51
|
Liu J, Xu E, Tu G, Liu H, Luo J, Xiong H. Methamphetamine potentiates HIV-1gp120-induced microglial neurotoxic activity by enhancing microglial outward K + current. Mol Cell Neurosci 2017; 82:167-175. [PMID: 28552341 DOI: 10.1016/j.mcn.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 01/22/2023] Open
Abstract
Methamphetamine (Meth) abuse not only increases the risk of human immunodeficiency virus-1 (HIV-1) infection, but exacerbates HIV-1-associated neurocognitive disorders (HAND) as well. The mechanisms underlying the co-morbid effect are not fully understood. Meth and HIV-1 each alone interacts with microglia and microglia express voltage-gated potassium (KV) channel KV1.3. To understand whether KV1.3 functions an intersecting point for Meth and HIV-1, we studied the augment effect of Meth on HIV-1 glycoprotein 120 (gp120)-induced neurotoxic activity in cultured rat microglial cells. While Meth and gp120 each alone at low (subtoxic) concentrations failed to trigger microglial neurotoxic activity, Meth potentiated gp120-induced microglial neurotoxicity when applied in combination. Meth enhances gp120 effect on microglia by enhancing microglial KV1.3 protein expression and KV1.3 current, leading to an increase of neurotoxin production and resultant neuronal injury. Pretreatment of microglia with a specific KV1.3 antagonist 5-(4-Phenoxybutoxy)psoralen (PAP) or a broad spectrum KV channel blocker 4-aminopyridine (4-AP) significantly attenuated Meth/gp120-treated microglial production of neurotoxins and resultant neuronal injury, indicating an involvement of KV1.3 in Meth/gp120-induced microglial neurotoxic activity. Meth/gp120 activated caspase-3 and increased caspase-3/7 activity in microglia and inhibition of caspase-3 by its specific inhibitor significantly decreased microglial production of TNF-α and iNOS and attenuated microglia-associated neurotoxic activity. Moreover, blockage of KV1.3 by specific blockers attenuated Meth/gp120 enhancement of caspase-3/7 activity. Taking together, these results suggest an involvement of microglial KV1.3 in the mediation of Meth/gp120 co-morbid effect on microglial neurotoxic activity via caspase-3 signaling.
Collapse
Affiliation(s)
- Jianuo Liu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States.
| | - Enquan Xu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Guihua Tu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Han Liu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Jiangtao Luo
- Department of Biostatistics, College of Public Health, University Nebraska Medical Center, Omaha, NE 68198-4375, United States
| | - Huangui Xiong
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States.
| |
Collapse
|
52
|
Piekna-Przybylska D, Sharma G, Maggirwar SB, Bambara RA. Deficiency in DNA damage response, a new characteristic of cells infected with latent HIV-1. Cell Cycle 2017; 16:968-978. [PMID: 28388353 DOI: 10.1080/15384101.2017.1312225] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Viruses can interact with host cell molecules responsible for the recognition and repair of DNA lesions, resulting in dysfunctional DNA damage response (DDR). Cells with inefficient DDR are more vulnerable to therapeutic approaches that target DDR, thereby raising DNA damage to a threshold that triggers apoptosis. Here, we demonstrate that 2 Jurkat-derived cell lines with incorporated silent HIV-1 provirus show increases in DDR signaling that responds to formation of double strand DNA breaks (DSBs). We found that phosphorylation of histone H2AX on Ser139 (gamma-H2AX), a biomarker of DSBs, and phosphorylation of ATM at Ser1981, Chk2 at Thr68, and p53 at Ser15, part of signaling pathways associated with DSBs, are elevated in these cells. These results indicate a DDR defect even though the virus is latent. DDR-inducing agents, specifically high doses of nucleoside RT inhibitors (NRTIs), caused greater increases in gamma-H2AX levels in latently infected cells. Additionally, latently infected cells are more susceptible to long-term exposure to G-quadruplex stabilizing agents, and this effect is enhanced when the agent is combined with an inhibitor targeting DNA-PK, which is crucial for DSB repair and telomere maintenance. Moreover, exposing these cells to the cancer drug etoposide resulted in formation of DSBs at a higher rate than in un-infected cells. Similar effects of etoposide were also observed in population of primary memory T cells infected with latent HIV-1. Sensitivity to these agents highlights a unique vulnerability of latently infected cells, a new feature that could potentially be used in developing therapies to eliminate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Gaurav Sharma
- b Department of Electrical and Computer Engineering , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Robert A Bambara
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| |
Collapse
|
53
|
Wang Q, Wei LW, Xiao HQ, Xue Y, Du SH, Liu YG, Xie XL. Methamphetamine induces hepatotoxicity via inhibiting cell division, arresting cell cycle and activating apoptosis: In vivo and in vitro studies. Food Chem Toxicol 2017; 105:61-72. [PMID: 28341135 DOI: 10.1016/j.fct.2017.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Methamphetamine (METH) resulted in acute hepatic injury. However, the underlying mechanisms have not been fully clarified. In the present study, rats were treated with METH (15 mg/kg B.W.) for 8 injections (i.p.), and the levels of alanine transaminase, asparatate transaminase and ammonia in serum were significantly elevated over those in the control group, suggesting hepatic injury, which was evidenced by histopathological observation. Analysis of the liver tissues with microarray revealed differential expressions of a total of 332 genes in METH-treated rats. According to the GO and KEGG annotations, a large number of down-regulated cell cycle genes were screened out, suggesting that METH induced cell cycle arrest and deficient of cell cycle checkpoint. Related genes and proteins were confirmed by RT-qPCR and western blotting in rat livers, respectively. Moreover, treatment of Brl-3A cells with METH caused significant cytotoxic response and marked cell cycle arrest. Furthermore, overexpressions of Cidea, cleaved caspase 3 and PARP 1 in METH-treated rats indicated activation of apoptosis, while its inhibition alleviated cell death in Brl-3A cells, suggesting that activation of apoptosis took an important role in METH-induced hepatotoxicity. Taken together, the present study demonstrates that METH induced hepatotoxicity via inducing cell cycle arrest and activating apoptosis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Li-Wen Wei
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Huan-Qin Xiao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, 510630 Guangzhou, China
| | - Ye Xue
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Si-Hao Du
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Yun-Gang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
54
|
Sanchez AB, Kaul M. Neuronal Stress and Injury Caused by HIV-1, cART and Drug Abuse: Converging Contributions to HAND. Brain Sci 2017; 7:brainsci7030025. [PMID: 28241493 PMCID: PMC5366824 DOI: 10.3390/brainsci7030025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple mechanisms appear to contribute to neuronal stress and injury underlying HIV-associated neurocognitive disorders (HAND), which occur despite the successful introduction of combination antiretroviral therapy (cART). Evidence is accumulating that components of cART can itself be neurotoxic upon long-term exposure. In addition, abuse of psychostimulants, such as methamphetamine (METH), seems to compromise antiretroviral therapy and aggravate HAND. However, the combined effect of virus and recreational and therapeutic drugs on the brain is still incompletely understood. However, several lines of evidence suggest a shared critical role of oxidative stress, compromised neuronal energy homeostasis and autophagy in promotion and prevention of neuronal dysfunction associated with HIV-1 infection, cART and psychostimulant use. In this review, we present a synopsis of recent work related to neuronal stress and injury induced by HIV infection, antiretrovirals (ARVs) and the highly addictive psychostimulant METH.
Collapse
Affiliation(s)
- Ana B Sanchez
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
55
|
Cho YE, Lee MH, Song BJ. Neuronal Cell Death and Degeneration through Increased Nitroxidative Stress and Tau Phosphorylation in HIV-1 Transgenic Rats. PLoS One 2017; 12:e0169945. [PMID: 28107387 PMCID: PMC5249108 DOI: 10.1371/journal.pone.0169945] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/27/2016] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanisms for increased neurodegeneration and neurocognitive deficits in HIV-infected people are unclear. Therefore, this study was aimed to investigate the mechanisms of increased neurodegeneration in 5-month old male HIV-1 Transgenic (Tg) rats compared to the age- and gender-matched wild-type (WT) by evaluating histological changes and biochemical parameters of the key proteins involved in the cell death signaling and apoptosis. Histological and immunohistochemical analyses revealed decreased neuronal cells with elevated astrogliosis in HIV-1 Tg rats compared to WT. Mechanistic studies revealed that increased levels of nitroxidative stress marker proteins such as NADPH-oxidase, cytochrome P450-2E1 (CYP2E1), inducible nitric oxide synthase (iNOS), the stress-activated mitogen-activated protein kinases such as JNK and p38K, activated cell-cycle dependent CDK5, hypoxia-inducible protein-1α, nitrated proteins, hyperphosphorylated tau, and amyloid plaques in HIV-Tg rats were consistently observed in HIV-1 Tg rats. Confocal microscopy and cell viability analyses showed that treatment with an antioxidant N-acetylcysteine or a specific inhibitor of iNOS 1400W significantly prevented the increased apoptosis of neuro-2A cells by HIV-1 Tat or gp120 protein, demonstrating the causal role of HIV-1 mediated nitroxidative stress and protein nitration in promoting neuronal cell death. Immunoprecipitation and immunoblot analysis confirmed nitration of Hsp90, evaluated as an example of nitrated proteins, suggesting possible involvement of nitrated proteins in neuronal damage. Further, activated p-JNK directly binds tau and phosphorylates multiple amino acids, suggesting an important role of p-JNK in tau hyperphosphorylation and tauopathy. These changes were accompanied with elevated levels of many apoptosis-related proteins Bax and cleaved (activated) caspase-3 as well as proinflammatory cytokines including TNF-α, IL-6 and MCP-1. Collectively, these results indicate that raised nitroxidative stress accompanied by elevated inflammation, cell death signaling pathway including activated p-JNK, C-terminal C99 amyloid fragment formation and tau hyperphosphorylation are responsible for increased apoptosis of neuronal cells and neurodegeneration in 5-month old HIV-Tg rats.
Collapse
Affiliation(s)
- Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States of America
| | - Myoung-Hwa Lee
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
56
|
Nookala AR, Mitra J, Chaudhari NS, Hegde ML, Kumar A. An Overview of Human Immunodeficiency Virus Type 1-Associated Common Neurological Complications: Does Aging Pose a Challenge? J Alzheimers Dis 2017; 60:S169-S193. [PMID: 28800335 PMCID: PMC6152920 DOI: 10.3233/jad-170473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With increasing survival of patients infected with human immunodeficiency virus type 1 (HIV-1), the manifestation of heterogeneous neurological complications is also increasing alarmingly in these patients. Currently, more than 30% of about 40 million HIV-1 infected people worldwide develop central nervous system (CNS)-associated dysfunction, including dementia, sensory, and motor neuropathy. Furthermore, the highly effective antiretroviral therapy has been shown to increase the prevalence of mild cognitive functions while reducing other HIV-1-associated neurological complications. On the contrary, the presence of neurological disorder frequently affects the outcome of conventional HIV-1 therapy. Although, both the children and adults suffer from the post-HIV treatment-associated cognitive impairment, adults, especially depending on the age of disease onset, are more prone to CNS dysfunction. Thus, addressing neurological complications in an HIV-1-infected patient is a delicate balance of several factors and requires characterization of the molecular signature of associated CNS disorders involving intricate cross-talk with HIV-1-derived neurotoxins and other cellular factors. In this review, we summarize some of the current data supporting both the direct and indirect mechanisms, including neuro-inflammation and genome instability in association with aging, leading to CNS dysfunction after HIV-1 infection, and discuss the potential strategies addressing the treatment or prevention of HIV-1-mediated neurotoxicity.
Collapse
Affiliation(s)
- Anantha Ram Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Nitish S. Chaudhari
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College of Cornell University, NY, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
57
|
Cao L, Fu M, Kumar S, Kumar A. Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis 2016; 7:e2425. [PMID: 27763640 PMCID: PMC5133984 DOI: 10.1038/cddis.2016.317] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH), a commonly used controlled substance, is known to exacerbate neuropathological dysfunction in HIV-infected individuals. The neuropathological manifestation results from cell death or dysfunction in the central nervous system (CNS) wherein autophagy is expected to have an important role. Autophagy is generally considered protective during deprivation/stress. However, excessive autophagy can be destructive, leading to autophagic cell death. This study was designed to investigate if METH and HIV-1 gp120 interact to induce autophagy in SVGA astrocytes, and whether autophagy is epiphenomenal or it has a role in METH- and gp120-induced cytotoxicity. We found that METH and gp120 IIIb caused an increase in LC3II level in astrocytes in a dose- and time-dependent manner, and the level of LC3II was further increased when the cells were treated with METH and gp120 IIIb in combination. Next, we sought to explore the mechanism by which METH and gp120 induce the autophagic response. We found that METH induces autophagy via opioid and metabotropic glutamate receptor type 5 (mGluR5) receptors. Other than that, signaling proteins Akt, mammalian target of rapamycin (mTOR), Beclin-1, Atg5 and Atg7 were involved in METH and gp120-mediated autophagy. In addition, long-term treatment of METH and gp120 IIIb resulted in cell death, which was exacerbated by inhibition of autophagy. This suggests that autophagy functions as a protective response against apoptosis caused by METH and gp120. This study is novel and clinically relevant because METH abuse among HIV-infected populations is highly prevalent and is known to cause exacerbated neuroAIDS.
Collapse
Affiliation(s)
- Lu Cao
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
58
|
Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, Isaguliants MG. Oxidative Stress during HIV Infection: Mechanisms and Consequences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8910396. [PMID: 27829986 PMCID: PMC5088339 DOI: 10.1155/2016/8910396] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
It is generally acknowledged that reactive oxygen species (ROS) play crucial roles in a variety of natural processes in cells. If increased to levels which cannot be neutralized by the defense mechanisms, they damage biological molecules, alter their functions, and also act as signaling molecules thus generating a spectrum of pathologies. In this review, we summarize current data on oxidative stress markers associated with human immunodeficiency virus type-1 (HIV-1) infection, analyze mechanisms by which this virus triggers massive ROS production, and describe the status of various defense mechanisms of the infected host cell. In addition, we have scrutinized scarce data on the effect of ROS on HIV-1 replication. Finally, we present current state of knowledge on the redox alterations as crucial factors of HIV-1 pathogenicity, such as neurotoxicity and dementia, exhaustion of CD4+/CD8+ T-cells, predisposition to lung infections, and certain side effects of the antiretroviral therapy, and compare them to the pathologies associated with the nitrosative stress.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | - Elizaveta S. Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow 142782, Russia
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France
- DevWeCan Laboratories of Excellence Network (Labex), France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga LV-1007, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- N. F. Gamaleya Research Center of Epidemiology and Microbiology, Moscow 123098, Russia
| |
Collapse
|
59
|
Role of Autophagy in HIV Pathogenesis and Drug Abuse. Mol Neurobiol 2016; 54:5855-5867. [PMID: 27660273 DOI: 10.1007/s12035-016-0118-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Autophagy is a highly regulated process in which excessive cytoplasmic materials are captured and degraded during deprivation conditions. The unique nature of autophagy that clears invasive microorganisms has made it an important cellular defense mechanism in a variety of clinical situations. In recent years, it has become increasingly clear that autophagy is extensively involved in the pathology of HIV-1. To ensure survival of the virus, HIV-1 viral proteins modulate and utilize the autophagy pathway so that biosynthesis of the virus is maximized. At the same time, the abuse of illicit drugs such as methamphetamine, cocaine, morphine, and alcohol is thought to be a significant risk factor for the acquirement and progression of HIV-1. During drug-induced toxicity, autophagic activity has been proved to be altered in various cell types. Here, we review the current literature on the interaction between autophagy, HIV-1, and drug abuse and discuss the complex role of autophagy during HIV-1 pathogenesis in co-exposure to illicit drugs.
Collapse
|
60
|
Rao PSS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Curr Drug Metab 2016; 16:486-503. [PMID: 26264202 DOI: 10.2174/1389200216666150812123554] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Diallyl sulfide (DAS) and other organosulfur compounds are chief constituents of garlic. These compounds have many health benefits, as they are very efficient in detoxifying natural agents. Therefore, these compounds may be useful for prevention/treatment of cancers. However, DAS has shown appreciable allergic reactions and toxicity, as they can also affect normal cells. Thus their use as in the prevention and treatment of cancer is limited. DAS is a selective inhibitor of cytochrome P450 2E1 (CYP2E1), which is known to metabolize many xenobiotics including alcohol and analgesic drugs in the liver. CYP2E1-mediated alcohol/drug metabolism produce reactive oxygen species and reactive metabolites, which damage DNA, protein, and lipid membranes, subsequently causing liver damage. Several groups have shown that DAS is not only capable of inhibiting alcohol- and drug-mediated cellular toxicities, but also HIV protein- and diabetes-mediated toxicities by selectively inhibiting CYP2E1 in various cell types. However, due to known DAS toxicities, its use as a treatment modality for alcohol/drug- and HIV/diabetes-mediated toxicity have only limited clinical relevance. Therefore, effort is being made to generate DAS analogs, which are potent and selective inhibitor of CYP2E1 and poor substrate of CYP2E1. This review summarizes current advances in the field of DAS, its anticancer properties, role as a CYP2E1 inhibitor, preventing agent of cellular toxicities from alcohol, analgesic drugs, xenobiotics, as well as, from diseases like HIV and diabetes. Finally, this review also provides insights toward developing novel DAS analogues for chemical intervention of many disease conditions by targeting CYP2E1 enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN 38163, USA.
| |
Collapse
|
61
|
Yang ZR, Wang HF, Zuo TC, Guan LL, Dai N. Salidroside alleviates oxidative stress in the liver with non- alcoholic steatohepatitis in rats. BMC Pharmacol Toxicol 2016; 17:16. [PMID: 27075663 PMCID: PMC4831194 DOI: 10.1186/s40360-016-0059-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 03/29/2016] [Indexed: 01/19/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is characterized by fat accumulation in the hepatocyte, inflammation, liver cell injury, and varying degrees of fibrosis, and can lead to oxidative stress in liver. Here, we investigated whether Salidroside, a natural phenolic antioxidant product, can protect rat from liver injury during NASH. Methods NASH model was established by feeding the male SD rats with high-fat and high-cholesterol diet for 14 weeks. Four groups of male SD rats including, normal diet control group, NASH model group, and Salidroside treatment group with150mg/kg and 300 mg/kg respectively, were studied. Salidroside was given by oral administration to NASH in rats from 9 weeks to 14 weeks. At the end of 14 weeks, liver and serum were harvested, and the liver injury, oxidative stress and histological features were evaluated. Results NASH rats exhibited significant increases in the following parameters as compared to normal diet control rats: fat droplets with foci of inflammatory cell infiltration in the liver. ALT, AST in serum and TG, TC in hepatocyte elevated. Oxidative responsive genes including CYP2E1 and Nox2 increased. Additionally, NASH model decreased antioxidant enzymes SOD, GSH, GPX, and CAT in the liver due to their rapid depletion after battling against oxidative stress. Compared to NASH model group, treatment rats with Salidroside effectively reduced lipid accumulation, inhibited liver injury in a does-dependent manner. Salidroside treatment restored antioxidant enzyme levels, inhibited expression of CYP2E1 and Nox2 mRNA in liver, which prevented the initial step of generating free radicals from NASH. Conclusion The data presented here show that oral administration of Salidroside prevented liver injury in the NASH model, likely through exerting antioxidant actions to suppress oxidative stress and the free radical–generating CYP2E1 enzyme, Nox2 in liver.
Collapse
Affiliation(s)
- Ze-ran Yang
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Hui-fang Wang
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Tie-cheng Zuo
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Li-li Guan
- Department of Digestive Physiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ning Dai
- Department of Gastroenterology, the first Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|
62
|
Sirova J, Kristofikova Z, Vrajova M, Fujakova-Lipski M, Ripova D, Klaschka J, Slamberova R. Sex-Dependent Changes in Striatal Dopamine Transport in Preadolescent Rats Exposed Prenatally and/or Postnatally to Methamphetamine. Neurochem Res 2016; 41:1911-23. [PMID: 27038442 DOI: 10.1007/s11064-016-1902-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/13/2023]
Abstract
Methamphetamine (MA) is the most commonly used psychostimulant drug, the chronic abuse of which leads to neurodegenerative changes in the brain. The global use of MA is increasing, including in pregnant women. Since MA can cross both placental and haematoencephalic barriers and is also present in maternal milk, children of chronically abused mothers are exposed prenatally as well as postnatally. Women seem to be more vulnerable to some aspects of MA abuse than men. MA is thought to exert its effects among others via direct interactions with dopamine transporters (DATs) in the brain tissue. Sexual dimorphism of the DAT system could be a base of sex-dependent actions of MA observed in behavioural and neurochemical studies. Possible sex differences in the DATs of preadolescent offspring exposed to MA prenatally and/or postnatally have not yet been evaluated. We examined the striatal synaptosomal DATs (the activity and density of surface expressed DATs and total DAT expression) in preadolescent male and female Wistar rats (31-35-day old animals) exposed prenatally and/or postnatally to MA (daily 5 mg/kg, s.c. to mothers during pregnancy and lactation). To distinguish between specific and nonspecific effects of MA on DATs, we also evaluated the in vitro effects of lipophilic MA on the fluidity of striatal membranes isolated from preadolescent and young adult rats of both sexes. We observed similar changes in the DATs of preadolescent rats exposed prenatally or postnatally (MA-mediated drop in the reserve pool but no alterations in surface-expressed DATs). However, prenatal exposure evoked significant changes in males and postnatal exposure in females. A significant decrease in the activity of surface-expressed DATs was found only in postnatally exposed females sensitized to MA via prenatal exposure. MA applied in vitro increased the fluidity of striatal membranes of preadolescent female but not male rats. In summary, DATs of preadolescent males are more sensitive to prenatal MA exposure via changes in the reserve pool and those of preadolescent females to postnatal MA exposure via the same mechanism. The combination of prenatal and postnatal MA exposure increases the risk of dopaminergic deficits via alterations in the activity of surface-expressed DATs especially in preadolescent females. MA-mediated changes in DATs of preadolescent females could be still enhanced via nonspecific disordering actions of MA on striatal membranes.
Collapse
Affiliation(s)
- Jana Sirova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Zdenka Kristofikova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
| | - Monika Vrajova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | | | - Daniela Ripova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science, The Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Slamberova
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
63
|
Abstract
OBJECTIVE In this work, we evaluated the association of human immunodeficiency virus (HIV) infection and methamphetamine (METH) use with mitochondrial injury in the brain and its implication on neurocognitive impairment. DESIGN Mitochondria carry their genome (mtDNA) and play a critical role in cellular processes in the central nervous system. METH is commonly used in HIV-infected populations. HIV infection and METH use can cause damage to mtDNA and lead to neurocognitive morbidity. We evaluated HIV infection and METH use with mitochondrial injury in the brain. METHODS We obtained white and gray matter from Brodmann areas 7, 8, 9, 46 of the following: HIV-infected individuals with history of past METH use (HIV+METH+, n = 16), HIV-infected individuals with no history of past METH use (HIV+METH-, n = 11), and HIV-negative controls (HIV-METH-, n = 30). We used the 'common deletion', a 4977 bp mutation, as a measurement of mitochondrial injury, and quantified levels of mtDNA and 'common deletion' by droplet digital PCR, and evaluated in relation to neurocognitive functioning [Global Deficit Score (GDS)]. RESULTS Levels of mtDNA and mitochondrial injury were highest in white matter of Brodmann area 46. A higher relative proportion of mtDNA carrying the 'common deletion' was associated with lower GDS (P < 0.01) in HIV+METH+ but higher GDS (P < 0.01) in HIV+METH-. CONCLUSIONS Increased mitochondrial injury was associated with worse neurocognitive function in HIV+METH- individuals. Among HIV+METH+ individuals, an opposite effect was seen.
Collapse
|
64
|
The overexpression of Thioredoxin-1 suppressing inflammation induced by methamphetamine in spleen. Drug Alcohol Depend 2016; 159:66-71. [PMID: 26684867 DOI: 10.1016/j.drugalcdep.2015.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/06/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Methamphetamine (METH) is an addictive psychostimulant and has been shown to induce oxidative stress and inflammation in various tissues. Thioredoxin-1 (Trx-1) plays the roles in regulating redox and inhibiting inflammation. Whether Trx-1 is involved in METH-induced inflammation is still unknown. METHODS The present study was designed to investigate inflammatory factors in spleen of wild type and Trx-1 overexpression transgenic mice after METH treatment. RESULTS We found the mRNA level of Trx-1 was decreased and mRNA level of Trx-1 binding protein-2 (TBP-2) was increased. The mRNA levels of tumor necrosis factor-α (TNF-α), interferon-γ(IFN-γ), interleukin-2 (IL-2), T-bet and signal transducer and activators of transcription 4 (STAT 4) were increased and the mRNA levels of IL-10, GA-TA-binding protein-3 (GATA-3) and STAT 6 were decreased. Overexpression of Trx-1 reversed the above effects induced by METH. CONCLUSION The present study showed for the first time that Trx-1 overexpression suppressed the inflammation induced by METH.
Collapse
|
65
|
HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway. Sci Rep 2016; 6:18929. [PMID: 26740125 PMCID: PMC4703964 DOI: 10.1038/srep18929] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
The ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases; however, its role in HIV/neuroAIDS remains largely unexplored. The present study was undertaken to assess the involvement and detailed mechanism of IRE1α pathway in HIV-1 gp120-mediated ER stress and its possible involvement in cell death. Various signaling molecules for IRE1α pathway were assessed using SVGA cells, primary astrocytes and gp120 transgenic mice, which demonstrated gp120-mediated increase in phosphorylated JNK, XBP-1 and AP-1 leading to upregulation of CHOP. Furthermore, HIV-1 gp120-mediated activation of IRE1α also increased XBP-1 splicing. The functional consequence of gp120-mediated ER stress was determined via assessment of gp120-mediated cell death using PI staining and MTT assay. The gp120-mediated cell death also involved caspase-9/caspase-3-mediated apoptosis. These findings were confirmed with the help of specific siRNA for IRE1α, JNK, AP-1, BiP and CHOP showing significant reduction in gp120-mediated CHOP expression. Additionally, silencing all the intermediates also reduced the gp120-mediated cell death and caspase-9/caspase-3 activation at differential levels. This study provides ER-stress as a novel therapeutic target in the management of gp120-mediated cell death and possibly in the treatment of neuroAIDS.
Collapse
|
66
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
67
|
Zhang Y, Zhu T, Zhang X, Chao J, Hu G, Yao H. Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes. J Neuroinflammation 2015; 12:156. [PMID: 26337661 PMCID: PMC4559295 DOI: 10.1186/s12974-015-0374-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/16/2015] [Indexed: 12/21/2022] Open
Abstract
Background Mounting evidence has indicated that high-mobility group box 1 (HMGB1) is involved in cell activation and migration. Our previous study demonstrated that methamphetamine mediates activation of astrocytes via sigma-1 receptor (σ-1R). However, the elements downstream of σ-1R in this process remain poorly understood. Thus, we examined the molecular mechanisms involved in astrocyte activation and migration induced by methamphetamine. Methods The expression of HMGB1, σ-1R, and glial fibrillary acidic protein (GFAP) was examined by western blot and immunofluorescent staining. The phosphorylation of cell signaling pathways was detected by western blot, and cell migration was examined using a wound-healing assay in rat C6 astroglia-like cells transfected with lentivirus containing red fluorescent protein (LV-RFP) as well as in primary human astrocytes. The role of HMGB1 in astrocyte activation and migration was validated using a siRNA approach. Results Exposure of C6 cells to methamphetamine increased the expression of HMGB1 via the activation of σ-1R, Src, ERK mitogen-activated protein kinase, and downstream NF-κB p65 pathways. Moreover, methamphetamine treatment resulted in increased cell activation and migration in C6 cells and primary human astrocytes. Knockdown of HMGB1 in astrocytes transfected with HMGB1 siRNA attenuated the increased cell activation and migration induced by methamphetamine, thereby implicating the role of HMGB1 in the activation and migration of C6 cells and primary human astrocytes. Conclusions This study demonstrated that methamphetamine-mediated activation and migration of astrocytes involved HMGB1 up-regulation through an autocrine mechanism. Targeting HMGB1 could provide insights into the development of a potential therapeutic approach for alleviation of cell activation and migration of astrocytes induced by methamphetamine.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, 210009, China
| | - Tiebing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaotian Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, 210009, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, 210009, China. .,Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
68
|
Xia C, Cai Y, Lin Y, Guan R, Xiao G, Yang J. MiR-133b-5p regulates the expression of the heat shock protein 70 during rat neuronal cell apoptosis induced by the gp120 V3 loop peptide. J Med Virol 2015; 88:437-47. [PMID: 26280272 DOI: 10.1002/jmv.24355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 12/28/2022]
Abstract
Neuronal cell dysfunction and apoptosis, the main causes of HIV-associated dementia, and its underlying mechanism are important unsolved health problems. Many research reports suggest that miRNAs regulate HIV-1-induced apoptosis. We used the HIV-1 gp120 V3 Loop peptide to induce primary rat cortical neurons apoptosis. Next, we used a microRNA microarray to identify the significant changes of miRNA in the rat cortical neurons treated with the gp120 V3 loop peptide. We used western blot and real-time PCR to measure the regulation of heat shock protein 70 by rno-miR-133b-5p. In response to the gp120 V3 loop peptide treatment, rat cortical neurons exhibited 11 up-regulated and 21 down-regulated miRNAs. We further examined miR-133b-5p, a microRNA that was up-regulated more than 118-fold. In addition, both HSP70 mRNA and protein expression were dose-dependent in rats cortical neurons treated with gp120 V3 loop peptide for 48 hr. MiR-133b-5p could regulate heat shock protein 70 (HSP70) at both transcription and translation levels. Rno-miR-133b-5p might be less significant for the gp120 V3 loop peptide induced neuron apoptosis. Thus, we discovered a potential new target for the regulation of HIV-1 gp120- induced apoptosis.
Collapse
Affiliation(s)
- Chenglai Xia
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China
| | - Yantao Cai
- Department of Dermatology and Rheumatology, Foshan Maternity & Child Heath Care Hospital, Foshan, 528000, China
| | - Yuyi Lin
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Ronghua Guan
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Guohong Xiao
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Jie Yang
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| |
Collapse
|
69
|
Samikkannu T, Ranjith D, Rao KVK, Atluri VSR, Pimentel E, El-Hage N, Nair MPN. HIV-1 gp120 and morphine induced oxidative stress: role in cell cycle regulation. Front Microbiol 2015; 6:614. [PMID: 26157430 PMCID: PMC4477635 DOI: 10.3389/fmicb.2015.00614] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
HIV infection and illicit drugs are known to induce oxidative stress and linked with severity of viral replication, disease progression, impaired cell cycle regulation and neurodegeneration. Studies have shown that morphine accelerates HIV infection and disease progression mediated by Reactive oxygen species (ROS). Oxidative stress impact redox balance and ROS production affect cell cycle regulation. However, the role of morphine in HIV associated acceleration of oxidative stress and its link to cell cycle regulation and neurodegeneration has not been elucidated. The aim of present study is to elucidate the mechanism of oxidative stress induced glutathione synthases (GSS), super oxide dismutase (SOD), and glutathione peroxidase (GPx) impact cell cycle regulated protein cyclin-dependent kinase 1, cell division cycle 2 (CDK-1/CDC-2), cyclin B, and cell division cycle 25C (CDC-25C) influencing neuronal dysfunction by morphine co-morbidity with HIV-1 gp120. It was observed that redox imbalance inhibited the GSS, GPx and increased SOD which, subsequently inhibited CDK-1/CDC-2 whereas cyclin B and CDC-25C significantly up regulated in HIV-1 gp120 with morphine compared to either HIV-1 gp120 or morphine treated alone in human microglial cell line. These results suggest that HIV positive morphine users have increased levels of oxidative stress and effect of cell cycle machinery, which may cause the HIV infection and disease progression.
Collapse
Affiliation(s)
- Thangavel Samikkannu
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University , Miami, FL, USA
| | - Deepa Ranjith
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University , Miami, FL, USA
| | - Kurapati V K Rao
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University , Miami, FL, USA
| | - Venkata S R Atluri
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University , Miami, FL, USA
| | - Emely Pimentel
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University , Miami, FL, USA
| | - Nazira El-Hage
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University , Miami, FL, USA
| | - Madhavan P N Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, College of Medicine, Florida International University , Miami, FL, USA
| |
Collapse
|
70
|
Hidalgo M, Atluri VSR, Nair M. Drugs of Abuse in HIV infection and neurotoxicity. Front Microbiol 2015; 6:217. [PMID: 25852673 PMCID: PMC4371755 DOI: 10.3389/fmicb.2015.00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Affiliation(s)
- Melissa Hidalgo
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Venkata S R Atluri
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Madhavan Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| |
Collapse
|
71
|
Zhang Y, Lv X, Bai Y, Zhu X, Wu X, Chao J, Duan M, Buch S, Chen L, Yao H. Involvement of sigma-1 receptor in astrocyte activation induced by methamphetamine via up-regulation of its own expression. J Neuroinflammation 2015; 12:29. [PMID: 25889537 PMCID: PMC4340104 DOI: 10.1186/s12974-015-0250-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/15/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Although it has been documented that methamphetamine induces astrocyte activation, the mechanism(s) underlying this effect remain poorly understood. We thus sought to examine the molecular mechanisms involved in methamphetamine-mediated activation of astrocytes with a focus on the role of sigma-1 receptor (σ-1R) in this process. METHODS The expression of σ-1R and glial fibrillary acidic protein (GFAP) was examined by reverse transcription PCR (RT-PCR), real-time PCR, Western blot, and immunofluorescent staining; phosphorylation of cell signaling pathways was detected by Western blot analysis. Immunoprecipitation was used to determine the interaction between σ-1R and p-Src. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of cAMP-response element-binding protein (CREB) with the promoter of σ-1R. The role of σ-1R in astrocyte activation was further validated in σ-1R knockout (KO) mice by Western blot combined with immunofluorescent staining. RESULTS Exposure of primary rat astrocytes to methamphetamine increased the expression of σ-1R via the activation of Src, ERK mitogen-activated protein kinase, and downstream CREB pathways. Subsequently, CREB translocated into nucleus and interacted with the promoter of σ-1R resulting in increased expression of σ-1R with a concomitant increase in expression of GFAP. This effect was inhibited in cells treated with the σ-1R antagonist-BD1047, thereby implicating the role of σ-1R in the activation of astrocytes. In vivo relevance of these findings was further corroborated in σ-1R KO mice that were administered methamphetamine. In the methamphetamine administered mice, there was a failure of the drug to induce activation of astrocytes, an effect that was evident in wild-type (WT) mice exposed to methamphetamine. CONCLUSIONS The study presented herein demonstrates that methamphetamine-mediated activation of astrocytes involved up-regulation of σ-1R through a positive-feedback mechanism. Understanding the regulation of σ-1R expression could provide insights into the development of potential therapeutic strategies for astrocyte activation induced by methamphetamine.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.
| | - Xuan Lv
- Department of Pharmacology, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.
| | - Ying Bai
- Department of Pharmacology, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.
| | - Xiaodong Wu
- Department of Pharmacology, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.
| | - Ming Duan
- Virosis Laboratory, Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, 5333 Xi An Road, Changchun, 130062, China.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 42nd and Emile, Omaha, NE, 68198, USA.
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China.
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
72
|
Role of Oxidative Stress in HIV-1-Associated Neurocognitive Disorder and Protection by Gene Delivery of Antioxidant Enzymes. Antioxidants (Basel) 2014; 3:770-97. [PMID: 26785240 PMCID: PMC4665507 DOI: 10.3390/antiox3040770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 12/26/2022] Open
Abstract
HIV encephalopathy covers a range of HIV-1-related brain dysfunction. In the Central Nervous System (CNS), it is largely impervious to Highly Active AntiRetroviral Therapy (HAART). As survival with chronic HIV-1 infection improves, the number of people harboring the virus in their CNS increases. Neurodegenerative and neuroinflammatory changes may continue despite the use of HAART. Neurons themselves are rarely infected by HIV-1, but HIV-1 infects resident microglia, periventricular macrophages, leading to increased production of cytokines and to release of HIV-1 proteins, the most likely neurotoxins, among which are the envelope glycoprotein gp120 and HIV-1 trans-acting protein Tat. Gp120 and Tat induce oxidative stress in the brain, leading to neuronal apoptosis/death. We review here the role of oxidative stress in animal models of HIV-1 Associated Neurocognitive Disorder (HAND) and in patients with HAND. Different therapeutic approaches, including clinical trials, have been used to mitigate oxidative stress in HAND. We used SV40 vectors for gene delivery of antioxidant enzymes, Cu/Zn superoxide dismutase (SOD1), or glutathione peroxidase (GPx1) into the rat caudate putamen (CP). Intracerebral injection of SV (SOD1) or SV (GPx1) protects neurons from apoptosis caused by subsequent inoculation of gp120 and Tat at the same location. Vector administration into the lateral ventricle or cisterna magna protects from intra-CP gp120-induced neurotoxicity comparably to intra-CP vector administration. These models should provide a better understanding of the pathogenesis of HIV-1 in the brain as well as offer new therapeutic avenues.
Collapse
|
73
|
Earla R, Kumar S, Wang L, Bosinger S, Li J, Shah A, Gangwani M, Nookala A, Liu X, Cao L, Jackson A, Silverstein PS, Fox HS, Li W, Kumar A. Enhanced methamphetamine metabolism in rhesus macaque as compared with human: an analysis using a novel method of liquid chromatography with tandem mass spectrometry, kinetic study, and substrate docking. Drug Metab Dispos 2014; 42:2097-108. [PMID: 25301936 DOI: 10.1124/dmd.114.059378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methamphetamine (MA), which remains one of the widely used drugs of abuse, is metabolized by the cytochrome P450 (P450) family of enzymes in humans. However, metabolism of methamphetamine in macaques is poorly understood. Therefore, we first developed and validated a very sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) method using solid phase extraction of rhesus plasma with a lower limit of quantitation at 1.09 ng/ml for MA and its metabolites, 4-hydroxy methamphetamine (4-OH MA), amphetamine (AM), 4-OH amphetamine (4-OH AM), and norephedrine. We then analyzed plasma samples of MA-treated rhesus, which showed >10-fold higher concentrations of AM (∼29 ng/ml) and 4-OH AM (∼28 ng/ml) than MA (∼2 ng/ml). Because the plasma levels of MA metabolites in rhesus were much higher than in human samples, we examined MA metabolism in human and rhesus microsomes. Interestingly, the results showed that AM and 4-OH AM were formed more rapidly and that the catalytic efficiency (Vmax/Km) for the formation of AM was ∼8-fold higher in rhesus than in human microsomes. We further examined the differences in these kinetic characteristics using three selective inhibitors of each human CYP2D6 and CYP3A4 enzymes. The results showed that each of these inhibitors inhibited both d- and l-MA metabolism by 20%-60% in human microsomes but not in rhesus microsomes. The differences between human and rhesus CYP2D6 and CYP3A4 enzymes were further assessed by docking studies for both d and l-MA. In conclusion, our results demonstrated an enhanced MA metabolism in rhesus compared with humans, which is likely to be caused by differences in MA-metabolizing P450 enzymes between these species.
Collapse
Affiliation(s)
- Ravinder Earla
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Santosh Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Lei Wang
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Steven Bosinger
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Junhao Li
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Ankit Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Mohitkumar Gangwani
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Anantha Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Xun Liu
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Lu Cao
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Austin Jackson
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Peter S Silverstein
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Howard S Fox
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Weihua Li
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| |
Collapse
|
74
|
Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes. PLoS One 2014; 9:e109603. [PMID: 25290377 PMCID: PMC4188627 DOI: 10.1371/journal.pone.0109603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022] Open
Abstract
Methamphetamine (MA) is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers.
Collapse
|
75
|
Kim TH, Song J, Kim SH, Parikh AK, Mo X, Palanichamy K, Kaur B, Yu J, Yoon SO, Nakano I, Kwon CH. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol 2014; 16:1354-64. [PMID: 24879047 PMCID: PMC4165421 DOI: 10.1093/neuonc/nou088] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 04/12/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDS Piperlongumine, a natural plant product, kills multiple cancer types with little effect on normal cells. Piperlongumine raises intracellular levels of reactive oxygen species (ROS), a phenomenon that may underlie the cancer-cell killing. Although these findings suggest that piperlongumine could be useful for treating cancers, the mechanism by which the drug selectively kills cancer cells remains unknown. METHODS We treated multiple high-grade glioma (HGG) sphere cultures with piperlongumine and assessed its effects on ROS and cell-growth levels as well as changes in downstream signaling. We also examined the levels of putative piperlongumine targets and their roles in HGG cell growth. RESULTS Piperlongumine treatment increased ROS levels and preferentially killed HGG cells with little effect in normal brain cells. Piperlongumine reportedly increases ROS levels after interactions with several redox regulators. We found that HGG cells expressed higher levels of the putative piperlongumine targets than did normal neural stem cells (NSCs). Furthermore, piperlongumine treatment in HGG cells, but not in normal NSCs, increased oxidative inactivation of peroxiredoxin 4 (PRDX4), an ROS-reducing enzyme that is overexpressed in HGGs and facilitates proper protein folding in the endoplasmic reticulum (ER). Moreover, piperlongumine exacerbated intracellular ER stress, an effect that was mimicked by suppressing PRDX4 expression. CONCLUSIONS Our results reveal that the mechanism by which piperlongumine preferentially kills HGG cells involves PRDX4 inactivation, thereby inducing ER stress. Therefore, piperlongumine treatment could be considered as a novel therapeutic option for HGG treatment.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Jieun Song
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Sung-Hak Kim
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Arav Krishnavadan Parikh
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Xiaokui Mo
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Kamalakannan Palanichamy
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Balveen Kaur
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Jianhua Yu
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Sung Ok Yoon
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Ichiro Nakano
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| | - Chang-Hyuk Kwon
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, Ohio State University, Columbus, Ohio (T.H.K., J.S., S.-H.K., A.K.P., I.N., B.K., C.-H.K.); Solid Tumor Program at the James Comprehensive Cancer Center, Columbus, Ohio (T.H.K., J.S., A.K.P., C.-H.K.); Center for Biostatistics, Ohio State University, Columbus, Ohio (X.M.); Department of Radiation Oncology, Ohio State University, Columbus, Ohio (K.P.); Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio (J.Y.); Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, Ohio (S.O.Y.)
| |
Collapse
|
76
|
Louboutin JP, Agrawal L, Reyes BAS, Van Bockstaele EJ, Strayer DS. Oxidative Stress Is Associated with Neuroinflammation in Animal Models of HIV-1 Tat Neurotoxicity. Antioxidants (Basel) 2014; 3:414-38. [PMID: 26784879 PMCID: PMC4665482 DOI: 10.3390/antiox3020414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022] Open
Abstract
HIV-1 trans-acting protein Tat, an essential protein for viral replication, is a key mediator of neurotoxicity. If Tat oxidant injury and neurotoxicity have been described, consequent neuroinflammation is less understood. Rat caudate-putamens (CPs) were challenged with Tat, with or without prior rSV40-delivered superoxide dismutase or glutathione peroxidase. Tat injection caused oxidative stress. Administration of Tat in the CP induced an increase in numbers of Iba-1- and CD68-positive cells, as well as an infiltration of astrocytes. We also tested the effect of more protracted Tat exposure on neuroinflammation using an experimental model of chronic Tat exposure. SV(Tat): a recombinant SV40-derived gene transfer vector was inoculated into the rat CP, leading to chronic expression of Tat, oxidative stress, and ongoing apoptosis, mainly located in neurons. Intra-CP SV(Tat) injection induced an increase in microglia and astrocytes, suggesting that protracted Tat production increased neuroinflammation. SV(SOD1) or SV(GPx1) significantly reduced neuroinflammation following Tat administration into the CP. Thus, Tat-induced oxidative stress, CNS injury, neuron loss and inflammation may be mitigated by antioxidant gene delivery.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Lokesh Agrawal
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Beverly A S Reyes
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Elisabeth J Van Bockstaele
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - David S Strayer
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
77
|
Reshi ML, Su YC, Hong JR. RNA Viruses: ROS-Mediated Cell Death. Int J Cell Biol 2014; 2014:467452. [PMID: 24899897 PMCID: PMC4034720 DOI: 10.1155/2014/467452] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for being both beneficial and deleterious. The main thrust of this review is to investigate the role of ROS in ribonucleic acid (RNA) virus pathogenesis. Much evidences has accumulated over the past decade, suggesting that patients infected with RNA viruses are under chronic oxidative stress. Changes to the body's antioxidant defense system, in relation to SOD, ascorbic acid, selenium, carotenoids, and glutathione, have been reported in various tissues of RNA-virus infected patients. This review focuses on RNA viruses and retroviruses, giving particular attention to the human influenza virus, Hepatitis c virus (HCV), human immunodeficiency virus (HIV), and the aquatic Betanodavirus. Oxidative stress via RNA virus infections can contribute to several aspects of viral disease pathogenesis including apoptosis, loss of immune function, viral replication, inflammatory response, and loss of body weight. We focus on how ROS production is correlated with host cell death. Moreover, ROS may play an important role as a signal molecule in the regulation of viral replication and organelle function, potentially providing new insights in the prevention and treatment of RNA viruses and retrovirus infections.
Collapse
Affiliation(s)
- Mohammad Latif Reshi
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Che Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
78
|
Functional Expression of Drug Transporters in Glial Cells. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:45-111. [DOI: 10.1016/bs.apha.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|