51
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
52
|
Rusch RM, Inagaki E, Taniguchi H, Sakakura S, Tamai R, Nonaka H, Shimizu S, Sato S, Ogawa Y, Masatoshi H, Negishi K, Okano H, Shimmura S. Adipose-derived mesenchymal stromal cells: A study on safety and efficacy in ocular inflammation. Ocul Surf 2024; 34:523-534. [PMID: 39542088 DOI: 10.1016/j.jtos.2024.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE This study explores the application of adipose-derived mesenchymal stromal cells (adMSCs) as a therapy for ocular inflammatory diseases utilizing a chronic GVHD model. METHODS Human adMSCs were administered via subconjunctival injection into mice with chronic ocular GVHD. Clinical scores and changes in T cell populations were analyzed. RESULTS The study showed significant improvement in corneal integrity, including epithelial damage, opacity, thickness, and structure, after subconjunctival adMSC transplantation. Additionally, adMSC transplantation increased CD45+ and Foxp3+ Tregs while decreasing CD4+ T cells, 1IL17A+ Th17 cells, and IFNγ+ Th1 cells in local cervical lymph nodes. Moreover, adMSC-conditioned media enhanced wound closure and cell migration toward the wound bed in vitro. The cells disappeared within a week suggesting that trophic factors were involved. CONCLUSION The dual benefit of adMSCs in immune-related ocular disorders underscores their potential for clinical application. This study focuses on subconjunctival delivery, effects of adMSCs and migration post-injection, with implications for optimizing cellular therapy application. The observed dual action, combining immunomodulation and tissue repair enhancement, underscores holistic approach of adMSC therapy in regenerative medicine, making it a potent treatment for diseases involving inflammation and tissue damage in the ocular surface.
Collapse
Affiliation(s)
- Robert M Rusch
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroko Taniguchi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Saki Sakakura
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan
| | | | | | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hirayama Masatoshi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan
| | - Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan.
| |
Collapse
|
53
|
Shen N, Polyanskaya A, Qi X, Al Othman A, Permyakova A, Volkova M, Mezentsev A, Durymanov M. Modification of mesenchymal stromal cells with silibinin-loaded PLGA nanoparticles improves their therapeutic efficacy for cutaneous wound repair. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102767. [PMID: 38906391 DOI: 10.1016/j.nano.2024.102767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The use of mesenchymal stromal cells (MSCs) for treating chronic inflammatory disorders, wounds, and ischemia-reperfusion injuries has shown improved healing efficacy. However, the poor survival rate of transplanted cells due to oxidative stress in injured or inflamed tissue remains a significant concern for MSC-based therapies. In this study, we developed a new approach to protect MSCs from oxidative stress, thereby improving their survival in a wound microenvironment and enhancing their therapeutic effect. We produced PLGA nanoparticles loaded with the cytoprotective phytochemical silibinin (SBN), and used them to modify MSCs. Upon internalization, these nanoformulations released SBN, activating the Nrf2/ARE signaling pathway, resulting in threefold reduction in intracellular ROS content and improved cell survival under oxidative stress conditions. Modification of MSCs with SBN-loaded PLGA nanoparticles increased their survival upon transplantation to full-thickness cutaneous wounds and improved wound healing. This study suggests that MSC modification with cytoprotective nanoparticles could be a promising approach for improving wound healing.
Collapse
Affiliation(s)
- Ningfei Shen
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Anna Polyanskaya
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Xiaoli Qi
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Aya Al Othman
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Anastasia Permyakova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Marina Volkova
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Alexandre Mezentsev
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Mikhail Durymanov
- Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudny, Moscow Region 141701, Russia; Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia.
| |
Collapse
|
54
|
Abraham BD, Gysel E, Kallos MS, Hu J. Biofunctionalization of Cellulose Microcarriers Using a Carbohydrate Binding Module Linked with Fibroblast Growth Factor for the Expansion of Human Umbilical Mesenchymal Stromal Cells in Stirred Suspension Bioreactors. ACS APPLIED BIO MATERIALS 2024; 7:5956-5964. [PMID: 39190068 DOI: 10.1021/acsabm.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as autologous or allogenic cell therapy in several diseases due to their beneficial secretome and capacity for immunomodulation and differentiation. However, clinical trials using MSCs require a large number of cells. As an alternative to traditional culture flasks, suspension bioreactors provide a scalable platform to produce clinically relevant quantities of cells. When cultured in bioreactors, anchorage-dependent cells like MSCs require the addition of microcarriers, which provide a surface for cell attachment while in suspension. The best performing microcarriers are typically coated in animal derived proteins, which increases cellular attachment and proliferation but present issues from a regulatory perspective. To overcome this issue, a recombinant fusion protein was generated linking basic fibroblast growth factor (bFGF) to a cellulose-specific carbohydrate binding module (CBM) and used to functionalize the surface of cellulose microcarriers for the expansion of human umbilical MSCs in suspension bioreactors. The fusion protein was shown to support the growth of MSCs when used as a soluble growth factor in the absence of cellulose, readily bound to cellulose microcarriers in a dose-dependent manner, and ultimately improved the expansion of MSCs when grown in bioreactors using cellulose microcarriers. The use of CBM fusion proteins offers a simple method for the surface immobilization of growth factors to animal component-free substrates such as cellulose, which can be used alongside bioreactors to increase growth factor lifespan, decrease culture medium cost, and increase cell production in the manufacturing of therapeutic cells.
Collapse
Affiliation(s)
- Brett D Abraham
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Emilie Gysel
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael S Kallos
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
55
|
Olivieri A, Mancini G. Current Approaches for the Prevention and Treatment of Acute and Chronic GVHD. Cells 2024; 13:1524. [PMID: 39329708 PMCID: PMC11431085 DOI: 10.3390/cells13181524] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Whereas aGVHD has strong inflammatory components, cGVHD displays autoimmune and fibrotic features; incidence and risk factors are similar but not identical; indeed, the aGVHD is the main risk factor for cGVHD. Calcineurin Inhibitors (CNI) with either Methotrexate (MTX) or Mycophenolate (MMF) still represent the standard prophylaxis in HLA-matched allogeneic stem cell transplantation (HSCT); other strategies focused on ATG, Post-Transplant Cyclophosphamide (PTCy), Abatacept and graft manipulation. Despite the high rate, first-line treatment for aGVHD is represented by corticosteroids, and Ruxolitinib is the standard second-line therapy; investigational approaches include Microbiota transplant and the infusion of Mesenchymal stem cells. GVHD is a pleiotropic disease involving any anatomical district; also, Ruxolitinib represents the standard for steroid-refractory cGVHD in this setting. It is a pleiotropic disease involving any anatomical district; also, Ruxolitinib represents the standard for steroid-refractory cGVHD in this setting. Extracorporeal Photopheresis (ECP) is still an option used for steroid refractoriness or to achieve a steroid-sparing. For Ruxolitinib-refractory cGVHD, Belumosudil and Axatilimab represent the most promising agents. Bronchiolitis obliterans syndrome (BOS) still represents a challenge; among the compounds targeting non-immune effectors, Alvelestat, a Neutrophil elastase inhibitor, seems promising in BOS. Finally, in both aGVHD and cGVHD, the association of biological markers with specific disease manifestations could help refine risk stratification and the availability of reliable biomarkers for specific treatments.
Collapse
Affiliation(s)
- Attilio Olivieri
- Clinica di Ematologia, Università Politecnica delle Marche Ancona, 60126 Ancona, Italy
| | - Giorgia Mancini
- Department of Hematology, AOU delle Marche Ancona, 60126 Ancona, Italy;
| |
Collapse
|
56
|
Montagnoli TL, Santos AD, Sudo SZ, Gubert F, Vasques JF, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Perspectives on Stem Cell Therapy in Diabetic Neuropathic Pain. Neurol Int 2024; 16:933-944. [PMID: 39311343 PMCID: PMC11417725 DOI: 10.3390/neurolint16050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus-related morbidity and mortality are primarily caused by long-term complications such as retinopathy, nephropathy, cardiomyopathy, and neuropathy. Diabetic neuropathy (DN) involves the progressive degeneration of axons and nerve fibers due to chronic exposure to hyperglycemia. This metabolic disturbance leads to excessive activation of the glycolytic pathway, inducing oxidative stress and mitochondrial dysfunction, ultimately resulting in nerve damage. There is no specific treatment for painful DN, and new approaches should aim not only to relieve pain but also to prevent oxidative stress and reduce inflammation. Given that existing therapies for painful DN are not effective for diabetic patients, mesenchymal stromal cells (MSCs)-based therapy shows promise for providing immunomodulatory and paracrine regulatory functions. MSCs from various sources can improve neuronal dysfunction associated with DN. Transplantation of MSCs has led to a reduction in hyperalgesia and allodynia, along with the recovery of nerve function in diabetic rats. While the pathogenesis of diabetic neuropathic pain is complex, clinical trials have demonstrated the importance of MSCs in modulating the immune response in diabetic patients. MSCs reduce the levels of inflammatory factors and increase anti-inflammatory cytokines, thereby interfering with the progression of DM. Further investigation is necessary to ensure the safety and efficacy of MSCs in preventing or treating neuropathic pain in diabetic patients.
Collapse
Affiliation(s)
- Tadeu Lima Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Aimeé Diogenes Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
| | - Susumu Zapata Sudo
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.F.V.); (R.M.-O.)
| | - Mauro Paes Leme de Sá
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.L.M.); (A.D.S.)
- Programa de Pós-Graduação em Medicina (Cirurgia), Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.Z.S.); (M.P.L.d.S.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
57
|
Park SM, Oh YH, Lim GH, Yun GH, Kim KB, An JH, Seo KW, Youn HY. Deferoxamine preconditioning of canine stem cell derived extracellular vesicles alleviates inflammation in an EAE mouse model through STAT3 regulation. Sci Rep 2024; 14:19273. [PMID: 39164295 PMCID: PMC11335858 DOI: 10.1038/s41598-024-68853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs), specifically those preconditioned with deferoxamine (DFO) in canine adipose tissue-derived MSCs (cAT-MSCs), were explored for treating autoimmune diseases. This study assessed the effects of DFO-preconditioned EVs (EVDFO) in an experimental autoimmune encephalomyelitis (EAE) mouse model. cAT-MSCs were treated with DFO for 48 h, after which EVs were isolated. EAE mice received intranasal EV or EVDFO treatments and were euthanized following histopathologic analysis; RNA and protein expression levels were measured. Histologically, EV and EVDFO groups showed a significant reduction in inflammatory cell infiltration and demyelination. Immunofluorescence revealed increased CD206 and Foxp3 expression, indicating elevated M2 macrophages and regulatory T (Treg) cells, particularly in the EVDFO group. Treg cells also notably increased in the spleen of EVDFO -treated mice. STAT3 and pSTAT3 proteins were upregulated in the EAE groups compared to the naïve group. However, following EV treatment, STAT3 expression decreased compared to the EAE group, whereas pSTAT3 expression was similar in both the EV and EAE groups. In conclusion, EVDFO treatment resulted in reduced STAT3 expression, suggesting its role in T cell regulation and the potential of EVDFO in modulating the STAT3 pathway for reducing inflammation more effectively than non-preconditioned EVs.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/transplantation
- STAT3 Transcription Factor/metabolism
- Mice
- Dogs
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Deferoxamine/pharmacology
- Deferoxamine/therapeutic use
- Mesenchymal Stem Cells/metabolism
- Inflammation/pathology
- Female
- Disease Models, Animal
Collapse
Affiliation(s)
- Su-Min Park
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Hun Oh
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Yun
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Bo Kim
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Kyung-Won Seo
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine and Research Institute for Veterinary Science, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
58
|
Carrillo-Gálvez AB, Zurita F, Guerra-Valverde JA, Aguilar-González A, Abril-García D, Padial-Molina M, Olaechea A, Martín-Morales N, Martín F, O’Valle F, Galindo-Moreno P. NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs. Stem Cells Transl Med 2024; 13:826-841. [PMID: 39013640 PMCID: PMC11328940 DOI: 10.1093/stcltm/szae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/19/2024] [Indexed: 07/18/2024] Open
Abstract
Periodontitis and peri-implantitis are inflammatory diseases of infectious etiology that lead to the destruction of the supporting tissues located around teeth or implants. Although both pathologies share several characteristics, it is also known that they show important differences which could be due to the release of particles and metal ions from the implant surface. The activation of the inflammasome pathway is one of the main triggers of the inflammatory process. The inflammatory process in patients who suffer periodontitis or peri-implantitis has been mainly studied on cells of the immune system; however, it is also important to consider other cell types with high relevance in the regulation of the inflammatory response. In that context, mesenchymal stromal cells (MSCs) play an essential role in the regulation of inflammation due to their ability to modulate the immune response. This study shows that the induction of NLRP3 and absent in melanoma 2 (AIM2) inflammasome pathways mediated by bacterial components increases the secretion of active IL-1β and the pyroptotic process on human alveolar bone-derived mesenchymal stromal cells (hABSCs). Interestingly, when bacterial components are combined with titanium ions, NLRP3 expression is further increased while AIM2 expression is reduced. Furthermore, decrease of NLRP3 or AIM2 expression in hABSCs partially reverses the negative effect observed on the progression of the inflammatory process as well as on cell survival. In summary, our data suggest that the progression of the inflammatory process in peri-implantitis could be more acute due to the combined action of organic and inorganic components.
Collapse
Affiliation(s)
- Ana Belén Carrillo-Gálvez
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| | - Federico Zurita
- Department of Genetics and Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - José Antonio Guerra-Valverde
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- PhD Program in Clinical Medicine and Public Health, University of Granada,18071 Granada, Spain
| | - Araceli Aguilar-González
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada, 18016 Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Bio-Medicine and the Environment, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Darío Abril-García
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| | - Allinson Olaechea
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- PhD Program in Clinical Medicine and Public Health, University of Granada,18071 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada, 18016 Granada, Spain
| | - Natividad Martín-Morales
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- PhD Program in Biomedicine, University of Granada, 18071 Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Francisco Martín
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - Francisco O’Valle
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, 18071 Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS) de Granada, 18012 Granada, Spain
| |
Collapse
|
59
|
Abbaspour M, Ghafourian Boroujerdnia M, Tahoori MT, Oraki Kohshour M, Ghasemi Dehcheshmeh M, Amirzadeh S, Amari A. Poly (I:C) increases the expression of galectin 1, 3, 9 and HGF genes in exosomes isolated from human Wharton's jelly mesenchymal stem cells. Heliyon 2024; 10:e35343. [PMID: 39170483 PMCID: PMC11336598 DOI: 10.1016/j.heliyon.2024.e35343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are commonly employed as a powerful tool for the treatment of immune-mediated problems owing to their capacity to regulate the immune system and differentiate into different tissues. Researchers use mesenchymal stem cell products given the limitations associated with the application of MSCs. Exosomes are nanometer vesicles derived from MSCs that are used in cell-free therapy. Inflammatory environmental conditions, such as stimulation of Toll-like receptor 3 (TLR-3), has the ability to adjust the immune-regulating properties and anti-inflammatory function of mesenchymal stem cells and their exosomes. Galectins and hepatocyte growth factor (HGF) are known as immunomodulatory factors in mesenchymal stem cells. This study was designed to examine the expression of galectin-1, galectin-3, galectin-9, and HGF genes in exosomes isolated from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) after stimulation with Poly (I:C) (Polyinosinic:polycytidylic acid sodium salt). Methods To begin, the explant technique was used to extract mesenchymal stem cells from human umbilical cord Wharton's jelly. Then, the stem cells were stimulated using Poly (I:C) at three time intervals of 12, 24 and 48 h. Exosomes secreted from the supernatant of cells were extracted and exosome confirmation tests, including Scanning electron microscopy (SEM), Dynamic light scattering (DLS) and Flow cytometry were performed. Finally, the expression of galectin-1, galectin-3, galectin-9, and HGF genes in exosomes was evaluated by Real-Time PCR at three time intervals of 12, 24 and 48 h after stimulation. Results The findings of our study indicated that following stimulation with Poly (I:C), the expression of galectin-9 and HGF (P < 0.05) genes was markedly higher than in the control group after 12 h. After 24 h, the expression of galectin-9 (P < 0.01), galectin-3 and HGF (P < 0.05) increased; the expression of galectin-1, galectin-3, (P < 0.05), galectin-9 and HGF genes (p < 0.01) significantly increased compared to the control group after 48 h. Conclusion TLR3 stimulation can increase the expression of galectins and HGF genes in exosomes derived from hWJ-MSCs and may be improve the immunosuppressive abilities of exosomes.
Collapse
Affiliation(s)
- Mehdi Abbaspour
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian Boroujerdnia
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mojtaba Oraki Kohshour
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Sareh Amirzadeh
- Department of Infertility, Infertility Research and Treatment Center of ACECR, Ahvaz, Iran
| | - Afshin Amari
- Department of Immunology, School of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
60
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
61
|
Qu Y, Wang Z, Dong L, Zhang D, Shang F, Li A, Gao Y, Bai Q, Liu D, Xie X, Ming L. Natural small molecules synergize mesenchymal stem cells for injury repair in vital organs: a comprehensive review. Stem Cell Res Ther 2024; 15:243. [PMID: 39113141 PMCID: PMC11304890 DOI: 10.1186/s13287-024-03856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.
Collapse
Affiliation(s)
- Yanling Qu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Zhe Wang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Lingjuan Dong
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Zhang
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Fengqing Shang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Afeng Li
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Yanni Gao
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Qinhua Bai
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Dan Liu
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| | - Leiguo Ming
- Shaanxi Zhonghong, Institute of Regenerative Medicine, Xi'an, 710003, Shaanxi Province, China.
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
62
|
Chopra H, Cao C, Alice H, Kak S, Maska B, Tagett R, Sugai J, Garmire L, Kaigler D. Landscape of Differentiation Potentials as a "Hallmark" in Oral-derived MSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606413. [PMID: 39211139 PMCID: PMC11360929 DOI: 10.1101/2024.08.02.606413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Mesenchymal stem cells (MSCs) offer clinical promise for use in cell therapy approaches for regenerative medicine. A therapeutic challenge is that MSCs from different tissues are phenotypically and functionally distinct. Therefore, this study aims to molecularly characterize oral-derived MSCs by defining one of the three hallmarks of MSCs, differentiation potential, to discern their true molecular identities. Methods Three different populations of oral tissue MSCs (from alveolar bone-aBMSCs; from dental pulp-DPSCs; and from gingiva-GMSCs) from three different patients were isolated and cultured. These MSCs were characterized for their stemness by flow cytometry and multi-differentiation potential, and their RNA was also isolated and analyzed quantitatively with RNA sequencing. Total mRNA-seq was performed and differentially expressed genes (DEGs) were identified in pairwise (DPSCs vs. aBMSCs, GMSCs vs. aBMSCs, and GMSCs vs. DPSCs) and tissue-specific comparisons (aBMSCs vs. Others, DPSCs vs. Others, GMSCs vs. Others) (FDR, p<0.05 ). Further, these DEGs, either common between MSC populations or unique to a specific MSC population, were evaluated for pathways and biological processes. Results aBMSCs, DPSCs, and GMSCs were successfully isolated and characterized. The tissue-specific comparison revealed that DEGs were most numerous in DPSCs (693 genes) as compared to aBMSCs (103 genes) or DPSCs (232 genes). Statistically significant DEGs through pairwise comparisons present higher numbers in GMSCs vs. DPSCs (627) as compared to either DPSCs vs aBMSCs (286) or GMSCs vs. aBMSCs (82). Further analysis found that RUNX2, IBSP, SOX6, ACAN, and VCAM1 were significantly upregulated in aBMSCs. In DPSCs, BMP4 and IL6 were significantly downregulated, whereas AXL and NES were significantly upregulated. In GMSCs, AGPT1, SEMA4D, and PGDFA were significantly downregulated. Additionally, MAPK, PI3-AKT, and RAS signaling pathways were significantly regulated in GMSCs. Interestingly, aBMSCs and DPSCs revealed positive regulation of osteoblast differentiation, whereas GMSCs revealed negative regulation of osteoblast differentiation. DPSCs also revealed negative regulation of angiogenesis. Conclusions Oral-derived MSCs have an inherent "landscape" of differentiation defined by their tissue of origin; yet this differentiation potential can be modulated by their microenvironment.
Collapse
|
63
|
Swain HN, Boyce PD, Bromet BA, Barozinksy K, Hance L, Shields D, Olbricht GR, Semon JA. Mesenchymal stem cells in autoimmune disease: A systematic review and meta-analysis of pre-clinical studies. Biochimie 2024; 223:54-73. [PMID: 38657832 DOI: 10.1016/j.biochi.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mesenchymal Stem Cells (MSCs) are of interest in the clinic because of their immunomodulation capabilities, capacity to act upstream of inflammation, and ability to sense metabolic environments. In standard physiologic conditions, they play a role in maintaining the homeostasis of tissues and organs; however, there is evidence that they can contribute to some autoimmune diseases. Gaining a deeper understanding of the factors that transition MSCs from their physiological function to a pathological role in their native environment, and elucidating mechanisms that reduce their therapeutic relevance in regenerative medicine, is essential. We conducted a Systematic Review and Meta-Analysis of human MSCs in preclinical studies of autoimmune disease, evaluating 60 studies that included 845 patient samples and 571 control samples. MSCs from any tissue source were included, and the study was limited to four autoimmune diseases: multiple sclerosis, rheumatoid arthritis, systemic sclerosis, and lupus. We developed a novel Risk of Bias tool to determine study quality for in vitro studies. Using the International Society for Cell & Gene Therapy's criteria to define an MSC, most studies reported no difference in morphology, adhesion, cell surface markers, or differentiation into bone, fat, or cartilage when comparing control and autoimmune MSCs. However, there were reported differences in proliferation. Additionally, 308 biomolecules were differentially expressed, and the abilities to migrate, invade, and form capillaries were decreased. The findings from this study could help to explain the pathogenic mechanisms of autoimmune disease and potentially lead to improved MSC-based therapeutic applications.
Collapse
Affiliation(s)
- Hailey N Swain
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Parker D Boyce
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Bradley A Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Kaiden Barozinksy
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Lacy Hance
- Department of Biological Sciences, Missouri University of Science and Technology, USA
| | - Dakota Shields
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, USA.
| |
Collapse
|
64
|
Shimatani K, Sato H, Mizukami K, Saito A, Sasai M, Enmi JI, Watanabe K, Kamohara M, Yoshioka Y, Miyagawa S, Sawa Y. Transplantation of Human Embryonic Stem Cell-Derived Pericyte-Like Cells Transduced with Basic Fibroblast Growth Factor Promotes Angiogenic Recovery in Mice with Severe Chronic Hindlimb Ischemia. J Cardiovasc Transl Res 2024; 17:828-841. [PMID: 38376701 DOI: 10.1007/s12265-024-10496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Critical limb ischemia (CLI) is a state of severe peripheral artery disease, with no effective treatment. Cell therapy has been investigated as a therapeutic tool for CLI, and pericytes are promising therapeutic candidates based on their angiogenic properties. We firstly generated highly proliferative and immunosuppressive pericyte-like cells from embryonic stem (ES) cells. In order to enhance the angiogenic potential, we transduced the basic fibroblast growth factor (bFGF) gene into the pericyte-like cells and found a significant enhancement of angiogenesis in a Matrigel plug assay. Furthermore, we evaluated the bFGF-expressing pericyte-like cells in the previously established chronic hindlimb ischemia model in which bone marrow-derived MSCs were not effective. As a result, bFGF-expressing pericyte-like cells significantly improved blood flow in both laser Doppler perfusion imaging (LDPI) and dynamic contrast-enhanced MRI (DCE-MRI). These findings suggest that bFGF-expressing pericyte-like cells differentiated from ES cells may be a therapeutic candidate for CLI.
Collapse
Affiliation(s)
- Kenichiro Shimatani
- Institute for Regenerative Medicine Applied Cell Therapy Research, Astellas Pharma Incorporated, 21 Miyukigaoka, Tsukuba-Shi, Ibaraki, 305-8585, Japan.
| | - Hiromu Sato
- Institute for Regenerative Medicine Applied Cell Therapy Research, Astellas Pharma Incorporated, 21 Miyukigaoka, Tsukuba-Shi, Ibaraki, 305-8585, Japan
| | - Kazuhiko Mizukami
- Institute for Regenerative Medicine Applied Cell Therapy Research, Astellas Pharma Incorporated, 21 Miyukigaoka, Tsukuba-Shi, Ibaraki, 305-8585, Japan
| | - Atsuhiro Saito
- Joint Research Chair On Design for Advanced Medical System, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masao Sasai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichiro Enmi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenichi Watanabe
- Department of Cardiovascular Surgery, Hyogo Medical University Hospital, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masazumi Kamohara
- Institute for Regenerative Medicine Applied Cell Therapy Research, Astellas Pharma Incorporated, 21 Miyukigaoka, Tsukuba-Shi, Ibaraki, 305-8585, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Future Medicine Division of Health Science, Osaka University Graduate School of Medicine, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
65
|
Sam YH, Nibali L, Ghuman M. Periodontal granulation tissue - To remove or not to remove, that is the question. J Periodontal Res 2024; 59:636-646. [PMID: 38686698 DOI: 10.1111/jre.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/02/2024]
Abstract
Formation of granulation tissue is a fundamental phase in periodontal wound healing with subsequent maturation leading to regeneration or repair. However, persistently inflamed granulation tissue presents in osseous defects as a result of periodontitis and is routinely disrupted and discarded with non-surgical and surgical therapy to facilitate wound healing or improve chances of regeneration. Histological assessment suggests that granulation tissue from periodontitis-affected sites is effectively a chronic inflammatory tissue resulting from impaired wound healing due to persistence of bacterial dysbiotic bioflim. Nevertheless, the immunomodulatory potential and stem cell characteristics in granulation tissue have also raised speculation about the tissue's regenerative potential. This has led to the conception and recent implementation of surgical techniques which preserve granulation tissue with the intention of enhancing innate regenerative potential and improve clinical outcomes. As knowledge of fundamental cellular and molecular functions regulating periodontitis-affected granulation tissue is still scarce, this review aimed to provide a summary of current understanding of granulation tissue in the context of periodontal wound healing. This may provide new insights into clinical practice related to the management of granulation tissue and stimulate further investigation.
Collapse
Affiliation(s)
- Ye Han Sam
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Mandeep Ghuman
- Periodontology Unit, Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
66
|
Re F, Sartore L, Pasini C, Ferroni M, Borsani E, Pandini S, Bianchetti A, Almici C, Giugno L, Bresciani R, Mutti S, Trenta F, Bernardi S, Farina M, Russo D. In Vitro Biocompatibility Assessment of Bioengineered PLA-Hydrogel Core-Shell Scaffolds with Mesenchymal Stromal Cells for Bone Regeneration. J Funct Biomater 2024; 15:217. [PMID: 39194655 DOI: 10.3390/jfb15080217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core-shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin-chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed. The BM-hMSCs were cultured in the scaffolds with the presence of growth medium (GM) or osteogenic medium (OM) with differentiation stimuli in combination with fetal bovine serum (FBS) or human platelet lysate (hPL). The primary objective was to determine the viability, proliferation, morphology, and spreading capacity of BM-hMSCs within the scaffolds, thereby confirming their biocompatibility. Secondly, the BM-hMSCs were shown to differentiate into osteoblasts and to facilitate scaffold mineralization. This was evinced by a positive Von Kossa result, the modulation of differentiation markers (osteocalcin and osteopontin), an expression of a marker of extracellular matrix remodeling (bone morphogenetic protein-2), and collagen I. The results of the energy-dispersive X-ray analysis (EDS) clearly demonstrate the presence of calcium and phosphorus in the samples that were incubated in OM, in the presence of FBS and hPL, but not in GM. The chemical distribution maps of calcium and phosphorus indicate that these elements are co-localized in the same areas of the sections, demonstrating the formation of hydroxyapatite. In conclusion, our findings show that the combination of BM-hMSCs and PLA-CH, regardless of the amount of hydrogel content, in the presence of differentiation stimuli, can provide a construct with enhanced osteogenicity for clinically relevant bone regeneration.
Collapse
Affiliation(s)
- Federica Re
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Luciana Sartore
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Chiara Pasini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Matteo Ferroni
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy
- National Research Council (CNR)-Institute for Microelectronics and Microsystems, Via Gobetti 101, 40129 Bologna, Italy
| | - Elisa Borsani
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Stefano Pandini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianchetti
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Camillo Almici
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Mutti
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Federica Trenta
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology-CN3, 35122 Padua, Italy
| | - Mirko Farina
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
67
|
Gallardo J, Berríos-Cárcamo P, Ezquer F. Mesenchymal stem cells as a promising therapy for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:179-211. [PMID: 39523054 DOI: 10.1016/bs.irn.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol Use Disorder (AUD) is a highly prevalent medical condition characterized by impaired control over alcohol consumption, despite negative consequences on the individual's daily life and health. There is increasing evidence suggesting that chronic alcohol intake, like other addictive drugs, induces neuroinflammation and oxidative stress, disrupting glutamate homeostasis in the main brain areas related to drug addiction. This review explores the potential application of mesenchymal stem cells (MSCs)-based therapy for the treatment of AUD. MSCs secrete a broad array of anti-inflammatory and antioxidant molecules, thus, the administration of MSCs, or their secretome, could reduce neuroinflammation and oxidative stress in the brain. These effects correlate with an increase in the expression of the main glutamate transporter, GLT1, which, through the normalization of the extracellular glutamate levels, could mediate the inhibitory effect of MSCs' secretome on chronic alcohol consumption, thus highlighting GLT1 as a central target to reduce chronic alcohol consumption.
Collapse
Affiliation(s)
- Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile; Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago, Chile.
| |
Collapse
|
68
|
Ahangari F, Soudi S, Ghaffari Khaligh S, Mirsanei Z, Soufihasanabad S, Ebadi Asl P, Mahmoud Hashemi S. Combinational therapy of mesenchymal stem cell-derived extracellular vesicles and azithromycin improves clinical and histopathological recovery in CLP sepsis model. Int Immunopharmacol 2024; 139:112732. [PMID: 39053229 DOI: 10.1016/j.intimp.2024.112732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Sepsis is a syndrome that occurs following an infection and marked by severe inflammatory responses, and if not treated in time, it can lead to multi-organ failure syndrome and death. This study examines the effects of a novel combination therapy using azithromycin and mesenchymal stem cell-derived extracellular vesicles (EVs) on a cecal ligation and puncture (CLP) model of sepsis. METHODS Human Wharton's jelly-mesenchymal stem cells were cultured, characterized, and used to extract EVs. The CLP sepsis model was induced in mice, followed by treatments: saline, AZM, EVs, and combination therapy (A+E). Clinical sepsis scores were recorded 24 h post-treatment. Serum, peritoneal fluid, and organ tissues (kidney, liver, lung) were collected and analyzed for biochemical parameters (AST ALT, and creatinine), inflammatory markers, bacterial load, and histopathological changes. RESULTS The A+E combined treatment improved the clinical scores of septic mice. The administration of A+E reduced bacterial loads in the peritoneum of septic mice, contributing to effective control of infection. Inflammatory markers of neutrophils-to-lymphocytes ratio (NLR) and TNF-α serum levels were significantly lower in the combinational therapy group, indicating significant anti-inflammatory effect of this combination. Additionally, combination of AZM and EVs alleviated organ damage mainly within liver, kidneys and lungs. Based on histopathological assessments and biochemical parameters, there was diminished tissue damage as well as reduced inflammation, which is correlated with improved functions of these vital organs. CONCLUSION The combined use of azithromycin and EVs offers a promising therapeutic approach for sepsis by effectively controlling infection and modulating the inflammatory response.
Collapse
Affiliation(s)
- Fatemeh Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soufihasanabad
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Pedram Ebadi Asl
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
69
|
Yue G, Li Y, Liu Z, Yu S, Cao Y, Wang X. Efficacy of MSC-derived small extracellular vesicles in treating type II diabetic cutaneous wounds: a systematic review and meta-analysis of animal models. Front Endocrinol (Lausanne) 2024; 15:1375632. [PMID: 39076515 PMCID: PMC11284036 DOI: 10.3389/fendo.2024.1375632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Background Small extracellular vesicles derived from mesenchymal stem cells (MSC-sEVs) have emerged as a promising therapy for treating type II diabetic cutaneous wounds. Currently, the evidence supporting the use of MSC-sEVs for treating diabetic skin wounds remains inconclusive and is limited to preclinical studies. To facilitate the clinical translation of cell-free therapy, conducting a comprehensive systematic review of preclinical studies assessing the efficacy of MSC-sEVs is imperative. Methods A systematic search was conducted on PubMed, Web of Science, Embase, and Cochrane Library databases until June 14, 2023, to identify studies that met our pre-established inclusion criteria. The outcome indicators comprised wound closure rate (primary outcome), neovascular density, re-epithelialization rate, collagen deposition, and inflammatory factors (secondary Outcomes). A fixed-effects model was employed in instances of low heterogeneity (I2<50%), while a random-effects model was utilized for high heterogeneity (I2≥50%). The risk of bias in animal studies was assessed using the SYRCLE tool. Results Twenty-one studies were included in this meta-analysis. Compared with the control group, MSC-sEVs were found to significantly facilitate the healing of cutaneous wounds in type II diabetic patients (standardized mean difference [SMD]=3.16, 95% confidence interval [CI]: 2.65 to 3.66, P<0.00001, I2 = 39%). Conclusions According to the meta-analysis of preclinical studies, MSC-sEVs show promising applications in promoting type II diabetic wound healing. As a result, translating these findings into clinical applications appears warranted. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023375467.
Collapse
Affiliation(s)
- Guangren Yue
- Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu Li
- Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zheng Liu
- Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuying Yu
- Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yilin Cao
- Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, Shanghai, China
| | - Ximei Wang
- Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
70
|
Kersey AL, Singh I, Gaharwar AK. Inorganic ions activate lineage-specific gene regulatory networks. Acta Biomater 2024; 183:371-386. [PMID: 38552761 DOI: 10.1016/j.actbio.2024.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 06/14/2024]
Abstract
Inorganic biomaterials have been shown to direct cellular responses, including cell-cell and cell-matrix interactions. Notably, ions released from these inorganic biomaterials play a vital role in defining cell identity, and promoting tissue-specific functions. However, the effect of inorganic ions on cellular functions have yet to be investigated at the transcriptomic level, representing a critical knowledge gap in the development of next-generation bioactive materials. To address this gap, we investigated the impact of various inorganic ions including silver, copper, titanium, and platinum on human mesenchymal stem cells (hMSCs). Our finding showed that silver and copper induce osteogenic and chondrogenic differentiation respectively, through enrichment of lineage-specific gene expression program. In particular, silver effectively induced Wingless/Integrated (Wnt) and mitogen-activated protein kinase (MAPK) signaling, which are vital for osteogenesis. On the other hand, copper specifically stimulated Transforming growth factor beta (TGFβ) signaling, while suppressing Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling, thereby promoting chondrogenesis. In contrast, platinum, and tantalum, ions didn't stimulate regenerative responses. Together, our findings highlight the potential of inorganic biomaterials in tissue regeneration strategies, which currently rely largely on growth factors and small molecule therapeutics. STATEMENT OF SIGNIFICANCE: This research emphasizes the critical role of bioactive inorganic ions in controlling lineage-specific gene expression patterns in mesenchymal stem cells, effectively modulating the transcriptome landscape and directing cell fate. The study lays the foundation for a systematic database of biomaterial candidates and their effects on cellular functions, which will ultimately streamline the translation of new biomaterials into clinical applications.
Collapse
Affiliation(s)
- Anna L Kersey
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Irtisha Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, United States; Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77807, United States; Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, United States.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, United States; Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, United States; Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, United States; Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
71
|
Zhang Q, Zeng Z, Wei N, Su Y, Wang J, Ni Q, Wang Y, Yang J, Liu X, Xu H, Wang G, Shan Y, Zhou F. Mesenteric lymph nodes: a critical site for the up-regulatory effect of hUC-MSCs on Treg cells by producing TGF-β1 in colitis treatment. Stem Cell Res Ther 2024; 15:190. [PMID: 38956621 PMCID: PMC11218300 DOI: 10.1186/s13287-024-03809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) demonstrate a wide range of therapeutic capabilities in the treatment of inflammatory bowel disease (IBD). The intraperitoneal injection of MSCs has exhibited superior therapeutic efficacy on IBD than intravenous injection. Nevertheless, the precise in vivo distribution of MSCs and their biological consequences following intraperitoneal injection remain inadequately understood. Additional studies are required to explore the correlation between MSCs distribution and their biological effects. METHODS First, the distribution of human umbilical cord MSCs (hUC-MSCs) and the numbers of Treg and Th17 cells in mesenteric lymph nodes (MLNs) were analyzed after intraperitoneal injection of hUC-MSCs. Subsequently, the investigation focused on the levels of transforming growth factor beta1 (TGF-β1), a key cytokine to the biology of both Treg and Th17 cells, in tissues of mice with colitis, particularly in MLNs. The study also delved into the impact of hUC-MSCs therapy on Treg cell counts in MLNs, as well as the consequence of TGFB1 knockdown hUC-MSCs on the differentiation of Treg cells and the treatment of IBD. RESULTS The therapeutic effectiveness of intraperitoneally administered hUC-MSCs in the treatment of colitis was found to be significant, which was closely related to their quick migration to MLNs and secretion of TGF-β1. The abundance of hUC-MSCs in MLNs of colitis mice is much higher than that in other organs even the inflamed sites of colon. Intraperitoneal injection of hUC-MSCs led to a significant increase in the number of Treg cells and a decrease in Th17 cells especially in MLNs. Furthermore, the concentration of TGF-β1, the key cytokine for Treg differentiation, were also found to be significantly elevated in MLNs after hUC-MSCs treatment. Knockdown of TGFB1 in hUC-MSCs resulted in a noticeable reduction of Treg cells in MLNs and the eventually failure of hUC-MSCs therapy in colitis. CONCLUSIONS MLNs may be a critical site for the regulatory effect of hUC-MSCs on Treg/Th17 cells and the therapeutic effect on colitis. TGF-β1 derived from hUC-MSCs promotes local Treg differentiation in MLNs. This study will provide new ideas for the development of MSC-based therapeutic strategies in IBD patients.
Collapse
Affiliation(s)
- Qixiang Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhu Zeng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co., Ltd, Nanjing, China
| | - Yueyan Su
- Jiangsu Renocell Biotech Co., Ltd, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co., Ltd, Nanjing, China
| | - Qi Ni
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yukai Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jingwen Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huanke Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- , No. 639 Longmian Avenue, Nanjing, Jiangsu, China.
| | - Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Tongjiaxiang #24, Nanjing, Jiangsu, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- , No. 639 Longmian Avenue, Nanjing, Jiangsu, China.
| |
Collapse
|
72
|
Hamidi SH, Etebar N, Rahimzadegan M, Zali A, Roodsari SR, Niknazar S. Mesenchymal stem cells and their derived exosomes in multiple sclerosis disease: from paper to practice. Mol Cell Biochem 2024; 479:1643-1671. [PMID: 38977625 DOI: 10.1007/s11010-024-05051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative, inflammatory, and demyelinating disease of the central nervous system (CNS). Current medicines are not sufficient to control the inflammation and progressive damage to the CNS that is known in MS. These drawbacks highlight the need for novel treatment options. Cell therapy can now be used to treat complex diseases when conventional therapies are ineffective. Mesenchymal stem cells (MSCs) are a diverse group of multipotential non-hematopoietic stromal cells which have immunomodulatory, neurogenesis, and remyelinating capacity. Their advantageous effects mainly rely on paracrine, cell-cell communication and differentiation properties which introduced them as excellent candidates for MS therapy. Exosomes, as one of the MSCs secretomes, have unique properties that make them highly promising candidates for innovative approach in regenerative medicine. This review discusses the therapeutic potential of MSCs and their derived exosomes as a novel treatment for MS, highlighting the differences between these two approaches.
Collapse
Affiliation(s)
- Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences Bachelor of Pharmacy, Bangalore, India
| | - Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Rahmati Roodsari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
73
|
Kerkis I, da Silva ÁP, Araldi RP. The impact of interleukin-6 (IL-6) and mesenchymal stem cell-derived IL-6 on neurological conditions. Front Immunol 2024; 15:1400533. [PMID: 39015561 PMCID: PMC11249726 DOI: 10.3389/fimmu.2024.1400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 07/18/2024] Open
Abstract
Interleukin-6 (IL-6) is a versatile cytokine crucial for immune response modulation, inflammation regulation, and various physiological processes in the body. Its wide-ranging functions underscore its importance in maintaining health. Dysregulated IL-6 is closely associated with many diseases, making it a key research and therapeutic target. Elevated IL-6 levels in the central nervous system worsen neuroinflammation in neurodegenerative diseases by activating microglia and astrocytes and releasing pro-inflammatory cytokines and neurotoxic molecules. Moreover, dysregulated IL-6 weakens the blood-brain barrier, exacerbating neuroinflammation and neuronal damage by allowing peripheral immune cells and inflammatory mediators to enter the brain. Mesenchymal stem cells (MSCs) show promise in modulating neuroinflammation by regulating IL-6 levels. They effectively suppress pro-inflammatory cytokines, including IL-6, while promoting anti-inflammatory factors. This therapeutic approach highlights the importance of targeting IL-6 and other inflammatory mediators to alleviate neuroinflammation and its adverse effects on neurological disorders. This review provides a comprehensive overview of IL-6's involvement in neurological disorders, examining endogenous IL-6 and IL-6 derived from MSCs. We explore IL-6's mechanisms affecting neuronal function, survival, and immune modulation in the central nervous system. Additionally, we discuss the potential of MSC-derived IL-6 in neuroregeneration and neuroprotection. By elucidating IL-6's interplay with neurological pathologies, this review offers insights into novel therapeutic strategies targeting IL-6 signaling pathways for neurological disorders.
Collapse
Affiliation(s)
- Irina Kerkis
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Álvaro Prieto da Silva
- Genetics Laboratory, Center of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - Rodrigo Pinheiro Araldi
- BioDecision Analytics Ltda., São Paulo, Brazil
- Post-graduation Program in Structural and Functional Biology, Paulista School of Medicine Escola Paulista de Medicina (EPM), Federal University of São Paulo Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
74
|
Barry M, Trivedi A, Miyazawa B, Vivona LR, Shimmin D, Pathipati P, Keane C, Cuschieri J, Pati S. Regulation of vascular endothelial integrity by mesenchymal stem cell extracellular vesicles after hemorrhagic shock and trauma. J Transl Med 2024; 22:588. [PMID: 38907252 PMCID: PMC11191310 DOI: 10.1186/s12967-024-05406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses the systemic effects of HS/T on multiorgan EOT. METHODS In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.
Collapse
Affiliation(s)
- Mark Barry
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Lindsay R Vivona
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - David Shimmin
- NanoCraft.US., 807 Aldo Ave, Suite-101, Santa Clara, CA, 95054, USA
| | - Praneeti Pathipati
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Callie Keane
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA
| | - Joseph Cuschieri
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Shibani Pati
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA.
- Department of Laboratory Medicine, University of California, San Francisco, 513 Parnassus Ave , San Francisco, CA, 94143, USA.
| |
Collapse
|
75
|
Gil S, Im KI, Kim N, Lee J, Na H, Min GJ, Cho SG. Mesenchymal stem cells preconditioned with a TLR5 agonist enhanced immunoregulatory effect through M2 macrophage polarization in a murine graft-versus-host disease model. Int J Med Sci 2024; 21:1649-1660. [PMID: 39006841 PMCID: PMC11241100 DOI: 10.7150/ijms.93121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a common complication following hematopoietic stem cell transplantation and can be life-threatening. Mesenchymal stem cells (MSCs), adult stem cells with immunomodulatory properties, have been used as therapeutic agents in a variety of ways and have demonstrated efficacy against acute GVHD (aGVHD); however, variability in MSC pro- and anti-inflammatory properties and the limitation that they only exhibit immunosuppressive effects at high levels of inflammation have prevented their widespread clinical use. The outcomes of GVHD treated with MSCs in the clinic have been variable, and the underlying mechanisms remain unclear. Therefore, the unique biological effects of Toll-like receptor 5 (TLR5) agonists led us to compare and validate the efficacy of MSCs primed with KMRC011, a TLR5 agonist. KMRC011 is a stimulant that induces the secretion of cytokines, which play an important role in immune regulation. In this study, we found that MSCs pretreated with KMRC011 increased the secretion of immunosuppressive cytokines indoleamine 2,3-dioxygenase (IDO) and cyclooxygenase-2 (COX2) and increased the expression of M2 macrophage polarizing cytokines macrophage colony-stimulating factor (M-CSF) and interleukin 10 (IL-10) in vitro. We investigated the immunosuppressive effects of TLR5 agonist (KMRC011)-primed MSCs on lymphocytes and their preventive and therapeutic effects on an in vivo mouse aGVHD model. In vitro experiments showed that KMRC011-primed MSCs had enhanced immunosuppressive effects on lymphocyte proliferation. In vivo experiments showed that KMRC011-primed MSCs ameliorated GVHD severity in a mouse model of induced GVHD disease. Finally, macrophages harvested from the spleens of mice treated with KMRC011-primed MSCs showed a significant increase in the anti-inflammatory M2 phenotype. Overall, the results suggest that KMRC011-primed MSCs attenuated GVHD severity in mice by polarizing macrophages to the M2 phenotype and increasing the proportion of anti-inflammatory cells, opening new horizons for GVHD treatment.
Collapse
Affiliation(s)
- Sojin Gil
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseok Lee
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyemin Na
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
76
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
77
|
Li J, He S, Yang H, Zhang L, Xiao J, Liang C, Liu S. The Main Mechanisms of Mesenchymal Stem Cell-Based Treatments against COVID-19. Tissue Eng Regen Med 2024; 21:545-556. [PMID: 38573476 PMCID: PMC11087407 DOI: 10.1007/s13770-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.
Collapse
Affiliation(s)
- Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lizeai Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jie Xiao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chaoyi Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
78
|
Mello DB, Mesquita FCP, Silva dos Santos D, Asensi KD, Dias ML, Campos de Carvalho AC, Goldenberg RCDS, Kasai-Brunswick TH. Mesenchymal Stromal Cell-Based Products: Challenges and Clinical Therapeutic Options. Int J Mol Sci 2024; 25:6063. [PMID: 38892249 PMCID: PMC11173248 DOI: 10.3390/ijms25116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Debora B. Mello
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
| | | | - Danúbia Silva dos Santos
- Center of Cellular Technology, National Institute of Cardiology, INC, Rio de Janeiro 22240-002, Brazil;
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
| | - Karina Dutra Asensi
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Marlon Lemos Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Regina Coeli dos Santos Goldenberg
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (D.B.M.); (A.C.C.d.C.)
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.D.A.); (R.C.d.S.G.)
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
79
|
Cho WJ, Pulimamidi VK, Mittal SK, Chauhan SK. Mesenchymal stromal cells protect tissues from Th1 immune responses via IL-11 secretion. FASEB J 2024; 38:e23683. [PMID: 38758184 PMCID: PMC11149610 DOI: 10.1096/fj.202400078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) have been shown to modulate the function of various subsets of T cells such as naïve CD4+ T cells and IFNγ+CD4+ Th1 cells; however, mechanisms underlying this regulation have not been fully deciphered. Our in vitro culture assays demonstrate that MSCs suppress the activation and function of CD4+ T cells by secreting interleukin 11, and neutralization of IL11 abrogates MSC-mediated suppression of CD4+ T cell function. Moreover, delayed-type, exogenous supplementation of IL11 significantly suppressed IFNγ+ expression by Th1 cells. Th1 and CD8+ cells play central roles in T cell-mediated tissue damage. Using a murine model of hypersensitivity response to study T cell-mediated tissue damage, we show that silencing IL11 in MSCs significantly abates the capacity of MSCs to suppress the generation of IFNγ-secreting CD4+ and CD8+ cells, failing to prevent T cell-mediated tissue inflammation and tissue damage.
Collapse
Affiliation(s)
- WonKyung J. Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Vinay K. Pulimamidi
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Sharad K. Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| |
Collapse
|
80
|
Hughes AM, Kuek V, Oommen J, Kotecha RS, Cheung LC. Murine bone-derived mesenchymal stem cells undergo molecular changes after a single passage in culture. Sci Rep 2024; 14:12396. [PMID: 38811646 PMCID: PMC11137146 DOI: 10.1038/s41598-024-63009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The rarity of the mesenchymal stem cell (MSC) population poses a significant challenge for MSC research. Therefore, these cells are often expanded in vitro, prior to use. However, long-term culture has been shown to alter primary MSC properties. Additionally, early passage primary MSCs in culture are often assumed to represent the primary MSC population in situ, however, little research has been done to support this. Here, we compared the transcriptomic profiles of murine MSCs freshly isolated from the bone marrow to those that had been expanded in culture for 10 days. We identified that a single passage in culture extensively altered MSC molecular signatures associated with cell cycling, differentiation and immune response. These findings indicate the critical importance of the MSC source, highlighting the need for optimization of culture conditions to minimize the impact on MSC biology and a transition towards in vivo methodologies for the study of MSC function.
Collapse
Affiliation(s)
- Anastasia M Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Joyce Oommen
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA, 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, 6009, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia.
- Curtin Medical School, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia.
| |
Collapse
|
81
|
de Oliveira AT, Braga ARF, Miranda JRF, Fantinato-Neto P, Ambrósio CE. Mesenchymal stem cells in animal reproduction: sources, uses and scenario. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e002524. [PMID: 38737577 PMCID: PMC11087005 DOI: 10.29374/2527-2179.bjvm002524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Studies regarding mesenchymal stem cells turned up in the 1960's and this cell type created a great number of questions about its functions and applicability in science and medicine. When used with therapeutic intent, these cells present an inclination to migrate to sites of injury, inflammation or disease, where they secrete bioactive factors that stimulates the synthesis of new tissue. In this context, studies using rodents reported that MSCs promoted positive effects in the ovarian function in mice with premature aging of follicular reserve. In female bovines, experimental stem cell-based therapies have been used to either generate new oocytes with in vitro quality or stimulate such action in vivo. It is also reported, that the intraovarian application of mesenchymal stem cells generates a greater production of embryos in vitro and the production of early and expanded blastocysts. Additionally, analysis of ovarian tissue in animal subjected to treatment showed an increase in the number of developing follicles. Nevertheless, the treatments involving stem cells with different modes of application, different sources and different species were able to act on the hormonal, tissue, cellular and metabolic levels, generating positive results in the recovery and improvement of ovarian functions.
Collapse
Affiliation(s)
- Andrei Takeshita de Oliveira
- Undergraduate in Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP). Pirassununga, SP, Brazil.
| | - Antonio Rodrigues Ferreira Braga
- Undergraduate in Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP). Pirassununga, SP, Brazil.
| | - José Ricardo Fonseca Miranda
- Undergraduate in Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP). Pirassununga, SP, Brazil.
| | - Paulo Fantinato-Neto
- Veterinarian, DSc., Programa de Pós-Graduação em Biociência Animal, FZEA, USP, Pirassununga, SP, Brazil
| | - Carlos Eduardo Ambrósio
- Veterinarian, DSc., Departamento de Medicina Veterinária, FZEA, USP, Pirassununga, SP, Brazil
| |
Collapse
|
82
|
Tang J, Wang X, Lin X, Wu C. Mesenchymal stem cell-derived extracellular vesicles: a regulator and carrier for targeting bone-related diseases. Cell Death Discov 2024; 10:212. [PMID: 38697996 PMCID: PMC11066013 DOI: 10.1038/s41420-024-01973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The escalating threat of bone-related diseases poses a significant challenge to human health. Mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs), as inherent cell-secreted natural products, have emerged as promising treatments for bone-related diseases. Leveraging outstanding features such as high biocompatibility, low immunogenicity, superior biological barrier penetration, and extended circulating half-life, MSC-EVs serve as potent carriers for microRNAs (miRNAs), long no-code RNAs (lncRNAs), and other biomolecules. These cargo molecules play pivotal roles in orchestrating bone metabolism and vascularity through diverse mechanisms, thereby contributing to the amelioration of bone diseases. Additionally, engineering modifications enhance the bone-targeting ability of MSC-EVs, mitigating systemic side effects and bolstering their clinical translational potential. This review comprehensively explores the mechanisms through which MSC-EVs regulate bone-related disease progression. It delves into the therapeutic potential of MSC-EVs as adept drug carriers, augmented by engineered modification strategies tailored for osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis, and osteosarcoma. In conclusion, the exceptional promise exhibited by MSC-EVs positions them as an excellent solution with considerable translational applications in clinical orthopedics.
Collapse
Affiliation(s)
- Jiandong Tang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xiangyu Wang
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Xu Lin
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China
| | - Chao Wu
- Orthopaedics Center, Zigong Fourth People's Hospital, Tan mu lin Street 19#, Zigong, 643099, Sichuan Province, China.
| |
Collapse
|
83
|
Barry M, Trivedi A, Miyazawa B, Vivona L, Shimmin D, Pathipati P, Keane C, Cuschieri J, Pati S. Regulation of Vascular Endothelial Integrity by Mesenchymal Stem Cell Extracellular Vesicles after Hemorrhagic Shock and Trauma. RESEARCH SQUARE 2024:rs.3.rs-4284907. [PMID: 38746312 PMCID: PMC11092837 DOI: 10.21203/rs.3.rs-4284907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND Patients with hemorrhagic shock and trauma (HS/T) are vulnerable to the endotheliopathy of trauma (EOT), characterized by vascular barrier dysfunction, inflammation, and coagulopathy. Cellular therapies such as mesenchymal stem cells (MSCs) and MSC extracellular vesicles (EVs) have been proposed as potential therapies targeting the EOT. In this study we investigated the effects of MSCs and MSC EVs on endothelial and epithelial barrier integrity in vitro and in vivo in a mouse model of HS/T. This study addresses systemic effects of HS/T on multiorgan EOT in HS/T model. METHODS In vitro, pulmonary endothelial cell (PEC) and Caco-2 intestinal epithelial cell monolayers were treated with control media, MSC conditioned media (CM), or MSC EVs in varying doses and subjected to a thrombin or hydrogen peroxide (H2O2) challenge, respectively. Monolayer permeability was evaluated with a cell impedance assay, and intercellular junction integrity was evaluated with immunofluorescent staining. In vivo, a mouse model of HS/T was used to evaluate the effects of lactated Ringer's (LR), MSCs, and MSC EVs on endothelial and epithelial intercellular junctions in the lung and small intestine as well as on plasma inflammatory biomarkers. RESULTS MSC EVs and MSC CM attenuated permeability and preserved intercellular junctions of the PEC monolayer in vitro, whereas only MSC CM was protective of the Caco-2 epithelial monolayer. In vivo, both MSC EVs and MSCs mitigated the loss of endothelial adherens junctions in the lung and small intestine, though only MSCs had a protective effect on epithelial tight junctions in the lung. Several plasma biomarkers including MMP8 and VEGF were elevated in LR- and EV-treated but not MSC-treated mice. CONCLUSIONS In conclusion, MSC EVs could be a potential cell-free therapy targeting endotheliopathy after HS/T via preservation of the vascular endothelial barrier in multiple organs early after injury. Further research is needed to better understand the immunomodulatory effects of these products following HS/T and to move toward translating these therapies into clinical studies.
Collapse
|
84
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF, Lian Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev 2024; 44:919-938. [PMID: 38095832 DOI: 10.1002/med.22002] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/22/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.
Collapse
Affiliation(s)
- Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Zhai
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chung Tony Li
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Cardiology, Cardiac and Vascular Center, Shenzhen Hong Kong University Hospital, Shenzhen, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
85
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
86
|
Zhang X, Kuang Q, Xu J, Lin Q, Chi H, Yu D. MSC-Based Cell Therapy in Neurological Diseases: A Concise Review of the Literature in Pre-Clinical and Clinical Research. Biomolecules 2024; 14:538. [PMID: 38785945 PMCID: PMC11117494 DOI: 10.3390/biom14050538] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-renew and multi-directional differentiation potential. Exogenously administered MSCs can migrate to damaged tissue sites and participate in the repair of damaged tissues. A large number of pre-clinical studies and clinical trials have demonstrated that MSCs have the potential to treat the abnormalities of congenital nervous system and neurodegenerative diseases. Therefore, MSCs hold great promise in the treatment of neurological diseases. Here, we summarize and highlight current progress in the understanding of the underlying mechanisms and strategies of MSC application in neurological diseases.
Collapse
Affiliation(s)
- Xiaorui Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qihong Kuang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguang Xu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Lin
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Chi
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daojin Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
87
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
88
|
Pan W, Li S, Li K, Zhou P. Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Potential in Organ Transplantation. Stem Cells Int 2024; 2024:2043550. [PMID: 38708382 PMCID: PMC11068458 DOI: 10.1155/2024/2043550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
At present, organ transplantation remains the most appropriate therapy for patients with end-stage organ failure. However, the field of organ transplantation is still facing many challenges, including the shortage of organ donors, graft function damage caused by organ metastasis, and antibody-mediated immune rejection. It is therefore urgently necessary to find new and effective treatment. Stem cell therapy has been regarded as a "regenerative medicine technology." Mesenchymal stem cells (MSCs), as the most common source of cells for stem cell therapy, play an important role in regulating innate and adaptive immune responses and have been widely used in clinical trials for the treatment of autoimmune and inflammatory diseases. Increasing evidence has shown that MSCs mainly rely on paracrine pathways to exert immunomodulatory functions. In addition, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are the main components of paracrine substances of MSCs. Herein, an overview of the application of the function of MSCs and MSC-EVs in organ transplantation will focus on the progress reported in recent experimental and clinical findings and explore their uses for graft preconditioning and recipient immune tolerance regulation. Additionally, the limitations on the use of MSC and MSC-EVs are also discussed, covering the isolation of exosomes and preservation techniques. Finally, the opportunities and challenges for translating MSCs and MSC-EVs into clinical practice of organ transplantation are also evaluated.
Collapse
Affiliation(s)
- Wennuo Pan
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shaohan Li
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
89
|
Saba E, Sandhu MA, Pelagalli A. Canine Mesenchymal Stromal Cell Exosomes: State-of-the-Art Characterization, Functional Analysis and Applications in Various Diseases. Vet Sci 2024; 11:187. [PMID: 38787159 PMCID: PMC11126113 DOI: 10.3390/vetsci11050187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Canine mesenchymal stromal cells (MSCs) possess the capacity to differentiate into a variety of cell types and secrete a wide range of bioactive molecules in the form of soluble and membrane-bound exosomes. Extracellular vesicles/exosomes are nano-sized vesicles that carry proteins, lipids, and nucleic acids and can modulate recipient cell response in various ways. The process of exosome formation is a physiological interaction between cells. With a significant increase in basic research over the last two decades, there has been a tremendous expansion in research in MSC exosomes and their potential applications in canine disease models. The characterization of exosomes has demonstrated considerable variations in terms of source, culture conditions of MSCs, and the inclusion of fetal bovine serum or platelet lysate in the cell cultures. Furthermore, the amalgamation of exosomes with various nano-materials has become a novel approach to the fabrication of nano-exosomes. The fabrication of exosomes necessitates the elimination of extrinsic proteins, thus enhancing their potential therapeutic uses in a variety of disease models, including spinal cord injury, osteoarthritis, and inflammatory bowel disease. This review summarizes current knowledge on the characteristics, biological functions, and clinical relevance of canine MSC exosomes and their potential use in human and canine research. As discussed, exosomes have the ability to control lethal vertebrate diseases by administration directly at the injury site or through specific drug delivery mechanisms.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| |
Collapse
|
90
|
Mohammadzadeh A, Lahouty M, Charkhian H, Ghafour AA, Moazzendizaji S, Rezaei J, Alipour S, Irannejad VS, Ansari MHK. Human umbilical cord mesenchymal stem cell-derived exosomes alleviate the severity of experimental autoimmune encephalomyelitis and enhance lag-3 expression on foxp3 + CD4 + T cells. Mol Biol Rep 2024; 51:522. [PMID: 38627337 DOI: 10.1007/s11033-024-09433-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex autoimmune disease that affects the central nervous system, causing inflammation, demyelination, and neurodegeneration. Understanding the dysregulation of Tregs, dynamic cells involved in autoimmunity, is crucial in comprehending diseases like MS. However, the role of lymphocyte-activation gene 3 (Lag-3) in MS remains unclear. METHODS In this study, we explore the potential of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSCs-Exs) as an immune modulator in experimental autoimmune encephalomyelitis (EAE), a model for MS. RESULTS Using flow cytometry, our research findings indicate that groups receiving treatment with hUMSC-Exs revealed a significant increase in Lag-3 expression on Foxp3 + CD4 + T cells. Furthermore, cell proliferation conducted on spleen tissue samples from EAE mice using the CFSE method exposed to hUMSC-Exs yielded relevant results. CONCLUSIONS These results suggest that hUMSCs-Exs could be a promising anti-inflammatory agent to regulate T-cell responses in EAE and other autoimmune diseases. However, further research is necessary to fully understand the underlying mechanisms and Lag-3's precise role in these conditions.
Collapse
Affiliation(s)
- Adel Mohammadzadeh
- Department of Immunology and Genetics, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Charkhian
- Young Researchers Club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Department of Cancer Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Arash Adamnejad Ghafour
- Department of Cancer Genetics, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih, Istanbul, Türkiye, Turkey
| | - Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jafar Rezaei
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
91
|
Wang Q, Li Y, Yuan H, Peng L, Dai Z, Sun Y, Liu R, Li W, Li J, Zhu C. Hypoxia preconditioning of human amniotic mesenchymal stem cells enhances proliferation and migration and promotes their homing via the HGF/C-MET signaling axis to augment the repair of acute liver failure. Tissue Cell 2024; 87:102326. [PMID: 38442547 DOI: 10.1016/j.tice.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Transplantation of mesenchymal stem cells (MSCs) is a newly developed strategy for treating acute liver failure (ALF). Nonetheless, the low survival rate of MSCs after transplantation and their poor homing to damaged tissues limit the clinical application of MSCs. The research assessed whether hypoxic preconditioning (HPC) can improve the biological activity of human amniotic mesenchymal stem cells (hA-MSCs), promote their homing ability to the liver of mice with ALF, and influence liver tissue repair. METHODS Flow cytometry, CCK8, Transwell, and Western blotting assays were conducted to assess the effects of hypoxic preconditioning on the phenotype, proliferation, and migration of hA-MSCs and the changes in the c-Met and CXCR4 gene expression levels were studied. To evaluate the effects of the transplantation of hypoxic preconditioning of hA-MSCs on the homing and repair of D-galactosamine (D-GalN)/LPS-induced ALF, the mechanism was elucidated by adding c-Met, CXCR4-specific blockers (SU11274 and AMD3100). RESULTS After hypoxia pretreatment (1% oxygen volume fraction), hA-MSCs maintained the morphological characteristics of adherence and vortex colony growth and showed high CD44, CD90, and CD105 and low CD31, CD34, and CD45 expression levels. Hypoxic preconditioning of hA-MSCs significantly increased their proliferation and migration and highly expressed the c-Met and CXCR4 genes. In vivo and in vitro, this migration-promoting effect was suppressed by the c-Met specific blocker SU11274. In the acute liver failure mouse model, the HGF expression level was considerably elevated in the liver than that in the serum, lungs and kidneys. The transplantation of hypoxic preconditioned hA-MSCs introduced a remarkable improvement in the liver function and survival rate of mice with ALF and enhanced the anti-apoptosis ability of liver cells. The anti-apoptotic enhancing effect of hypoxic preconditioning was suppressed by the c-Met specific blocker SU11274. Hypoxic hA-MSCs administration was observed to have considerably increased the fluorescent cells in the liver than that recorded after administering normal oxygen-hA-MSCs. The number of hepatic fluorescent cells decreased remarkably after adding the c-Met inhibitor SU11274, compared to that recorded after hypoxic pretreatment, whereas the effect of c-Met inhibitor SU11274 on normal oxygen-hA-MSCs was not significant. CONCLUSIONS Hypoxic preconditioning depicted no impact on the morphology and phenotype features of the human amniotic mesenchymal stem cells, but it can promote their proliferation, migration, anti-apoptotic effect, and homing rate and improve the repair of acute liver failure, which might be mediated by the HGF/c-Met signaling axis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zixing Dai
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Sun
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China.
| |
Collapse
|
92
|
Sirpilla O, Sakemura RL, Hefazi M, Huynh TN, Can I, Girsch JH, Tapper EE, Cox MJ, Schick KJ, Manriquez-Roman C, Yun K, Stewart CM, Ogbodo EJ, Kimball BL, Mai LK, Gutierrez-Ruiz OL, Rodriguez ML, Gluscevic M, Larson DP, Abel AM, Wierson WA, Olivier G, Siegler EL, Kenderian SS. Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression. Nat Biomed Eng 2024; 8:443-460. [PMID: 38561490 PMCID: PMC12080371 DOI: 10.1038/s41551-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.
Collapse
Affiliation(s)
- Olivia Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Truc N Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - James H Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erin E Tapper
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kendall J Schick
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Claudia Manriquez-Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Ekene J Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Long K Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Omar L Gutierrez-Ruiz
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Makena L Rodriguez
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel P Larson
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Alex M Abel
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Wesley A Wierson
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Gloria Olivier
- Department of Business Development, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
93
|
Poomani MS, Regurajan R, Perumal R, Ramachandran A, Mariappan I, Muthan K, Subramanian V. Differentiation of placenta-derived MSCs cultured in human platelet lysate: a xenofree supplement. 3 Biotech 2024; 14:116. [PMID: 38524240 PMCID: PMC10959853 DOI: 10.1007/s13205-024-03966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
In the last few decades, mesenchymal stem cells (MSCs)-based regenerative therapies in clinical applications have gradually become a hot topic due to their long-term self-renewal and multilineage differentiation ability. In this scenario, placenta (p) has been considered as a good source of MSCs. As a tissue of fetal origin with abundant number of stem cells compared to other sources, their non-invasive acquisition, strong immunosuppression, and lack of ethical concerns make placenta an indispensable source of MSC in stem cell research and therapy. The mesenchymal stem cells were derived from human term placenta (p-MSCs) in xenofree condition using platelet lysate (PL) as a suitable alternative to fetal bovine serum (FBS). Upon isolation, p-MSCs showed plastic adherence with spindle-shaped, fibroblast-like morphology under microscope. p-MSCs flourished well in PL-containing media. Immunophenotyping showed classical MSC markers (> 90%) and lack expression of hematopoietic and HLA-DR (< 1%). Surprisingly, differentiation study showed differentiation of p-MSCs to mature adipocytes in both induced cells and control (spontaneous differentiation), as observed via oil red staining. This is in line with gene expression data where both control and induced cells were positive for visfatin and leptin. Thus, we propose that p-MSCs can be used for clinical applications in the treatment of various chronic and degenerative diseases.
Collapse
Affiliation(s)
- Merlin Sobia Poomani
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Rathika Regurajan
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | | | | | - Iyyadurai Mariappan
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Krishnaveni Muthan
- Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| | - Venkatesh Subramanian
- Genetic Engineering and Regenerative Biology Lab, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012 India
| |
Collapse
|
94
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
95
|
Lin WT, Wu HH, Lee CW, Chen YF, Huang L, Hui-Chun Ho J, Kuang-Sheng Lee O. Modulation of experimental acute lung injury by exosomal miR-7704 from mesenchymal stromal cells acts through M2 macrophage polarization. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102102. [PMID: 38222299 PMCID: PMC10787251 DOI: 10.1016/j.omtn.2023.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Acute lung injury (ALI) is a life-threatening condition with limited treatment options. The pathogenesis of ALI involves macrophage-mediated disruption and subsequent repair of the alveolar barriers, which ultimately results in lung damage and regeneration, highlighting the pivotal role of macrophage polarization in ALI. Although exosomes derived from mesenchymal stromal cells have been established as influential modulators of macrophage polarization, the specific role of exosomal microRNAs (miRNAs) remains underexplored. This study aimed to elucidate the role of specific exosomal miRNAs in driving macrophage polarization, thereby providing a reference for developing novel therapeutic interventions for ALI. We found that miR-7704 is the most abundant and efficacious miRNA for promoting the switch to the M2 phenotype in macrophages. Mechanistically, we determined that miR-7704 stimulates M2 polarization by inhibiting the MyD88/STAT1 signaling pathway. Notably, intra-tracheal delivery of miR-7704 alone in a lipopolysaccharide-induced murine ALI model significantly drove M2 polarization in lung macrophages and remarkably restored pulmonary function, thus increasing survival. Our findings highlight miR-7704 as a valuable tool for treating ALI by driving the beneficial M2 polarization of macrophages. Our findings pave the way for deeper exploration into the therapeutic potential of exosomal miRNAs in inflammatory lung diseases.
Collapse
Affiliation(s)
- Wei-Ting Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan, R.O.C
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Hao-Hsiang Wu
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan, R.O.C
| | - Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan, R.O.C
| | | | - Jennifer Hui-Chun Ho
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Research, Eye Center, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan, R.O.C
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
96
|
Choi YJ, Kim WR, Kim DH, Kim JH, Yoo JH. Human umbilical cord/placenta mesenchymal stem cell conditioned medium attenuates intestinal fibrosis in vivo and in vitro. Stem Cell Res Ther 2024; 15:69. [PMID: 38454492 PMCID: PMC10921617 DOI: 10.1186/s13287-024-03678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND A significant unmet need in inflammatory bowel disease is the lack of anti-fibrotic agents targeting intestinal fibrosis. This study aimed to investigate the anti-fibrogenic properties and mechanisms of the conditioned medium (CM) from human umbilical cord/placenta-derived mesenchymal stem cells (UC/PL-MSC-CM) in a murine intestinal fibrosis model and human primary intestinal myofibroblasts (HIMFs). METHODS UC/PL-MSC-CM was concentrated 15-fold using a 3 kDa cut-off filter. C57BL/6 mice aged 7 weeks old were randomly assigned to one of four groups: (1) control, (2) dextran sulfate sodium (DSS), (3) DSS + CM (late-phase treatment), and (4) DSS + CM (early-phase treatment). Chronic DSS colitis and intestinal fibrosis was induced by three cycles of DSS administration. One DSS cycle consisted of 7 days of oral DSS administration (1.75%, 2%, and 2.5% DSS), followed by 14 days of drinking water. UC/PL-MSC-CM was intraperitoneally administered in the late phase (from day 50, 10 times) or early phase (from day 29, 10 times) of DSS cycles. HIMFs were treated with TGF-β1 and co-treated with UC/PL-MSC-CM (10% of culture media) in the cellular model. RESULTS In the animal study, UC/PL-MSC-CM reduced submucosa/muscularis propria thickness and collagen deposition, which improved intestinal fibrosis in chronic DSS colitis. The UC/PL-MSC-CM significantly reduced the expressions of procollagen1A1 and α-smooth muscle actin, which DSS significantly elevated. The anti-fibrogenic effect was more apparent in the UC-MSC-CM or early-phase treatment model. The UC/PL-MSC-CM reduced procollagen1A1, fibronectin, and α-smooth muscle actin expression in HIMFs in the cellular model. The UC/PL-MSC-CM downregulated fibrogenesis by suppressing RhoA, MRTF-A, and SRF expression. CONCLUSIONS Human UC/PL-MSC-CM inhibits TGF-β1-induced fibrogenic activation in HIMFs by blocking the Rho/MRTF/SRF pathway and chronic DSS colitis-induced intestinal fibrosis. Thus, it may be regarded as a novel candidate for stem cell-based therapy of intestinal fibrosis.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea
| | - Woo Ram Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea
| | - Duk Hwan Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
| | - Jee Hyun Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
| | - Jun Hwan Yoo
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea.
| |
Collapse
|
97
|
Du X, Kong D, Guo R, Liu B, He J, Zhang J, Amponsah AE, Cui H, Ma J. Combined transplantation of hiPSC-NSC and hMSC ameliorated neuroinflammation and promoted neuroregeneration in acute spinal cord injury. Stem Cell Res Ther 2024; 15:67. [PMID: 38444003 PMCID: PMC10916262 DOI: 10.1186/s13287-024-03655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious clinical condition that has pathological changes such as increased neuroinflammation and nerve tissue damage, which eventually manifests as fibrosis of the injured segment and the development of a spinal cord cavity leading to loss of function. Cell-based therapy, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are promising treatment strategies for spinal cord injury via immunological regulation and neural replacement respectively. However, therapeutic efficacy is rare reported on combined transplantation of MSC and NSC in acute mice spinal cord injury even the potential reinforcement might be foreseen. Therefore, this study was conducted to investigate the safety and efficacy of co-transplanting of MSC and NSC sheets into an SCI mice model on the locomotor function and pathological changes of injured spinal cord. METHODS To evaluate the therapeutic effects of combination cells, acute SCI mice model were established and combined transplantation of hiPSC-NSCs and hMSCs into the lesion site immediately after the injury. Basso mouse scale was used to perform the open-field tests of hind limb motor function at days post-operation (dpo) 1, 3, 5, and 7 after SCI and every week after surgery. Spinal cord and serum samples were collected at dpo 7, 14, and 28 to detect inflammatory and neurotrophic factors. Hematoxylin-eosin (H&E) staining, masson staining and transmission electron microscopy were used to evaluate the morphological changes, fibrosis area and ultrastructure of the spinal cord. RESULT M&N transplantation reduced fibrosis formation and the inflammation level while promoting the secretion of nerve growth factor and brain-derived neurotrophic factor. We observed significant reduction in damaged tissue and cavity area, with dramatic improvement in the M&N group. Compared with the Con group, the M&N group exhibited significantly improved behaviors, particularly limb coordination. CONCLUSION Combined transplantation of hiPSC-NSC and hMSC could significantly ameliorate neuroinflammation, promote neuroregeneration, and decrease spinal fibrosis degree in safe and effective pattern, which would be indicated as a novel potential cell treatment option.
Collapse
Affiliation(s)
- Xiaofeng Du
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Boxin Liu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Huixian Cui
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Jun Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
98
|
Herger N, Heggli I, Mengis T, Devan J, Arpesella L, Brunner F, Distler O, Dudli S. Impacts of priming on distinct immunosuppressive mechanisms of mesenchymal stromal cells under translationally relevant conditions. Stem Cell Res Ther 2024; 15:65. [PMID: 38443999 PMCID: PMC10916130 DOI: 10.1186/s13287-024-03677-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The multimodal properties of mesenchymal stromal cells (MSCs), particularly their ability to modulate immune responses is of high interest in translational research. Pro-inflammatory, hypoxic, and 3D culture priming are promising and often used strategies to improve the immunosuppressive potency of MSCs, but the underlying mechanisms are not well understood. Therefore, the aims of this study were (i) to compare the effects of pro-inflammatory, hypoxic, and 3D culture priming on the in vitro immunosuppressive potential of MSCs, (ii) to assess if immunosuppressive priming effects are temporally preserved under standard and translationally relevant culture conditions, and (iii) to investigate if the three priming strategies engage the same immunosuppressive mechanisms. METHODS Functional in vitro T cell suppressive potency measurements were conducted to assess the impact of pro-inflammatory, hypoxic, and 3D culture priming on the immunosuppressive potential of human bone marrow-derived MSCs. Primed MSCs were either cultured under standard cell culture conditions or translationally relevant culture conditions, and their transcriptomic adaptations were monitored over time. Next-generation sequencing was performed to assess if different priming strategies activate distinct immunosuppressive mechanisms. RESULTS (i) Pro-inflammatory, hypoxic, and 3D culture priming induced profound transcriptomic changes in MSCs resulting in a significantly enhanced T cell suppressive potential of pro-inflammatory and 3D culture primed MSCs. (ii) Priming effects rapidly faded under standard cell culture conditions but were partially preserved under translationally relevant conditions. Interestingly, continuous 3D culture priming of MSCs maintained the immunosuppressive potency of MSCs. (iii) Next-generation sequencing revealed that priming strategy-specific differentially expressed genes are involved in the T cell suppressive capacity of MSCs, indicating that different priming strategies engage distinct immunosuppressive mechanisms. CONCLUSION Priming can be a useful approach to improve the immunosuppressive potency of MSCs. However, future studies involving primed MSCs should carefully consider the significant impact of translationally relevant conditions on the preservation of priming effects. Continuous 3D culture could act as a functionalized formulation, supporting the administration of MSC spheroids for a sustainably improved immunosuppressive potency.
Collapse
Affiliation(s)
- Nick Herger
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland.
| | - Irina Heggli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Tamara Mengis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Jan Devan
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Leonardo Arpesella
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Florian Brunner
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Dudli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| |
Collapse
|
99
|
Kim J, Kim J, Kim D, Bello AB, Kim BJ, Cha B, Lee S. Therapeutic potential of mesenchymal stem cells from human iPSC-derived teratomas for osteochondral defect regeneration. Bioeng Transl Med 2024; 9:e10629. [PMID: 38435815 PMCID: PMC10905541 DOI: 10.1002/btm2.10629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
Human induced pluripotent stem cells (iPSCs) hold great promise for personalized medicine, as they can be differentiated into specific cell types, especially mesenchymal stem cells (MSCs). Therefore, our study sought to assess the feasibility of deriving MSCs from teratomas generated from human iPSCs. Teratomas serve as a model to mimic multilineage human development, thus enriching specific somatic progenitors and stem cells. Here, we discovered a small, condensed mass of MSCs within iPSC-generated teratomas. Afterward, we successfully isolated MSCs from this condensed mass, which was a byproduct of teratoma development. To evaluate the characteristics and cell behaviors of iPSC-derived MSCs (iPSC-MSCs), we conducted comprehensive assessments using qPCR, immunophenotype analysis, and cell proliferation-related assays. Remarkably, iPSC-MSCs exhibited an immunophenotype resembling that of conventional MSCs, and they displayed robust proliferative capabilities, similar to those of higher pluripotent stem cell-derived MSCs. Furthermore, iPSC-MSCs demonstrated the ability to differentiate into multiple lineages in vitro. Finally, we evaluated the therapeutic potential of iPSC-MSCs using an osteochondral defect model. Our findings demonstrated that teratomas are a promising source for the isolation of condensed MSCs. More importantly, our results suggest that iPSC-MSCs derived from teratomas possess the capacity for tissue regeneration, highlighting their promise for future therapeutic applications.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biomedical TechnologyDongguk UniversityGoyang‐siRepublic of Korea
| | - Jin‐Su Kim
- Department of Biomedical ScienceCHA UniversitySeongnam‐siRepublic of Korea
- Biomaterials Research CenterCELLINBIO Co., Ltd.Suwon‐siGyeonggi‐doRepublic of Korea
| | - Dohyun Kim
- Department of Biomedical TechnologyDongguk UniversityGoyang‐siRepublic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical TechnologyDongguk UniversityGoyang‐siRepublic of Korea
- Department of Integrative EngineeringChung‐Ang UniversitySeoulRepublic of Korea
| | - Byoung Ju Kim
- Department of Rearch & Development teamATEMsSeoulRepublic of Korea
| | - Byung‐Hyun Cha
- Division of Biomedical ConvergenceCollege of Biomedical Science, Kangwon National UniversityChuncheon‐siRepublic of Korea
| | - Soo‐Hong Lee
- Department of Biomedical TechnologyDongguk UniversityGoyang‐siRepublic of Korea
| |
Collapse
|
100
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|