51
|
Oliver DMA, Reddy PH. Molecular Basis of Alzheimer's Disease: Focus on Mitochondria. J Alzheimers Dis 2020; 72:S95-S116. [PMID: 30932888 DOI: 10.3233/jad-190048] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterized by memory loss and multiple cognitive impairments. With the increased aging population, AD is a major health concern in society. Morphological and pathological studies revealed that AD is associated with the loss of synapses, defective mitochondria, and the proliferation of reactive astrocytes and microglia, in addition to the presence amyloid-β and phosphorylated tau in learning and memory regions of the brain in AD patients. AD occurs in two forms: early-onset familial and late-onset sporadic. Genetic mutations in APP, PS1, and PS2 loci cause familial AD. Multiple factors are reported to be involved in late-onset AD, including APOE4 genotype, polymorphisms in several gene loci and type 2 diabetes, traumatic brain injury, stroke, and age-related factors, including increased reactive oxygen species production and dysfunction in mitochondria. It is widely accepted that synaptic damage and mitochondrial dysfunction are early events in disease process. The purpose of this article is to highlight molecular triggers to the disease process. This article also reviews factors, including age, gender, lifestyle, epigenetic factors, and type 2 diabetes, that are involved in late-onset AD. This article also discusses recent developments in research of mitochondrial structure, function, physiology, dynamics, biogenesis, mitophagy, and mitochondrial DNA changes in healthy and diseased states.
Collapse
Affiliation(s)
- Darryll M A Oliver
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, United States
| |
Collapse
|
52
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
53
|
Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 2020; 319:F1105-F1116. [PMID: 33073587 DOI: 10.1152/ajprenal.00285.2020] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) has been widely recognized as an important risk factor for the occurrence and development of chronic kidney disease (CKD). Even milder AKI has adverse consequences and could progress to renal fibrosis, which is the ultimate common pathway for various terminal kidney diseases. Thus, it is urgent to develop a strategy to hinder the transition from AKI to CKD. Some mechanisms of the AKI-to-CKD transition have been revealed, such as nephron loss, cell cycle arrest, persistent inflammation, endothelial injury with vascular rarefaction, and epigenetic changes. Previous studies have elucidated the pivotal role of mitochondria in acute injuries and demonstrated that the fitness of this organelle is a major determinant in both the pathogenesis and recovery of organ function. Recent research has suggested that damage to mitochondrial function in early AKI is a crucial factor leading to tubular injury and persistent renal insufficiency. Dysregulation of mitochondrial homeostasis, alterations in bioenergetics, and organelle stress cross talk contribute to the AKI-to-CKD transition. In this review, we focus on the pathophysiology of mitochondria in renal recovery after AKI and progression to CKD, confirming that targeting mitochondria represents a potentially effective therapeutic strategy for the progression of AKI to CKD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
54
|
Tse BC, Dvoriantchikova G, Tao W, Gallo RA, Lee JY, Ivanov D, Tse DT, Pelaez D. Mitochondrial targeted therapy with elamipretide (MTP-131) as an adjunct to tumor necrosis factor inhibition for traumatic optic neuropathy in the acute setting. Exp Eye Res 2020; 199:108178. [PMID: 32758490 PMCID: PMC7554259 DOI: 10.1016/j.exer.2020.108178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
Traumatic optic neuropathy (TON) can occur following blunt trauma to the orbit and can lead to permanent vision loss. In this study, we investigated the effectiveness of elamipretide (MTP-131), a small mitochondrially-targeted tetrapeptide, in conjunction with etanercept, a tumor necrosis factor (TNF) inhibitor, as neuroprotective agents of retinal ganglion cells (RGCs) after optic nerve trauma with sonication-induced TON (SI-TON) in mice. Treatment with intravitreal MTP-131 and subcutaneous etanercept and MTP-131 showed a 21% increase (p < 0.01) in RGC survival rate compared to PBS-treated control eyes. Subcutaneous etanercept and MTP-131 had an 11% increase (p < 0.05) in RGC survival compared to controls. Subcutaneous etanercept only group showed 20% increase (p < 0.01) in RGC survival compared to controls, while subcutaneous MTP-131 alone showed a 17% increase (p < 0.01). Surprisingly, we did not observe a synergistic effect between the two drugs in the group receiving both etanercept and MTP-131. One possible explanation for the absence of a synergistic effect is that MTP-131 and etanercept may be acting on different portions of the same pathway.
Collapse
Affiliation(s)
- Brian C Tse
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA.
| | - Galina Dvoriantchikova
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Wensi Tao
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Ryan A Gallo
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - John Y Lee
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Dmitry Ivanov
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - David T Tse
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Coral Gables, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, USA.
| |
Collapse
|
55
|
Yamada Y, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev 2020; 154-155:187-209. [PMID: 32987095 DOI: 10.1016/j.addr.2020.09.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria carry out various essential functions including ATP production, the regulation of apoptosis and possess their own genome (mtDNA). Delivering target molecules to this organelle, it would make it possible to control the functions of cells and living organisms and would allow us to develop a better understanding of life. Given the fact that mitochondrial dysfunction has been implicated in a variety of human disorders, delivering therapeutic molecules to mitochondria for the treatment of these diseases is an important issue. To date, several mitochondrial drug delivery system (DDS) developments have been reported, but a generalized DDS leading to therapy that exclusively targets mitochondria has not been established. This review focuses on mitochondria-targeted therapeutic strategies including antioxidant therapy, cancer therapy, mitochondrial gene therapy and cell transplantation therapy based on mitochondrial DDS. A particular focus is on nanocarriers for mitochondrial delivery with the goal of achieving mitochondria-targeting therapy. We hope that this review will stimulate the accelerated development of mitochondrial DDS.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
56
|
Almannai M, El-Hattab AW, Ali M, Soler-Alfonso C, Scaglia F. Clinical trials in mitochondrial disorders, an update. Mol Genet Metab 2020; 131:1-13. [PMID: 33129691 PMCID: PMC7537630 DOI: 10.1016/j.ymgme.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial disorders comprise a molecular and clinically diverse group of diseases that are associated with mitochondrial dysfunction leading to multi-organ disease. With recent advances in molecular technologies, the understanding of the pathomechanisms of a growing list of mitochondrial disorders has been greatly expanded. However, the therapeutic approaches for mitochondrial disorders have lagged behind with treatment options limited mainly to symptom specific therapies and supportive measures. There is an increasing number of clinical trials in mitochondrial disorders aiming for more specific and effective therapies. This review will cover different treatment modalities currently used in mitochondrial disorders, focusing on recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
57
|
Liva F, Cuffaro D, Nuti E, Nencetti S, Orlandini E, Vozzi G, Rossello A. Age-related Macular Degeneration: Current Knowledge of Zinc Metalloproteinases Involvement. Curr Drug Targets 2020; 20:903-918. [PMID: 30666909 DOI: 10.2174/1389450120666190122114857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. The disease is characterized by photoreceptor loss in the macula and reduced Retinal Pigment Epithelium (RPE) function, associated with matrix degradation, cell proliferation, neovascularization and inflammation. Matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play a critical role in the physiology of extracellular matrix (ECM) turnover and, in turn, in ECM pathologies, such as AMD. A balance between the activities of MMPs and Tissue Inhibitors of Metalloproteinase (TIMPs) is crucial for the integrity of the ECM components; indeed, a dysregulation in the ratio of these factors produces profound changes in the ECM, including thickening and deposit formation, which eventually might lead to AMD development. OBJECTIVE This article reviews the relevance and impact of zinc metalloproteinases on the development of AMD and their roles as biomarkers and/or therapeutic targets. We illustrate some studies on several inhibitors of MMPs currently used to dissect physiological properties of MMPs. Moreover, all molecules or technologies used to control MMP and ADAM activity in AMD are analyzed. CONCLUSION This study underlines the changes in the activity of MMPs expressed by RPE cells, highlights the functions of already used MMP inhibitors and consequently suggests their application as therapeutic agents for the treatment of AMD.
Collapse
Affiliation(s)
- Francesca Liva
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy.,Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
58
|
Allen ME, Pennington ER, Perry JB, Dadoo S, Makrecka-Kuka M, Dambrova M, Moukdar F, Patel HD, Han X, Kidd GK, Benson EK, Raisch TB, Poelzing S, Brown DA, Shaikh SR. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun Biol 2020; 3:389. [PMID: 32680996 PMCID: PMC7368046 DOI: 10.1038/s42003-020-1101-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction contributes to cardiac pathologies. Barriers to new therapies include an incomplete understanding of underlying molecular culprits and a lack of effective mitochondria-targeted medicines. Here, we test the hypothesis that the cardiolipin-binding peptide elamipretide, a clinical-stage compound under investigation for diseases of mitochondrial dysfunction, mitigates impairments in mitochondrial structure-function observed after rat cardiac ischemia-reperfusion. Respirometry with permeabilized ventricular fibers indicates that ischemia-reperfusion induced decrements in the activity of complexes I, II, and IV are alleviated with elamipretide. Serial block face scanning electron microscopy used to create 3D reconstructions of cristae ultrastructure reveals that disease-induced fragmentation of cristae networks are improved with elamipretide. Mass spectrometry shows elamipretide did not protect against the reduction of cardiolipin concentration after ischemia-reperfusion. Finally, elamipretide improves biophysical properties of biomimetic membranes by aggregating cardiolipin. The data suggest mitochondrial structure-function are interdependent and demonstrate elamipretide targets mitochondrial membranes to sustain cristae networks and improve bioenergetic function.
Collapse
Affiliation(s)
- Mitchell E Allen
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Maija Dambrova
- Latvian Institute for Organic Synthesis Riga Latvia, Norwich, UK
| | - Fatiha Moukdar
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Hetal D Patel
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Grahame K Kidd
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
- Renovo Neural Inc, Cleveland, OH, USA
| | | | - Tristan B Raisch
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
| | - Steven Poelzing
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, USA
- Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Faculty of Health Sciences, Roanoke, VA, USA
- Virginia Tech Center for Drug Discovery, Blacksburg, VA, USA
- Virginia Tech Metabolism Core Virginia Tech, Blacksburg, VA, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
59
|
Ge M, Fontanesi F, Merscher S, Fornoni A. The Vicious Cycle of Renal Lipotoxicity and Mitochondrial Dysfunction. Front Physiol 2020; 11:732. [PMID: 32733268 PMCID: PMC7358947 DOI: 10.3389/fphys.2020.00732] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
The kidney is one of the most energy-demanding organs that require abundant and healthy mitochondria to maintain proper function. Increasing evidence suggests a strong association between mitochondrial dysfunction and chronic kidney diseases (CKDs). Lipids are not only important sources of energy but also essential components of mitochondrial membrane structures. Dysregulation of mitochondrial oxidative metabolism and increased reactive oxygen species (ROS) production lead to compromised mitochondrial lipid utilization, resulting in lipid accumulation and renal lipotoxicity. However, lipotoxicity can be either the cause or the consequence of mitochondrial dysfunction. Imbalanced lipid metabolism, in turn, can hamper mitochondrial dynamics, contributing to the alteration of mitochondrial lipids and reduction in mitochondrial function. In this review, we summarize the interplay between renal lipotoxicity and mitochondrial dysfunction, with a focus on glomerular diseases.
Collapse
Affiliation(s)
- Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
60
|
Chavez JD, Tang X, Campbell MD, Reyes G, Kramer PA, Stuppard R, Keller A, Zhang H, Rabinovitch PS, Marcinek DJ, Bruce JE. Mitochondrial protein interaction landscape of SS-31. Proc Natl Acad Sci U S A 2020; 117:15363-15373. [PMID: 32554501 PMCID: PMC7334473 DOI: 10.1073/pnas.2002250117] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction underlies the etiology of a broad spectrum of diseases including heart disease, cancer, neurodegenerative diseases, and the general aging process. Therapeutics that restore healthy mitochondrial function hold promise for treatment of these conditions. The synthetic tetrapeptide, elamipretide (SS-31), improves mitochondrial function, but mechanistic details of its pharmacological effects are unknown. Reportedly, SS-31 primarily interacts with the phospholipid cardiolipin in the inner mitochondrial membrane. Here we utilize chemical cross-linking with mass spectrometry to identify protein interactors of SS-31 in mitochondria. The SS-31-interacting proteins, all known cardiolipin binders, fall into two groups, those involved in ATP production through the oxidative phosphorylation pathway and those involved in 2-oxoglutarate metabolic processes. Residues cross-linked with SS-31 reveal binding regions that in many cases, are proximal to cardiolipin-protein interacting regions. These results offer a glimpse of the protein interaction landscape of SS-31 and provide mechanistic insight relevant to SS-31 mitochondrial therapy.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | | | - Gustavo Reyes
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Rudy Stuppard
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Huiliang Zhang
- Department of Pathology, University of Washington, Seattle, WA 98195
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98105;
| |
Collapse
|
61
|
Bartell LR, Fortier LA, Bonassar LJ, Szeto HH, Cohen I, Delco ML. Mitoprotective therapy prevents rapid, strain-dependent mitochondrial dysfunction after articular cartilage injury. J Orthop Res 2020; 38:1257-1267. [PMID: 31840828 PMCID: PMC7225065 DOI: 10.1002/jor.24567] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) involves the mechanical and biological deterioration of articular cartilage that occurs following joint injury. PTOA is a growing problem in health care due to the lack of effective therapies combined with an aging population with high activity levels. Recently, acute mitochondrial dysfunction and altered cellular respiration have been associated with cartilage degeneration after injury. This finding is particularly important because recently developed mitoprotective drugs, including SS peptides, can preserve mitochondrial structure and function after acute injury in other tissues. It is not known, however, if cartilage injury induces rapid structural changes in mitochondria, to what degree mitochondrial dysfunction in cartilage depends on the mechanics of injury or the time frame over which such dysfunction develops. Similarly, it is unknown if SS-peptide treatment can preserve mitochondrial structure and function after cartilage injury. Here, we combined fast camera elastography, longitudinal fluorescence assays, and computer vision techniques to track the fates of thousands of individual cells. Our results show that impact induces mechanically dependent mitochondrial depolarization within a few minutes after injury. Electron microscopy revealed that impact causes rapid structural changes in mitochondria that are related to reduced mitochondrial function, namely, fission and loss of cristae structure. We found that SS-peptide treatment prior to impact protects the mitochondrial structure and preserves mitochondrial function at levels comparable with that of unimpacted control samples. Overall, this study reveals the vital role of mitochondria in mediating cartilage's peracute (within minutes) response to traumatic injury and demonstrates mitoprotection as a promising therapeutic strategy for injury-induced cartilage damage.
Collapse
Affiliation(s)
- Lena R. Bartell
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY, United States of America
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Hazel H. Szeto
- Burke Medical Research Institute, White Plains, NY, United States of America
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
62
|
Viscomi C, Zeviani M. Strategies for fighting mitochondrial diseases. J Intern Med 2020; 287:665-684. [PMID: 32100338 DOI: 10.1111/joim.13046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/10/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are extremely heterogeneous genetic conditions characterized by faulty oxidative phosphorylation (OXPHOS). OXPHOS deficiency can be the result of mutation in mtDNA genes, encoding either proteins (13 subunits of the mitochondrial complexes I, III, IV and V) or the tRNA and rRNA components of the in situ mtDNA translation. The remaining mitochondrial disease genes are in the nucleus, encoding proteins with a huge variety of functions, from structural subunits of the mitochondrial complexes, to factors involved in their formation and regulation, components of the mtDNA replication and expression machinery, biosynthetic enzymes for the biosynthesis or incorporation of prosthetic groups, components of the mitochondrial quality control and proteostasis, enzymes involved in the clearance of toxic compounds, factors involved in the formation of the lipid milieu, etc. These different functions represent potential targets for 'general' therapeutic interventions, as they may be adapted to a number of different mitochondrial conditions. This is in contrast with 'tailored', personalized therapeutic approaches, such as gene therapy, cell therapy and organ replacement, that can be useful only for individual conditions. This review will present the most recent concepts emerged from preclinical work and the attempts to translate them into the clinics. The common notion that mitochondrial disorders have no cure is currently challenged by a massive effort of scientists and clinicians, and we do expect that thanks to this intensive investigation work and tangible results for the development of strategies amenable to the treatment of patients with these tremendously difficult conditions are not so far away.
Collapse
Affiliation(s)
- C Viscomi
- From the, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - M Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
63
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
64
|
Zinovkin RA, Zamyatnin AA. Mitochondria-Targeted Drugs. Curr Mol Pharmacol 2020; 12:202-214. [PMID: 30479224 PMCID: PMC6875871 DOI: 10.2174/1874467212666181127151059] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023]
Abstract
Background: Targeting of drugs to the subcellular compartments represents one of the modern trends in molecular pharmacology. The approach for targeting mitochondria was developed nearly 50 years ago, but only in the last decade has it started to become widely used for delivering drugs. A number of pathologies are associated with mitochondrial dysfunction, including cardiovascular, neurological, inflammatory and metabolic conditions. Objective: This mini-review aims to highlight the role of mitochondria in pathophysiological conditions and diseases, to classify and summarize our knowledge about targeting mitochondria and to review the most important preclinical and clinical data relating to the antioxidant lipophilic cations MitoQ and SkQ1. Methods: This is a review of available information in the PubMed and Clinical Trials databases (US National Library of Medicine) with no limiting period. Results and Conclusion: Mitochondria play an important role in the pathogenesis of many diseases and possibly in aging. Both MitoQ and SkQ1 have shown many beneficial features in animal models and in a few completed clinical trials. More clinical trials and research efforts are needed to understand the signaling pathways influenced by these compounds. The antioxidant lipophilic cations have great potential for the treatment of a wide range of pathologies.
Collapse
Affiliation(s)
- Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Institute of Mitoengineering, Moscow State University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
65
|
Murabito A, Hirsch E, Ghigo A. Mechanisms of Anthracycline-Induced Cardiotoxicity: Is Mitochondrial Dysfunction the Answer? Front Cardiovasc Med 2020; 7:35. [PMID: 32226791 PMCID: PMC7080657 DOI: 10.3389/fcvm.2020.00035] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac side effects are a major drawback of anticancer therapies, often requiring the use of low and less effective doses or even discontinuation of the drug. Among all the drugs known to cause severe cardiotoxicity are anthracyclines that, though being the oldest chemotherapeutic drugs, are still a mainstay in the treatment of solid and hematological tumors. The recent expansion of the field of Cardio-Oncology, a branch of cardiology dealing with prevention or treatment of heart complications due to cancer treatment, has greatly improved our knowledge of the molecular mechanisms behind anthracycline-induced cardiotoxicity (AIC). Despite excessive generation of reactive oxygen species was originally believed to be the main cause of AIC, recent evidence points to the involvement of a plethora of different mechanisms that, interestingly, mainly converge on deregulation of mitochondrial function. In this review, we will describe how anthracyclines affect cardiac mitochondria and how these organelles contribute to AIC. Furthermore, we will discuss how drugs specifically targeting mitochondrial dysfunction and/or mitochondria-targeted drugs could be therapeutically exploited to treat AIC.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
66
|
Shilovsky GA, Putyatina TS, Ashapkin VV, Yamskova OV, Lyubetsky VA, Sorokina EV, Shram SI, Markov AV, Vyssokikh MY. Biological Diversity and Remodeling of Cardiolipin in Oxidative Stress and Age-Related Pathologies. BIOCHEMISTRY (MOSCOW) 2020; 84:1469-1483. [PMID: 31870251 DOI: 10.1134/s000629791912006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Age-related dysfunctions are accompanied by impairments in the mitochondrial morphology, activity of signaling pathway, and protein interactions. Cardiolipin is one of the most important phospholipids that maintains the curvature of the cristae and facilitates assembly and interaction of complexes and supercomplexes of the mitochondrial respiratory chain. The fatty acid composition of cardiolipin influences the biophysical properties of the membrane and, therefore, is crucial for the mitochondrial bioenergetics. The presence of unsaturated fatty acids in cardiolipin is the reason of its susceptibility to oxidative damage. Damaged cardiolipin undergoes remodeling by phospholipases, acyltransferases, and transacylases, creating a highly specific fatty acyl profile for each tissue. In this review, we discuss the variability of cardiolipin fatty acid composition in various species and different tissues of the same species, both in the norm and at various pathologies (e.g., age-related diseases, oxidative and traumatic stresses, knockouts/knockdowns of enzymes of the cardiolipin synthesis pathway). Progressive pathologies, including age-related ones, are accompanied by cardiolipin depletion and decrease in the efficiency of its remodeling, as well as the activation of an alternative way of pathological remodeling, which causes replacement of cardiolipin fatty acids with polyunsaturated ones (e.g., arachidonic or docosahexaenoic acids). Drugs or special diet can contribute to the partial restoration of the cardiolipin acyl profile to the one rich in fatty acids characteristic of an intact organ or tissue, thereby correcting the consequences of pathological or insufficient cardiolipin remodeling. In this regard, an urgent task of biomedicine is to study the mechanism of action of mitochondria-targeted antioxidants effective in the treatment of age-related pathologies and capable of accumulating not only in vitro, but also in vivo in the cardiolipin-enriched membrane fragments.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - T S Putyatina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - V V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O V Yamskova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - V A Lyubetsky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - E V Sorokina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S I Shram
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A V Markov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - M Y Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
67
|
Sabbah HN. Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC Basic Transl Sci 2020; 5:88-106. [PMID: 32043022 PMCID: PMC7000886 DOI: 10.1016/j.jacbts.2019.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Abstract
The burden of heart failure (HF) in terms of health care expenditures, hospitalizations, and mortality is substantial and growing. The failing heart has been described as "energy-deprived" and mitochondrial dysfunction is a driving force associated with this energy supply-demand imbalance. Existing HF therapies provide symptomatic and longevity benefit by reducing cardiac workload through heart rate reduction and reduction of preload and afterload but do not address the underlying causes of abnormal myocardial energetic nor directly target mitochondrial abnormalities. Numerous studies in animal models of HF as well as myocardial tissue from explanted failed human hearts have shown that the failing heart manifests abnormalities of mitochondrial structure, dynamics, and function that lead to a marked increase in the formation of damaging reactive oxygen species and a marked reduction in on demand adenosine triphosphate synthesis. Correcting mitochondrial dysfunction therefore offers considerable potential as a new therapeutic approach to improve overall cardiac function, quality of life, and survival for patients with HF.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CI (to V), complex I (to V)
- Drp, dynamin-related protein
- ETC, electron transport chain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LV, left ventricular
- MPTP, mitochondrial permeability transition pore
- Mfn, mitofusin
- OPA, optic atrophy
- PGC, peroxisome proliferator-activated receptor coactivator
- PINK, phosphatase and tensin homolog–inducible kinase
- ROS, reactive oxygen species
- TAZ, tafazzin
- cardiolipin
- heart failure
- mitochondria
- mtDNA, mitochondrial deoxyribonucleic acid
- myocardial energetics
- oxidative phosphorylation
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
68
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
69
|
Machiraju P, Wang X, Sabouny R, Huang J, Zhao T, Iqbal F, King M, Prasher D, Lodha A, Jimenez-Tellez N, Ravandi A, Argiropoulos B, Sinasac D, Khan A, Shutt TE, Greenway SC. SS-31 Peptide Reverses the Mitochondrial Fragmentation Present in Fibroblasts From Patients With DCMA, a Mitochondrial Cardiomyopathy. Front Cardiovasc Med 2019; 6:167. [PMID: 31803760 PMCID: PMC6873783 DOI: 10.3389/fcvm.2019.00167] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/31/2019] [Indexed: 12/04/2022] Open
Abstract
We used patient dermal fibroblasts to characterize the mitochondrial abnormalities associated with the dilated cardiomyopathy with ataxia syndrome (DCMA) and to study the effect of the mitochondrially-targeted peptide SS-31 as a potential novel therapeutic. DCMA is a rare and understudied autosomal recessive disorder thought to be related to Barth syndrome but caused by mutations in DNAJC19, a protein of unknown function localized to the mitochondria. The clinical disease is characterized by 3-methylglutaconic aciduria, dilated cardiomyopathy, abnormal neurological development, and other heterogeneous features. Until recently no effective therapies had been identified and affected patients frequently died in early childhood from intractable heart failure. Skin fibroblasts from four pediatric patients with DCMA were used to establish parameters of mitochondrial dysfunction. Mitochondrial structure, reactive oxygen species (ROS) production, cardiolipin composition, and gene expression were evaluated. Immunocytochemistry with semi-automated quantification of mitochondrial structural metrics and transmission electron microscopy demonstrated mitochondria to be highly fragmented in DCMA fibroblasts compared to healthy control cells. Live-cell imaging demonstrated significantly increased ROS production in patient cells. These abnormalities were reversed by treating DCMA fibroblasts with SS-31, a synthetic peptide that localizes to the inner mitochondrial membrane. Levels of cardiolipin were not significantly different between control and DCMA cells and were unaffected by SS-31 treatment. Our results demonstrate the abnormal mitochondria in fibroblasts from patients with DCMA and suggest that SS-31 may represent a potential therapy for this devastating disease.
Collapse
Affiliation(s)
- Pranav Machiraju
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xuemei Wang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rasha Sabouny
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joshua Huang
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fatima Iqbal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Melissa King
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dimple Prasher
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arijit Lodha
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nerea Jimenez-Tellez
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, St. Boniface Hospital Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
70
|
Weissig V. Drug Development for the Therapy of Mitochondrial Diseases. Trends Mol Med 2019; 26:40-57. [PMID: 31727544 DOI: 10.1016/j.molmed.2019.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of inherited or acquired devastating disorders that affect the energy metabolism of the body. Many strategies have been investigated, but currently there is no FDA-approved drug that can alleviate disease symptoms or slow disease progression. This review analyzes to what extent growing knowledge over the past two decades about the etiology and pathogenesis of mitochondrial diseases is reflected in the design and development of new experimental drugs for the therapy of these disorders. All currently registered clinical trials involving new experimental drug entities are reviewed to evaluate how far away we are from the first FDA-approved drug therapy for mitochondrial disease.
Collapse
Affiliation(s)
- Volkmar Weissig
- Midwestern University College of Pharmacy at Glendale, Department of Pharmaceutical Sciences and Nanocenter of Excellence, Glendale, AZ, USA.
| |
Collapse
|
71
|
Rohani L, Machiraju P, Sabouny R, Meng G, Liu S, Zhao T, Iqbal F, Wang X, Ravandi A, Wu JC, Khan A, Shutt T, Rancourt D, Greenway SC. Reversible Mitochondrial Fragmentation in iPSC-Derived Cardiomyocytes From Children With DCMA, a Mitochondrial Cardiomyopathy. Can J Cardiol 2019; 36:554-563. [PMID: 32046906 DOI: 10.1016/j.cjca.2019.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia syndrome (DCMA) is an understudied autosomal recessive disease caused by loss-of-function mutations in the poorly characterized gene DNAJC19. Clinically, DCMA is commonly associated with heart failure and early death in affected children through an unknown mechanism. DCMA has been linked to Barth syndrome, a rare but well-studied disorder caused by deficient maturation of cardiolipin (CL), a key mitochondrial membrane phospholipid. METHODS Peripheral blood mononuclear cells from 2 children with DCMA and severe cardiac dysfunction were reprogrammed into induced pluripotent stem cells (iPSCs). Patient and control iPSCs were differentiated into beating cardiomyocytes (iPSC-CMs) using a metabolic selection strategy. Mitochondrial structure and CL content before and after incubation with the mitochondrially targeted peptide SS-31 were quantified. RESULTS Patient iPSCs carry the causative DNAJC19 mutation (rs137854888) found in the Hutterite population, and the iPSC-CMs demonstrated highly fragmented and abnormally shaped mitochondria associated with an imbalanced isoform ratio of the mitochondrial protein OPA1, an important regulator of mitochondrial fusion. These abnormalities were reversible by incubation with SS-31 for 24 hours. Differentiation of iPSCs into iPSC-CMs increased the number of CL species observed, but consistent, significant differences in CL content were not seen between patients and control. CONCLUSIONS We describe a unique and novel cellular model that provides insight into the mitochondrial abnormalities present in DCMA and identifies SS-31 as a potential therapeutic for this devastating disease.
Collapse
Affiliation(s)
- Leili Rohani
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pranav Machiraju
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Guoliang Meng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shiying Liu
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tian Zhao
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fatima Iqbal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xuemei Wang
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology and Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Derrick Rancourt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Steven C Greenway
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
72
|
Mitochondrial Dysfunction Underlies Cardiomyocyte Remodeling in Experimental and Clinical Atrial Fibrillation. Cells 2019; 8:cells8101202. [PMID: 31590355 PMCID: PMC6829298 DOI: 10.3390/cells8101202] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022] Open
Abstract
Atrial fibrillation (AF), the most common progressive tachyarrhythmia, results in structural remodeling which impairs electrical activation of the atria, rendering them increasingly permissive to the arrhythmia. Previously, we reported on endoplasmic reticulum stress and NAD+ depletion in AF, suggesting a role for mitochondrial dysfunction in AF progression. Here, we examined mitochondrial function in experimental model systems for AF (tachypaced HL-1 atrial cardiomyocytes and Drosophila melanogaster) and validated findings in clinical AF. Tachypacing of HL-1 cardiomyocytes progressively induces mitochondrial dysfunction, evidenced by impairment of mitochondrial Ca2+-handling, upregulation of mitochondrial stress chaperones and a decrease in the mitochondrial membrane potential, respiration and ATP production. Atrial biopsies from AF patients display mitochondrial dysfunction, evidenced by aberrant ATP levels, upregulation of a mitochondrial stress chaperone and fragmentation of the mitochondrial network. The pathophysiological role of mitochondrial dysfunction is substantiated by the attenuation of AF remodeling by preventing an increased mitochondrial Ca2+-influx through partial blocking or downregulation of the mitochondrial calcium uniporter, and by SS31, a compound that improves bioenergetics in mitochondria. Together, these results show that conservation of the mitochondrial function protects against tachypacing-induced cardiomyocyte remodeling and identify this organelle as a potential novel therapeutic target.
Collapse
|
73
|
Priyanka K, Singh S. Applications of conjugated systems, nanomedicines, peptides and herbal drugs as mitochondrial targeted delivery systems in the treatment of oxidative stress induced diabetes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
74
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
75
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Role of Cardiolipin in Mitochondrial Function and Dynamics in Health and Disease: Molecular and Pharmacological Aspects. Cells 2019; 8:cells8070728. [PMID: 31315173 PMCID: PMC6678812 DOI: 10.3390/cells8070728] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells, mitochondria are involved in a large array of metabolic and bioenergetic processes that are vital for cell survival. Phospholipids are the main building blocks of mitochondrial membranes. Cardiolipin (CL) is a unique phospholipid which is localized and synthesized in the inner mitochondrial membrane (IMM). It is now widely accepted that CL plays a central role in many reactions and processes involved in mitochondrial function and dynamics. Cardiolipin interacts with and is required for optimal activity of several IMM proteins, including the enzyme complexes of the electron transport chain (ETC) and ATP production and for their organization into supercomplexes. Moreover, CL plays an important role in mitochondrial membrane morphology, stability and dynamics, in mitochondrial biogenesis and protein import, in mitophagy, and in different mitochondrial steps of the apoptotic process. It is conceivable that abnormalities in CL content, composition and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of pathophysiological situations and diseases. In this review, we focus on the role played by CL in mitochondrial function and dynamics in health and diseases and on the potential of pharmacological modulation of CL through several agents in attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
| | | | - Francesca M Ruggiero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
76
|
Sun Y, Zhan A, Zhou S, Kuang X, Shen H, Liu H, Xu Y. A novel mitochondria-targeting tetrapeptide for subcellular delivery of nanoparticles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
77
|
Gottwald EM, Duss M, Bugarski M, Haenni D, Schuh CD, Landau EM, Hall AM. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue. Physiol Rep 2019; 6:e13667. [PMID: 29611340 PMCID: PMC5880956 DOI: 10.14814/phy2.13667] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Abstract
Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted anti‐oxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS‐31, another targeted anti‐oxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an anti‐oxidant component (quinone) by a 10‐carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQ‐induced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to anti‐oxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain.
Collapse
Affiliation(s)
| | - Michael Duss
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Claus D Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
78
|
Kim SR, Eirin A, Zhang X, Lerman A, Lerman LO. Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis. Cell Physiol Biochem 2019; 52:617-632. [PMID: 30907989 DOI: 10.33594/000000044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Atherosclerotic renal artery stenosis (ARAS) may cause kidney injury and mitochondrial dysfunction, which is linked to cellular senescence. Elamipretide, a mitochondria-targeted peptide, improves renal function in ARAS, but whether it alleviates senescence is unknown. We hypothesized that elamipretide would reduce senescence stenotic kidney (STK) in ARAS. METHODS Domestic pigs were randomized to control and unilateral ARAS untreated or treated with subcutaneous elamipretide (5d/wk) for 4 weeks starting after 6 weeks of ARAS or sham (n=6 each). After completion of treatment, STK renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in-vivo using multi-detector computed-tomography. Renal fibrosis and oxidative stress were analyzed in trichrome- and dihydroethidium-stained slides, respectively. Mitochondrial markers involved in the electrontransport chain (COX4, ATP/ADP ratio), biogenesis (PGC1α, PPARα), dynamics (MFN2, DRP1), and mitophagy (parkin, p62) were measured in the kidney using ELISA, western-blot, and immunohistochemistry. Cellular senescence (senescence-associated β-galactosidase and heterochromatin foci, phosphorylated-H2AX, and p16/21/53) and senescence-associated secretory phenotype (SASP; PAI-1, MCP-1, TGFβ, and TNFα) markers were studied by microscopy, quantitative reverse transcription-polymerase chain reaction, and western-blot. RESULTS Blood pressure was elevated whereas STK-RBF and GFR were decreased in ARAS pigs, and tissue scarring was increased. ARAS induced STK cellular senescence and accumulated dysfunctional mitochondria, which were associated with cardiolipin loss, upregulated mitochondrial biogenesis, and defective mitophagy. Elamipretide normalized STK-RBF and GFR, alleviated fibrosis and oxidative stress, and restored mitochondrial cardiolipin, biogenesis, and mitophagy in ARAS, but did not change SASP markers, and attenuated only senescenceassociated β-galactosidase activity and p53 gene expression. CONCLUSION Mitochondrial protection improved renal function and fibrosis in the ARAS STK, but only partly mitigated cellular senescence. This finding suggests that mitochondrial dysfunction may not be a major determinant of cellular senescence in the early stage of ARAS.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - Xin Zhang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| | - Amir Lerman
- Cardiovascular Diseases, Mayo Clinic, Rochester, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA.,Cardiovascular Diseases, Mayo Clinic, Rochester, USA,
| |
Collapse
|
79
|
Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells 2019; 8:cells8040289. [PMID: 30925787 PMCID: PMC6523966 DOI: 10.3390/cells8040289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models. The possible molecular mechanisms involved, in particular the contribution of mitochondrial biogenesis, are discussed. Applications of these pharmacological approaches as a function of genotype/phenotype are also addressed, which clearly orient toward personalized therapy. Finally, we propose that beyond the identification of individual candidate drugs/molecules, future pharmacological approaches should consider their combination, which could produce additive or synergistic effects that may further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| |
Collapse
|
80
|
Oliver DMA, Reddy PH. Small molecules as therapeutic drugs for Alzheimer's disease. Mol Cell Neurosci 2019; 96:47-62. [PMID: 30877034 DOI: 10.1016/j.mcn.2019.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is a central protagonist of Alzheimer's disease (AD) pathogenesis. Mitochondrial dysfunction stems from various factors including mitochondrial DNA damage and oxidative stress from reactive oxygen species, membrane and ionic gradient destabilization, and interaction with toxic proteins such as amyloid beta (Aβ). Therapeutic drugs such as cholinesterase and glutamate inhibitors have proven to improve synaptic neurotransmitters, but do not address mitochondrial dysfunction. Researchers have demonstrated that oxidative damage may be reduced by increasing endogenous antioxidants, and/or increasing exogenous antioxidants such as vitamin C & E, beta-carotene and glutathione. Nonetheless, as AD pathology intensifies, endogenous antioxidants are overwhelmed, and exogenous antioxidants are unable to reach neuronal mitochondria as they are blocked by the blood brain barrier. Current therapeutic methods however include novel usage of lipophilic phosphonium cation bound to antioxidants, to effect neuronal mitochondria targeted activity. Mitochondria targeted MitoQ, MitoVitE, MitoTempo, MitoPBN and MCAT concentrate within mitochondria where they scavenge free-radicals, and augment mitochondrial dysfunction. Additional molecules include Szeto-Schiller (SS) peptides which target stability of the inner mitochondrial membrane, and DDQ molecule capable of improving bioenergetics and reduce mitochondrial fragmentation. This article discusses advantages and disadvantages of small molecules, their ability to mitigate Aβ induced damage, and ability to ameliorate synaptic dysfunction and cognitive loss.
Collapse
Affiliation(s)
- Darryll M A Oliver
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United State
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United State; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, Lubbock, TX 79413, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, 3601 4th Street, Lubbock, TX 79430, United States.
| |
Collapse
|
81
|
Voronkov AV, Pozdnyakov DI, Nigaryan SA, Khouri EI, Miroshnichenko KA, Sosnovskaya AV, Olokhova EA. EVALUATION OF THE MITOCHONDRIA RESPIROMETRIC FUNCTION IN THE CONDITIONS OF PATHOLOGIES OF VARIOUS GENESES. PHARMACY & PHARMACOLOGY 2019. [DOI: 10.19163/2307-9266-2019-7-1-20-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of the paper is to assess the change in the mitochondrial respirometric function under conditions of various pathologies.Materials and methods. The study was performed on male Wistar rats. Experimental focal cerebral ischemia, traumatic brain injury, coronary occlusive myocardial infarction and muscle dysfunction were used as pathological models. Focal ischemia was reproduced by the method of irreversible thermocoagulation of the middle cerebral artery. Traumatic brain injury was modeled by the method of free fall of the load. Experimental myocardial infarction was reproduced by ligating the descending branch of the left coronary artery. Muscle dysfunction was modeled by the method of «forced swimming with a 20% burden». The respiratory function of mitochondria was assessed by the method of respirometry by the change in oxygen consumption when introducing mitochondrial respiration into the medium: Oligomycin, Rotenone and FCCP. Additionally, we evaluated the intensity of the glycolysis process and the activity of respiratory complexes I, II, IV and V. In order to comprehensively assess the respiratory function, an ELISA study was conducted to determine the concentration of ATP, mitochondrial ATP synthetase, cytochrome C oxidase and NADP-Oxidase 4.Results. In the course of the study it was established that under conditions of experimental cerebral ischemia, traumatic brain injury, myocardial infarction and muscle dysfunction, the ATP-generating ability of mitochondria the maximum breathing and respiratory capacity deteriorated, herby the decrease in overall respiratory function was accompanied by an increase in glycolysis, which was uncompensated, as well as dysfunction of mitochondrial complexes I, II, IV and V, confirmed by an increase in NADPH oxidase 4 activity and a decrease in cytochrome C oxidases and ATP synthetase. As a result, the observed changes in mitochondrial respiration function contributed to a decrease in ATP concentration under conditions of cerebral ischemia - by 3.2 times (p <0.05), traumatic brain injury – by 2.6 times (p <0.05), myocardial infarction – by 1.8 times (p <0.05) and muscle dysfunction – by 4 times (p <0.05).Conclusion. Basing on the data obtained, we can assume that in conditions of cerebral ischemia, traumatic brain injury, myocardial infarction and muscle dysfunction, there is deterioration of the mitochondrial respirometric function with inhibition of ATP synthesis and increased glycolysis.
Collapse
Affiliation(s)
- A. V. Voronkov
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - D. I. Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - S. A. Nigaryan
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - E. I. Khouri
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - K. A. Miroshnichenko
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - A. V. Sosnovskaya
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - E. A. Olokhova
- Krasnoyarsk State Medical University n. a V.F. Voyno-Yasenetsky
| |
Collapse
|
82
|
Abstract
PURPOSE OF REVIEW The function of the right ventricle (RV) is intimately linked to its preload (systemic volume status) and afterload (pulmonary vasculature). In this review, we explore current knowledge in RV physiology, RV function assessment, causes of right heart failure (RHF), and specific treatment strategies for RHF. RECENT FINDINGS We examine the evidence behind new pharmacological therapies available, such as macitentan and riociguat in the treatment of specific etiologies of RHF. We will also focus on RHF in the setting of heart failure with preserved ejection fraction (HFpEF) and in the presence of left ventricular assist devices (LVAD), looking at current treatment recommendations, including mechanical circulatory support. Lastly, we will look to the horizon for the latest research on RHF, including the molecular basis of RHF and potential novel treatment methods for this old yet poorly understood syndrome. Disturbances in this complex relationship result in the clinical syndrome of RHF. Despite advances in the management of left heart diseases, much work remains to be done to understand and manage RHF.
Collapse
Affiliation(s)
- Weiqin Lin
- Section of Heart Failure and Cardiac Transplantation, Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
| | | | - W H Wilson Tang
- Section of Heart Failure and Cardiac Transplantation, Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
83
|
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2018; 218:165-184. [PMID: 30578866 DOI: 10.1016/j.lfs.2018.12.029] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial function is vital for normal cellular processes. Mitochondrial damage and oxidative stress have been greatly implicated in the progression of aging, along with the pathogenesis of age-related neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Although antioxidant therapy has been proposed for the prevention and treatment of age-related NDs, unraveling the molecular mechanisms of mitochondrial dysfunction can lead to significant progress in the development of effective treatments against such diseases. Aging is associated with the generation and accumulation of reactive oxygen species (ROS) that are the major contributors to oxidative stress. Oxidative stress is caused because of the imbalance between the production of ROS and their oxidation, which can affect the mitochondrial respiratory chain function, thereby altering the membrane permeability and calcium homeostasis, along with increasing the heteroplasmic mtDNA and weakening the mitochondrial defense systems. Mitochondrial dysfunction mainly affects mitochondrial biogenesis and dynamics that are prominent in several age-related NDs. Mitochondrial dysfunction has a crucial role in the pathophysiology of age-related NDs. Several mitochondria targeted strategies, such as enhancing the antioxidant bioavailability via novel delivery systems, identifying unique mitochondrial proteins as specific drug targets, investigating the signaling pathways of mitochondrial biogenesis and dynamics, and identifying effective natural products are potentially effective to counteract mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Hasnaa A Elfawy
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India
| | - Biswadeep Das
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
84
|
Mulkidjanian AY, Shalaeva DN, Lyamzaev KG, Chernyak BV. Does Oxidation of Mitochondrial Cardiolipin Trigger a Chain of Antiapoptotic Reactions? BIOCHEMISTRY (MOSCOW) 2018; 83:1263-1278. [PMID: 30472963 DOI: 10.1134/s0006297918100115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidative stress causes selective oxidation of cardiolipin (CL), a four-tail lipid specific for the inner mitochondrial membrane. Interaction with oxidized CL transforms cytochrome c into peroxidase capable of oxidizing even more CL molecules. Ultimately, this chain of events leads to the pore formation in the outer mitochondrial membrane and release of mitochondrial proteins, including cytochrome c, into the cytoplasm. In the cytoplasm, cytochrome c promotes apoptosome assembly that triggers apoptosis (programmed cell death). Because of this amplification cascade, even an occasional oxidation of a single CL molecule by endogenously formed reactive oxygen species (ROS) might cause cell death, unless the same CL oxidation triggers a separate chain of antiapoptotic reactions that would prevent the CL-mediated apoptotic cascade. Here, we argue that the key function of CL in mitochondria and other coupling membranes is to prevent proton leak along the interface of interacting membrane proteins. Therefore, CL oxidation should increase proton permeability through the CL-rich clusters of membrane proteins (CL islands) and cause a drop in the mitochondrial membrane potential (MMP). On one hand, the MMP drop should hinder ROS generation and further CL oxidation in the entire mitochondrion. On the other hand, it is known to cause rapid fission of the mitochondrial network and formation of many small mitochondria, only some of which would contain oxidized CL islands. The fission of mitochondrial network would hinder apoptosome formation by preventing cytochrome c release from healthy mitochondria, so that slowly working protein quality control mechanisms would have enough time to eliminate mitochondria with the oxidized CL. Because of these two oppositely directed regulatory pathways, both triggered by CL oxidation, the fate of the cell appears to be determined by the balance between the CL-mediated proapoptotic and antiapoptotic reactions. Since this balance depends on the extent of CL oxidation, mitochondria-targeted antioxidants might be able to ensure cell survival in many pathologies by preventing CL oxidation.
Collapse
Affiliation(s)
- A Y Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, School of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Osnabrueck University, Department of Physics, 49069 Osnabrueck, Germany
| | - D N Shalaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
85
|
Szeto HH, Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Arch Biochem Biophys 2018; 660:137-148. [DOI: 10.1016/j.abb.2018.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
|
86
|
Towards a therapy for mitochondrial disease: an update. Biochem Soc Trans 2018; 46:1247-1261. [PMID: 30301846 PMCID: PMC6195631 DOI: 10.1042/bst20180134] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Preclinical work aimed at developing new therapies for mitochondrial diseases has recently given new hopes and opened unexpected perspectives for the patients affected by these pathologies. In contrast, only minor progresses have been achieved so far in the translation into the clinics. Many challenges are still ahead, including the need for a better characterization of the pharmacological effects of the different approaches and the design of appropriate clinical trials with robust outcome measures for this extremely heterogeneous, rare, and complex group of disorders. In this review, we will discuss the most important achievements and the major challenges in this very dynamic research field.
Collapse
|
87
|
Abstract
Mitochondrial myopathies are progressive muscle conditions caused primarily by the impairment of oxidative phosphorylation (OXPHOS) in the mitochondria. This causes a deficit in energy production in the form of adenosine triphosphate (ATP), particularly in skeletal muscle. The diagnosis of mitochondrial myopathy is reliant on the combination of numerous techniques including traditional histochemical, immunohistochemical, and biochemical testing combined with the fast-emerging molecular genetic techniques, namely next-generation sequencing (NGS). This has allowed for the diagnosis to become more effective in terms of determining causative or novel genes. However, there are currently no effective or disease-modifying treatments available for the vast majority of patients with mitochondrial myopathies. Existing therapeutic options focus on the symptomatic management of disease manifestations. An increasing number of clinical trials have investigated the therapeutic effects of various vitamins, cofactors, and small molecules, though these trials have failed to show definitive outcome measures for clinical practice thus far. In addition, new molecular strategies, specifically mtZFNs and mtTALENs, that cause beneficial heteroplasmic shifts in cell lines harboring varying pathogenic mtDNA mutations offer hope for the future. Moreover, recent developments in the reproductive options for patients with mitochondrial myopathies mean that for some families, the possibility of preventing transmission of the mutation to the next generation is now possible.
Collapse
Affiliation(s)
- Syeda T Ahmed
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
88
|
Broome SC, Woodhead JST, Merry TL. Mitochondria-Targeted Antioxidants and Skeletal Muscle Function. Antioxidants (Basel) 2018; 7:antiox7080107. [PMID: 30096848 PMCID: PMC6116009 DOI: 10.3390/antiox7080107] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
One of the main sources of reactive oxygen species (ROS) in skeletal muscle is the mitochondria. Prolonged or very high ROS exposure causes oxidative damage, which can be deleterious to muscle function, and as such, there is growing interest in targeting antioxidants to the mitochondria in an effort to prevent or treat muscle dysfunction and damage associated with disease and injury. Paradoxically, however, ROS also act as important signalling molecules in controlling cellular homeostasis, and therefore caution must be taken when supplementing with antioxidants. It is possible that mitochondria-targeted antioxidants may limit oxidative stress without suppressing ROS from non-mitochondrial sources that might be important for cell signalling. Therefore, in this review, we summarise literature relating to the effect of mitochondria-targeted antioxidants on skeletal muscle function. Overall, mitochondria-targeted antioxidants appear to exert beneficial effects on mitochondrial capacity and function, insulin sensitivity and age-related declines in muscle function. However, it seems that this is dependent on the type of mitochondrial-trageted antioxidant employed, and its specific mechanism of action, rather than simply targeting to the mitochondria.
Collapse
Affiliation(s)
- Sophie C Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
89
|
Sabbah HN, Gupta RC, Singh-Gupta V, Zhang K, Lanfear DE. Abnormalities of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy with Elamipretide. Cardiovasc Drugs Ther 2018; 32:319-328. [PMID: 29951944 PMCID: PMC6133191 DOI: 10.1007/s10557-018-6805-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Abnormalities of MITO dynamics occur in HF and have been implicated in disease progression. This study describes the broad range abnormalities of mitochondrial (MITO) dynamics in Heart Failure with reduced ejection fraction (HF) and evaluates the effects of long-term therapy with elamipretide (ELAM), a MITO-targeting peptide, on these abnormalities. METHODS Studies were performed in left ventricular tissue from dogs and humans with HF, and were compared with tissue from healthy dogs and healthy donor human hearts. Dogs with HF were randomized to 3 months therapy with ELAM or vehicle. The following were evaluated in dog and human hearts: (1) regulators of MITO biogenesis, including endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP), and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α, a transcription factor that drives MITO biogenesis); (2) regulators of MITO fission and fusion, including fission-1, dynamin-related protein-1, mitofusion-2, dominant optic atrophy-1, and mitofilin; and (3) determinants of cardiolipin (CL) synthesis and remodeling, including CL synthase-1, tafazzin-1, and acyl-CoA:lysocardiolipin acyltransferase-1. RESULTS The study showed decreased levels of eNOS, cGMP, and PGC-1α in HF (dog and human). Increased levels of fission-associated proteins, decreased levels of fusion-associated proteins, decreased mitofilin, and abnormalities of CL synthesis and remodeling were also observed. In all instances, these maladaptations were normalized following long-term therapy with ELAM. CONCLUSIONS Critical abnormalities of MITO dynamics occur in HF and are normalized following long-term therapy with ELAM. The findings provide support for the continued development of ELAM for the treatment of HF.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Ramesh C Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Vinita Singh-Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Kefei Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - David E Lanfear
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| |
Collapse
|
90
|
Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 2018; 39:2780-2792. [DOI: 10.1093/eurheartj/ehy301] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Carolyn S P Lam
- National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
- Duke-National University of Singapore Medical School, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
| | - Scott D Solomon
- Harvard Medical School, Harvard University, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, 75 Francis St, Boston, MA, USA
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, AB31, Hanzeplein 1, Groningen, the Netherlands
| |
Collapse
|
91
|
Karaa A, Haas R, Goldstein A, Vockley J, Weaver WD, Cohen BH. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology 2018; 90:e1212-e1221. [PMID: 29500292 PMCID: PMC5890606 DOI: 10.1212/wnl.0000000000005255] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/12/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To assess the safety and efficacy of elamipretide, an aromatic-cationic tetrapeptide that readily penetrates cell membranes and transiently localizes to the inner mitochondrial membrane where it associates with cardiolipin, in adults with primary mitochondrial myopathy (PMM). METHODS A Study Investigating the Safety, Tolerability, and Efficacy of MTP-131 for the Treatment of Mitochondrial Myopathy (MMPOWER) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial of elamipretide in 36 participants with genetically confirmed PMM. Participants were randomized to intravenous elamipretide (0.01, 0.1, and 0.25 mg/kg/h or placebo for 2 hours in a dose-escalating sequence). The primary efficacy measure was the change in distance walked in the 6-minute walk test (6MWT) after 5 days of treatment. Other efficacy measures included changes in cardiopulmonary exercise testing parameters, in participant-reported symptoms, and in serum and urinary biomarkers. Safety, tolerability, and pharmacokinetics were also measured. RESULTS Participants who received the highest dose of elamipretide walked a mean of 64.5 m farther at day 5 compared to a change of 20.4 m in the placebo group (p = 0.053). In addition, there was a dose-dependent increase in distance walked on the 6MWT with elamipretide treatment (p = 0.014). In a model that adjusted for additional covariates possibly affecting response, the adjusted change for the highest dose of elamipretide was 51.2 vs 3.0 m in the placebo group (p = 0.0297). No significant differences were observed in other efficacy and safety endpoints. CONCLUSIONS Elamipretide increased exercise performance after 5 days of treatment in patients with PMM without increased safety concerns. These findings, as well as additional functional and patient-reported measures, remain to be tested in larger trials with longer treatment periods to detect other potential therapeutic benefits in individuals affected by this condition. CLASSIFICATION OF EVIDENCE This trial provides Class I evidence that for patients with PMM, elamipretide improved the distance walked on the 6MWT.
Collapse
Affiliation(s)
- Amel Karaa
- From the Genetics Unit (A.K.), Massachusetts General Hospital, Boston; UC San Diego School of Medicine (R.H.), La Jolla, CA; Children's Hospital of Pittsburgh (A.G., J.V.), PA; Stealth BioTherapeutics (W.D.W.), Newton, MA; and Akron Children's Hospital (B.H.C.), OH.
| | - Richard Haas
- From the Genetics Unit (A.K.), Massachusetts General Hospital, Boston; UC San Diego School of Medicine (R.H.), La Jolla, CA; Children's Hospital of Pittsburgh (A.G., J.V.), PA; Stealth BioTherapeutics (W.D.W.), Newton, MA; and Akron Children's Hospital (B.H.C.), OH
| | - Amy Goldstein
- From the Genetics Unit (A.K.), Massachusetts General Hospital, Boston; UC San Diego School of Medicine (R.H.), La Jolla, CA; Children's Hospital of Pittsburgh (A.G., J.V.), PA; Stealth BioTherapeutics (W.D.W.), Newton, MA; and Akron Children's Hospital (B.H.C.), OH
| | - Jerry Vockley
- From the Genetics Unit (A.K.), Massachusetts General Hospital, Boston; UC San Diego School of Medicine (R.H.), La Jolla, CA; Children's Hospital of Pittsburgh (A.G., J.V.), PA; Stealth BioTherapeutics (W.D.W.), Newton, MA; and Akron Children's Hospital (B.H.C.), OH
| | - W Douglas Weaver
- From the Genetics Unit (A.K.), Massachusetts General Hospital, Boston; UC San Diego School of Medicine (R.H.), La Jolla, CA; Children's Hospital of Pittsburgh (A.G., J.V.), PA; Stealth BioTherapeutics (W.D.W.), Newton, MA; and Akron Children's Hospital (B.H.C.), OH
| | - Bruce H Cohen
- From the Genetics Unit (A.K.), Massachusetts General Hospital, Boston; UC San Diego School of Medicine (R.H.), La Jolla, CA; Children's Hospital of Pittsburgh (A.G., J.V.), PA; Stealth BioTherapeutics (W.D.W.), Newton, MA; and Akron Children's Hospital (B.H.C.), OH
| |
Collapse
|
92
|
Delco ML, Bonnevie ED, Szeto HS, Bonassar LJ, Fortier LA. Mitoprotective therapy preserves chondrocyte viability and prevents cartilage degeneration in an ex vivo model of posttraumatic osteoarthritis. J Orthop Res 2018; 36:10.1002/jor.23882. [PMID: 29469223 PMCID: PMC6105558 DOI: 10.1002/jor.23882] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/07/2018] [Indexed: 02/04/2023]
Abstract
No disease-modifying osteoarthritis (OA) drugs are available to prevent posttraumatic osteoarthritis (PTOA). Mitochondria (MT) mediate the pathogenesis of many degenerative diseases, and recent evidence indicates that MT dysfunction is a peracute (within minutes to hours) response of cartilage to mechanical injury. The goal of this study was to investigate cardiolipin-targeted mitoprotection as a new strategy to prevent chondrocyte death and cartilage degeneration after injury. Cartilage was harvested from bovine knee joints and subjected to a single, rapid impact injury (24.0 ±1.4 MPa, 53.8 ± 5.3 GPa/s). Explants were then treated with a mitoprotective peptide, SS-31 (1µM), immediately post-impact, or at 1, 6, or 12 h after injury, and then cultured for up to 7 days. Chondrocyte viability and apoptosis were quantified in situ using confocal microscopy. Cell membrane damage (lactate dehydrogenase activity) and cartilage matrix degradation (glycosaminoglycan loss) were quantified in cartilage-conditioned media. SS-31 treatment at all time points after impact resulted in chondrocyte viability similar to that of un-injured controls. This effect was sustained for up to a week in culture. Further, SS-31 prevented impact-induced chondrocyte apoptosis, cell membrane damage, and cartilage matrix degeneration. CLINICAL SIGNIFICANCE This study is the first investigation of cardiolipin-targeted mitoprotective therapy in cartilage. These results suggest that even when treatment is delayed by up to 12 h after injury, mitoprotection may be a useful strategy in the prevention of PTOA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-10, 2018.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Edward D. Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Hazel S. Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW Mitochondria are complex intracellular organelles with a variety of important functions. The kidney tubule is densely packed with mitochondria, and mitochondrial dysfunction is thought to be central to the pathogenesis of acute kidney injury (AKI). Mitochondria therefore represent potential targets for novel therapeutic interventions in AKI. RECENT FINDINGS Several mitochondrial targeted approaches have shown promise in recent preclinical studies of AKI, including measures to: reduce oxidative stress within mitochondria; prevent mitochondrial fission and activation of cell death pathways; enhance recycling of damaged mitochondria via autophagy and mitophagy; and accelerate mitochondrial biogenesis postinsult. SUMMARY Recent studies show that it is now eminently feasible to pharmacologically manipulate various key aspects of mitochondrial biology in the kidney, and this has much potential for the future treatment of AKI. However, significant hurdles will have to be overcome in the translational pathway for these strategies to successfully migrate to the clinic.
Collapse
|
94
|
Ladiges W, Liggitt D. Testing drug combinations to slow aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2017; 8:1407203. [PMID: 29291036 PMCID: PMC5706479 DOI: 10.1080/20010001.2017.1407203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA,
| | - Denny Liggitt
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA,
| |
Collapse
|
95
|
Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 2017; 455:131-147. [PMID: 28062199 PMCID: PMC5724961 DOI: 10.1016/j.mce.2016.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/10/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals.
Collapse
Affiliation(s)
- Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA.
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes. Florida Hospital, 301 East Princeton St, Orlando, FL 32804, USA.
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866, Poznan, Poland.
| |
Collapse
|
96
|
Kuang X, Sun Y, Wang Z, Zhou S, Liu H. A mitochondrial targeting tetrapeptide Bendavia protects lateral line hair cells from gentamicin exposure. J Appl Toxicol 2017; 38:376-384. [PMID: 29105116 DOI: 10.1002/jat.3547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/29/2017] [Accepted: 09/10/2017] [Indexed: 12/18/2022]
Abstract
The hearing loss induced by aminoglycosides is caused by the permanent loss of mechanosensory hair cells of the inner ear. The aim of the present study is therefore to evaluate the protective effect of Bendavia, a novel antioxidant, on gentamicin-induced hair cell damage in zebrafish lateral lines. The results demonstrated the pretreatment of Bendavia exhibited dose-dependent protection against gentamicin in both acute and chronic exposure. We found that Bendavia at 150 μm conferred optimal protection from either acute or chronic exposure with ototoxin. Bendavia reduced uptake of fluorescent-tagged gentamicin via mechanoelectrical transduction channels, suggesting its protective effects may be partially due to decreasing ototoxic molecule uptake. The intracellular death pathways inhibition triggered by gentamicin might be also included as no blockage of gentamicin was observed. Our data suggest that Bendavia represents a novel otoprotective drug that might provide a therapeutic alternative for patients receiving aminoglycoside treatment.
Collapse
Affiliation(s)
- Xiao Kuang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yanhui Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhenjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shuang Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| |
Collapse
|
97
|
Kuang X, Zhou S, Guo W, Wang Z, Sun Y, Liu H. SS-31 peptide enables mitochondrial targeting drug delivery: a promising therapeutic alteration to prevent hair cell damage from aminoglycosides. Drug Deliv 2017; 24:1750-1761. [PMID: 29214897 PMCID: PMC8241023 DOI: 10.1080/10717544.2017.1402220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 01/22/2023] Open
Abstract
Aminoglycoside-induced hearing loss stems from damage or loss of mechanosensory hair cells in the inner ear. Intrinsic mitochondrial cell death pathway plays a key role in that cellular dysfunction for which no proven effective therapies against oto-toxicities exist. Therefore, the aim of the present study was to develop a new mitochondrial targeting drug delivery system (DDS) that provided improved protection from gentamicin. Particularly, SS-31 peptide-conjugated geranylgeranylacetone (GGA) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles were constructed successfully via emulsion-solvent evaporation method. The zebrafish lateral line sensory system was used as an in vivo evaluating platform to investigate the protective efficiency against gentamicin. SS-31 modification significantly reduced the activity of mechanoelectrical transduction (MET) channel and gentamicin uptake in zebrafish lateral line hair cells. As expected, SS-31 conjugated nanoparticles showed mitochondrial specific accumulation in hair cells when compared with unconjugated formulations. Furthermore, intracellular SS-31 modified PLGA NPs slightly enhanced mitochondrial membrane potential (MMP, ΔΨm) and then returned to a steady-state, indicating their effect on the respiratory chain complexes in mitochondria. GGA loaded SS-31 conjugated nanoparticles demonstrated the most favorable hair cells survivals against gentamicin when compared with unconjugated groups whereas blank formulations failed to exhibit potency, indicating that the efficiency was attributed to drug delivery of GGA. These results suggest that our constructed mitochondria-targeting PLGA based DDS have potential application in protecting hair cells from ototoxic agents.
Collapse
Affiliation(s)
- Xiao Kuang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Shuang Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Weiling Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Zhenjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yanhui Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
98
|
Wang Z, Guo W, Kuang X, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective. Asian J Pharm Sci 2017; 12:498-508. [PMID: 32104363 PMCID: PMC7032167 DOI: 10.1016/j.ajps.2017.05.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are a novel and promising therapeutic target for diagnosis, treatment and prevention of a lot of human diseases such as cancer, metabolic diseases and neurodegenerative disease. Owing to the mitochondrial special bilayer structure and highly negative potential nature, therapeutic molecules have multiple difficulties in reaching mitochondria. To overcome multiple barriers for targeting mitochondria, the researchers developed various pharmaceutical preparations such as liposomes, polymeric nanoparticles and inorganic nanoparticles modified by mitochondriotropic moieties like dequalinium (DQA), triphenylphosphonium (TPP), mitochondrial penetrating peptides (MPPs) and mitochondrial protein import machinery that allow specific targeting. The targeted formulations exhibited enhanced pharmacological effect and better therapeutic effect than their untargeted counterpart both in vitro and in vivo. Nanocarriers may be used for bio-therapeutic delivery into specific mitochondria that possess a great potential treatment of mitochondria related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
99
|
Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Sci Rep 2017; 7:13663. [PMID: 29057950 PMCID: PMC5654478 DOI: 10.1038/s41598-017-13961-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Vitiligo is characterized by death or functional defects of epidermal melanocytes through still controversial pathogenic process. Previously, we showed that mitochondria-driven pre-senescent phenotype diminishes the capability of vitiligo melanocytes to cope with stressful stimuli. In the current study, we investigated markers of mitochondrial energy metabolism including the PGC1a axis, and then we determined the index of mitochondrial impairment using a cytomic approach. We found in cultured epidermal vitiligo melanocytes, compared to healthy ones, low ATP, increased proton leakage, and altered expression of several glycolytic enzymes (hexokinase II, pyruvic dehydrogenase kinase 1 and pyruvic kinase M2), We suggest that the low ATP production may be sufficient in steady-state conditions but it is unable to cover further needs. We also found in vitiligo melanocyrtes hyper-activation of the PGC1α axis, finalized to counteract the energy defect. Cytomic analysis, supported by MitoTracker Red pattern and ex-vivo immunohistochemistry, suggested an increased mitochondrial mass, possibly useful to ensure the essential ATP level. Finally, pharmacological cardiolipin stabilization reverted the energetic impairment, confirming the initial mitochondrial role. In conclusion, we report new insight in the pathogenetic mechanism of viitligo and indicate that the mitochondrial failure rescue by cardiolipin manipulation may be a new intriguing target in treatment development.
Collapse
|
100
|
Abstract
AKI is associated with high morbidity and mortality, and it predisposes to the development and progression of CKD. Novel strategies that minimize AKI and halt the progression of CKD are urgently needed. Normal kidney function involves numerous different cell types, such as tubular epithelial cells, endothelial cells, and podocytes, working in concert. This delicate balance involves many energy-intensive processes. Fatty acids are the preferred energy substrates for the kidney, and defects in fatty acid oxidation and mitochondrial dysfunction are universally involved in diverse causes of AKI and CKD. This review provides an overview of ATP production and energy demands in the kidney and summarizes preclinical and clinical evidence of mitochondrial dysfunction in AKI and CKD. New therapeutic strategies targeting mitochondria protection and cellular bioenergetics are presented, with emphasis on those that have been evaluated in animal models of AKI and CKD. Targeting mitochondrial function and cellular bioenergetics upstream of cellular damage may offer advantages compared with targeting downstream inflammatory and fibrosis processes.
Collapse
Affiliation(s)
- Hazel H Szeto
- Mitochondrial Therapeutics Consulting, New York, New York
| |
Collapse
|