51
|
Wang X, Guo G, Zhang J, Aebez N, Liu Z, Liu CF, Ross CA, Smith WW. Mutant-TMEM230-induced neurodegeneration and impaired axonal mitochondrial transport. Hum Mol Genet 2021; 30:1535-1542. [PMID: 34002226 DOI: 10.1093/hmg/ddab128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with movement disorders including resting tremor, rigidity, bradykinesia and postural instability. Recent studies have identified a new PD associated gene, TMEM230 (transmembrane protein 230). However, the pathological roles of TMEM230 and its variants are not fully understood. TMEM230 gene encodes two protein isoforms. Isoform2 is the major protein form (~95%) in human. In this study, we overexpress isoform2 TMEM230 variants (WT or PD-linked *184Wext*5 mutant) or knockdown endogenous protein in cultured SH-5Y5Y cells and mouse primary hippocampus neurons to study their pathological roles. We found that overexpression of WT and mutant TMEM230 or knockdown of endogenous TMEM230-induced neurodegeneration and impaired mitochondria transport at the retrograde direction in axons. Mutant TMEM230 caused more severe neurotoxicity and mitochondrial transport impairment than WT-TMEM230 did. Our results demonstrate that maintaining TMEM230 protein levels is critical for neuron survival and axon transport. These findings suggest that mutant-TMEM230-induced mitochondrial transport impairment could be the early event leading to neurite injury and neurodegeneration in PD development.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Institute of Neuroscience, Soochow University School of Medicine, Suzhou, Jiangsu 215123, China
| | - Gongbo Guo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jinru Zhang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Nicolas Aebez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chun-Feng Liu
- Institute of Neuroscience, Soochow University School of Medicine, Suzhou, Jiangsu 215123, China.,Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
52
|
Blazejewski SM, Bennison SA, Liu X, Toyo-Oka K. High-throughput kinase inhibitor screening reveals roles for Aurora and Nuak kinases in neurite initiation and dendritic branching. Sci Rep 2021; 11:8156. [PMID: 33854138 PMCID: PMC8047044 DOI: 10.1038/s41598-021-87521-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Kinases are essential regulators of a variety of cellular signaling processes, including neurite formation—a foundational step in neurodevelopment. Aberrant axonal sprouting and failed regeneration of injured axons are associated with conditions like traumatic injury, neurodegenerative disease, and seizures. Investigating the mechanisms underlying neurite formation will allow for identification of potential therapeutics. We used a kinase inhibitor library to screen 493 kinase inhibitors and observed that 45% impacted neuritogenesis in Neuro2a (N-2a) cells. Based on the screening, we further investigated the roles of Aurora kinases A, B, and C and Nuak kinases 1 and 2. The roles of Aurora and Nuak kinases have not been thoroughly studied in the nervous system. Inhibition or overexpression of Aurora and Nuak kinases in primary cortical neurons resulted in various neuromorphological defects, with Aurora A regulating neurite initiation, Aurora B and C regulating neurite initiation and elongation, all Aurora kinases regulating arborization, and all Nuak kinases regulating neurite initiation and elongation and arborization. Our high-throughput screening and analysis of Aurora and Nuak kinases revealed their functions and may contribute to the identification of therapeutics.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
53
|
Kim K, Wi S, Seo JH, Pyo S, Cho SR. Reduced Interaction of Aggregated α-Synuclein and VAMP2 by Environmental Enrichment Alleviates Hyperactivity and Anxiety in a Model of Parkinson's Disease. Genes (Basel) 2021; 12:genes12030392. [PMID: 33801790 PMCID: PMC7998569 DOI: 10.3390/genes12030392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a prevalent motor disease caused by the accumulation of mutated α-synuclein (α-Syn); however, its early stages are also characterized by non-motor symptoms, such as olfactory loss, cognitive decline, depression, and anxiety. The therapeutic effects of environmental enrichment (EE) on motor recovery have been reported, but its effects on non-motor symptoms remain unclear. Herein, we reveal the beneficial effects of EE on PD-related non-motor symptoms and changes in synaptic plasticity in the nucleus accumbens. To investigate its therapeutic effects in the early phase of PD, we randomly assigned eight-month-old mice overexpressing human A53T (hA53T) α-Syn to either the EE or standard condition groups for two months. Next, we performed behavioral tests and biochemical and histological analyses at 10 months of age. EE significantly alleviated locomotor hyperactivity and anxiety during the early stages of PD. It normalized the levels of tyrosine hydroxylase, phosphorylated and oligomeric α-Syn, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex-forming proteins, including synaptosomal-associated protein, 25 kDa, syntaxin1, and vesicle-associated membrane protein 2 (VAMP2). Moreover, the interactions between VAMP2 and pSer129 α-Syn were markedly reduced following EE. The restoration of synaptic vesicle transportation status may underlie the neuroprotective effects of EE in hA53T α-Syn mice.
Collapse
Affiliation(s)
- Kyungri Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohyun Wi
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 03722, Korea
- Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-3715
| |
Collapse
|
54
|
Tran HT, Tsai EHR, Lewis AJ, Moors T, Bol JGJM, Rostami I, Diaz A, Jonker AJ, Guizar-Sicairos M, Raabe J, Stahlberg H, van de Berg WDJ, Holler M, Shahmoradian SH. Alterations in Sub-Axonal Architecture Between Normal Aging and Parkinson's Diseased Human Brains Using Label-Free Cryogenic X-ray Nanotomography. Front Neurosci 2020; 14:570019. [PMID: 33324142 PMCID: PMC7724048 DOI: 10.3389/fnins.2020.570019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 01/25/2023] Open
Abstract
Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson's diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.
Collapse
Affiliation(s)
| | | | - Amanda J. Lewis
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Tim Moors
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. G. J. M. Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Allert J. Jonker
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Joerg Raabe
- Paul Scherrer Institut, Villigen, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | |
Collapse
|
55
|
Regensburger M, Stemick J, Masliah E, Kohl Z, Winner B. Intracellular A53T Mutant α-Synuclein Impairs Adult Hippocampal Newborn Neuron Integration. Front Cell Dev Biol 2020; 8:561963. [PMID: 33262984 PMCID: PMC7686440 DOI: 10.3389/fcell.2020.561963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Dendritic dysfunction is an early event in α-synuclein (α-syn) mediated neurodegeneration. Altered postsynaptic potential and loss of dendritic spines have been observed in different in vitro and in vivo models of synucleinopathies. The integration of newborn neurons into the hippocampus offers the possibility to study dendrite and spine formation in an adult environment. Specifically, survival of hippocampal adult newborn neurons is regulated by synaptic input and was reduced in a mouse model transgenic for human A53T mutant α-syn. We thus hypothesized that dendritic integration of newborn neurons is impaired in the adult hippocampus of A53T mice. We analyzed dendritic morphology of adult hippocampal neurons 1 month after retroviral labeling. Dendrite length was unchanged in the dentate gyrus of A53T transgenic mice. However, spine density and mushroom spine density of newborn neurons were severely decreased. In this mouse model, transgenic α-syn was expressed both within newborn neurons and within their environment. To specifically determine the cell autonomous effects, we analyzed cell-intrinsic overexpression of A53T α-syn using a retrovirus. Since A53T α-syn overexpressing newborn neurons exhibited decreased spine density 1 month after labeling, we conclude that cell-intrinsic A53T α-syn impairs postsynaptic integration of adult hippocampal newborn neurons. Our findings further support the role of postsynaptic degeneration as an early feature in synucleinopathies and provide a model system to study underlying mechanisms.
Collapse
Affiliation(s)
- Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Erlangen, Germany
| | - Judith Stemick
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.,Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, United States
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
56
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
57
|
Guo T, Wu J, Zhou C, Guan X, Gao T, Bai X, Song Z, Xuan M, Gu Q, Huang P, Zhang B, Pu J, Xu X, Xu D, Zhang M. Aberrant Fiber Coherence of Amygdala-Accumbens-Pallidum Pathway Is Associated With Disorganized Nigrostriatal-Nigropallidal Pathway in Parkinson's Disease. J Magn Reson Imaging 2020; 52:1799-1808. [PMID: 32662234 DOI: 10.1002/jmri.27273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Motor disturbances in Parkinson's disease (PD) mainly result from the degeneration of classic motor pathways. Given that the specific limbic pathway participates in movements, it is reasonable to consider that limbic pathway have the pathologic potential of motor disturbance in PD. PURPOSE To explore the white matter changes of limbic and motor pathways and their relations in PD patients. STUDY TYPE Prospective. POPULATION 39 PD patients and 55 normal controls. SEQUENCE Sagittal 3D T1 -weighted fast spoiled gradient recalled sequence, diffusion-weighted spin echo-echo planar imaging sequence on a 3T scanner. ASSESSMENT Probabilistic tractography was used to reconstruct the motor pathways (nigrostriatal-nigropallidal and basal ganglia-motor cortex pathways) and limbic pathway (amygdala-accumbens-pallidum pathway). White matter alterations of these pathways were evaluated by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), neurite density (NDI), and orientation dispersion (ODI). Clinical assessment was conducted by a neurologist. STATISTICAL TESTS Group comparisons were performed using unpaired t-tests. Pearson or Spearman correlation was used to explore the relationships between variables. RESULTS Compared with normal controls, PD patients showed decreased ODI as well as increased MD and AD in the bilateral nigrostriatal-nigropallidal pathway (P < 0.05), decreased FA in left basal ganglia-motor cortex pathway (P < 0.05), and decreased ODI in left limbic pathway (P < 0.05). MD and AD in the left nigrostriatal-nigropallidal pathway was negatively correlated with FA in left basal ganglia-motor cortex pathway (r = -0.597, P < 0.05 and r = -0.433, P < 0.05, respectively). MD in the left nigrostriatal-nigropallidal pathway was significantly correlated with ODI in the left limbic pathway (r = -0.404, P < 0.05). ODI was associated with AD within each hemisphere of the nigrostriatal-nigropallidal pathway (r = -0.591, P < 0.05 for left; r = -0.589, P < 0.05 for right). DATA CONCLUSION The relationship between the degenerated motor pathways and aberrant limbic pathway suggest the existence of neuronal modulation between motor and limbic pathways, providing novel evidence of the neuromechanism for motor disruption in PD patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1799-1808.
Collapse
Affiliation(s)
- Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
58
|
Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 Kinase Inhibition Rescues Deficits in Lysosome Function Due to Heterozygous GBA1 Expression in Human iPSC-Derived Neurons. Front Neurosci 2020; 14:442. [PMID: 32499675 PMCID: PMC7243441 DOI: 10.3389/fnins.2020.00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
A growing number of genes associated with Parkinson's disease are implicated in the regulation of lysosome function, including LRRK2, whose missense mutations are perhaps the most common monogenic cause of this neurodegenerative disease. These mutations are collectively thought to introduce a pathologic increase in LRRK2 kinase activity, which is currently a major target for therapeutic intervention. Heterozygous carriers of many missense mutations in the GBA1 gene have dramatically increased risk of Parkinson's disease. A critical question has recently emerged regarding the potential interplay between the proteins encoded by these two disease-linked genes. Our group has recently demonstrated that knockin mutation of a Parkinson's-linked GBA1 variant induces severe lysosomal and cytokine abnormalities in murine astrocytes and that these deficits were normalized via inhibition of wild-type LRRK2 kinase activity in these cells. Another group independently found that LRRK2 inhibition increases glucocerebrosidase activity in wild-type human iPSC-derived neurons, as well as those whose activity is disrupted by GBA1 or LRRK2 mutation. Fundamental questions remain in terms of the lysosomal abnormalities and the effects of LRRK2 kinase inhibition in human neurons deficient in glucocerebrosidase activity. Here, we further elucidate the physiological crosstalk between LRRK2 signaling and glucocerebrosidase activity in human iPSC-derived neurons. Our studies show that the allelic loss of GBA1 manifests broad defects in lysosomal morphology and function. Furthermore, our data show an increase in both the accumulation and secretion of oligomeric α-synuclein protein in these GBA1-heterozygous-null neurons, compared to isogenic controls. Consistent with recent findings in murine astrocytes, we observed that multiple indices of lysosomal dysfunction in GBA1-deficient human neurons were normalized by LRRK2 kinase inhibition, while some defects were preserved. Our findings demonstrate a selective but functional intersection between glucocerebrosidase dysfunction and LRRK2 signaling in the cell and may have implications in the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | - Matthew J. LaVoie
- Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
59
|
Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson's Disease. J Mol Biol 2020; 432:2651-2672. [PMID: 32061929 PMCID: PMC7211126 DOI: 10.1016/j.jmb.2020.01.037] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Impaired protein homeostasis and accumulation of damaged or abnormally modified protein are common disease mechanisms in many neurodegenerative disorders, including Parkinson's disease (PD). As one of the major degradation pathways, autophagy plays a pivotal role in maintaining effective turnover of proteins and damaged organelles in cells. Several decades of research efforts led to insights into the potential contribution of impaired autophagy machinery to α-synuclein accumulation and the degeneration of dopaminergic neurons, two major features of PD pathology. In this review, we summarize recent pathological, genetic, and mechanistic findings that link defective autophagy with PD pathogenesis in human patients, animals, and cellular models and discuss current challenges in the field.
Collapse
Affiliation(s)
- Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
60
|
Schechter M, Grigoletto J, Abd-Elhadi S, Glickstein H, Friedman A, Serrano GE, Beach TG, Sharon R. A role for α-Synuclein in axon growth and its implications in corticostriatal glutamatergic plasticity in Parkinson's disease. Mol Neurodegener 2020; 15:24. [PMID: 32228705 PMCID: PMC7104492 DOI: 10.1186/s13024-020-00370-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). α-Syn has been shown to associate with membranes and bind acidic phospholipids. However, the physiological importance of these associations to the integrity of axons is not fully clear. METHODS Biochemical, immunohistochemical and ultrastructural analyses in cultured neurons, transgenic mouse brains, PD and control human brains. RESULTS We analyzed the ultrastructure of cross-sectioned axons localized to white matter tracts (WMTs), within the dorsal striatum of old and symptomatic α-Syn transgenic mouse brains. The analysis indicated a higher density of axons of thinner diameter. Our findings in cultured cortical neurons indicate a role for α-Syn in elongation of the main axon and its collaterals, resulting in enhanced axonal arborization. We show that α-Syn effect to enhance axonal outgrowth is mediated through its activity to regulate membrane levels of the acidic phosphatidylinositol 4,5-bisphosphate (PI4,5P2). Moreover, our findings link α-Syn- enhanced axonal growth with evidence for axonal injury. In relevance to disease mechanisms, we detect in human brains evidence for a higher degree of corticostriatal glutamatergic plasticity within WMTs at early stages of PD. However, at later PD stages, the respective WMTs in the caudate are degenerated with accumulation of Lewy pathology. CONCLUSIONS Our results show that through regulating PI4,5P2 levels, α-Syn acts to elongate the main axon and collaterals, resulting in a higher density of axons in the striatal WMTs. Based on these results we suggest a role for α-Syn in compensating mechanisms, involving corticostriatal glutamatergic plasticity, taking place early in PD.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Jessica Grigoletto
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Suaad Abd-Elhadi
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Hava Glickstein
- Electron Microscopy Unit, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| | - Alexander Friedman
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | | | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, 9112001 Jerusalem, Israel
| |
Collapse
|
61
|
Furlong RM, O'Keeffe GW, O'Neill C, Sullivan AM. Alterations in α-synuclein and PINK1 expression reduce neurite length and induce mitochondrial fission and Golgi fragmentation in midbrain neurons. Neurosci Lett 2020; 720:134777. [PMID: 31978495 DOI: 10.1016/j.neulet.2020.134777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 01/19/2023]
Abstract
Accumulation of α-synuclein is a pathological hallmark of Parkinson's disease (PD) and has been linked to reductions in neurite length and axonal degeneration of midbrain dopaminergic neurons. Mutations in SNCA, which encodes α-synuclein, and loss of function mutations in PTEN-induced putative kinase-1 (PINK1) cause familial PD. There is a need to identify the mechanisms by which α-synuclein overexpression and the loss of PINK1 induce neurodegeneration in PD. To do this, we employed rat ventral midbrain cultures to investigate the effects of overexpression of wildtype or mutant (A53T) α-synuclein, and of siRNA knockdown of PINK1, on neurite length and on mitochondrial and Golgi integrity. We found reduced neurite length and increased levels of both Golgi fragmentation and mitochondrial fission in response to overexpression of wildtype or mutant α-synuclein, and to PINK1 knockdown. Reductions in neurite length induced by these two PD risk genes were significantly correlated with increases in Golgi fragmentation and mitochondrial fission. Combined α-synuclein overexpression and PINK1 knockdown induced a greater reduction in neurite length and increase in Golgi fragmentation, than either alone. This study provides novel evidence that α-synuclein overexpression and PINK1 deletion converge to induce significant increases in Golgi fragmentation and mitochondrial fission in midbrain neurons, that are correlated with decreases in neurite length. This highlights the need for further studies on these converging mechanisms in dopaminergic neurodegeneration in PD.
Collapse
Affiliation(s)
- Rachel M Furlong
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City, T12 YT20, Ireland; Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City, T12 XF62, Ireland; Cork NeuroScience Centre, University College Cork, Cork City, T12 YT20, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City, T12 XF62, Ireland; Cork NeuroScience Centre, University College Cork, Cork City, T12 YT20, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City, T12 YT20, Ireland; Cork NeuroScience Centre, University College Cork, Cork City, T12 YT20, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City, T12 XF62, Ireland; Cork NeuroScience Centre, University College Cork, Cork City, T12 YT20, Ireland.
| |
Collapse
|
62
|
Anderson EN, Hirpa D, Zheng KH, Banerjee R, Gunawardena S. The Non-amyloidal Component Region of α-Synuclein Is Important for α-Synuclein Transport Within Axons. Front Cell Neurosci 2020; 13:540. [PMID: 32038170 PMCID: PMC6984405 DOI: 10.3389/fncel.2019.00540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Proper transport of the Parkinson's disease (PD) protein, α-synuclein (α-syn), is thought to be crucial for its localization and function at the synapse. Previous work has shown that defects in long distance transport within narrow caliber axons occur early in PD, but how such defects contribute to PD is unknown. Here we test the hypothesis that the NAC region is involved in facilitating proper transport of α-syn within axons via its association with membranes. Excess α-syn or fPD mutant α-synA53T accumulates within larval axons perturbing the transport of synaptic proteins. These α-syn expressing larvae also show synaptic morphological and larval locomotion defects, which correlate with the extent of α-syn-mediated axonal accumulations. Strikingly, deletion of the NAC region (α-synΔ71-82) prevented α-syn accumulations and axonal blockages, and reduced its synaptic localization due to decreased axonal entry and axonal transport of α-syn, due to less α-syn bound to membranes. Intriguingly, co-expression α-synΔ71-82 with full-length α-syn rescued α-syn accumulations and synaptic morphological defects, and decreased the ratio of the insoluble higher molecular weight (HMW)/soluble low molecular weight (LMW) α-syn, indicating that this region is perhaps important for the dimerization of α-syn on membranes. Together, our observations suggest that under physiological conditions, α-syn associates with membranes via the NAC region, and that too much α-syn perturbs axonal transport via aggregate formation, instigating synaptic and behavioral defects seen in PD.
Collapse
Affiliation(s)
| | | | | | | | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
63
|
Mazzocchi M, Wyatt SL, Mercatelli D, Morari M, Morales-Prieto N, Collins LM, Sullivan AM, O’Keeffe GW. Gene Co-expression Analysis Identifies Histone Deacetylase 5 and 9 Expression in Midbrain Dopamine Neurons and as Regulators of Neurite Growth via Bone Morphogenetic Protein Signaling. Front Cell Dev Biol 2019; 7:191. [PMID: 31572723 PMCID: PMC6753186 DOI: 10.3389/fcell.2019.00191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease is characterized by the intracellular accumulation of α-synuclein which has been linked to early dopaminergic axonal degeneration. Identifying druggable targets that can promote axonal growth in cells overexpressing α-synuclein is important in order to develop strategies for early intervention. Class-IIa histone deacetylases (HDACs) have previously emerged as druggable targets, however, it is not known which specific class-IIa HDACs should be targeted to promote neurite growth in dopaminergic neurons. To provide insight into this, we used gene co-expression analysis to identify which, if any, of the class-IIa HDACs had a positive correlation with markers of dopaminergic neurons in the human substantia nigra. This revealed that two histone deacetylases, HDAC5 and HDAC9, are co-expressed with TH, GIRK2 and ALDH1A1 in the human SN. We further found that HDAC5 and HDAC9 are expressed in dopaminergic neurons in the adult mouse substantia nigra. We show that siRNAs targeting HDAC5 or HDAC9 can promote neurite growth in SH-SY5Y cells, and that their pharmacological inhibition, using the drug MC1568, promoted neurite growth in cultured rat dopaminergic neurons. Moreover, MC1568 treatment upregulated the expression of the neurotrophic factor, BMP2, and its downstream transcription factor, SMAD1. In addition, MC1568 or siRNAs targeting HDAC5 or HDAC9 led to an increase in Smad-dependent GFP expression in a reporter assay. Furthermore, MC1568 treatment of cultured rat dopaminergic neurons increased cellular levels of phosphorylated Smad1, which was prevented by the BMP receptor inhibitor, dorsomorphin. Dorsomorphin treatment prevented the neurite growth-promoting effects of siRNAs targeting HDAC5, as did overexpression of dominant-negative Smad4 or of the inhibitory Smad7, demonstrating a functional link to BMP signaling. Supplementation with BMP2 prevented the neurite growth-inhibitory effects of nuclear-restricted HDAC5. Finally, we report that siRNAs targeting HDAC5 or HDAC9 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein and that MC1568 protected cultured rat dopaminergic neurons against the neurotoxin, MPP+. These findings establish HDAC5 and HDAC9 as novel regulators of BMP-Smad signaling, that additionally may be therapeutic targets worthy of further exploration in iPSC-derived human DA neurons and in vivo models of Parkinson's disease.
Collapse
Affiliation(s)
- Martina Mazzocchi
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L. Wyatt
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Daniela Mercatelli
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | | | - Louise M. Collins
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
64
|
Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J. Dysfunction of Cellular Proteostasis in Parkinson's Disease. Front Neurosci 2019; 13:457. [PMID: 31133790 PMCID: PMC6524622 DOI: 10.3389/fnins.2019.00457] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of research, current therapeutic interventions for Parkinson’s disease (PD) are insufficient as they fail to modify disease progression by ameliorating the underlying pathology. Cellular proteostasis (protein homeostasis) is an essential factor in maintaining a persistent environment for neuronal activity. Proteostasis is ensured by mechanisms including regulation of protein translation, chaperone-assisted protein folding and protein degradation pathways. It is generally accepted that deficits in proteostasis are linked to various neurodegenerative diseases including PD. While the proteasome fails to degrade large protein aggregates, particularly alpha-synuclein (α-SYN) in PD, drug-induced activation of autophagy can efficiently remove aggregates and prevent degeneration of dopaminergic (DA) neurons. Therefore, maintenance of these mechanisms is essential to preserve all cellular functions relying on a correctly folded proteome. The correlations between endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway are well-established. However, while mild insults increase the activity of chaperones, prolonged cell stress, or insufficient adaptive response causes cell death. Modulating the activity of molecular chaperones, such as protein disulfide isomerase which assists refolding and contributes to the removal of unfolded proteins, and their associated pathways may offer a new approach for disease-modifying treatment. Here, we summarize some of the key concepts and emerging ideas on the relation of protein aggregation and imbalanced proteostasis with an emphasis on PD as our area of main expertise. Furthermore, we discuss recent insights into the strategies for reducing the toxic effects of protein unfolding in PD by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli-Maria Sonninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
65
|
Goulding SR, Sullivan AM, O'Keeffe GW, Collins LM. Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Parkinsonism Relat Disord 2019; 64:194-201. [PMID: 31000327 DOI: 10.1016/j.parkreldis.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION α-synuclein-induced degeneration of dopaminergic neurons has been proposed to be central to the early progression of Parkinson's disease. This highlights the need to identify factors that are neuroprotective or neuroregenerative against α-synuclein-induced degeneration. Due to their potent neurotrophic effects on nigrostriatal dopaminergic neurons, we hypothesized that members of the bone morphogenetic protein (BMP) family have potential to protect these cells against α-synuclein. METHODS To identify the most relevant BMP ligands, we used unbiased gene co-expression analysis to identify all BMP family members having a significant positive correlation with five markers of dopaminergic neurons in the human substantia nigra (SN). We then tested the ability of lead BMPs to promote neurite growth in SH-SY5Y cells and in primary cultures of ventral mesencephalon (VM) dopaminergic neurons, treated with either 6-OHDA or MPP+, or overexpressing wild-type or A53T α-synuclein. RESULTS Only the expression of BMP2 was found to be significantly correlated with multiple dopaminergic markers in the SN. We found that BMP2 treatment promoted neurite growth in SH-SY5Y cells and in dopaminergic neurons. Moreover, BMP2 treatment promoted neurite growth in both SH-SY5Y cells and VM neurons, treated with the neurotoxins 6-OHDA or MPP+. Furthermore, BMP2 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein. CONCLUSION These findings are important given that clinical trials of two neurotrophic factors, GDNF and neurturin, have failed to meet their primary endpoints. Our findings are a key first step in rationalising the further study of BMP2 as a potential neurotrophic factor in α-synuclein-based translational models of Parkinson's disease.
Collapse
Affiliation(s)
- Susan R Goulding
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland; Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| | - Louise M Collins
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland; Department of Physiology, University College Cork, Cork, Ireland.
| |
Collapse
|
66
|
Ding D, Enriquez-Algeciras M, Valdivia AO, Torres J, Pole C, Thompson JW, Chou TH, Perez-Pinzon M, Porciatti V, Udin S, Nestler E, Bhattacharya SK. The Role of Deimination in Regenerative Reprogramming of Neurons. Mol Neurobiol 2019; 56:2618-2639. [PMID: 30051351 PMCID: PMC6348056 DOI: 10.1007/s12035-018-1262-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Neurons from the adult central nervous system (CNS) demonstrate limited mRNA transport and localized protein synthesis versus developing neurons, correlating with lower regenerative capacity. We found that deimination (posttranslational conversion of protein-bound arginine into citrulline) undergoes upregulation during early neuronal development while declining to a low basal level in adults. This modification is associated with neuronal arborization from amphibians to mammals. The mRNA-binding proteins (ANP32a, REF), deiminated in neurons, have been implicated in local protein synthesis. Overexpression of the deiminating cytosolic enzyme peptidyl arginine deiminase 2 in nervous systems results in increased neuronal transport and neurite outgrowth. We further demonstrate that enriching deiminated proteins rescues transport deficiencies both in primary neurons and mouse optic nerve even in the presence of pharmacological transport blockers. We conclude that deimination promotes neuronal outgrowth via enhanced transport and local protein synthesis and represents a new avenue for neuronal regeneration in the adult CNS.
Collapse
Affiliation(s)
- Di Ding
- Bascom Palmer Eye Institute, University of Miami, 1638 N.W. 10th Avenue, #706, Miami, FL, 33136, USA
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
| | - Mabel Enriquez-Algeciras
- Bascom Palmer Eye Institute, University of Miami, 1638 N.W. 10th Avenue, #706, Miami, FL, 33136, USA
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
| | - Anddre Osmar Valdivia
- Bascom Palmer Eye Institute, University of Miami, 1638 N.W. 10th Avenue, #706, Miami, FL, 33136, USA
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
| | - Juan Torres
- Bascom Palmer Eye Institute, University of Miami, 1638 N.W. 10th Avenue, #706, Miami, FL, 33136, USA
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
| | - Cameron Pole
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
| | - John W Thompson
- Neurological Surgery, University of Miami, Miami, FL, 33136, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, 1638 N.W. 10th Avenue, #706, Miami, FL, 33136, USA
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
| | - Miguel Perez-Pinzon
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
- Department of Neurology, University of Miami, Miami, FL, 33136, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, 1638 N.W. 10th Avenue, #706, Miami, FL, 33136, USA
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA
| | - Susan Udin
- Department of Physiology and Biophysics, State University of New York, Buffalo, 553 Biomedical Res. Building, Buffalo, NY, 14214, USA
| | - Eric Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, 1638 N.W. 10th Avenue, #706, Miami, FL, 33136, USA.
- Department of Ophthalmology/Neuroscience Program, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
67
|
Aging mildly affects dendritic arborisation and synaptic protein expression in human substantia nigra pars compacta. J Chem Neuroanat 2019; 97:57-65. [DOI: 10.1016/j.jchemneu.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
|
68
|
Taoufik E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol 2019; 8:rsob.180138. [PMID: 30185603 PMCID: PMC6170506 DOI: 10.1098/rsob.180138] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Synaptic dysfunction in CNS disorders is the outcome of perturbations in physiological synapse structure and function, and can be either the cause or the consequence in specific pathologies. Accumulating data in the field of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia and bipolar disorder, point to a neurodevelopmental origin of these pathologies. Due to a relatively early onset of behavioural and cognitive symptoms, it is generally acknowledged that mental illness initiates at the synapse level. On the other hand, synaptic dysfunction has been considered as an endpoint incident in neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's, mainly due to the considerably later onset of clinical symptoms and progressive appearance of cognitive deficits. This dichotomy has recently been challenged, particularly since the discovery of cell reprogramming technologies and the generation of induced pluripotent stem cells from patient somatic cells. The creation of 'disease-in-a-dish' models for multiple CNS pathologies has revealed unexpected commonalities in the molecular and cellular mechanisms operating in both developmental and degenerative conditions, most of which meet at the synapse level. In this review we discuss synaptic dysfunction in prototype neurodevelopmental and neurodegenerative diseases, emphasizing overlapping features of synaptopathy that have been suggested by studies using induced pluripotent stem-cell-based systems. These valuable disease models have highlighted a potential neurodevelopmental component in classical neurodegenerative diseases that is worth pursuing and investigating further. Moving from demonstration of correlation to understanding mechanistic causality forms the basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Ourania Zygogianni
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
69
|
Tapias V, McCoy JL, Greenamyre JT. Phenothiazine normalizes the NADH/NAD + ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson's disease. Redox Biol 2019; 24:101164. [PMID: 30925294 PMCID: PMC6440170 DOI: 10.1016/j.redox.2019.101164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Impaired mitochondrial function has been associated with the etiopathogenesis of Parkinson's disease (PD). Sustained inhibition of complex I produces mitochondrial dysfunction, which is related to oxidative injury and nigrostriatal dopamine (DA) neurodegeneration. This study aimed to identify disease-modifying treatments for PD. Unsubstituted phenothiazine (PTZ) is a small and uncharged aromatic imine that readily crosses the blood-brain barrier. PTZ lacks significant DA receptor-binding activity and, in the nanomolar range, exhibits protective effects via its potent free radical scavenging and anti-inflammatory activities. Given that DAergic neurons are highly vulnerable to oxidative damage and inflammation, we hypothesized that administration of PTZ might confer neuroprotection in different experimental models of PD. Our findings showed that PTZ rescues rotenone (ROT) toxicity in primary ventral midbrain neuronal cultures by preserving neuronal integrity and reducing protein thiol oxidation. Long-term treatment with PTZ improved animal weight, survival rate, and behavioral deficits in ROT-lesioned rats. PTZ protected DA content and fiber density in the striatum and DA neurons in the SN against the deleterious effects of ROT. Mitochondrial dysfunction, axonal impairment, oxidative insult, and inflammatory response were attenuated with PTZ therapy. Furthermore, we have provided a new insight into the molecular mechanism underlying the neuroprotective effects of PTZ.
Collapse
Affiliation(s)
- Victor Tapias
- Department of Neurology, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jennifer L McCoy
- Department of Neurology, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - J Timothy Greenamyre
- Department of Neurology, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
70
|
β-Asarone Regulates ER Stress and Autophagy Via Inhibition of the PERK/CHOP/Bcl-2/Beclin-1 Pathway in 6-OHDA-Induced Parkinsonian Rats. Neurochem Res 2019; 44:1159-1166. [DOI: 10.1007/s11064-019-02757-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
|
71
|
A30P mutant α-synuclein impairs autophagic flux by inactivating JNK signaling to enhance ZKSCAN3 activity in midbrain dopaminergic neurons. Cell Death Dis 2019; 10:133. [PMID: 30755581 PMCID: PMC6372582 DOI: 10.1038/s41419-019-1364-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
Abstract
Mutations in α-synuclein gene have been linked to familial early-onset Parkinson's disease (PD) with Lewy body pathology. A30P mutant α-synuclein is believed to suppress autophagic progression associated with PD pathogenesis. However, the mechanistic link between A30P mutation and autophagy inhibition in PD remains poorly understood. In this study, we identified that A30P mutant α-synuclein resulted in reduced autophagy flux through promoting the decrease of autophagosomal membrane-associated protein LC3 and the increase of SQSTM1/p62 protein levels in midbrain dopaminergic neuron, due to the transcriptional repressor ZKSCAN3 trafficking from the cytoplasm to the nucleus. Moreover, the results demonstrated that A30P mutant α-synuclein not only decreased the phospho-c-Jun N-terminal Kinase (p-JNK) levels in midbrain dopaminergic neuron but also interfered autophagy without influencing the activities of AMPK and mTOR. Collectively, the present study reveals a novel autophagy inhibition mechanism induced by A30P mutant α-synuclein via transcriptional activation of the ZKSCAN3 in a JNK-dependent manner.
Collapse
|
72
|
Berrío Sánchez J, Cucarian Hurtado J, Barcos Nunes R, de Oliveira AA. Mesenchymal stem cell transplantation and aerobic exercise for Parkinson's disease: therapeutic assets beyond the motor domain. Rev Neurosci 2019; 30:165-178. [PMID: 29959887 DOI: 10.1515/revneuro-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a very common neurodegenerative condition in which both motor and nonmotor deficits evolve throughout the course of the disease. Normally characterized as a movement disorder, PD has been broadly studied from a motor perspective. However, mild to moderate cognitive deficits began to appear in the early phases of the disease, even before motor disturbances actually manifest, and continue to progress relentlessly. These nonmotor manifestations are also a source of detriment to the patients' already strained functionality and quality of life, and pose a therapeutic challenge seeing that replacing therapies have had conflicting results. Considering that the currently approved therapies can hardly be considered curative, efforts to find therapeutic approaches with an actual disease-modifying quality and capable of addressing not only motor but also cognitive dysfunctions are clearly needed. Among possible alternatives with such attribute, mesenchymal stem cell transplantation and exercise are worth highlighting given their common neuroprotective, neuroplastic, and immunomodulatory properties. In this paper, we will summarize the existent literature on the topic, focusing on the mechanisms of action through which these two approaches might beget therapeutic benefits for PD beyond the commonly assessed motor dysfunctions, alluding, at the same time, toward a potential synergic association of both therapies as an optimized approach for PD.
Collapse
Affiliation(s)
- Jenny Berrío Sánchez
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Jaison Cucarian Hurtado
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Ramiro Barcos Nunes
- Research Department, Instituto Federal de Educação, Ciência e Tecnologia. SUL-RIO-GRANDENSE, Rua Men de Sá, 800, Bom Sucesso, Gravataí, CEP 94.135-300, Brazil
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|
73
|
Chirumbolo S, Vella A, Bjørklund G. Quercetin Might Promote Autophagy in a Middle Cerebral Artery Occlusion-Mediated Ischemia Model: Comments on Fawad-Ali Shah et al. Neurochem Res 2018; 44:297-300. [PMID: 30515707 DOI: 10.1007/s11064-018-2692-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/04/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 9, 37134, Verona, Italy.
| | - Antonio Vella
- Department of Medicine-University of Verona, Unit of Immunology-AOUI, University Hospital, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
74
|
Lynch WB, Tschumi CW, Sharpe AL, Branch SY, Chen C, Ge G, Li S, Beckstead MJ. Progressively disrupted somatodendritic morphology in dopamine neurons in a mouse Parkinson's model. Mov Disord 2018; 33:1928-1937. [PMID: 30440089 DOI: 10.1002/mds.27541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/16/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease is characterized by the progressive loss of dopamine neurons in the substantia nigra, leading to severe motor deficits. Although the disease likely begins to develop years before observable motor symptoms, the specific morphological and functional alterations involved are poorly understood. OBJECTIVES MitoPark mice lack the gene coding for mitochondrial transcription factor A specifically in dopamine neurons, which over time produces a progressive decline of neuronal function and related behavior that phenotypically mirrors human parkinsonism. Our previous work identified a progressive decrease in cell capacitance in dopamine neurons from MitoPark mice, possibly suggesting reduced membrane surface area. We therefore sought to identify and quantify somatodendritic parameters in this model across age. METHODS We used whole-cell patch clamp and fluorescent labeling to quantify somatodendritic morphology of single, neurobiotin-filled dopamine neurons in acutely isolated brain slices from MitoPark mice. RESULTS We found that MitoPark mice exhibit an adult-onset, age-dependent reduction of neuritic branching and soma size in dopamine neurons. This decline proceeds similarly in MitoPark mice of both sexes, but does not begin until after the age that early decrements in ion channel physiology and behavior have previously been observed. CONCLUSIONS A progressive and severe decline in somatodendritic morphology occurs prior to cell death, but is not responsible for the subtle decrements observable in the earliest stages of neurodegeneration. This work could help identify the ideal time window for specific treatments to halt disease progression and avert debilitating motor deficits in Parkinson's patients. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- William B Lynch
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christopher W Tschumi
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas, USA
| | - Amanda L Sharpe
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma City, Oklahoma, USA
| | - Sarah Y Branch
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas, USA
| | - Cang Chen
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Guo Ge
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Senlin Li
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas, USA
| |
Collapse
|
75
|
Betzer C, Jensen PH. Reduced Cytosolic Calcium as an Early Decisive Cellular State in Parkinson's Disease and Synucleinopathies. Front Neurosci 2018; 12:819. [PMID: 30459551 PMCID: PMC6232531 DOI: 10.3389/fnins.2018.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
The more than 30-year-old Calcium hypothesis postulates that dysregulation in calcium dependent processes in the aging brain contributes to its increased vulnerability and this concept has been extended to Alzheimer’s disease and Parkinson’s disease. Central to the hypothesis is that increased levels of intracellular calcium develop and contributes to neuronal demise. We have studied the impact on cells encountering a gradual build-up of aggregated α-synuclein, which is a central process to Parkinson’s disease and other synucleinopathies. Surprisingly, we observed a yet unrecognized phase characterized by a reduced cytosolic calcium in cellular and neuronal models of Parkinson’s disease, caused by α-synuclein aggregates activating the endoplasmic calcium ATPase, SERCA. Counteracting the initial phase with low calcium rescues the subsequent degenerative phase with increased calcium and cell death – and demonstrates this early phase initiates decisive degenerative signals. In this review, we discuss our findings in relation to literature on calcium dysregulation in Parkinson’s disease and dementia.
Collapse
Affiliation(s)
- Cristine Betzer
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Poul Henning Jensen
- DANDRITE - Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
76
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2018; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
77
|
Lipid-dependent deposition of alpha-synuclein and Tau on neuronal Secretogranin II-positive vesicular membranes with age. Sci Rep 2018; 8:15207. [PMID: 30315256 PMCID: PMC6185981 DOI: 10.1038/s41598-018-33474-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/30/2018] [Indexed: 01/03/2023] Open
Abstract
This report demonstrates insoluble alpha-synuclein (aSYN)+ aggregates in human sporadic Parkinson’s disease (PD) midbrain that are linearly correlated with loss of glucocerebrosidase (GCase) activity. To identify early protein-lipid interactions that coincide with loss of lipid homeostasis, an aging study was carried out in mice with age-dependent reductions in GCase function. The analysis identified aberrant lipid-association by aSYN and hyperphosphorylated Tau (pTau) in a specific subset of neurotransmitter-containing, Secretogranin II (SgII)+ large, dense-core vesicles (LDCVs) responsible for neurotransmission of dopamine and other monoamines. The lipid vesicle-accumulation was concurrent with loss of PSD-95 suggesting synaptic destabilization. aSYN overexpression in the absence of lipid deregulation did not recapitulate the abnormal association with SgII+ vesicles. These results show lipid-dependent changes occur with age in neuronal vesicular membrane compartments that accumulate lipid-stabilized aSYN and pTau.
Collapse
|
78
|
Mariano V, Domínguez-Iturza N, Neukomm LJ, Bagni C. Maintenance mechanisms of circuit-integrated axons. Curr Opin Neurobiol 2018; 53:162-173. [PMID: 30241058 DOI: 10.1016/j.conb.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022]
Abstract
Adult, circuit-integrated neurons must be maintained and supported for the life span of their host. The attenuation of either maintenance or plasticity leads to impaired circuit function and ultimately to neurodegenerative disorders. Over the last few years, significant discoveries of molecular mechanisms were made that mediate the formation and maintenance of axons. Here, we highlight intrinsic and extrinsic mechanisms that ensure the health and survival of axons. We also briefly discuss examples of mutations associated with impaired axonal maintenance identified in specific neurological conditions. A better understanding of these mechanisms will therefore help to define targets for therapeutic interventions.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Neurosciences KU Leuven, VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Nuria Domínguez-Iturza
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Neurosciences KU Leuven, VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy.
| |
Collapse
|
79
|
ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 2018; 189:1-21. [DOI: 10.1016/j.pharmthera.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
80
|
Chen Y, Hou Y, Yang J, Du R, Chen C, Chen F, Wang H, Ge R, Chen J. P75 Involved in the Ubiquitination of α-synuclein in Rotenone-based Parkinson’s Disease Models. Neuroscience 2018; 388:367-373. [DOI: 10.1016/j.neuroscience.2018.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022]
|
81
|
Kim H, Calatayud C, Guha S, Fernández-Carasa I, Berkowitz L, Carballo-Carbajal I, Ezquerra M, Fernández-Santiago R, Kapahi P, Raya Á, Miranda-Vizuete A, Lizcano JM, Vila M, Caldwell KA, Caldwell GA, Consiglio A, Dalfo E. The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Mol Neurobiol 2018; 55:7533-7552. [PMID: 29429047 PMCID: PMC6096980 DOI: 10.1007/s12035-018-0881-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Parkinson's disease is associated with intracellular α-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson's disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson's disease, we first used C elegans to demonstrate the role of the small GTPase RAC1 (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived from patients of familial LRRK2-Parkinson's disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson's disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson's disease associated mechanisms, mainly focused on dopaminergic function and survival against α-synuclein-induced toxicity.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
| | - Sanjib Guha
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
| | - Laura Berkowitz
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013, Sevilla, Spain
| | - Jose Miguel Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain.
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Spain.
| | - Esther Dalfo
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain.
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Can Baumann, 08500, Vic, Spain.
| |
Collapse
|
82
|
O'Keeffe GW, Sullivan AM. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson's disease. Parkinsonism Relat Disord 2018; 56:9-15. [PMID: 29934196 DOI: 10.1016/j.parkreldis.2018.06.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/21/2018] [Accepted: 06/17/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder presenting with a variety of motor and non-motor symptoms. The motor symptoms manifest as a result of the progressive degeneration of midbrain dopaminergic neurons. The axons of these neurons project to the striatum as the nigrostriatal pathway, which is a crucial part of the basal ganglia circuitry controlling movement. In addition to the neuronal degeneration, abnormal intraneuronal α-synuclein protein inclusions called Lewy bodies and Lewy neurites increase in number and spread throughout the nervous system as the disease progresses. While the loss of midbrain dopaminergic neurons is well-established as being central to motor symptoms, there is an increasing focus on the timing of nigrostriatal degeneration, with preclinical evidence suggesting that early axonal degeneration may play a key role in the early stages of Parkinson's disease. Here we review recent evidence for early midbrain dopaminergic axonal degeneration in patients with Parkinson's disease, and explore the potential role of α-synuclein accumulation in this process, with a focus on studies in human populations at the imaging, post-mortem, cellular and molecular levels. Finally, we discuss the implications of this for neurotrophic factor therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland; Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, Ireland; Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
83
|
Guan Y, Li Y, Zhao G, Li Y. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently. Life Sci 2018; 202:1-10. [DOI: 10.1016/j.lfs.2018.03.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
|
84
|
Kimball EC, Jefferys JL, Pease ME, Oglesby EN, Nguyen C, Schaub J, Pitha I, Quigley HA. The effects of age on mitochondria, axonal transport, and axonal degeneration after chronic IOP elevation using a murine ocular explant model. Exp Eye Res 2018; 172:78-85. [PMID: 29625080 PMCID: PMC5994189 DOI: 10.1016/j.exer.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to compare younger and older mice after chronic intraocular pressure (IOP) elevation lasting up to 4 days with respect to mitochondrial density, structure, and movement, as well as axonal integrity, in an ex vivo explant model. We studied 2 transgenic mouse strains, both on a C57BL/6J background, one expressing yellow fluorescent protein (YFP) in selected axons and one expressing cyan fluorescent protein (CFP) in all mitochondria. Mice of 4 months or 14 months of age were exposed to chronic IOP by anterior chamber microbead injection for 14 h, 1, 3, or 4 days. The optic nerve head of globe--optic nerve explants were examined by laser scanning microscopy. Mitochondrial density, structure, and movement were quantified in the CFP explants, and axonal integrity was quantified in YFP explants. In control mice, there was a trend towards decreased mitochondrial density (# per mm2) with age when comparing younger to older, control mice, but this was not significant (1947 ± 653 vs 1412 ± 356; p = 0.19). Mitochondrial density decreased after IOP elevation, significantly, by 31%, in younger mice (p = 0.04) but trending towards a decrease, by 22%, in older mice (p = 0.82) compared to age matched controls. Mitochondrial mean size was not altered after chronic IOP elevation for 14 h or more (p ≥ 0.16). When assessing mitochondrial movement, in younger mice, 5% were mobile at any given time; 4% in the anterograde direction and 1% retrograde. In younger untreated tissue, only 75% of explants had moving mitochondria (mean = 15.8 moving/explant), while after glaucoma induction only 24% of explants had moving mitochondria (mean = 4.2 moving/explant; difference from control, p = 0.03). The distance mitochondria traveled in younger mice was unchanged after glaucoma exposure, but in older glaucoma explants the distance traveled was less than half of older controls (p < 0.0003). In younger mice, mitochondrial speed increased after 14 h of elevated IOP (p = 0.006); however, in older glaucoma explants, movement was actually slower than controls (p = 0.02). In RGC-YFP explants, axonal integrity declined significantly after 4 days of IOP elevation to a similar degree in both younger and older mice. Older mice underwent greater loss of mitochondrial movement with chronic IOP elevation than younger mice, but suffered similar short-term axonal fragmentation in C57BL/6J mice. These transgenic strains, studied in explants, permit observations of alterations in intracellular structure and organelle activity in experimental glaucoma.
Collapse
Affiliation(s)
- Elizabeth C Kimball
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Joan L Jefferys
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mary E Pease
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ericka N Oglesby
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Cathy Nguyen
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Julie Schaub
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ian Pitha
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harry A Quigley
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
85
|
Zheng Y, Qu J, Xue F, Zheng Y, Yang B, Chang Y, Yang H, Zhang J. Novel DNA Aptamers for Parkinson's Disease Treatment Inhibit α-Synuclein Aggregation and Facilitate its Degradation. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:228-242. [PMID: 29858057 PMCID: PMC5992446 DOI: 10.1016/j.omtn.2018.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) is one of the most prevalent forms of synucleinopathies, and it is characterized neuropathologically by the presence of intracellular inclusions composed primarily of the protein α-synuclein (α-syn) in neurons. The previous immunotherapy targeting the α-syn in PD models with monoclonal antibodies has established α-syn protein as an effective target for neuronal cell death. However, due to the essential weaknesses of antibody and the unique features of aptamers, the aptamers could represent a promising alternative to the currently used antibodies in immunotherapy for PD. In this study, the purified human α-syn was used as the target for in vitro selection of aptamers using systematic evolution by exponential enrichment. This resulted in the identification of two 58-base DNA aptamers with a high binding affinity and good specificity to the α-syn, with KD values in the nanomolar range. Both aptamers could effectively reduce α-syn aggregation in vitro and in cells and target the α-syn to intracellular degradation through the lysosomal pathway. These effects consequently rescued the mitochondrial dysfunction and cellular defects caused by α-syn overexpression. To our knowledge, this is the first study to employ aptamers to block the aberrant cellular effects of the overexpressed α-syn in cells.
Collapse
Affiliation(s)
- Yuan Zheng
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | - Jing Qu
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | - Fenqin Xue
- Core Facilities Center, Capital Medical University, Beijing 100069, China
| | - Yan Zheng
- Department of Physiology, Capital Medical University, Beijing 100069, China
| | - Bo Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Hui Yang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China.
| |
Collapse
|
86
|
Neurite orientation dispersion and density imaging of the nigrostriatal pathway in Parkinson's disease: Retrograde degeneration observed by tract-profile analysis. Parkinsonism Relat Disord 2018. [PMID: 29525556 DOI: 10.1016/j.parkreldis.2018.02.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is marked by the degeneration of dopaminergic neurons in the nigrostriatal pathway (NSP). We aimed to identify the microstructural changes in the NSP of PD patients using neurite orientation dispersion and density imaging (NODDI). METHODS NSPs of 29 PD patients, who were retrospectively selected from patients previously admitted to our institution, and 29 age- and gender-matched healthy controls were isolated via deterministic tractography. The NODDI indices, intracellular volume fraction (Vic), orientation dispersion index (OD), and isotropic volume fraction (Viso) were compared between the two groups. The significant results were assessed with a tract-profile analysis. The correlation between indices and disease duration or motor symptom severity was evaluated with the Pearson's correlation test. RESULTS The contralateral distal Vic (p = 0.00028) of the nigrostriatal pathway was significantly lower in PD patients than in healthy controls. No correlations were detected between any of the indices and disease duration or motor symptom severity. CONCLUSIONS NODDI can be used to identify retrograde degeneration of the NSP in PD patients and might be useful for monitoring the disease progression of PD.
Collapse
|
87
|
Martinez JH, Alaimo A, Gorojod RM, Porte Alcon S, Fuentes F, Coluccio Leskow F, Kotler ML. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein. Mol Cell Neurosci 2018; 88:107-117. [PMID: 29414102 DOI: 10.1016/j.mcn.2018.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration.
Collapse
Affiliation(s)
- Jimena Hebe Martinez
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Argentina.
| | - Agustina Alaimo
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Federico Fuentes
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Federico Coluccio Leskow
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio Interdisciplinario de Dinámica Celular y Nanoherramientas, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|
88
|
Hegarty SV, Wyatt SL, Howard L, Stappers E, Huylebroeck D, Sullivan AM, O'Keeffe GW. Zeb2 is a negative regulator of midbrain dopaminergic axon growth and target innervation. Sci Rep 2017; 7:8568. [PMID: 28819210 PMCID: PMC5561083 DOI: 10.1038/s41598-017-08900-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
Neural connectivity requires neuronal differentiation, axon growth, and precise target innervation. Midbrain dopaminergic neurons project via the nigrostriatal pathway to the striatum to regulate voluntary movement. While the specification and differentiation of these neurons have been extensively studied, the molecular mechanisms that regulate midbrain dopaminergic axon growth and target innervation are less clear. Here we show that the transcription factor Zeb2 cell-autonomously represses Smad signalling to limit midbrain dopaminergic axon growth and target innervation. Zeb2 levels are downregulated in the embryonic rodent midbrain during the period of dopaminergic axon growth, when BMP pathway components are upregulated. Experimental knockdown of Zeb2 leads to an increase in BMP-Smad-dependent axon growth. Consequently there is dopaminergic hyperinnervation of the striatum, without an increase in the numbers of midbrain dopaminergic neurons, in conditional Zeb2 (Nestin-Cre based) knockout mice. Therefore, these findings reveal a new mechanism for the regulation of midbrain dopaminergic axon growth during central nervous system development.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Sean L Wyatt
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Laura Howard
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK
| | - Elke Stappers
- Department of Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, 3000, Leuven, Belgium.,Department of Cell Biology, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Development and Regeneration, Laboratory of Molecular Biology (Celgen), KU Leuven, 3000, Leuven, Belgium.,Department of Cell Biology, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland. .,APC Microbiome Institute, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork (UCC), Cork, Ireland. .,APC Microbiome Institute, UCC, Cork, Ireland. .,The INFANT Centre, CUMH and UCC, Cork, Ireland.
| |
Collapse
|
89
|
Song J, Kim BC, Nguyen DTT, Samidurai M, Choi SM. Levodopa (L-DOPA) attenuates endoplasmic reticulum stress response and cell death signaling through DRD2 in SH-SY5Y neuronal cells under α-synuclein-induced toxicity. Neuroscience 2017; 358:336-348. [PMID: 28687316 DOI: 10.1016/j.neuroscience.2017.06.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs) in dopaminergic neurons. α-Synuclein (α-syn), a major protein component of LBs, is known to regulate synaptic plasticity, with a crucial role in memory and motor function in the central nervous system. Levodopa (L-3,4-dihydroxyphenylalanine; also known as L-DOPA) is considered the most effective medication for controlling the symptoms of PD. However, it is unclear whether L-DOPA improves the neuropathology of PD. In the present study, we investigated the effect of L-DOPA on SH-SY5Y neuronal cells under α-syn-induced toxicity. We assessed the protein and mRNA levels of endoplasmic reticulum (ER) stress and cell death markers using western blot analysis and reverse transcription-PCR. Our data showed that L-DOPA could attenuate ER stress markers, including the levels of activating transcription factor 4 (ATF4), C/EBPhomologous protein expression (CHOP), immunoglobulin-heavy-chain-binding protein (BiP), sliced X-box-binding protein 1 (XBP-1), and reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling through dopamine receptor D2 (DRD2) in SH-SY5Y neuronal cells under α-syn-induced toxicity. In conclusion, we suggest that L-DOPA may attenuate the neuropathology of PD by regulating signaling related to DRD2 in neuronal cells under α-syn-induced toxicity. Our study, therefore, indicates an additional role for L-DOPA in the treatment of PD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, South Korea.
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - Dai-Trang T Nguyen
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, South Korea.
| | - Manikandan Samidurai
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, South Korea.
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, South Korea.
| |
Collapse
|
90
|
Altered brain metabolic connectivity at multiscale level in early Parkinson's disease. Sci Rep 2017; 7:4256. [PMID: 28652595 PMCID: PMC5484707 DOI: 10.1038/s41598-017-04102-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/11/2017] [Indexed: 01/29/2023] Open
Abstract
To explore the effects of PD pathology on brain connectivity, we characterized with an emergent computational approach the brain metabolic connectome using [18F]FDG-PET in early idiopathic PD patients. We applied whole-brain and pathology-based connectivity analyses, using sparse-inverse covariance estimation in thirty-four cognitively normal PD cases and thirty-four age-matched healthy subjects for comparisons. Further, we assessed high-order resting state networks by interregional correlation analysis. Whole-brain analysis revealed altered metabolic connectivity in PD, with local decreases in frontolateral cortex and cerebellum and increases in the basal ganglia. Widespread long-distance decreases were present within the frontolateral cortex as opposed to connectivity increases in posterior cortical regions, all suggestive of a global-scale connectivity reconfiguration. The pathology-based analyses revealed significant connectivity impairment in the nigrostriatal dopaminergic pathway and in the regions early affected by α-synuclein pathology. Notably, significant connectivity changes were present in several resting state networks especially in frontal regions. These findings expand previous imaging evidence of altered connectivity in cognitively stable PD patients by showing pathology-based connectivity changes and disease-specific metabolic architecture reconfiguration at multiple scale levels, from the earliest PD phases. These alterations go well beyond the known striato-cortical connectivity derangement supporting in vivo an extended neural vulnerability in the PD synucleinopathy.
Collapse
|
91
|
Jorge-Finnigan A, Kleppe R, Jung-Kc K, Ying M, Marie M, Rios-Mondragon I, Salvatore MF, Saraste J, Martinez A. Phosphorylation at serine 31 targets tyrosine hydroxylase to vesicles for transport along microtubules. J Biol Chem 2017. [PMID: 28637871 DOI: 10.1074/jbc.m116.762344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine into l-DOPA, which is the rate-limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergergic neurons. Low dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several Ser/Thr residues in the N-terminal tail. However, the functional role of TH phosphorylation at the Ser-31 site (THSer(P)-31) remains unclear. Here, we report that THSer(P)-31 co-distributes with the Golgi complex and synaptic-like vesicles in rat and human dopaminergic cells. We also found that the TH microsomal fraction content decreases after inhibition of cyclin-dependent kinase 5 (Cdk5) and ERK1/2. The cellular distribution of an overexpressed phospho-null mutant, TH1-S31A, was restricted to the soma of neuroblastoma cells, with decreased association with the microsomal fraction, whereas a phospho-mimic mutant, TH1-S31E, was distributed throughout the soma and neurites. TH1-S31E associated with vesicular monoamine transporter 2 (VMAT2) and α-synuclein in neuroblastoma cells, and endogenous THSer(P)-31 was detected in VMAT2- and α-synuclein-immunoprecipitated mouse brain samples. Microtubule disruption or co-transfection with α-synuclein A53T, a PD-associated mutation, caused TH1-S31E accumulation in the cell soma. Our results indicate that Ser-31 phosphorylation may regulate TH subcellular localization by enabling its transport along microtubules, notably toward the projection terminals. These findings disclose a new mechanism of TH regulation by phosphorylation and reveal its interaction with key players in PD, opening up new research avenues for better understanding dopamine synthesis in physiological and pathological states.
Collapse
Affiliation(s)
- Ana Jorge-Finnigan
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Rune Kleppe
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Kunwar Jung-Kc
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Ming Ying
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Michael Marie
- Department of Molecular Biology, University of Bergen, Thormøhlensgaten 55, 5020 Bergen Norway
| | - Ivan Rios-Mondragon
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Michael F Salvatore
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Jaakko Saraste
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Aurora Martinez
- From the Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; K. G. Jebsen Centre for Neuropsychiatric Disorders, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
92
|
Abstract
Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer’s disease (AD), dementia with Lewy bodies (DLB) and Parkinson’s disease. Using a transgenic mouse model of Parkinson’s disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.
Collapse
|
93
|
Zou J, Chen Z, Wei X, Chen Z, Fu Y, Yang X, Chen D, Wang R, Jenner P, Lu JH, Li M, Zhang Z, Tang B, Jin K, Wang Q. Cystatin C as a potential therapeutic mediator against Parkinson's disease via VEGF-induced angiogenesis and enhanced neuronal autophagy in neurovascular units. Cell Death Dis 2017; 8:e2854. [PMID: 28569795 PMCID: PMC5520899 DOI: 10.1038/cddis.2017.240] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
Cystatin C (CYS C, Cst3) is an endogenous cysteine protease inhibitor that plays neuroprotective roles in neurodegenerative diseases. We aimed to explore the association of CYS C with Parkinson’s disease (PD) models and investigate its involvement in the role of neurovascular units (NVUs) in PD neuro-pathogenesis. We used A53T α-synuclein (SNCA) transgenic mice and 6-hydroxydopamine-lesioned DAergic PC12 cells as experimental PD models to investigate the mechanisms behind this association. The injections of CYS C were administered to the right substantia nigra (SN) of A53T SNCA transgenic mice to measure the effects of CYS C in transgenic A53T SNCA mice. To explore the angiogenesis in vivo and in vitro, we used the chick embryo chorioallantoic membrane (CAM) assay and tube formation (TF) assay. We found that CYS C has a neuroprotective effect in this in vivo PD model. We observed increased VEGF, NURR1 and autophagy markers LC3B and decreased SNCA and apoptosis marker cleaved CASP3 in different brain regions of CYS C-treated A53T SNCA transgenic mice. In vitro, we observed that CYS C-induced VEGF, a secreted protein, attenuated 6-OHDA-lesioned DAergic PC12 cell degeneration by regulating p-PKC-α/p-ERK1/2-Nurr1 signaling and inducing autophagy. VEGF-mediated angiogenesis was markedly enhanced in the conditioned media of 6-OHDA-lesioned PC12 cells with CYS C-overexpression, whereas blockage of autophagy in CYS C-overexpressing PC12 cells significantly downregulated VEGF expression and the associated angiogenesis. Our data indicate that CYS C displays dual neuronal–vascular functions, promoting PC12 cell survival and angiogenesis via regulating the level of secreted VEGF in NVUs. Our study provides evidence that may aid in the development of an alternative approach for the treatment of PD through modulation of CYS C-mediated neuronal-vascular pathways.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhaoyu Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Xiaobo Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Zhigang Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Yongmei Fu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Xiaoyan Yang
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Dan Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Rui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Faculty of Health Sciences and Medicine, King's College, London SE1 1UL, UK
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhuohua Zhang
- Department of Neurology, Xiangya School of Medicine and The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Beisha Tang
- Department of Neurology, Xiangya School of Medicine and The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Qing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
94
|
Kamagata K, Zalesky A, Hatano T, Ueda R, Di Biase MA, Okuzumi A, Shimoji K, Hori M, Caeyenberghs K, Pantelis C, Hattori N, Aoki S. Gray Matter Abnormalities in Idiopathic Parkinson's Disease: Evaluation by Diffusional Kurtosis Imaging and Neurite Orientation Dispersion and Density Imaging. Hum Brain Mapp 2017; 38:3704-3722. [PMID: 28470878 DOI: 10.1002/hbm.23628] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/22/2017] [Accepted: 04/17/2017] [Indexed: 01/14/2023] Open
Abstract
Mapping gray matter (GM) pathology in Parkinson's disease (PD) with conventional MRI is challenging, and the need for more sensitive brain imaging techniques is essential to facilitate early diagnosis and assessment of disease severity. GM microstructure was assessed with GM-based spatial statistics applied to diffusion kurtosis imaging (DKI) and neurite orientation dispersion imaging (NODDI) in 30 participants with PD and 28 age- and gender-matched controls. These were compared with currently used assessment methods such as diffusion tensor imaging (DTI), voxel-based morphometry (VBM), and surface-based cortical thickness analysis. Linear discriminant analysis (LDA) was also used to test whether subject diagnosis could be predicted based on a linear combination of regional diffusion metrics. Significant differences in GM microstructure were observed in the striatum and the frontal, temporal, limbic, and paralimbic areas in PD patients using DKI and NODDI. Significant correlations between motor deficits and GM microstructure were also noted in these areas. Traditional VBM and surface-based cortical thickness analyses failed to detect any GM differences. LDA indicated that mean kurtosis (MK) and intra cellular volume fraction (ICVF) were the most accurate predictors of diagnostic status. In conclusion, DKI and NODDI can detect cerebral GM abnormalities in PD in a more sensitive manner when compared with conventional methods. Hence, these methods may be useful for the diagnosis of PD and assessment of motor deficits. Hum Brain Mapp 38:3704-3722, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Maria Angelique Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Karen Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC, Australia
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
95
|
Wang Y, Santerre M, Tempera I, Martin K, Mukerjee R, Sawaya BE. HIV-1 Vpr disrupts mitochondria axonal transport and accelerates neuronal aging. Neuropharmacology 2017; 117:364-375. [PMID: 28212984 PMCID: PMC5397298 DOI: 10.1016/j.neuropharm.2017.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/24/2022]
Abstract
Disruption of mitochondria axonal transport, essential for the maintenance of synaptic and neuronal integrity and function, has been identified in neurodegenerative diseases. Whether HIV-1 viral proteins affect mitochondria axonal transport is unknown, albeit HIV-associated neurocognitive disorders occur in around half of the patients living with HIV. Therefore, we sought to examine the effect of HIV-1 viral protein R (Vpr) on mitochondria axonal transport. Using mice primary neuronal cultures, we demonstrated that 4-day Vpr treatment reduced the ratio of moving mitochondria associated with (i) less energy (ATP) supply, (ii) reduction in Miro-1 and (iii) increase of α-synuclein which led to loss of microtubule stability as demonstrated by inconsecutive distribution of acetylated α-tubulin along the axons. Interestingly, the effect of Vpr on mitochondria axonal transport was partially restored in the presence of bongkrekic acid, a compound that negatively affected the Vpr-adenine nucleotide translocator (ANT) interaction and totally restored the ATP level in neurons. This indicated Vpr impaired mitochondria axonal transport partially related to its interaction with ANT. The above effect of Vpr was similar to the data obtained from hippocampal tissues isolated from 18-month-old aging mice compared to 5-month-old mice. In accord with previous clinical findings that HIV infection prematurely ages the brain and increases the susceptibility to HAND, we found that Vpr induced aging markers in neurons. Thus, we concluded that instead of causing cell death, low concentration of HIV-1 Vpr altered neuronal function related with inhibition of mitochondria axonal transport which might contribute to the accelerated neuronal aging.
Collapse
Affiliation(s)
- Ying Wang
- Molecular Studies of Neurodegenerative Diseases Lab, United States; Department of Neurology, The Fels Institute for Cancer Research & Molecular Biology, United States.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, United States; Department of Neurology, The Fels Institute for Cancer Research & Molecular Biology, United States
| | - Italo Tempera
- Department of Neurology, The Fels Institute for Cancer Research & Molecular Biology, United States
| | - Kayla Martin
- Department of Neurology, The Fels Institute for Cancer Research & Molecular Biology, United States
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab, United States; Department of Neurology, The Fels Institute for Cancer Research & Molecular Biology, United States
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, United States; Department of Neurology, The Fels Institute for Cancer Research & Molecular Biology, United States; Temple University School of Medicine, Philadelphia, PA 19140, United States.
| |
Collapse
|
96
|
Kimball EC, Pease ME, Steinhart MR, Oglesby EN, Pitha I, Nguyen C, Quigley HA. A mouse ocular explant model that enables the study of living optic nerve head events after acute and chronic intraocular pressure elevation: Focusing on retinal ganglion cell axons and mitochondria. Exp Eye Res 2017; 160:106-115. [PMID: 28414059 DOI: 10.1016/j.exer.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 04/09/2017] [Indexed: 11/16/2022]
Abstract
We developed an explant model of the mouse eye and optic nerve that facilitates the study of retinal ganglion cell axons and mitochondria in the living optic nerve head (ONH) in an ex vivo environment. Two transgenic mouse strains were used, one expressing yellow fluorescent protein in selected axons and a second strain expressing cyan fluorescent protein in all mitochondria. We viewed an explanted mouse eye and optic nerve by laser scanning microscopy at and behind the ONH, the site of glaucoma injury. Explants from previously untreated mice were studied with the intraocular pressure (IOP) set artificially at normal or elevated levels for several hours. Explants were also studied from eyes that had undergone chronic IOP elevation from 14 h to 6 weeks prior to ex vivo study. Image analysis in static images and video of individual mitochondria or axonal structure determined effects of acute and chronic IOP elevation. At normal IOP, fluorescent axonal structure was stable for up to 3 h under ex vivo conditions. After chronic IOP elevation, axonal integrity index values indicated fragmentation of axon structure in the ONH. In mice with fluorescent mitochondria, the normal density decreased with distance behind the ONH by 45% (p = 0.002, t-test). Density increased with prior chronic IOP elevation to 21,300 ± 4176 mitochondria/mm2 compared to control 16,110 ± 3159 mitochondria/mm2 (p = 0.025, t-test), but did not increase significantly after 4 h, acute IOP elevation (1.5% decrease in density, p = 0.83, t-test). Mean normal mitochondrial length of 2.3 ± 1.4 μm became 13% smaller after 4 h of IOP elevation ex vivo compared to baseline (p = 0.015, t-test, N-10). Normal mitochondrial speed of movement was significantly slower in the anterograde direction (towards the brain) than retrograde, but there were more mitochondria in motion and traveling longer lengths in anterograde direction. The percent of mitochondria in motion decreased by >50% with acute IOP increase to 30 mm Hg after 60 min. A new ocular explant model implemented with eyes from transgenic mice with fluorescent cellular components provided real time measurement of the early events in experimental glaucoma and quantitative outcomes for neuroprotection therapy experiments.
Collapse
Affiliation(s)
- Elizabeth C Kimball
- From the Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Mary E Pease
- From the Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew R Steinhart
- From the Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ericka N Oglesby
- From the Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ian Pitha
- From the Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Cathy Nguyen
- From the Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harry A Quigley
- From the Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
97
|
Thomas JM, Li T, Yang W, Xue F, Fishman PS, Smith WW. 68 and FX2149 Attenuate Mutant LRRK2-R1441C-Induced Neural Transport Impairment. Front Aging Neurosci 2017; 8:337. [PMID: 28119604 PMCID: PMC5222795 DOI: 10.3389/fnagi.2016.00337] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/26/2016] [Indexed: 11/27/2022] Open
Abstract
Leucine-rich repeat kinase 2 is a large protein with implications in genetic and sporadic causes of Parkinson's disease. The physiological functions of LRRK2 are largely unknown. In this report, we investigated whether LRRK2 alters neural transport using live-cell imaging techniques and human neuroblastoma SH-SY5Y cells. Our results demonstrated that expression of the PD-linked mutant, LRRK2-R1441C, induced mitochondrial, and lysosomal transport defects in neurites of SH-SY5Y cells. Most importantly, recently identified GTP-binding inhibitors, 68 and FX2149, can reduce LRRK2 GTP-binding activity and attenuates R1441C-induced mitochondrial and lysosomal transport impairments. These results provide direct evidence and an early mechanism for neurite injury underlying LRRK2-induced neurodegeneration. This is the first report to show that LRRK2 GTP-binding activity plays a critical role during neurite transport, suggesting inhibition of LRRK2 GTP-binding could be a potential novel strategy for PD intervention.
Collapse
Affiliation(s)
- Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Wei Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore, MD, USA
| | - Paul S Fishman
- Department of Neurology, University of Maryland School of MedicineBaltimore, MD, USA; Neurology Service, VA Maryland Healthcare SystemBaltimore, MD, USA
| | - Wanli W Smith
- Department of Psychiatry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
98
|
Elevated levels of alpha-synuclein blunt cellular signal transduction downstream of Gq protein-coupled receptors. Cell Signal 2016; 30:82-91. [PMID: 27871937 DOI: 10.1016/j.cellsig.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/21/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023]
Abstract
Alpha-synuclein is central to Parkinson's disease pathogenesis and pathology, however its precise functions are still unclear. It has been shown to bind both PLCβ1 and MAPKs, but how this property influences the downstream signaling of Gq protein-coupled receptors has not been elucidated. Here we show that recombinant expression of alpha-synuclein in human neuroblastoma cells enhances cellular levels of PLCβ1 but blunts its signaling pathway, preventing the agonist-dependent rise of cytoplasmic Ca2+. In addition, overexpressing alpha-synuclein abolishes the activation of ERK1/2 upon agonist stimulation, indicating an upstream action in the signal transduction pathway. This data demonstrates that alpha-synuclein, when recombinantly expressed, interferes with the normal signaling of Gq-protein coupled receptors, which are then dysfunctional. Since many neurotransmitter systems utilize these receptor signaling pathways to mediate different abilities affected in Parkinson's disease, we argue this novel perspective might be helpful in designing treatment strategies for some of the non-motor symptoms in Parkinson's disease and synucleinopathies.
Collapse
|
99
|
Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 2016; 74:409-434. [PMID: 27600680 PMCID: PMC5241350 DOI: 10.1007/s00018-016-2351-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.
Collapse
|
100
|
Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P, Galgani M, De Rosa V, Matarese G. Role of metabolism in neurodegenerative disorders. Metabolism 2016; 65:1376-90. [PMID: 27506744 DOI: 10.1016/j.metabol.2016.05.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023]
Abstract
Along with the increase in life expectancy over the last century, the prevalence of age-related disorders, such as neurodegenerative diseases continues to rise. This is the case of Alzheimer's, Parkinson's, Huntington's diseases and Multiple sclerosis, which are chronic disorders characterized by neuronal loss in motor, sensory or cognitive systems. Accumulating evidence has suggested the presence of a strong correlation between metabolic changes and neurodegeneration. Indeed epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. In this context, hormones such as leptin, ghrelin, insulin and IGF-1 seem to play a key role in the regulation of neuronal damage, toxic insults and several other neurodegenerative processes. This review aims to presenting the most recent evidence supporting the crosstalk linking energy metabolism and neurodegeneration, and will focus on metabolic manipulation as a possible therapeutic tool in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Marianna Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Deriggio Faicchia
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Alessandra Colamatteo
- Unità di NeuroImmunologia, IRCCS Fondazione Santa Lucia, 00143, Roma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Baronissi Campus, 84081, Baronissi, Salerno, Italy
| | - Luigi Formisano
- Divisione di Farmacologia, Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, 82100, Benevento, Italy
| | | | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Unità di NeuroImmunologia, IRCCS Fondazione Santa Lucia, 00143, Roma, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy.
| |
Collapse
|