanovic J, Tognetto A, Tiziano DF, Leoncini E, Posteraro B, Pastorino R, Boccia S. MicroRNAs expression profiles as diagnostic biomarkers of gastric cancer: a systematic literature review. Biomarkers 2018; 24:110-119. [DOI: 10.1080/1354750x.2018.1539765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jovana Stojanovic
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Alessia Tognetto
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Danilo Francesco Tiziano
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Emanuele Leoncini
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Brunella Posteraro
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Roberta Pastorino
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Stefania Boccia
- Sezione di Igiene, Istituto di Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| |
Collapse
|
59
|
Triiodothyronine Promotes Cell Proliferation of Breast Cancer via Modulating miR-204/Amphiregulin. Pathol Oncol Res 2018; 25:653-658. [PMID: 30406874 DOI: 10.1007/s12253-018-0525-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) severely threatens women's life, and Triiodothyronine (T3) shows a positive role on BC cell proliferation, while the potential mechanism underlying it is still unclear. T3 was used to stimulate BC cell lines MCF-7 and T47-D. Real-time PCR was performed to determine the expression of miRNAs, while western blot was used to measure protein expression of Amphiregulin (AREG), AKT and p-AKT. The interaction between miR-204 and AREG was determined using luciferase reporter assay. MTT was performed to detect cell viability. The expression of miR-204 was decreased, while AREG and p-AKT was increased in T3 stimulated BC cell lines. T3 stimulation promoted cell viability. miR-204 targets AREG to regulate its expression. T3 promoted expression of AREG and p-AKT, while miR-204 overexpression reversed the effect of T3, however, pcDNA-AREG transfection abolished the effect of miR-204 mimic. T3 promoted cell viability of BC cells via modulating the AKT signaling pathway. The detailed mechanism was that the down-regulated miR-204 that induced by T3 stimulation promoted the expression of AREG, the up-regulated AREG activated AKT signaling pathway, while the activated AKT signaling promoted cell proliferation.
Collapse
|
60
|
Hadj-Moussa H, Storey KB. Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains. Cell Mol Life Sci 2018; 75:3635-3647. [PMID: 29681008 PMCID: PMC11105625 DOI: 10.1007/s00018-018-2821-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
When temperatures plummet below 0 °C, wood frogs (Rana sylvatica) can endure the freezing of up to ~ 65% of their body water in extracellular ice masses, displaying no measurable brain activity, no breathing, no movement, and a flat-lined heart. To aid survival, frogs retreat into a state of suspended animation characterized by global suppression of metabolic functions and reprioritization of energy usage to essential survival processes that is elicited, in part, by the regulatory controls of microRNAs. The present study is the first to investigate miRNA biogenesis and regulation in the brain of a freeze tolerant vertebrate. Indeed, proper brain function and adaptations to environmental stimuli play a crucial role in coordinating stress responses. Immunoblotting of miRNA biogenesis factors illustrated an overall reduction in the majority of these processing proteins suggesting a potential suppression of miRNA maturation over the freeze-thaw cycle. This was coupled with a large-scale RT-qPCR analysis of relative expression levels of 113 microRNA species in the brains of control, 24 h frozen, and 8 h thawed R. sylvatica. Of the 41 microRNAs differentially regulated during freezing and thawing, only two were significantly upregulated. Bioinformatic target enrichment of the downregulated miRNAs, performed at the low temperatures experienced during freezing and thawing, predicted their involvement in the potential activation of various neuroprotective processes such as synaptic signaling, intracellular signal transduction, and anoxia/ischemia injury protection. The predominantly downregulated microRNA fingerprint identified herein suggests a microRNA-mediated cryoprotective mechanism responsible for maintaining neuronal functions and facilitating successful whole brain freezing and thawing.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
61
|
Inhibition of MicroRNA-204 Conducts Neuroprotection Against Spinal Cord Ischemia. Ann Thorac Surg 2018; 107:76-83. [PMID: 30278168 DOI: 10.1016/j.athoracsur.2018.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/19/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNA(miR)-204 is an autophagy- and apoptosis-related gene. Neuroprotection by the inhibition of miR-204 against spinal cord ischemia was evaluated, and the roles of neuronal autophagy and apoptosis were investigated. METHODS Spinal cord ischemia was conducted in rats by cross-clamping the descending aorta for 14 minutes. Inhibition of miR-204 was induced by intrathecal injection of lentivirus vectors containing antagomiR-204. Hind-limb motor function was assessed with the motor deficit index. Lumbar spinal cords were harvested for histologic examinations and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. Autophagy was evaluated by the LC3-II/LC3-I ratio and beclin-1 expression. Expressions of LC3-I, LC3-II, beclin-1, B-cell lymphoma-2 (BCL-2), caspase-3, and miR-204 were measured by Western blot and quantitative real-time polymerase chain reaction. Autophagy was blocked by 3-methyladenine. RESULTS Transient ischemia enhanced miR-204 expression and the LC3-II/LC3-I ratio and downregulated BCL-2 expression in spinal cords in a time-dependent manner. AntagomiR-204 significantly reduced expressions of miR-204 and caspase-3, dramatically upregulated expressions of beclin-1 and BCL-2 and the LC3-II/LC3-I ratio in spinal cords after reperfusion. Compared with controls, inhibition of miR-204 markedly decreased the motor deficit index scores at 6, 12, 24, and 48 hours after reperfusion; increased the number of viable motor neurons; and decreased the number of apoptotic neurons. 3-Methyladenine completely abolished enhancements of the LC3-II/LC3-I ratio and beclin-1 expression induced by antagomiR-204 and inhibited the protective effect on hind-limb motor function. CONCLUSIONS Inhibition of miR-204 exerts spinal cord protection against ischemia-reperfusion injury, possibly via promotion of autophagy and antiapoptotic effects.
Collapse
|
62
|
Salinas-Vera YM, Marchat LA, García-Vázquez R, González de la Rosa CH, Castañeda-Saucedo E, Tito NN, Flores CP, Pérez-Plasencia C, Cruz-Colin JL, Carlos-Reyes Á, López-González JS, Álvarez-Sánchez ME, López-Camarillo C. Cooperative multi-targeting of signaling networks by angiomiR-204 inhibits vasculogenic mimicry in breast cancer cells. Cancer Lett 2018; 432:17-27. [PMID: 29885516 DOI: 10.1016/j.canlet.2018.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
RNA-based multi-target therapies focused in the blocking of signaling pathways represent an attractive approach in cancer. Here, we uncovered a miR-204 cooperative targeting of multiple signaling transducers involved in vasculogenic mimicry (VM). Our data showed that invasive triple negative MDA-MB-231 and Hs-578T breast cancer cells, but not poorly invasive MCF-7 cells, efficiently undergoes matrix-associated VM under hypoxia. Ectopic restoration of miR-204 in MDA-MB-231 cells leads to a potent inhibition of VM and reduction of number of branch points and patterned 3D channels. Further analysis of activation state of multiple signaling pathways using Phosphorylation Antibody Arrays revealed that miR-204 reduced the expression and phosphorylation levels of 13 proteins involved in PI3K/AKT, RAF1/MAPK, VEGF, and FAK/SRC signaling. In agreement with phospho-proteomic profiling, VM was impaired following pharmacological administration of PI3K and SRC inhibitors. Mechanistic studies confirmed that miR-204 exerts a negative post-transcriptional regulation of PI3K-α and c-SRC proto-oncogenes. Moreover, overall survival analysis of a large cohort of breast cancer patients indicates that low miR-204 and high FAK/SRC levels were associated with worst outcomes. In conclusion, our study provides novel lines of evidence indicating that miR-204 may exerts a fine-tuning regulation of the synergistic transduction of PI3K/AKT/FAK mediators critical in VM formation.
Collapse
Affiliation(s)
- Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México, CDMX, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, CDMX, Mexico
| | - Raúl García-Vázquez
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, CDMX, Mexico
| | | | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular Del Cáncer. Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Napoleón Navarro Tito
- Laboratorio de Biología Celular Del Cáncer. Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | | | | - José L Cruz-Colin
- Subdirección de Investigación Básica, Instituto Nacional de Medicina Genómica, CDMX, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón. Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", CDMX, Mexico
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón. Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", CDMX, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México, CDMX, Mexico.
| |
Collapse
|
63
|
Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Sci Rep 2018; 8:14477. [PMID: 30262902 PMCID: PMC6160418 DOI: 10.1038/s41598-018-32734-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is among the most frequently occurring cancers worldwide. Baicalin is isolated from the roots of Scutellaria baicalensis and is its dominant flavonoid. Anticancer activity of baicalin has been evaluated in different types of cancers, especially in CRC. However, the molecular mechanisms underlying the contribution of baicalin to the treatment of CRC are still unknown. Here, we confirmed that baicalin can effectively induce and enhance apoptosis in HT-29 cells in a dose-dependent manner and suppress tumour growth in xenografted nude mice. We further performed a miRNA microarray analysis of baicalin-treated and untreated HT-29 cells. The results showed that a large number of oncomiRs, including miR-10a, miR-23a, miR-30c, miR-31, miR-151a and miR-205, were significantly suppressed in baicalin-treated HT-29 cells. Furthermore, our in vitro and in vivo studies showed that baicalin suppressed oncomiRs by reducing the expression of c-Myc. Taken together, our study shows a novel mechanism for anti-cancer action of baicalin, that it induces apoptosis in colon cancer cells and suppresses tumour growth by reducing the expression of c-Myc and oncomiRs.
Collapse
|
64
|
Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ 2018; 26:1267-1282. [PMID: 30254376 PMCID: PMC6748102 DOI: 10.1038/s41418-018-0205-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Drug resistance imposes severe limitations to the efficacy of targeted therapy in BRAF-mutated metastatic melanoma. Although this issue has been mitigated by the development of combination therapies with BRAF plus MEK inhibitors, drug resistance inevitably occurs with time and results in clinical recurrences and untreatable disease. Hence, there is strong need of developing new combination therapies and non-invasive diagnostics for the early identification of drug-resistant patients. We report here that the development of drug resistance to BRAFi is dominated by a dynamic deregulation of a large population of miRNAs, leading to the alteration of cell intrinsic proliferation and survival pathways, as well as of proinflammatory and proangiogenic cues, where a prominent role is played by the miR-199b-5p/VEGF axis. Significant alterations of miRNA expression levels are detectable in tumor biopsies and plasma from patients after disease recurrence. Targeting these alterations blunts the development of drug resistance.
Collapse
|
65
|
López-González MJ, Soula A, Landry M, Favereaux A. Oxaliplatin treatment impairs extension of sensory neuron neurites in vitro through miR-204 overexpression. Neurotoxicology 2018; 68:91-100. [PMID: 30031110 DOI: 10.1016/j.neuro.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Oxaliplatin is a platinum-based drug used in the treatment of gastric cancers. Oxaliplatin treatment induces sensory neuropathy characterized by cold hypersensibility in the acute phase and sensory impairment when the neuropathy becomes chronic. In order to determine the effect of oxaliplatin on sensory neurons, we used an in vitro model in which oxaliplatin treatment reduced arborization of dorsal root ganglia neurons in a dose-dependent manner. Moreover, we characterized the role of microRNAs in oxaliplatin induced-neuropathy. In particular, we focused on microRNAs that control the expression of axon guidance molecules, and therefore, regulate neurite arborization. As a result, we highlighted the upregulation of miR-204, a microRNA that controls the expression of PlexinA2, a semaphorin receptor involved in neurite guidance. Interaction of miR-204 and Plexin A2 was confirmed by luciferase assay. In addition, overexpression of miR-204 in dorsal root ganglia neuron cultures reduced length and extension of neurites and also reduced Plexin A2 labelling without increasing apoptosis rate. On the other hand, sequestration of miR-204 by a specific microRNA sponge increases neurite length and PlexinA2 expression. Taken together, our data indicate that oxaliplatin impairs sensory neurons arborization through up-regulation of miR-204 that decreases PlexinA2 expression and neurite length.
Collapse
Affiliation(s)
- María José López-González
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France.
| | - Anaïs Soula
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
| | - Alexandre Favereaux
- Interdisciplinary Institute for Neuroscience, UMR 5297, University of Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
| |
Collapse
|
66
|
Hahne JC, Valeri N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front Oncol 2018; 8:226. [PMID: 29967761 PMCID: PMC6015885 DOI: 10.3389/fonc.2018.00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial-mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
67
|
Xin J, Zheng LM, Sun DK, Li XF, Xu P, Tian LQ. miR-204 functions as a tumor suppressor gene, at least partly by suppressing CYP27A1 in glioblastoma. Oncol Lett 2018; 16:1439-1448. [PMID: 30008822 PMCID: PMC6036494 DOI: 10.3892/ol.2018.8846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common type of malignant primary brain tumors in adults and exhibit a spectrum of aberrantly aggressive phenotypes. Despite advances in treatments during past decades, prognosis of the disease remains poor, with a median survival time of 12-14 months. Future studies on the molecular mechanism of the disease may provide the theoretical basis to identify new targets for effective therapies. The present study revealed that in glioblastoma cells, the overexpression of cytochrome P450, family 27, subfamily A, polypeptide 1 (CYP27A1) promoted proliferation, while silencing of CYP27A1 inhibited proliferation, without affecting migration and invasion. CYP27A1 protein was upregulated in glioblastoma tissues, indicating that CYP27A1 is an oncogene. The downregulation of specific microRNAs (miRNA) may contribute to the upregulation of oncogenes in glioblastoma. A common strategy was used to predict target miRNAs of CPY27A1 using the miRanda algorithm. miR-211 and miR-204 could target the 3'untranslated region of CPY27A1 mRNA. Additional studies confirmed that the overexpression of miR-204 inhibited CPY27A1 expression in glioblastoma cells. Finally, it was identified that miR-204 was downregulated in glioblastoma and that its overexpression inhibited proliferation, migration and invasion in glioblastoma cells. Thus, it was concluded that miR-204 functions as a tumor suppressor gene, at least partly by suppressing CYP27A1 in glioblastoma.
Collapse
Affiliation(s)
- Jun Xin
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Li-Min Zheng
- Department of Neurosurgery, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - De-Ke Sun
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Xian-Feng Li
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Peng Xu
- Department of Neurosurgery, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Li-Qiang Tian
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
68
|
Evert J, Pathak S, Sun XF, Zhang H. A Study on Effect of Oxaliplatin in MicroRNA Expression in Human Colon Cancer. J Cancer 2018; 9:2046-2053. [PMID: 29896290 PMCID: PMC5995942 DOI: 10.7150/jca.24474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer is a commonly diagnosed malignancy and also the major cause of death worldwide. Chemotherapy is the primary therapy for advanced colorectal cancer. Although oxaliplatin has potential effect in colorectal cancer therapy, the molecular mechanisms involved in its cytotoxic effects are not well elucidated. This study outlines the regulatory effects of oxaliplatin on miRNAs expression in colon cancer cells and correlates it with the changing microRNA expression with p53 and p73 expression status in cells. HCT116p53+/+ and HCT116p53-/- cells were exposed to oxaliplatin, and the cellular viability was determined by XTT. p73 was knocked down using siRNA and the tumor cells were then treated with oxaliplatin. The expression profile of 384 miRNAs was determined by TaqMan® human miRNA array and calculated by the ∆∆Ct method. Cellular viability was found to decrease after the treatment with oxaliplatin in a dose-dependent manner. The wild-type p53 cells were found to be more sensitive than the null-p53 derivatives. A selective set of miRNAs were either up-regulated or down-regulated in response to the oxaliplatin treatment with a presumable role of p53 and p73 proteins. The miRNAs expression is known to influence the pharmacodynamic mechanisms of oxaliplatin and these effects have been observed to be regulated by p53 and p73. Our results may therefore provide more evidence for identifying a suitable biomarker for the diagnosis of colon cancer.
Collapse
Affiliation(s)
- Jasmine Evert
- School of Medical Sciences, Örebro University, SE 70182 Örebro, Sweden
| | - Surajit Pathak
- Department of Oncology and Department of Clinical and Experimental Medicine, SE-581 83, Linköping University, Linköping, Sweden.,Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India, 603 103
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, SE-581 83, Linköping University, Linköping, Sweden
| | - Hong Zhang
- School of Medical Sciences, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
69
|
Ooi CY, Carter DR, Liu B, Mayoh C, Beckers A, Lalwani A, Nagy Z, De Brouwer S, Decaesteker B, Hung TT, Norris MD, Haber M, Liu T, De Preter K, Speleman F, Cheung BB, Marshall GM. Network Modeling of microRNA-mRNA Interactions in Neuroblastoma Tumorigenesis Identifies miR-204 as a Direct Inhibitor of MYCN. Cancer Res 2018; 78:3122-3134. [PMID: 29610116 DOI: 10.1158/0008-5472.can-17-3034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is a pediatric cancer of the sympathetic nervous system where MYCN amplification is a key indicator of poor prognosis. However, mechanisms by which MYCN promotes neuroblastoma tumorigenesis are not fully understood. In this study, we analyzed global miRNA and mRNA expression profiles of tissues at different stages of tumorigenesis from TH-MYCN transgenic mice, a model of MYCN-driven neuroblastoma. On the basis of a Bayesian learning network model in which we compared pretumor ganglia from TH-MYCN+/+ mice to age-matched wild-type controls, we devised a predicted miRNA-mRNA interaction network. Among the miRNA-mRNA interactions operating during human neuroblastoma tumorigenesis, we identified miR-204 as a tumor suppressor miRNA that inhibited a subnetwork of oncogenes strongly associated with MYCN-amplified neuroblastoma and poor patient outcome. MYCN bound to the miR-204 promoter and repressed miR-204 transcription. Conversely, miR-204 directly bound MYCN mRNA and repressed MYCN expression. miR-204 overexpression significantly inhibited neuroblastoma cell proliferation in vitro and tumorigenesis in vivo Together, these findings identify novel tumorigenic miRNA gene networks and miR-204 as a tumor suppressor that regulates MYCN expression in neuroblastoma tumorigenesis.Significance: Network modeling of miRNA-mRNA regulatory interactions in a mouse model of neuroblastoma identifies miR-204 as a tumor suppressor and negative regulator of MYCN. Cancer Res; 78(12); 3122-34. ©2018 AACR.
Collapse
Affiliation(s)
- Chi Yan Ooi
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia.,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Amit Lalwani
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Zsuzsanna Nagy
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Sara De Brouwer
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Bieke Decaesteker
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Tzong-Tyng Hung
- Biological Resource Imaging Laboratory, the University of New South Wales, Kensington, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia.,Centre for Childhood Cancer Research, University of New South Wales, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Belamy B Cheung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia. .,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia. .,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
70
|
Canu V, Sacconi A, Lorenzon L, Biagioni F, Lo Sardo F, Diodoro MG, Muti P, Garofalo A, Strano S, D'Errico A, Grazi GL, Cioce M, Blandino G. MiR-204 down-regulation elicited perturbation of a gene target signature common to human cholangiocarcinoma and gastric cancer. Oncotarget 2018; 8:29540-29557. [PMID: 28199974 PMCID: PMC5444686 DOI: 10.18632/oncotarget.15290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
Background & Aims There is high need of novel diagnostic and prognostic tools for tumors of the digestive system, such as gastric cancer and cholangiocarcinoma. We recently found that miR-204 was deeply downregulated in gastric cancer tissues. Here we investigated whether this was common to other tumors of the digestive system and whether this elicited a miR-204-dependent gene target signature, diagnostically and therapeutically relevant. Finally, we assessed the contribution of the identified target genes to the cell cycle progression and clonogenicity of gastric cancer and cholangiocarcinoma cell lines. Methods We employed quantitative PCR and Affymetrix profiling for gene expression studies. In silico analysis aided us to identifying a miR-204 target signature in publicly available databases (TGCA). We employed transient transfection experiments, clonogenic assays and cell cycle profiling to evaluate the biological consequences of miR-204 perturbation. Results We identified a novel miR-204 gene target signature perturbed in gastric cancer and in cholangiocarcinoma specimens. We validated its prognostic relevance and mechanistically addressed its biological relevance in GC and CC cell lines. Conclusions We suggest that restoring the physiological levels of miR-204 in some gastrointestinal cancers might be exploited therapeutically.
Collapse
Affiliation(s)
- Valeria Canu
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Laura Lorenzon
- Faculty of Medicine and Psychology, Surgical and Medical Department of Clinical Sciences, Biomedical Technologies and Translational Medicine, University of Rome 'La Sapienza', Sant'Andrea Hospital, Rome, Italy
| | - Francesca Biagioni
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Maria Grazia Diodoro
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, Ontario, Canada
| | - Alfredo Garofalo
- HepatoBiliary Pancreatic Surgery, 'Regina Elena' National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, Ontario, Canada.,Molecular Chemoprevention Group, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Antonietta D'Errico
- Department of Medical and Surgical Sciences, Pathology Unit, S. Orsola-Malpighi Hospital, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Gian Luca Grazi
- HepatoBiliary Pancreatic Surgery, 'Regina Elena' National Cancer Institute, Rome, Italy
| | - Mario Cioce
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.,Department of Oncology, Juravinski Cancer Center, McMaster University Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
71
|
van Rensburg IC, du Toit L, Walzl G, du Plessis N, Loxton AG. Decreased neutrophil-associated miRNA and increased B-cell associated miRNA expression during tuberculosis. Gene 2018; 655:35-41. [PMID: 29477867 DOI: 10.1016/j.gene.2018.02.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs are short non-coding RNAs that regulate gene expression by binding to, and suppressing the expression of genes. Research show that microRNAs have potential to be used as biomarkers for diagnosis, treatment response and can be used for therapeutic interventions. Furthermore, microRNA expression has effects on immune cell functions, which may lead to disease. Considering the important protective role of neutrophils and B-cells during M.tb infection, we evaluated the expression of microRNAs, known to alter function of these cells, in the context of human TB. We utilised real-time PCR to evaluate the levels of microRNA transcripts in the peripheral blood of TB cases and healthy controls. We found that neutrophil-associated miR-197-3p, miR-99b-5p and miR-191-5p transcript levels were significantly lower in TB cases. Additionally, B-cell-associated miR-320a, miR-204-5p, miR331-3p and other transcript levels were higher in TB cases. The miRNAs differentially expressed in neutrophils are predominantly implicated in signalling pathways leading to cytokine productions. Here, the decreased expression in TB cases may imply a lack of suppression on signalling pathways, which may lead to increased production of pro-inflammatory cytokines such as interferon-gamma. Furthermore, the miRNAs differentially expressed in B-cells are mostly involved in the induction/suppression of apoptosis. Further functional studies are however required to elucidate the significance and functional effects of changes in the expression of these microRNAs.
Collapse
Affiliation(s)
- I C van Rensburg
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - L du Toit
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - G Walzl
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - N du Plessis
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - A G Loxton
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
72
|
Butrym A, Łacina P, Kuliczkowski K, Bogunia-Kubik K, Mazur G. Genetic variation of the gene coding for microRNA-204 (miR-204) is a risk factor in acute myeloid leukaemia. BMC Cancer 2018; 18:107. [PMID: 29382303 PMCID: PMC5791219 DOI: 10.1186/s12885-018-4045-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs or miRs) are small molecules known to be involved in post-transcriptional gene expression. Many of them have been shown to influence risk for various diseases. Recent studies suggest that lower expression of miR-204, a gene coding for miRNA-204, is correlated with shorter survival in patients with acute myeloid leukaemia (AML). This observation prompted us to analyse the effect of two polymorphisms of the miR-204 gene, one in the upstream flanking region (rs718447 A > G) and the other inside the gene itself (rs112062096 A > G), both also in intron 3 of the TRPM3 gene. METHODS The study was conducted on DNA samples isolated from AML patients (n = 95) and healthy individuals (n = 148), who were genotyped using the Light SNiP assays. RESULTS The miR-204 rs718447 GG homozygosity was found to constitute a risk factor associated with susceptibility to AML (73/95 vs 92/148, AML patients vs healthy controls, OR = 2.020, p = 0.017). Additionally, this genotype was more frequent in patients with subtypes M0-M1 in the French-American-British (FAB) classification as compared to patients with subtypes M2-M7 (23/25 vs 39/57, p = 0.026). We also found that presence of allele A was linked to longer survival of AML patients. CONCLUSIONS Our results show that polymorphism in miR-204 flanking region may constitute a risk and prognostic factor in AML.
Collapse
Affiliation(s)
- Aleksandra Butrym
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland.
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kazimierz Kuliczkowski
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland.,Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
73
|
Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget 2018; 7:20180-92. [PMID: 26933999 PMCID: PMC4991446 DOI: 10.18632/oncotarget.7745] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
The feature of oral squamous cell carcinomas (OSCC) is commonly metastasizing to locoreginal lymph nodes, and the involvement of lymph nodes metastasis represents the one of important prognostic factors of poor clinical outcome. MicroRNAs (miRNAs) have been shown to be key players of cancer-related hallmarks including cancer stemness, EMT (epithelial-mesenchymal transition), and metastaisis. Herein we showed that OSCC-derived ALDH1+ cancer stem cells (OSCC-CSCs) express lower level of miR-204, and miR-204 over-expression suppresses cancer stemness and in vivo tumor-growth of OSCC-CSCs. miR-204 binds on their 3′UTR-regions of Slug and Sox4 and suppressing their expression in OSCC-CSCs. On the contrary, down-regulation of miR-204 significantly increased cancer stemness and the lymph nodes incidence of orthotopic animal models. Furthermore, co-knockdown with sh-Slug and sh-Sox4 synergistically rescued miR-204-supressing cancer stemness and EMT properties. Clinical results further revealed that a miR-204lowSlughighSox4high signature predicted the worse survival prognosis of OSCC patients by Kaplan-Meier survival analyses. Up-regulated miR-204-targeting Slug and Sox4 by epigallocatechin-3-gallate (EGCG) treatment significantly inhibited the proliferation rate, self-renewal capacity, and the percentage of ALDH1+ and CD44+ cells in OSCC-CSCs Oral-feeding of EGCG effectively alleviated tumor-progression in OSCC-CSCs-xenotransplanted immunocompromised mice through miR-204 activation. In conclusion, miR-204-mediated suppression of cancer stemness and EMT properties could be partially augmented by the anti-CSCs effect of EGCG.
Collapse
|
74
|
Han J, Liu S, Zhang Y, Xu Y, Jiang Y, Zhang C, Li C, Li X. MiRSEA: Discovering the pathways regulated by dysfunctional MicroRNAs. Oncotarget 2018; 7:55012-55025. [PMID: 27474169 PMCID: PMC5342398 DOI: 10.18632/oncotarget.10839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that dysfunctional microRNAs (miRNAs) are involved in the progression of various cancers. Dysfunctional miRNAs may jointly regulate their target genes and further alter the activities of canonical biological pathways. Identification of the pathways regulated by a group of dysfunctional miRNAs could help uncover the pathogenic mechanisms of cancer and facilitate development of new drug targets. Current miRNA-pathway analyses mainly use differentially-expressed miRNAs to predict the shared pathways on which they act. However, these methods fail to consider the level of differential expression level, which could improve our understanding of miRNA function. We propose a novel computational method, MicroRNA Set Enrichment Analysis (MiRSEA), to identify the pathways regulated by dysfunctional miRNAs. MiRSEA integrates the differential expression levels of miRNAs with the strength of miRNA pathway associations to perform direct enrichment analysis using miRNA expression data. We describe the MiRSEA methodology and illustrate its effectiveness through analysis of data from hepatocellular cancer, gastric cancer and lung cancer. With these analyses, we show that MiRSEA can successfully detect latent biological pathways regulated by dysfunctional miRNAs. We have implemented MiRSEA as a freely available R-based package on CRAN (https://cran.r-project.org/web/packages/MiRSEA/).
Collapse
Affiliation(s)
- Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Siyao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Harbin, 150081, PR China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
75
|
Integrated MicroRNA-mRNA Analysis Reveals miR-204 Inhibits Cell Proliferation in Gastric Cancer by Targeting CKS1B, CXCL1 and GPRC5A. Int J Mol Sci 2017; 19:ijms19010087. [PMID: 29283424 PMCID: PMC5796037 DOI: 10.3390/ijms19010087] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer (GC) is the second most frequent cause of cancer-related deaths worldwide. MicroRNAs are single-stranded RNA molecules of 21–23 nucleotides that regulate target gene expression through specific base-pairing interactions between miRNA and untranslated regions of targeted mRNAs. In this study, we generated a multistep approach for the integrated analysis of miRNA and mRNA expression. First, both miRNA and mRNA expression profiling datasets in gastric cancer from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) identified 79 and 1042 differentially expressed miRNAs and mRNAs, respectively, in gastric cancer. Second, inverse correlations between miRNA and mRNA expression levels identified 3206 miRNA–mRNA pairs combined with 79 dysregulated miRNAs and their 774 target mRNAs predicted by three prediction tools, miRanda, PITA, and RNAhybrid. Additionally, miR-204, which was found to be down-regulated in gastric cancer, was ectopically over-expressed in the AGS gastric cancer cell line and all down-regulated targets were identified by RNA sequencing (RNA-seq) analysis. Over-expression of miR-204 reduced the gastric cancer cell proliferation and suppressed the expression of three targets which were validated by qRT-PCR and luciferase assays. For the first time, we identified that CKS1B, CXCL1, and GPRC5A are putative targets of miR-204 and elucidated that miR-204 acted as potential tumor suppressor and, therefore, are useful as a promising therapeutic target for gastric cancer.
Collapse
|
76
|
Tung MC, Lin PL, Cheng YW, Wu DW, Yeh SD, Chen CY, Lee H. Reduction of microRNA-184 by E6 oncoprotein confers cisplatin resistance in lung cancer via increasing Bcl-2. Oncotarget 2017; 7:32362-74. [PMID: 27083050 PMCID: PMC5078019 DOI: 10.18632/oncotarget.8708] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/28/2016] [Indexed: 12/04/2022] Open
Abstract
MicroRNA-184 suppresses cell growth and survival via targeting c-Myc and Bcl- 2. We recently reported that miR-184 promotes tumor progression in non-small cell lung cancer via targeting CDC25A and c-Myc. We here hypothesized that miR-184 could be down-regulated by E6 oncoprotein to confer cisplatin resistance in NSCLC. Human papillomavirus (HPV) 16-positive lung cancer TL-1 and cervical cancer SiHa cells compared with HPV16-negative TL-10 and C33A cells were enrolled for E6 manipulation. MiR-184 expression levels were increased by E6-knockdown in TL-1 and SiHa cells, but decreased by E6-overexpression in TL-10 and C33A cells. The MTT assay showed that the inhibition concentration of cisplatin yielding for 50% cell viability was dependent on miR-184 levels. Bcl-2 de-targeted by E6-mediated miR- 184 reduction was responsible for cisplatin resistance. Luciferase reporter assay and real- time PCR analysis indicated that the miR-184 promoter activity and its expression were modulated by E6 and/or p53 manipulation. Chromatin immunoprecipitation (ChIP) assay confirmed that p53 was bound onto the miR-184 promoter and its binding activity was modulated by E6 and/or p53 manipulation. Among patients, high miR184 and high Bcl-2 mRNA expression was more commonly occurred in E6- positive tumors than in E6-negative tumors. Fifty-nine out of 136 patients receiving cisplatin-based chemotherapy were available for the retrospective study. Patients with low-mR-184, E6-positive, high-Bcl-2 tumors, and both combinations were more prevalently occurred unfavorable response to cisplatin-based chemotherapy than their counterparts. In conclusion, a decrease in miR-184 level by E6 oncoprotein may predict unfavorable response to cisplatin-based chemotherapy in HPV-infected NSCLC patients via increasing Bcl-2 expression.
Collapse
Affiliation(s)
- Min-Che Tung
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Tung's Taichung Metro-Harbor Hospital, Taichung, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Sauh-Der Yeh
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yi Chen
- Department of Surgery, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
77
|
Chen Q, Li Y, Zhou X, Li R. Oxibendazole inhibits prostate cancer cell growth. Oncol Lett 2017; 15:2218-2226. [PMID: 29434928 PMCID: PMC5776919 DOI: 10.3892/ol.2017.7579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies among men and is the second leading cause of cancer-associated mortality in the developed world. Androgen deprivation therapy (ADT) is the most common treatment for PCa. However, the majority of androgen-sensitive PCa patients will eventually develop resistance to ADT and the disease will become androgen-independent. There is, therefore, an immediate requirement to develop effective therapeutic techniques towards the treatment of recurrent PCa. Oxibendazole (OBZ) is an anthelmintic drug that has also shown promise in the treatment of malignancies. In the present study, the capability of OBZ to repress the growth of PCa cells was assessed in human androgen-independent PCa 22Rv1 and PC-3 cell lines. The growth of the 22Rv1 and PC-3 cell lines, as assessed with a trypan blue exclusion assay, was markedly inhibited by OBZ treatment in vitro, with half-maximal inhibitory concentration values of 0.25 and 0.64 µM, respectively. The mean size of 22Rv1 tumors in nude mice treated with OBZ (25 mg/kg/day) was 47.96% smaller than that of the control mice. Treatment with OBZ increased the expression of microRNA-204 (miR-204), as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the level of p53 as determined with western blotting, two well-characterized tumor suppressor genes. When miR-204 expression was knocked down by introduction of an miR-204 inhibitor, the inhibitory effect of OBZ was markedly reduced; however, when it was overexpressed, the inhibitory efficiency of OBZ was markedly higher, indicating that upregulation of miR-204 is key for the efficacy of OBZ. Additionally, OBZ was demonstrated with RT-qPCR to repress the expression of the androgen receptor, and by western blotting to reduce prostate-specific androgen in 22Rv1 cells. The results suggest that OBZ has potential for clinical use in the treatment of recurrent PCa.
Collapse
Affiliation(s)
- Qiaoli Chen
- School of Pharmacy, Fudan University, Shanghai 201203, P.R. China
| | - Yuhua Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Xiaoyu Zhou
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Runsheng Li
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| |
Collapse
|
78
|
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2017; 8:603-19. [PMID: 27019364 PMCID: PMC4925817 DOI: 10.18632/aging.100934] [Citation(s) in RCA: 1098] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.
Collapse
Affiliation(s)
- Giuseppa Pistritto
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy
| | - Claudia Ceci
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Alessia Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
79
|
Abbas M, Habib M, Naveed M, Karthik K, Dhama K, Shi M, Dingding C. The relevance of gastric cancer biomarkers in prognosis and pre- and post- chemotherapy in clinical practice. Biomed Pharmacother 2017; 95:1082-1090. [PMID: 28922727 DOI: 10.1016/j.biopha.2017.09.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
|
80
|
Ye ZH, Wen DY, Cai XY, Liang L, Wu PR, Qin H, Yang H, He Y, Chen G. The protective value of miR-204-5p for prognosis and its potential gene network in various malignancies: a comprehensive exploration based on RNA-seq high-throughput data and bioinformatics. Oncotarget 2017; 8:104960-104980. [PMID: 29285225 PMCID: PMC5739612 DOI: 10.18632/oncotarget.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/23/2017] [Indexed: 01/26/2023] Open
Abstract
Purpose The prognostic role of miR-204-5p (previous ID: miR-204) is varied and inconclusive in diverse types of malignant neoplasm. Therefore, the purposes of the study comprehensively explore the overall prognostic role of miR-204-5p based on high-throughput microRNA sequencing data, and to investigate the potential role of miR-204-5p via bioinformatics approaches. Materials and Methods The data of microRNA sequencing and survival were downloaded from The Cancer Genome Atlas (TCGA), and the prognostic value of miR-204-5p was analyzed by using Kaplan-Meier and univariate cox regressions. Then a meta-analysis was conducted with all TCGA data and relevant studies collected from literature. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The prospective molecular mechanism of miR-204-5p was also assessed at a functional level with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-to-protein interactions (PPI) network. Results From TCGA data, the prognostic value of miR-204-5p obviously varied among 20 types of cancers. The pooled HR was 0.928 (95% CI: 0.774-1.113, P = 0.386, 6203 cases of malignancies). For the meta-analysis based on 15 studies from literature, the pooled HR was 0.420 (95% CI: 0.306-0.576, P < 0.001, 1783 cases of malignancies) for overall survival (OS). Furthermore, the combined HR from both TCGA and literature was 0.708 (95% CI: 0.600-0.834, P < 0.001, 7986 cases of malignancies). Subgroup analyses revealed that miR-204-5p could act as a prognostic marker in cancers of respiratory system and digestive system. Functional analysis was conducted on genes predicted as targets (n = 2057) after the overlay genes from six out of twelve software were extracted. Two significant KEGG pathways were enriched (hsa04360: Axon guidance and hsa04722: Neurotrophin signaling pathway). PPI network revealed some hub genes/proteins (CDC42, SOS1, PIK3R1, MAPK1, PLCG1, ESR1, MAPK11, and AR). Conclusions The current study demonstrates that over-expression of miR-204-5p could be a protective factor for a certain group of cancers. Clinically, the low miR-204-5p level could gain a predictive value for a poor survival in cancers of respiratory system and digestive system. The detailed molecular mechanisms of miR-204-5p remain to be verified.
Collapse
Affiliation(s)
- Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pei-Rong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
81
|
Kim JH, Lee H, Shin EA, Kim DH, Choi JB, Kim SH. Implications of Bcl-2 and its interplay with other molecules and signaling pathways in prostate cancer progression. Expert Opin Ther Targets 2017; 21:911-920. [PMID: 28816549 DOI: 10.1080/14728222.2017.1369044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Among several genetic alterations involved in the progression of prostate cancer, B cell lymphoma gene number 2 (BCL-2) is an important target molecule in the progression of androgen-independent prostate cancer (AIPC) after androgen ablation or castration. Nevertheless, the molecular mechanism of BCL-2 in prostate cancer progression remains elusive and controversial. In the current review, we discuss the critical role of BCL-2 in the carcinogenesis of prostate cancer with experimental evidences on the BCL-2 molecular networks in AIPC and androgen-dependent prostate cancer (ADPC) and subsequently suggest perspective research targeting BCL-2. Areas covered: This review focused on the molecular implications of BCL-2 in association with other molecules and signaling pathways involved in the progression and carcinogenesis of prostate cancer. Expert opinion: BCL-2 plays a pivotal role in the progression of AIPC than in ADPC since androgen represses BCL-2. BCL-2 acts as a pro-survival molecule in association with androgen-related signaling in the progression of ADPC, while BCL-2 upregulation, PTEN loss, PI3K/AKT phosphorylation and receptor tyrosine kinase (RTK) activation are primarily involved in AIPC. To identify more effective prostate cancer therapy, further mechanistic studies are required with BCL-2 inhibitors in AIPC and ADPC, considering a multi-target therapy against BCL-2 and its related signaling.
Collapse
Affiliation(s)
- Ju-Ha Kim
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| | - Hyemin Lee
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| | - Eun Ah Shin
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| | - Dong Hee Kim
- b Department of East West Medical Science, Graduate School of East West Medical Science , Kyung Hee University , Yongin , South Korea
| | - Jhin Baek Choi
- b Department of East West Medical Science, Graduate School of East West Medical Science , Kyung Hee University , Yongin , South Korea
| | - Sung-Hoon Kim
- a Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine , Kyung Hee University , Seoul , South Korea
| |
Collapse
|
82
|
A miR-SNP biomarker linked to an increased lung cancer survival by miRNA-mediated down-regulation of FZD4 expression and Wnt signaling. Sci Rep 2017; 7:9029. [PMID: 28831115 PMCID: PMC5567228 DOI: 10.1038/s41598-017-09604-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
Through a new hypothesis-driven and microRNA-pathway-based SNP (miR-SNP) association study we identified a novel miR-SNP (rs713065) in the 3'UTR region of FZD4 gene linked with decreased risk of death in early stage NSCLC patients. We determined biological function and mechanism of action of this FZD4-miR-SNP biomarker in a cellular platform. Our data suggest that FZD4-miR-SNP loci may significantly influence overall survival in NSCLC patients by specifically interacting with miR-204 and modulating FZD4 expression and cellular function in the Wnt-signaling-driven tumor progression. Our findings are bridging the gap between the discovery of epidemiological SNP biomarkers and their biological function and will enable us to develop novel therapeutic strategies that specifically target epigenetic markers in the oncogenic Wnt/FZD signaling pathways in NSCLC.
Collapse
|
83
|
Zhang Y, Guan DH, Bi RX, Xie J, Yang CH, Jiang YH. Prognostic value of microRNAs in gastric cancer: a meta-analysis. Oncotarget 2017; 8:55489-55510. [PMID: 28903436 PMCID: PMC5589675 DOI: 10.18632/oncotarget.18590] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous articles have reported that expression levels of microRNAs (miRNAs) are associated with survival time of patients with gastric cancer (GC). A systematic review and meta-analysis was performed to study the outcome of it. DESIGN Meta-analysis. METHODS English studies estimating expression levels of miRNAs with any of survival curves in GC were identified up till March 19, 2017 through performing online searches in PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews by two authors independently. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were used to estimate the correlation between miRNA expression and overall survival (OS). RESULTS Sixty-nine relevant articles about 26 miRNAs with 6148 patients were ultimately included. GC patients with high expression of miR-20b (HR=2.38, 95%CI=1.16-4.87), 21 (HR=1.77, 95%CI=1.01-3.08), 106b (HR=1.84, 95%CI=1.15-2.94), 196a (HR=2.66, 95%CI=1.94-3.63), 196b (HR=1.67, 95%CI=1.38-2.02), 214 (HR=1.84, 95%CI=1.27-2.67) or low expression of miR-125a (HR=2.06, 95%CI=1.26-3.37), 137 (HR=3.21, 95%CI=1.68-6.13), 141 (HR=2.47, 95%CI=1.34-4.56), 145 (HR=1.62, 95%CI=1.07-2.46), 146a (HR=2.60, 95%CI=1.63-4.13), 206 (HR=2.85, 95%CI=1.73-4.70), 218 (HR=2.61, 95%CI=1.74-3.92), 451 (HR=1.73, 95%CI=1.19-2.52), 486-5p (HR=2.45, 95%CI=1.65-3.65), 506 (HR=2.07, 95%CI=1.33-3.23) have significantly poor OS (P<0.05). CONCLUSIONS In summary, miR-20b, 21, 106b, 125a, 137, 141, 145, 146a, 196a, 196b, 206, 214, 218, 451, 486-5p and 506 demonstrate significantly prognostic value. Among them, miR-20b, 125a, 137, 141, 146a, 196a, 206, 218, 486-5p and 506 are strong biomarkers of prognosis in GC.
Collapse
Affiliation(s)
- Yue Zhang
- 1 First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, People's Republic of China
| | - Dong-Hui Guan
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Rong-Xiu Bi
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Jin Xie
- 2 Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Chuan-Hua Yang
- 3 Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| | - Yue-Hua Jiang
- 4 Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, Shandong, People's Republic of China
| |
Collapse
|
84
|
Wu G, Wang J, Chen G, Zhao X. microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). Am J Transl Res 2017; 9:3599-3610. [PMID: 28861151 PMCID: PMC5575174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Epigenetic gene inactivation by microRNAs (miRNAs) is crucial in malignant transformation, prevention of apoptosis, development of drug resistance, and metastasis. miR-204 dysregulation has been reported in prostate cancer (PC). It is considered to exert tumor suppressor functions and is associated with the development of chemoresistance. However, the detailed mechanisms underlying the role of miR-204 in PC, particularly in chemoresistance, remain to be fully elucidated. In this study, analysis using miRNA microarray showed that miR-204 is downregulated in chemoresistant PC tissues with respect to its expression in chemosensitive PC tissues and benign prostatic hyperplasia tissues. Microarray results were validated via qPCR. The changes in miR-204 expression levels were also observed in vitro. Forced overexpression of miR-204 evidently attenuated docetaxel chemoresistance and promoted apoptosis in PC-3-R cells, whereas miR-204 knockdown effectively reduced docetaxel-induced cell death and inhibited cell apoptosis. Mechanistically, miR-204 directly targets the 3'-untranslated region of zinc-finger E-box-binding homeobox 1 (ZEB1) and inhibits its protein expression via translational repression. Furthermore, suppression of ZEB1 could effectively improve miR-204 deficiency-triggered chemoresistance in PC cells. Our results collectively indicate that miR-204 expression is downregulated in chemoresistant PC tissues and cells and that miR-204/ZEB1 could potentially be used as adjunct therapy for patients with advanced/chemoresistant PC.
Collapse
Affiliation(s)
- Guanlin Wu
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Jian Wang
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Guojun Chen
- Department of Urology, Qinghai University Affiliated HospitalQinghai 810000, P. R. China
| | - Xing Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical CollegeBeijing 100730, P. R. China
| |
Collapse
|
85
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
86
|
Hou Z, Xu X, Zhou L, Fu X, Tao S, Zhou J, Tan D, Liu S. The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1. Tumour Biol 2017; 39:1010428317718135. [PMID: 28720061 DOI: 10.1177/1010428317718135] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence supports the significance of long non-coding RNA in cancer development. Several recent studies suggest the oncogenic activity of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in hepatocellular carcinoma. In this study, we explored the molecular mechanisms by which MALAT1 modulates hepatocellular carcinoma biological behaviors. We found that microRNA-204 was significantly downregulated in sh-MALAT1 HepG2 cell and 15 hepatocellular carcinoma tissues by quantitative real-time polymerase chain reaction analysis. Through bioinformatic screening, luciferase reporter assay, RNA-binding protein immunoprecipitation, and RNA pull-down assay, we identified microRNA-204 as a potential interacting partner for MALAT1. Functionally, wound-healing and transwell assays revealed that microRNA-204 significantly inhibited the migration and invasion of hepatocellular carcinoma cells. Notably, sirtuin 1 was recognized as a direct downstream target of microRNA-204 in HepG2 cells. Moreover, si-SIRT1 significantly inhibited cell invasion and migration process. These data elucidated, by sponging and competitive binding to microRNA-204, MALAT1 releases the suppression on sirtuin 1, which in turn promotes hepatocellular carcinoma migration and invasion. This study reveals a novel mechanism by which MALAT1 stimulates hepatocellular carcinoma progression and justifies targeting metastasis-associated lung adenocarcinoma transcript 1 as a potential therapy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhouhua Hou
- 1 Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xuwen Xu
- 1 Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ledu Zhou
- 2 Department of General Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xiaoyu Fu
- 1 Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shuhui Tao
- 1 Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jiebin Zhou
- 1 Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Deming Tan
- 1 Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shuiping Liu
- 1 Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, P.R. China.,3 Department of Microbiology, Xiangya Medical College, Central South University, Changsha, P.R. China
| |
Collapse
|
87
|
Pulito C, Mori F, Sacconi A, Goeman F, Ferraiuolo M, Pasanisi P, Campagnoli C, Berrino F, Fanciulli M, Ford RJ, Levrero M, Pediconi N, Ciuffreda L, Milella M, Steinberg GR, Cioce M, Muti P, Strano S, Blandino G. Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discov 2017; 3:17022. [PMID: 28698800 PMCID: PMC5501975 DOI: 10.1038/celldisc.2017.22] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Metformin is a commonly prescribed type II diabetes medication that exhibits promising anticancer effects. Recently, these effects were found to be associated, at least in part, with a modulation of microRNA expression. However, the mechanisms by which single modulated microRNAs mediate the anticancer effects of metformin are not entirely clear and knowledge of such a process could be vital to maximize the potential therapeutic benefits of this safe and well-tolerated therapy. Our analysis here revealed that the expression of miR-21-5p was downregulated in multiple breast cancer cell lines treated with pharmacologically relevant doses of metformin. Interestingly, the inhibition of miR-21-5p following metformin treatment was also observed in mouse breast cancer xenografts and in sera from 96 breast cancer patients. This modulation occurred at the levels of both pri-miR-21 and pre-miR-21, suggesting transcriptional modulation. Antagomir-mediated ablation of miR-21-5p phenocopied the effects of metformin on both the clonogenicity and migration of the treated cells, while ectopic expression of miR-21-5p had the opposite effect. Mechanistically, this reduction in miR-21-5p enhanced the expression of critical upstream activators of the AMP-activated protein kinase, calcium-binding protein 39-like and Sestrin-1, leading to AMP-activated protein kinase activation and inhibition of mammalian target of rapamycin signaling. Importantly, these effects of metformin were synergistic with those of everolimus, a clinically relevant mammalian target of rapamycin inhibitor, and were independent of the phosphatase and tensin homolog status. This highlights the potential relevance of metformin in combinatorial settings for the treatment of breast cancer.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Frauke Goeman
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Maria Ferraiuolo
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Patrizia Pasanisi
- Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Carlo Campagnoli
- Unit of Endocrinological Gynecology, Ospedale Sant’Anna di Torino, Turin, Italy
| | - Franco Berrino
- Department of Preventive & Predictive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | | | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Massimo Levrero
- Epigénétique et Épigénomique des Carcinomes Hépathocellulaires Viro-Induits du Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Natalia Pediconi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ludovica Ciuffreda
- Division of Medical Oncology A, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Michele Milella
- Division of Medical Oncology A, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mario Cioce
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Italian National Cancer Institute ‘Regina Elena’, Rome, Italy
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
88
|
Luo YH, Tang W, Zhang X, Tan Z, Guo WL, Zhao N, Pang SM, Dang YW, Rong MH, Cao J. Promising significance of the association of miR-204-5p expression with clinicopathological features of hepatocellular carcinoma. Medicine (Baltimore) 2017; 96:e7545. [PMID: 28746200 PMCID: PMC5627826 DOI: 10.1097/md.0000000000007545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/31/2017] [Accepted: 06/25/2017] [Indexed: 02/07/2023] Open
Abstract
Decreased level of miR-204-5p has been documented in various malignancies. However, the expression and clinical significance of miR-204-5p in hepatocellular carcinoma has not been investigated. The aim of this study is to examine the relationship between miR-204-5p expression and clinicopathological features in hepatocellular carcinoma (HCC) as well as to predict the relevant signaling pathways. The miR-204-5p expression level was detected in HCC and in matched paraneoplastic liver from 95 formalin-fixed paraffin-embedded tissues by the real-time reverse transcription polymerized chain reaction (qRT-PCR). The association of miR-204-5p expression with clinicopathological features as well as the prognosis of HCC was examined. Public data portals including the Gene Expression Omnibus and The Cancer Genome Atlas were used to retrieve the HCC-related data in order to perform a comprehensive meta-analysis. Meanwhile, protein-protein interaction (PPI) and enrichment analyses were performed using predicted target genes. The relative expression of miR-204-5p was remarkably reduced in HCC than that in paraneoplastic hepatic tissues. In HCC, the miR-204-5p expression was downregulated in the metastasis, vasoinvasion, and advanced stage (III and IV) subgroups compared with their counterparts. Furthermore, the meta-analysis based on qRT-PCR data demonstrated that miR-204-5p was markedly downregulated in HCC with a standardized mean difference of -5.19 (P < .001). However, no significant association was observed between miR-204-5p and survival outcomes. The potential target genes of miR-204-5p were significantly enriched in several pathways which might be associated with HCC, such as "cell proliferation" from GO terms and "pathways in cancer" from the KEGG analysis. A PPI network of miR-204-5p potential target genes identified prospective core genes potentially involved in the regulation of HCC oncogenesis and progression. Our findings suggested that miR-204-5p might act as a tumor-suppressive gene in the tumorigenesis and progression of HCC via vital signaling pathways and that miR-204-5p could be regarded as a protective factor in HCC.
Collapse
Affiliation(s)
| | - Wei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital, Guangxi Medical University
| | | | | | - Wen-Liang Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University
| | | | | | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University
| | | | - Ji Cao
- Department of Research
- Key Laboratory for High-Incidence Tumor Prevention and Treatment, Ministry of Education, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
89
|
Ding X, Liu J, Liu T, Ma Z, Wen D, Zhu J. miR-148b inhibits glycolysis in gastric cancer through targeting SLC2A1. Cancer Med 2017; 6:1301-1310. [PMID: 28440026 PMCID: PMC5463086 DOI: 10.1002/cam4.1008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/03/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Although the molecular biology of GC has been well characterized, early diagnostic biomarkers and effective therapeutic options in gastric cancer are still under investigation. Here, we found that miR-148b expression decreased in human gastric cancer tissues compared with matched adjacent nontumor tissues by q-PCR analysis and in situ hybridization. Further investigation revealed that overexpression of miR-148b limited glycolysis including glucose consumption, lactate production in gastric cancer cell lines BGC-823 and MKN45. Bioinformatics prediction uncovered that a dedicated transporters solute carrier family 2 member 1 (SLC2A1), also called GLUT1, was the direct target of miR-148b. The target effects were further confirmed by luciferase assay and western blot analysis. Besides, a reverse correlation was observed between relative SLC2A1 and miR-148b expression in human GC tissues compared with matched adjacent nontumor tissues. Subsequently, SLC2A1 suppression by SLC2A1 siRNA or specific inhibitor restricted the reduced effects of glycolysis mediated by miR-148b while SLC2A1 overexpression abrogated the effect of miR-148b on glycolysis. Our findings provided new evidence of miR-148b in GC development through restraining glycolysis, highlighting the role of miR-148b as a new target for GC treatment.
Collapse
Affiliation(s)
- Xiangfu Ding
- Department of Thyroid SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Jingjing Liu
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Tianzhou Liu
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Zhiming Ma
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Dacheng Wen
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| | - Jiaming Zhu
- Department of Gastrointestinal SurgeryThe Second Hospital of Jilin UniversityChangchun130041China
| |
Collapse
|
90
|
Mansurabadi R, Abroun S, Hajifathali A, Asri A, Atashi A, Haghighi M. Expression of hsa-MIR-204, RUNX2, PPARγ, and BCL2 in Bone Marrow Derived Mesenchymal Stem Cells from Multiple Myeloma Patients and Normal Individuals. CELL JOURNAL 2017; 19:27-36. [PMID: 28580305 PMCID: PMC5448321 DOI: 10.22074/cellj.2017.4480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/02/2017] [Indexed: 01/10/2023]
Abstract
Objective Multiple Myeloma (MM) is a heterogeneous cytogenetic disorder in which
clonal plasma cells proliferate in the bone marrow (BM) and cause bone destruction. The
BM microenvironment plays a crucial role in pathogenesis of this disease, and mesenchymal
stem cells (MSCs) are one of the key players. Herein, we propose to investigate
the expressions of hsa-MIR-204, runt-related transcription factor 2 (RUNX2), peroxisome
proliferator-activated receptor gamma (PPARγ), and B-cell lymphoma 2 (BCL2) as factors
involved in osteogenesis, adipogenesis, and MSC survival in BM-MSCs from MM patients
and normal individuals.
Materials and Methods In this experimental study, we isolated MSCs from BM aspirates
of MM patients and healthy donors. Total RNA were extracted before and after co-culture
with L363 myeloma cells. Gene expressions of RUNX2, PPARγ, BCL2, and hsa-MIR-204
were assessed by quantitive real time polymerase chain reaction (qRT-PCR).
Results Higher levels of RUNX2, PPARγ, and hsa-MIR-204 expressions existed in MM-
MSCs compared to normally derived (ND)-MSCs. BCL2 expression decreased in MM-
MSCs. We observed different results in the co-culture model.
Conclusion In general, the MM-MSCs gene expression profile differed compared to ND-
MSCs. Upregulation of RUNX2, PPARγ, and hsa-MIR-204 in MM-MSCs compared to ND-
MSCs would result in formation of bone defects. Downregulation of BCL2 would lead to
MM-MSC cell death.
Collapse
Affiliation(s)
- Raziyeh Mansurabadi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abass Hajifathali
- Bone Marrow Transplantation Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Asri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Haghighi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Iran
| |
Collapse
|
91
|
Shen SQ, Huang LS, Xiao XL, Zhu XF, Xiong DD, Cao XM, Wei KL, Chen G, Feng ZB. miR-204 regulates the biological behavior of breast cancer MCF-7 cells by directly targeting FOXA1. Oncol Rep 2017; 38:368-376. [DOI: 10.3892/or.2017.5644] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/30/2016] [Indexed: 11/06/2022] Open
|
92
|
Lorenzon L, Cippitelli C, Avantifiori R, Uccini S, French D, Torrisi MR, Ranieri D, Mercantini P, Canu V, Blandino G, Cavallini M. Down-regulated miRs specifically correlate with non-cardial gastric cancers and Lauren's classification system. J Surg Oncol 2017; 116:184-194. [PMID: 28475823 DOI: 10.1002/jso.24648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Gastric cancers are usually characterized using Lauren's classification into intestinal and diffuse types. We previously documented the down-modulation of miR31, miR148a, miR204, and miR375 in gastric cancers. We aimed this manuscript to investigate these miRs with the end-points of diagnosis, Lauren's classification and prognosis. METHODS A total of 117 resected non-cardial adenocarcinomas were evaluated for miRs' expressions. The performance of miRs' expressions for cancer diagnosis was tested using ROC curves. Logistic regression was conducted with the end-point of Lauren's classification. Kaplan-Meier and Cox analyses were performed for OS, DFS, and DSS. miRs' targets were reviewed using PRISMA method and BCL-2 was further investigated in cell lines. RESULTS ROC curves documented that miRs' down-modulation was significant in differentiating cancer versus normal tissues. Diffuse type cancers were associated with female sex, young age, and miR375 higher expression. We confirmed BCL-2 as a miR204 target. However, survival analyses confirmed the pathologic criteria (advanced stages, LNR, and low LNH) as the significant variables correlated to worse prognosis. CONCLUSIONS The down-modulation of miR31, miR148a, miR204, and miR375 is significantly associated with non-cardial gastric cancers and miR375 is specifically linked to Lauren's classification. Nevertheless, standard pathological features display as the independent variables associated with worse prognosis.
Collapse
Affiliation(s)
- Laura Lorenzon
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Claudia Cippitelli
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Riccardo Avantifiori
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Stefania Uccini
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Deborah French
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Maria Rosaria Torrisi
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Danilo Ranieri
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Paolo Mercantini
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Valeria Canu
- Italian National Cancer Institute Regina Elena, Translational Oncogenomic Unit, Rome, Italy
| | - Giovanni Blandino
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| | - Marco Cavallini
- Faculty of Medicine and Psychology, Surgical and Medical Department of Traslational Medicine, University of Rome "La Sapienza", Sant'Andrea Hospital of Rome, Rome, Italy
| |
Collapse
|
93
|
A Downmodulated MicroRNA Profiling in Patients with Gastric Cancer. Gastroenterol Res Pract 2017; 2017:1526981. [PMID: 28546810 PMCID: PMC5436063 DOI: 10.1155/2017/1526981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Objective. Here, we aim to investigate the microRNA (miR) profiling in human gastric cancer (GC). Methods. Tumoral and matched peritumoral gastric specimens were collected from 12 GC patients who underwent routine surgery. A high-throughput miR sequencing method was applied to detect the aberrantly expressed miRs in a subset of 6 paired samples. The stem-loop quantitative real-time polymerase chain reaction (qRT-PCR) assay was subsequently performed to confirm the sequencing results in the remaining 6 paired samples. The profiling results were also validated in vitro in three human GC cell lines (BGC-823, MGC-803, and GTL-16) and a normal gastric epithelial cell line (GES-1). Results. The miR sequencing approach detected 5 differentially expressed miRs, hsa-miR-132-3p, hsa-miR-155-5p, hsa-miR-19b-3p, hsa-miR-204-5p, and hsa-miR-30a-3p, which were significantly downmodulated between the tumoral and peritumoral GC tissues. Most of the results were further confirmed by qRT-PCR, while no change was observed for hsa-miR-30a-3p. The in vitro finding also agreed with the results of both miR sequencing and qRT-PCR for hsa-miR-204-5p, hsa-miR-155-5p, and hsa-miR-132-3p. Conclusion. Together, our findings may serve to identify new molecular alterations as well as to enrich the miR profiling in human GC.
Collapse
|
94
|
Deng J, Wang Y, Lei J, Lei W, Xiong JP. Insights into the involvement of noncoding RNAs in 5-fluorouracil drug resistance. Tumour Biol 2017; 39:1010428317697553. [PMID: 28381160 DOI: 10.1177/1010428317697553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil is a classic chemotherapeutic drug that is widely used to treat various cancers. However, patients often exhibit primary or acquired drug resistance during treatment with 5-fluorouracil chemotherapy. 5-Fluorouracil resistance is a multifactorial event that involves abnormal enzyme metabolism, transport deregulation, cell cycle disorders, apoptosis resistance, and mismatch repair deficiency. Despite advancements in bioresearch technologies in the past several decades, the molecular mechanisms of 5-fluorouracil resistance have not been completely clarified. Recently, microarray analyses have shown that noncoding RNAs (i.e. microRNAs and long noncoding RNAs) play a vital role in 5-fluorouracil resistance in multiple cancer cell lines. These noncoding RNAs can function as oncogenes or tumor suppressors, contributing to 5-fluorouracil drug resistance. In this review, we discuss the effects of microRNAs on 5-fluorouracil sensitivity via targeting of metabolic enzymes, the cell cycle, apoptosis, autophagy, the epithelial–mesenchymal transition, and cancer stem cells. In particular, we focus on summarizing current knowledge on the molecular mechanisms through which long noncoding RNAs mediate 5-fluorouracil drug resistance. Moreover, we describe the specific microRNAs that may function as markers for prediction of chemotherapeutic response to 5-fluorouracil. This review will help to improve the current understanding of how to reverse 5-fluorouracil resistance and may facilitate the establishment of new strategies for alleviating drug resistance in the future.
Collapse
Affiliation(s)
- Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Lei
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wan Lei
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Ping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
95
|
RETRACTED: Downregulation of miR-204 expression correlates with poor clinical outcome of glioma patients. Hum Pathol 2017; 63:46-52. [PMID: 28232157 DOI: 10.1016/j.humpath.2016.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Glioma is the most common type of malignant neoplasm in the central nervous system, with high incidence and mortality rate. MicroRNAs, as a class of small noncoding RNAs, play an important role in carcinogenesis and correlate with glioma diagnosis and prognosis. In this study, we investigated the microRNA-204 (miR-204) concentration in glioma tissues and its relation to the expression of ezrin and bcl-2 mRNA, as well as its potential predictive and prognostic values in glioma. The concentrations of miR-204 were significantly lower in glioma tissues than in nontumor brain tissues and also were lower in high-grade than in low-grade gliomas (World Health Organization grades III and IV versus grades I and II). The miR-204 concentration was inversely correlated with the ezrin and bcl-2 concentrations. The miR-204 concentration was classified as high or low according to the median value, and low miR-204 correlated with higher World Health Organization grade, larger tumor, and worse Karnofsky performance score. Kaplan-Meier survival analysis demonstrated that patients with low miR-204 expression had shorter progression-free survival and overall survival than patients with high miR-204 expression. In addition, univariate and multivariate analyses showed that miR-204 expression was an independent prognostic feature of overall survival and progression-free survival. In conclusion, our study indicates that miR-204 is downregulated in glioma and may be a biomarker of poor prognosis in patients with this cancer.
Collapse
|
96
|
Abstract
Medulloblastoma is the most common malignant brain tumor in children. SPARC (secreted protein acidic and rich in cysteine), a multicellular non-structural glycoprotein is known to be involved in multiple processes in various cancers. Previously, we reported that SPARC expression significantly impairs medulloblastoma tumor growth in vitro and in vivo and also alters chemo sensitivity. MicroRNAs are a class of post-transcriptional gene regulators with critical functions in tumor progression. In addition, microRNA (miRNA) expression changes are also involved in chemo-resistance. Herein, we assessed microRNA (miRNA) profiling to identify the functional network and biological pathways altered in SPARC-overexpressed medulloblastoma cells. A total of 27 differentially expressed miRNAs were identified between the control and SPARC-overexpressed samples. Potential messenger RNA (mRNA) targets of the differentially expressed miRNA were identified using Ingenuity Pathway Analysis (IPA). Network-based functional analyses were performed on the available human protein interaction and miRNA-gene association data to highlight versatile miRNAs among the significantly deregulated miRNAs using the IPA, and the biological pathway analysis using the PANTHER web-based tool. We have identified six miRNAs (miR-125b1*, miR-146a-5p, miR-181a-5p, miR-204-5p, miR-219-5p and miR-509-3p) that are associated with SPARC sensitivity by comparison of miRNA expression patterns from the SPARC treated cells with the control cells. Furthermore, pathway enrichment analysis outline that these six microRNAs mainly belong to biological processes related to cancer related signaling pathways. Collectively, these studies have the potential to indicate novel biomarkers for treatment response and can also be applied to develop novel therapeutic treatment for medulloblastoma.
Collapse
|
97
|
Donzelli S, Mori F, Bellissimo T, Sacconi A, Casini B, Frixa T, Roscilli G, Aurisicchio L, Facciolo F, Pompili A, Carosi MA, Pescarmona E, Segatto O, Pond G, Muti P, Telera S, Strano S, Yarden Y, Blandino G. Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget 2016; 6:35183-201. [PMID: 26440147 PMCID: PMC4742098 DOI: 10.18632/oncotarget.5930] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/14/2015] [Indexed: 01/22/2023] Open
Abstract
Brain metastasis is a major cause of morbidity and mortality of lung cancer patients. We assessed whether aberrant expression of specific microRNAs could contribute to brain metastasis. Comparison of primary lung tumors and their matched metastatic brain disseminations identified shared patterns of several microRNAs, including common down-regulation of miR-145-5p. Down-regulation was attributed to methylation of miR-145's promoter and affiliated elevation of several protein targets, such as EGFR, OCT-4, MUC-1, c-MYC and, interestingly, tumor protein D52 (TPD52). In line with these observations, restored expression of miR-145-5p and selective depletion of individual targets markedly reduced in vitro and in vivo cancer cell migration. In aggregate, our results attribute to miR-145-5p and its direct targets pivotal roles in malignancy progression and in metastasis.
Collapse
Affiliation(s)
- Sara Donzelli
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Teresa Bellissimo
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Andrea Sacconi
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Beatrice Casini
- Department of Pathology, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Tania Frixa
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | | | | | - Francesco Facciolo
- Unit of Thoracic Surgery, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Alfredo Pompili
- Department of Neurosurgery, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Maria Antonia Carosi
- Department of Pathology, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Edoardo Pescarmona
- Department of Pathology, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Oreste Segatto
- Laboratory of Cell Signaling, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Greg Pond
- Department of Oncology, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Paola Muti
- Department of Oncology, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Stefano Telera
- Department of Neurosurgery, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.,Department of Oncology, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.,Department of Oncology, Faculty of Health Science, McMaster University, Hamilton, Canada
| |
Collapse
|
98
|
Flores-Pérez A, Marchat LA, Rodríguez-Cuevas S, Bautista-Piña V, Hidalgo-Miranda A, Ocampo EA, Martínez MS, Palma-Flores C, Fonseca-Sánchez MA, Astudillo-de la Vega H, Ruíz-García E, González-Barrios JA, Pérez-Plasencia C, Streber ML, López-Camarillo C. Dual targeting of ANGPT1 and TGFBR2 genes by miR-204 controls angiogenesis in breast cancer. Sci Rep 2016; 6:34504. [PMID: 27703260 PMCID: PMC5050489 DOI: 10.1038/srep34504] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
Deregulated expression of microRNAs has been associated with angiogenesis. Studying the miRNome of locally advanced breast tumors we unsuspectedly found a dramatically repression of miR-204, a small non-coding RNA with no previous involvement in tumor angiogenesis. Downregulation of miR-204 was confirmed in an independent cohort of patients and breast cancer cell lines. Gain-of-function analysis indicates that ectopic expression of miR-204 impairs cell proliferation, anchorage-independent growth, migration, invasion, and the formation of 3D capillary networks in vitro. Likewise, in vivo vascularization and angiogenesis were suppressed by miR-204 in a nu/nu mice model. Genome-wide profiling of MDA-MB-231 cells expressing miR-204 revealed changes in the expression of hundred cancer-related genes. Of these, we focused on the study of pro-angiogenic ANGPT1 and TGFβR2. Functional analysis using luciferase reporter and rescue assays confirmed that ANGPT1 and TGFβR2 are novel effectors downstream of miR-204. Accordingly, an inverse correlation between miR-204 and ANGPT1/TGFβR2 expression was found in breast tumors. Knockdown of TGFβR2, but not ANGPT1, impairs cell proliferation and migration whereas inhibition of both genes inhibits angiogenesis. Taken altogether, our findings reveal a novel role for miR-204/ANGPT1/TGFβR2 axis in tumor angiogenesis. We propose that therapeutic manipulation of miR-204 levels may represent a promising approach in breast cancer.
Collapse
Affiliation(s)
- Ali Flores-Pérez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | | | | | | | - Elena Aréchaga Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Mónica Sierra Martínez
- Laboratorio de Genética y Diagnóstico Molecular, Hospital Juárez, Ciudad de México, México
| | - Carlos Palma-Flores
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Miguel A. Fonseca-Sánchez
- Departamento de Genética Humana, Hospital General de Mexico “Dr Eduardo Liceaga”, Ciudad de México, México
| | - Horacio Astudillo-de la Vega
- Laboratorio de Investigación en Cáncer Translacional y Terapia Celular, Centro Médico Siglo XXI, Ciudad de México, México
| | - Erika Ruíz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de México, México
| | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Ciudad de México, México; Universidad Nacional Autónoma de México UNAM, FES-Iztacala, UBIMED, Tlalnepantla, Estado de México, México
| | - María L. Streber
- Laboratorio de Investigación Experimental y Animal. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| |
Collapse
|
99
|
Li S, Zhang H, Wang X, Qu Y, Duan J, Liu R, Deng T, Ning T, Zhang L, Bai M, Zhou L, Wang X, Ge S, Ying G, Ba Y. Direct targeting of HGF by miR-16 regulates proliferation and migration in gastric cancer. Tumour Biol 2016; 37:15175-15183. [DOI: 10.1007/s13277-016-5390-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
|
100
|
da Silva Oliveira KC, Thomaz Araújo TM, Albuquerque CI, Barata GA, Gigek CO, Leal MF, Wisnieski F, Rodrigues Mello Junior FA, Khayat AS, de Assumpção PP, Rodriguez Burbano RM, Smith MC, Calcagno DQ. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 2016; 22:7951-7962. [PMID: 27672290 PMCID: PMC5028809 DOI: 10.3748/wjg.v22.i35.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/14/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.
Collapse
|