51
|
Zhou XM, Zhao P, Wang W, Zou J, Cheng TH, Peng XB, Sun MX. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues. DNA Res 2015; 22:245-57. [PMID: 26205094 PMCID: PMC4535619 DOI: 10.1093/dnares/dsv012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/21/2015] [Indexed: 11/14/2022] Open
Abstract
Autophagy is an evolutionarily conserved mechanism in both animals and plants, which has been shown to be involved in various essential developmental processes in plants. Nicotiana tabacum is considered to be an ideal model plant and has been widely used for the study of the roles of autophagy in the processes of plant development and in the response to various stresses. However, only a few autophagy-related genes (ATGs) have been identified in tobacco up to now. Here, we identified 30 ATGs belonging to 16 different groups in tobacco through a genome-wide survey. Comprehensive expression profile analysis reveals an abroad expression pattern of these ATGs, which could be detected in all tissues tested under normal growth conditions. Our series tests further reveal that majority of ATGs are sensitive and responsive to different stresses including nutrient starvation, plant hormones, heavy metal and other abiotic stresses, suggesting a central role of autophagy, likely as an effector, in plant response to various environmental cues. This work offers a detailed survey of all ATGs in tobacco and also suggests manifold functions of autophagy in both normal plant growth and plant response to environmental stresses.
Collapse
Affiliation(s)
- Xue-mei Zhou
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Wei Wang
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Jie Zou
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Tian-he Cheng
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Xiong-bo Peng
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Meng-xiang Sun
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| |
Collapse
|
52
|
Levine B, Liu R, Dong X, Zhong Q. Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology. Trends Cell Biol 2015; 25:533-44. [PMID: 26071895 PMCID: PMC4554927 DOI: 10.1016/j.tcb.2015.05.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 12/25/2022]
Abstract
Beclin orthologs are crucial regulators of autophagy and related membrane-trafficking pathways. Multiple signaling pathways converge on Beclin 1 to regulate cellular stress responses, membrane trafficking, and physiology.
The Beclin family, including yeast Atg6 (autophagy related gene 6), its orthologs in higher eukaryotic species, and the more recently characterized mammalian-specific Beclin 2, are essential molecules in autophagy and other membrane-trafficking events. Extensive studies of Beclin orthologs have provided considerable insights into the regulation of autophagy, the diverse roles of autophagy in physiology and disease, and potential new strategies to modulate autophagy in a variety of clinical diseases. In this review we discuss the functions of Beclin orthologs, the regulation of such functions by diverse cellular signaling pathways, and the effects of such regulation on downstream cellular processes including tumor suppression and metabolism. These findings suggest that Beclin orthologs serve as crucial molecules that integrate diverse environmental signals with membrane trafficking events to ensure optimal responses of the cell to stressful stimuli.
Collapse
Affiliation(s)
- Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rong Liu
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaonan Dong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
53
|
Yue J, Sun H, Zhang W, Pei D, He Y, Wang H. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. BMC PLANT BIOLOGY 2015; 15:95. [PMID: 25888209 PMCID: PMC4393579 DOI: 10.1186/s12870-015-0472-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Autophagy-related ATG6 proteins are pleiotropic proteins functioning in autophagy and the phosphatidylinositol 3-phosphate-signaling pathways. Arabidopsis ATG6 regulates normal plant growth, pollen development and germination, and plant responses to biotic/abiotic stresses. However, the ATG6 functions in wheat (Triticum aestivum L.), an important food crop, are lacking. RESULTS We identified three members, TaATG6a-6c, of the ATG6 family from common wheat. TaATG6a, 6b and 6c were localized on homeologous chromosomes 3DL, 3BL and 3AL, respectively, of the allo-hexaploid wheat genome, and evidence was provided for their essential role in autophagy. The TaATG6a-GFP fusion protein was found in punctate pre-autophagosomal structures. The expression of each TaATG6 gene restored the accumulation of autophagic bodies in atg6-mutant yeast. Additionally, TaATG6 knockdown plants showed impaired constitutive and pathogen-induced autophagy and growth abnormalities under normal conditions. We also examined the expression patterns of wheat ATG6s for clues to their physiological roles, and found that their expression was induced by the fungus Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew, and by abiotic stress factors. A role for TaATG6s in wheat immunity to powdery mildew was further implied when knockdowns of TaATG6s weakly compromised the broad-spectrum powdery mildew resistance gene Pm21-triggered resistance response and, conversely and significantly, enhanced the basal resistance of susceptible plants. In addition, leaf cell death was sometimes induced by growth-retarded small Bgt mycelia on susceptible TaATG6 knockdown plants after a long period of interaction. Thus, we provide an important extension of the previous characterization of plant ATG6 genes in wheat, and observed a role for autophagy genes in wheat immune responses to fungal pathogens. CONCLUSIONS Three wheat ATG6s were identified and shown to be essential for autophagy biogenesis. Wheat ATG6s are implicated in immunity to powdery mildew, playing a weak, positive role in the Pm21-triggered resistance response and a negative role in the basal resistance of susceptible plants.
Collapse
Affiliation(s)
- Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Hong Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Wei Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Dan Pei
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Yang He
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Huazhong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, School of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
54
|
Bassham DC. Methods for analysis of autophagy in plants. Methods 2014; 75:181-8. [PMID: 25239736 DOI: 10.1016/j.ymeth.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
The plant vacuole is a major site for the breakdown and recycling of cellular macromolecules. Cytoplasmic components destined for degradation are delivered to the vacuole in vesicles termed autophagosomes, and the breakdown products are transported back into the cytosol for reuse, with the overall process termed autophagy. In plants, autophagy is required for nutrient remobilization and recycling during senescence and nutrient deficiency, for clearance of protein aggregates and damaged organelles during environmental stress, for pathogen defense, and for general cellular maintenance under normal growth conditions. There is growing interest in autophagy in plants due to the wide range of processes in which it functions. While much of the work thus far has used the model plant Arabidopsis thaliana, autophagy is now under investigation in a number of other plants, particularly in economically important crop species. Here, I discuss methods for assessing autophagy activity in plant cells. Microscopic and biochemical assays are described, along with ways to distinguish the steady-state number of autophagosomes from flux through the autophagic pathway. Some deficiencies still exist in plant autophagy analysis, and there is a particular need for more accurate methods of quantifying autophagic flux in plants.
Collapse
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
55
|
Lv X, Pu X, Qin G, Zhu T, Lin H. The roles of autophagy in development and stress responses in Arabidopsis thaliana. Apoptosis 2014; 19:905-21. [DOI: 10.1007/s10495-014-0981-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
56
|
Teh OK, Hofius D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1297-312. [PMID: 24420567 DOI: 10.1093/jxb/ert441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants respond to pathogen attack with dynamic rearrangements of the endomembrane system and rapid redirection of membrane traffic to facilitate effective host defence. Mounting evidence indicates the involvement of endocytic, secretory, and vacuolar trafficking pathways in immune receptor activation, signal transduction, and execution of multiple defence responses including programmed cell death (PCD). Autophagy is a conserved intracellular trafficking and degradation process and has been implicated in basal immunity as well as in some forms of immune receptor-mediated vacuolar cell death. However, the regulatory interplay of autophagy and other membrane trafficking pathways in PCD and defence responses remains obscure. This review therefore highlights recent advances in the understanding of autophagic and membrane trafficking during plant immunity, and discusses emerging molecular links and functional interconnections.
Collapse
Affiliation(s)
- Ooi-Kock Teh
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center of Plant Biology, SE-75007 Uppsala, Sweden
| | | |
Collapse
|
57
|
Li R, Li J, Li S, Qin G, Novák O, Pěnčík A, Ljung K, Aoyama T, Liu J, Murphy A, Gu H, Tsuge T, Qu LJ. ADP1 affects plant architecture by regulating local auxin biosynthesis. PLoS Genet 2014; 10:e1003954. [PMID: 24391508 PMCID: PMC3879159 DOI: 10.1371/journal.pgen.1003954] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/26/2013] [Indexed: 01/30/2023] Open
Abstract
Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. Plant architecture is one of the key factors that affect plant survival and productivity. It is well established that the plant hormone auxin plays an essential role in organ initiation and pattern formation, thus affecting plant architecture. We found that a putative MATE (multidrug and toxic compound extrusion) transporter, ADP1, which was expressed in the meristematic regions, through regulating the level of auxin biosynthesis, controls lateral organ outgrowth so as to maintain normal architecture in Arabidopsis. The more ADP1 was expressed, the less levels of local auxin were detected in the meristematic regions of the plant, resulting in increased growth rate and a greater number of axillary branches and flowers. The reduction of auxin levels is probably due to decreased level of auxin biosynthesis in the local meristematic regions. Down-regulated expression of ADP1 and its three closely related genes caused plants to grow slower and to produce less lateral organs. Our results indicated that ADP1-mediated regulation of the local auxin levels in meristematic regions is an essential determinant for plant architecture by restraining the outgrowth of lateral organs.
Collapse
Affiliation(s)
- Ruixi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jieru Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Shibai Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 21, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
| | - Jingjing Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Angus Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
- * E-mail: (TT); (LJQ)
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
- * E-mail: (TT); (LJQ)
| |
Collapse
|
58
|
Abstract
Transfer DNA (T-DNA) insertion mutants are often used in forward and reverse genetics to reveal the molecular mechanisms of a particular biological process in plants. To generate T-DNA insertion mutants, T-DNA must be inserted randomly in the genome through transformation mediated by Agrobacterium tumefaciens. During generation of a T-DNA insertion mutant, Agrobacterium competent cells are first prepared and plasmids containing the T-DNA introduced into Agrobacterium cells. Agrobacterium containing T-DNA vectors are then used to transform T-DNA into Arabidopsis. After screening and identifying T-DNA insertion mutants with interesting phenotypes, genomic DNA is extracted from the mutants and used to isolate the T-DNA flanking sequences. To finally determine the mutated genes causing the specific phenotype in the T-DNA insertion mutants, cosegregation analysis and complementation or recapitulation analysis are needed. In this chapter, we describe detailed protocols for generation and characterization of T-DNA insertion mutants.
Collapse
Affiliation(s)
- Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | | |
Collapse
|
59
|
Kim SH, Kwon C, Lee JH, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells 2012; 34:413-23. [PMID: 22772908 PMCID: PMC3887786 DOI: 10.1007/s10059-012-0098-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022] Open
Abstract
Autophagy, or self-consuming of cytoplasmic constituents in a lytic compartment, plays a crucial role in nutrient recycling, development, cell homeostasis, and defense against pathogens and toxic products. Autophagy in plant cells uses a conserved machinery of core Autophagy-related (Atg) proteins. Recently, research on plant autophagy has been expanding and other components interacting with the core Atg proteins are being revealed. In addition, growing evidence suggests that autophagy communicates with other cellular pathways such as the ubiquitin-proteasome system, protein secretory pathway, and endocytic pathway. An increase in our understanding of plant autophagy will undoubtedly help test the hypothesized functions of plant autophagy in programmed cell death, vacuole biogenesis, and responses to biotic, abiotic, and nutritional stresses. In this review, we summarize recent progress on these topics and suggest topics for future research, after inspecting common phenotypes of current Arabidopsis atg mutants.
Collapse
Affiliation(s)
- Soon-Hee Kim
- Department of Biological Sciences, Pusan National University, Busan 609-735,
Korea
| | | | | | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 609-735,
Korea
| |
Collapse
|
60
|
Rana RM, Dong S, Ali Z, Huang J, Zhang HS. Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). GENETICS AND MOLECULAR RESEARCH 2012; 11:3676-87. [PMID: 22930426 DOI: 10.4238/2012.august.17.3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Autophagy, a complex and conserved mechanism, serving as a defense response in all eukaryotic organisms, is regulated by several proteins, among which ATG proteins are the most important due to their involvement in autophagosome formation. ATG6/Beclin-1 proteins, reported to be essential for autophagosome formation and assigned as a conserved domain, were subjected to database searches. We found three homologs in the rice (Oryza sativa) genome. A phylogeny tree was constructed to establish their across species relationship, which divided them into three distinct groups; two for plants, i.e., monocots and dicots, and one for animals. Evolutionary study of this family by critical amino acid conservation analysis revealed significant functional divergence. The finding of important stress-related cis-acting elements in the promoter region of rice ATG6 genes demonstrated their involvement in abiotic stress responses. Furthermore, expression profiling of rice ATG6 genes based on microarray data, as well as by semi-quantitative RT-PCR showed differential expression when subjected to different stresses suggesting the involvement of OsATG6 genes in abiotic stresses (heat, cold and drought) and hormone (abscisic acid) responses. Analysis of co-expressed genes showed that most of them annotated to DNA repair pathways and proteolysis, etc. Collectively, these results suggest the involvement of OsATG6 genes in different stresses, and provide a basis for further functional studies to investigate the biological mechanism of action of these genes under abiotic stresses.
Collapse
Affiliation(s)
- R M Rana
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
61
|
Kuzuoglu-Ozturk D, Cebeci Yalcinkaya O, Akpinar BA, Mitou G, Korkmaz G, Gozuacik D, Budak H. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. PLANTA 2012; 236:1081-92. [PMID: 22569921 DOI: 10.1007/s00425-012-1657-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/16/2012] [Indexed: 05/02/2023]
Abstract
An autophagy-related gene Atg8 was cloned for the first time from wild emmer wheat, named as TdAtg8, and its role on autophagy under abiotic stress conditions was investigated. Examination of TdAtg8 expression patterns indicated that Atg8 expression was strongly upregulated under drought stress, especially in the roots when compared to leaves. LysoTracker(®) red marker, utilized to observe autophagosomes, revealed that autophagy is constitutively active in Triticum dicoccoides. Moreover, autophagy was determined to be induced in plants exposed to osmotic stress when compared to plants grown under normal conditions. Functional studies were executed in yeast to confirm that the TdATG8 protein is functional, and showed that the TdAtg8 gene complements the atg8∆::kan MX yeast mutant strain grown under nitrogen deficiency. For further functional analysis, TdATG8 protein was expressed in yeast and analyzed using Western immunoblotting. Atg8-silenced plants were exposed to drought stress and chlorophyll and malondialdehyde (MDA) content measurements demonstrated that Atg8 plays a key role on drought stress tolerance. In addition, Atg8-silenced plants exposed to osmotic stress were found to have decreased Atg8 expression level in comparison to controls. Hence, Atg8 is a positive regulator in osmotic and drought stress response.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Ozturk
- Biological Sciences and Bioengineering Program, Sabanci University, Tuzla, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
62
|
Li F, Vierstra RD. Autophagy: a multifaceted intracellular system for bulk and selective recycling. TRENDS IN PLANT SCIENCE 2012; 17:526-37. [PMID: 22694835 DOI: 10.1016/j.tplants.2012.05.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated mechanisms to recycle intracellular constituents. One gaining in appreciation is autophagy, which involves specialized vesicles engulfing and delivering unwanted cytoplasmic material to the vacuole for breakdown. Central to this process is the ubiquitin-fold protein autophagy (ATG)-8, which becomes tethered to the developing autophagic membranes by lipidation. Here, we review data showing that the ATG8 moiety provides a docking site not only for proteins that help shape the enclosing vesicles and promote their fusion with the tonoplast, but also for a host of receptors that recruit appropriate autophagic cargo. The identity of these receptors has dramatically altered the view of autophagy as being a relatively nonspecific mechanism to one that may selectively sequester aggregated proteins, protein complexes, organelles, and even invading pathogens.
Collapse
Affiliation(s)
- Faqiang Li
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
63
|
Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants. PLANT & CELL PHYSIOLOGY 2012; 53:1355-65. [PMID: 22764279 DOI: 10.1093/pcp/pcs099] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic components. There is no doubt that autophagy is very important to plant life, especially because plants are immobile and must survive in environmental extremes. Early studies of autophagy provided our first insights into the structural characteristics of the process in plants, but for a long time the molecular mechanisms and the physiological roles of autophagy were not understood. Genetic analyses of autophagy in the yeast Saccharomyces cerevisiae have greatly expanded our knowledge of the molecular aspects of autophagy in plants as well as in animals. Until recently our knowledge of plant autophagy was in its infancy compared with autophagy research in yeast and animals, but recent efforts by plant researchers have made many advances in our understanding of plant autophagy. Here I will introduce an overview of autophagy in plants, present current findings and discuss the physiological roles of self-degradation.
Collapse
Affiliation(s)
- Kohki Yoshimoto
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France.
| |
Collapse
|
64
|
Avin-Wittenberg T, Honig A, Galili G. Variations on a theme: plant autophagy in comparison to yeast and mammals. PROTOPLASMA 2012; 249:285-99. [PMID: 21660427 DOI: 10.1007/s00709-011-0296-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 05/18/2023]
Abstract
Autophagy is an evolutionary conserved process of bulk degradation and nutrient sequestration that occurs in all eukaryotic cells. Yet, in recent years, autophagy has also been shown to play a role in the specific degradation of individual proteins or protein aggregates as well as of damaged organelles. The process was initially discovered in yeast and has also been very well studied in mammals and, to a lesser extent, in plants. In this review, we summarize what is known regarding the various functions of autopahgy in plants but also attempt to address some specific issues concerning plant autophagy, such as the insufficient knowledge regarding autophagy in various plant species other than Arabidopsis, the fact that some genes belonging to the core autophagy machinery in various organisms are still missing in plants, the existence of autophagy multigene families in plants and the possible operation of selective autophagy in plants, a study that is still in its infancy. In addition, we point to plant-specific autophagy processes, such as the participation of autophagy during development and germination of the seed, a unique plant organ. Throughout this review, we demonstrate that the use of innovative bioinformatic resources, together with recent biological discoveries (such as the ATG8-interacting motif), should pave the way to a more comprehensive understanding of the multiple functions of plant autophagy.
Collapse
|
65
|
Gao XQ, Zhang XS. Metabolism and roles of phosphatidylinositol 3-phosphate in pollen development and pollen tube growth in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:165-9. [PMID: 22307045 PMCID: PMC3405687 DOI: 10.4161/psb.18743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoinositides play important roles in eukaryotic cells, although they constitute a minor fraction of total cellular lipids. Specific kinases and phosphatases function on the regulation of phosphoinositide levels. Phosphatidylinositol 3-phosphate (PtdIns3P), a molecule of phosphoinositides regulates multiple aspects of plant growth and development. In this mini-review, we introduce and discuss the kinases and phosphatases involved in PtdIns3P metabolism and their roles in pollen development and pollen tube growth in Arabidopsis.
Collapse
|
66
|
Wang WY, Zhang L, Xing S, Ma Z, Liu J, Gu H, Qin G, Qu LJ. Arabidopsis AtVPS15 plays essential roles in pollen germination possibly by interacting with AtVPS34. J Genet Genomics 2012; 39:81-92. [PMID: 22361507 DOI: 10.1016/j.jgg.2012.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
VPS15 protein is a component of the phosphatidylinositol 3-kinase complex which plays a pivotal role in the development of yeast and mammalian cells. The knowledge about the function of its homologue in plants remains limited. Here we report that AtVPS15, a homologue of yeast VPS15p in Arabidopsis, plays an essential role in pollen germination. Homozygous T-DNA insertion mutants of AtVPS15 could not be obtained from the progenies of self-pollinated heterozygous mutants. Reciprocal crosses between atvps15 mutants and wild-type Arabidopsis revealed that the T-DNA insertion was not able to be transmitted by male gametophytes. DAPI staining, Alexander's stain and scanning electron microscopic analysis showed that atvps15 heterozygous plants produced pollen grains that were morphologically indistinguishable from wild-type pollen, whereas in vitro germination experiments revealed that germination of the pollen grains was defective. GUS staining analysis of transgenic plants expressing the GUS reporter gene driven by the AtVPS15 promoter showed that AtVPS15 was mainly expressed in pollen grains. Finally, DUALmembrane yeast two-hybrid analysis demonstrated that AtVPS15 might interact directly with AtVPS34. These results suggest that AtVPS15 is very important for pollen germination, possibly through modulation of the activity of PI3-kinase.
Collapse
Affiliation(s)
- Wei-Ying Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Plants have developed sophisticated mechanisms to survive when in unfavorable environments. Autophagy is a macromolecule degradation pathway that recycles damaged or unwanted cell materials upon encountering stress conditions or during specific developmental processes. Over the past decade, our molecular and physiological understanding of plant autophagy has greatly increased. Most of the essential machinery required for autophagy seems to be conserved from yeast to plants. Plant autophagy has been shown to function in various stress responses, pathogen defense, and senescence. Some of its potential upstream regulators have also been identified. Here, we describe recent advances in our understanding of autophagy in plants, discuss areas of controversy, and highlight potential future directions in autophagy research.
Collapse
Affiliation(s)
- Yimo Liu
- Department of Genetics, Development, and Cell Biology and Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
68
|
Zhang Y, Li S, Zhou LZ, Fox E, Pao J, Sun W, Zhou C, McCormick S. Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1081-92. [PMID: 21883549 DOI: 10.1111/j.1365-313x.2011.04761.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Autophagy is a pathway in eukaryotes by which nutrient remobilization occurs through bulk protein and organelle turnover. Autophagy not only aides cells in coping with harsh environments but also plays a key role in many physiological processes that include pollen germination and tube growth. Most autophagic components are conserved among eukaryotes, but phylum-specific molecular components also exist. We show here that Arabidopsis thaliana PTEN, a protein and lipid dual phosphatase homologous to animal PTENs (phosphatase and tensin homologs deleted on chromosome 10), regulates autophagy in pollen tubes by disrupting the dynamics of phosphatidylinositol 3-phosphate (PI3P). The pollen-specific PTEN bound PI3P in vitro and was localized at PI3P-positive vesicles. Overexpression of PTEN caused accumulation of autophagic bodies and resulted in gametophytic male sterility. Such an overexpression effect was dependent upon its lipid phosphatase activity and was inhibited by exogenous PI3P or by expression of a class III phosphatidylinositol 3-kinase (PI3K) that produced PI3P. Overexpression of PTEN disrupted the dynamics of autophagosomes and a subpopulation of endosomes, as shown by altered localization patterns of respective fluorescent markers. Treatment with wortmannin, an inhibitor of class III PI3K, mimicked the effects by PTEN overexpression, which implied a critical role for PI3P dynamics in these processes. Despite sharing evolutionarily conserved catalytic domains, plant PTENs contain regulatory sequences that are distinct from those of animal PTENs, which might underlie their differing membrane association and thereby function. Our results show that PTEN regulates autophagy through phylum-specific molecular mechanisms.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Xu N, Gao XQ, Zhao XY, Zhu DZ, Zhou LZ, Zhang XS. Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. PLANT MOLECULAR BIOLOGY 2011; 77:251-60. [PMID: 21833541 PMCID: PMC3171654 DOI: 10.1007/s11103-011-9806-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/05/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana phosphatidylinositol 3-kinase (AtVPS34) functions in the development and germination of pollen by catalyzing the biosynthesis of phosphatidylinositol 3-phosphate (PI3P). In yeast, Vps15p is required for the membrane targeting and activity of Vps34. The expression of Arabidopsis thaliana VPS15 (AtVPS15), an ortholog of yeast Vps15, is mainly detected in pollen grains and pollen tubes. To determine its role in pollen development and pollen tube growth, we attempted to isolate the T-DNA insertion mutants of AtVPS15; however, homozygous lines of atvps15 were not obtained from the progeny of atvps15/+ heterozygotes. Genetic analysis revealed that the abnormal segregation is due to the failure of transmission of the atvps15 allele through pollen. Most pollen grains from the atvps15/+ genotype are viable, with normal exine structure and nuclei, but some mature pollen grains are characterized with unusual large vacuoles that are not observed in pollen grains from the wild AtVPS15 genotype. The germination ratio of pollen from the atvps15/+ genotype is about half when compared to that from the wild AtVPS15 genotype. When supplied with PI3P, in vitro pollen germination of the atvps15/+ genotype is greatly improved. Presumably, AtVPS15 functions in pollen development and germination by regulating PI3P biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Na Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xin Ying Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Dong Zi Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Liang Zi Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
70
|
Wang Y, Nishimura MT, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:74-87. [PMID: 21645148 DOI: 10.1111/j.1365-313x.2011.04669.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.
Collapse
Affiliation(s)
- Yiping Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
71
|
Wang Y, Wu Y, Tang D. The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:1408-10. [PMID: 21847024 PMCID: PMC3258078 DOI: 10.4161/psb.6.9.16967] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 05/18/2023]
Abstract
Autophagy is a conserved intracellular recycling system that traffics cellular organelles and cytosolic proteins within lysosomes for reuse or breakdown in eukaryotes. Increased evidence indicates that autophagy is involved in programmed cell death and disease resistance in plants. We recently showed that atg2, atg5, atg7 and atg10 displayed early senescence and cell death in later growth stage under nutrient-rich conditions in Arabidopsis thaliana. These mutants also exhibited powdery mildew resistance and mildew-induced cell death. Salicylic acid (SA) signaling is required for atg2-mediated powdery mildew resistance, however, inactivation of SA signaling is not sufficient to fully suppress powdery mildew-induced cell death in atg2 mutant1. Here, we show that atg18a-2 is also resistant to the powdery mildew pathogen, Golovinomyces cichoracearum, and it shows mildew-induced cell death similar to the atg2 mutant. Taken together, our study reveals that autophagy plays important roles in suppression of cell death and defense response to the biotrophic pathogen, the powdery mildew fungus. Future work on autophagy in plants will shine light on how autophagy is involved in cell death and defense response in plants.
Collapse
Affiliation(s)
- Yiping Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
- Graduate University of Chinese Academy of Sciences; Beijing, China
| | - Yingying Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
- Graduate University of Chinese Academy of Sciences; Beijing, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
| |
Collapse
|
72
|
Lai Z, Wang F, Zheng Z, Fan B, Chen Z. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:953-68. [PMID: 21395886 DOI: 10.1111/j.1365-313x.2011.04553.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Autophagy is a pathway for degradation of cytoplasmic components. In plants, autophagy plays an important role in nutrient recycling during nitrogen or carbon starvation, and in responses to abiotic stress. Autophagy also regulates age- and immunity-related programmed cell death, which is important in plant defense against biotrophic pathogens. Here we show that autophagy plays a critical role in plant resistance to necrotrophic pathogens. ATG18a, a critical autophagy protein in Arabidopsis, interacts with WRKY33, a transcription factor that is required for resistance to necrotrophic pathogens. Expression of autophagy genes and formation of autophagosomes are induced in Arabidopsis by the necrotrophic fungal pathogen Botrytis cinerea. Induction of ATG18a and autophagy by B. cinerea was compromised in the wrky33 mutant, which is highly susceptible to necrotrophic pathogens. Arabidopsis mutants defective in autophagy exhibit enhanced susceptibility to the necrotrophic fungal pathogens B. cinerea and Alternaria brassicicola based on increased pathogen growth in the mutants. The hypersusceptibility of the autophagy mutants was associated with reduced expression of the jasmonate-regulated PFD1.2 gene, accelerated development of senescence-like chlorotic symptoms, and increased protein degradation in infected plant tissues. These results strongly suggest that autophagy cooperates with jasmonate- and WRKY33-mediated signaling pathways in the regulation of plant defense responses to necrotrophic pathogens.
Collapse
Affiliation(s)
- Zhibing Lai
- Department of Botany and Plant Pathology, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA
| | | | | | | | | |
Collapse
|
73
|
Han L, Qin G, Kang D, Chen Z, Gu H, Qu LJ. A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis. J Genet Genomics 2011; 37:667-83. [PMID: 21035093 DOI: 10.1016/s1673-8527(09)60085-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/18/2010] [Accepted: 07/22/2010] [Indexed: 12/27/2022]
Abstract
Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane-bound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondrial Complex I. AtCIB22 is a single-copy gene and is highly conserved throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtCIB22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtCIB22 gene display pleiotropic phenotypes including shorter roots, smaller plants and delayed flowering. Stress analysis indicates that the AtCIB22 mutants' seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mutants, the alternative respiratory pathways including NDA1, NDB2, AOX1a and AtPUMP1 are remarkably elevated. These data demonstrate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also enhance our understanding about the physiological role of Complex I in plants.
Collapse
Affiliation(s)
- Lihua Han
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | |
Collapse
|
74
|
Hayward AP, Dinesh-Kumar SP. What can plant autophagy do for an innate immune response? ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:557-76. [PMID: 21370973 DOI: 10.1146/annurev-phyto-072910-095333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Autophagy plays an established role in the execution of senescence, starvation, and stress responses in plants. More recently, an emerging role for autophagy has been discovered during the plant innate immune response. Recent papers have shown autophagy to restrict, and conversely, to also promote programmed cell death (PCD) at the site of pathogen infection. These initial studies have piqued our excitement, but they have also revealed gaps in our understanding of plant autophagy regulation, in our ability to monitor autophagy in plant cells, and in our ability to manipulate autophagic activity. In this review, we present the most pressing questions now facing the field of plant autophagy in general, with specific focus on autophagy as it occurs during a plant-pathogen interaction. To begin to answer these questions, we place recent findings in the context of studies of autophagy and immunity in other systems, and in the context of the mammalian immune response in particular.
Collapse
Affiliation(s)
- Andrew P Hayward
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
75
|
Singh SP, Pandey T, Srivastava R, Verma PC, Singh PK, Tuli R, Sawant SV. BECLIN1 from Arabidopsis thaliana under the generic control of regulated expression systems, a strategy for developing male sterile plants. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:1005-22. [PMID: 21050365 DOI: 10.1111/j.1467-7652.2010.00527.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Induction of male sterility followed by successful outcrossing is a prerequisite for hybrid seed production. In this article, we have identified a novel use of the BECLIN 1 gene of Arabidopsis, in inducing male sterility in plants, when expressed in the anther tapetum of tobacco. We also report a stringently regulated and high-level expression of the desired gene in tapetum by using a two-component transcription regulation system. The tapetum-specific, two-component transcription system utilizes the TGTA-TBPm³ complementation principle that has been demonstrated by us earlier. We also report a glucocorticoid-dependent expression of AtBECLIN 1 in tapetum, thereby developing glucocorticoid-inducible male sterility in plants.
Collapse
Affiliation(s)
- Sudhir P Singh
- Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, India
| | | | | | | | | | | | | |
Collapse
|
76
|
Reumann S, Voitsekhovskaja O, Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. PROTOPLASMA 2010; 247:233-56. [PMID: 20734094 DOI: 10.1007/s00709-010-0190-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 07/28/2010] [Indexed: 05/08/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic constituents. The central structures of this pathway are newly formed double-membrane vesicles (autophagosomes) that deliver excess or damaged cell components into the vacuole or lysosome for proteolytic degradation and monomer recycling. Cellular remodeling by autophagy allows organisms to survive extensive phases of nutrient starvation and exposure to abiotic and biotic stress. Autophagy was initially studied by electron microscopy in diverse organisms, followed by molecular and genetic analyses first in yeast and subsequently in mammals and plants. Experimental data demonstrate that the basic principles, mechanisms, and components characterized in yeast are conserved in mammals and plants to a large extent. However, distinct autophagy pathways appear to differ between kingdoms. Even though direct information remains scarce particularly for plants, the picture is emerging that the signal transduction cascades triggering autophagy and the mechanisms of organelle turnover evolved further in higher eukaryotes for optimization of nutrient recycling. Here, we summarize new research data on nitrogen starvation-induced signal transduction and organelle autophagy and integrate this knowledge into plant physiology.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, 4021 Stavanger, Norway.
| | | | | |
Collapse
|
77
|
Cacas JL. Devil inside: does plant programmed cell death involve the endomembrane system? PLANT, CELL & ENVIRONMENT 2010; 33:1453-1473. [PMID: 20082668 DOI: 10.1111/j.1365-3040.2010.02117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Institut de Recherche pour le Développement, Equipe 2, Mécanismes des Résistances, Montpellier Cedex 5, France.
| |
Collapse
|
78
|
Chung T, Phillips AR, Vierstra RD. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:483-93. [PMID: 20136727 DOI: 10.1111/j.1365-313x.2010.04166.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin-fold proteins Autophagy-related (ATG)-8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8-PE adduct, we also show that ATG8 lipidation requires the ATG12-ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12-ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12-ATG5 adduct is essential for ATG8-mediated autophagy in plants by promoting ATG8 lipidation.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Genetics, 425-G Henry Mall, University of Wisconsin Madison, WI 53706-1574, USA
| | | | | |
Collapse
|
79
|
Autophagy in plants and phytopathogens. FEBS Lett 2010; 584:1350-8. [PMID: 20079356 DOI: 10.1016/j.febslet.2010.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 12/28/2022]
Abstract
Plants and plant-associated microorganisms including phytopathogens have to adapt to drastic changes in environmental conditions. Because of their immobility, plants must cope with various types of environmental stresses such as starvation, oxidative stress, drought stress, and invasion by phytopathogens during their differentiation, development, and aging processes. Here we briefly describe the early studies of plant autophagy, summarize recent studies on the molecular functions of ATG genes, and speculate on the role of autophagy in plants and phytopathogens. Autophagy regulates senescence and pathogen-induced cell death in plants, and autophagy and pexophagy play critical roles in differentiation and the invasion of host cells by phytopathogenic fungi.
Collapse
|
80
|
Guo Y, Qin G, Gu H, Qu LJ. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. THE PLANT CELL 2009; 21:3518-34. [PMID: 19915089 PMCID: PMC2798324 DOI: 10.1105/tpc.108.064139] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 09/21/2009] [Accepted: 10/25/2009] [Indexed: 05/18/2023]
Abstract
Vascular cambium, a type of lateral meristem, is the source of secondary xylem and secondary phloem, but little is known about the molecular mechanisms of its formation and development. Here, we report the characterization of an Arabidopsis thaliana gain-of-function mutant with dramatically increased cambial activity, designated high cambial activity2 (hca2). The hca2 mutant has no alternative organization of the vascular bundles/fibers in inflorescence stems, due to precocious formation of interfascicular cambium and its subsequent cell division. The phenotype results from elevated expression of HCA2, which encodes a nuclear-localized DNA binding with one finger (Dof) transcription factor Dof5.6. Dof5.6/HCA2 is preferentially expressed in the vasculature of all the organs, particularly in the cambium, phloem, and interfascicular parenchyma cells of inflorescence stems. Dominant-negative analysis further demonstrated that both ubiquitous and in situ repression of HCA2 activity led to disruption of interfascicular cambium formation and development in inflorescence stems. In-depth anatomical analysis showed that HCA2 promotes interfascicular cambium formation at a very early stage of inflorescence stem development. This report demonstrates that a transcription factor gene, HCA2, is involved in regulation of interfascicular cambium formation and vascular tissue development in Arabidopsis.
Collapse
Affiliation(s)
- Yong Guo
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|
81
|
Hayward AP, Tsao J, Dinesh-Kumar SP. Autophagy and plant innate immunity: Defense through degradation. Semin Cell Dev Biol 2009; 20:1041-7. [PMID: 19406248 DOI: 10.1016/j.semcdb.2009.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 01/02/2023]
Abstract
Autophagy is a process of bulk degradation and nutrient sequestration that occurs in all eukaryotes. In plants, autophagy is activated during development, environmental stress, starvation, and senescence. Recent evidence suggests that autophagy is also necessary for the proper regulation of hypersensitive response programmed cell death (HR-PCD) during the plant innate immune response. We review autophagy in plants with emphasis on the role of autophagy during innate immunity. We hypothesize a role for autophagy in the degradation of pro-death signals during HR-PCD, with specific focus on reactive oxygen species and their sources. We propose that the plant chloroplasts are an important source of pro-death signals during HR-PCD, and that the chloroplast itself may be targeted for autophagosomal degradation by a process called chlorophagy.
Collapse
Affiliation(s)
- Andrew P Hayward
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
82
|
Chen CNN, Chen HR, Yeh SY, Vittore G, Ho THD. Autophagy is enhanced and floral development is impaired in AtHVA22d RNA interference Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1679-89. [PMID: 19151132 PMCID: PMC2663764 DOI: 10.1104/pp.108.131490] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Autophagy is an intracellular process in which a portion of cytoplasm is transported into vacuoles for recycling. Physiological roles of autophagy in plants include recycling nutrients during senescence, sustaining life during starvation, and the formation of central digestive vacuoles. The regulation of autophagy and the formation of autophagosomes, spherical double membrane structures containing cytoplasm moving toward vacuoles, are poorly understood. HVA22 is a gene originally cloned from barley (Hordeum vulgare), which is highly induced by abscisic acid and environmental stress. Homologs of HVA22 include Yop1 in yeast, TB2/DP1 in human, and AtHVA22a to -e in Arabidopsis (Arabidopsis thaliana). Reverse genetics followed by a cell biology approach were employed to study the function of HVA22 homologs. The AtHVA22d RNA interference (RNAi) Arabidopsis plants produced small siliques with reduced seed yield. This phenotype cosegregated with the RNAi transgene. Causes of the reduced seed yield include short filaments, defective carpels, and dysfunctional pollen grains. Enhanced autophagy was observed in the filament cells. The number of autophagosomes in root tips of RNAi plants was also increased dramatically. The yop1 deletion mutant of Saccharomyces cerevisiae was used to verify our hypothesis that HVA22 homologs are suppressors of autophagy. Autophagy activity of this mutant during nitrogen starvation increased in 5 min and reached a plateau after 2 h, with about 80% of cells showing autophagy, while the wild-type cells exhibited low levels of autophagy following 8 h of nitrogen starvation. We conclude that HVA22 homologs function as suppressors of autophagy in both plants and yeast. Potential mechanisms of this suppression and the roles of abscisic acid-induced HVA22 expression in vegetative and reproductive tissues are discussed.
Collapse
|
83
|
Bassham DC. Function and regulation of macroautophagy in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1397-403. [PMID: 19272302 DOI: 10.1016/j.bbamcr.2009.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 02/03/2023]
Abstract
The plant vacuole is a major site for the degradation of macromolecules, which are transferred from the cytoplasm by autophagy via double-membrane vesicles termed autophagosomes. Autophagy functions at a basal level under normal growth conditions and is induced during senescence and upon exposure to stress conditions to recycle nutrients or degrade damaged proteins and organelles. Autophagy is also required for the regulation of programmed cell death as a response to pathogen infection and possibly during certain developmental processes. Little is known about how autophagy is regulated under these different conditions in plants, but recent evidence suggests that plants contain a functional TOR pathway which may control autophagy induction in conjunction with hormonal and/or environmental signals.
Collapse
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development and Cell Biology, 253 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
84
|
Seay M, Hayward AP, Tsao J, Dinesh-Kumar SP. Something old, something new: plant innate immunity and autophagy. Curr Top Microbiol Immunol 2009; 335:287-306. [PMID: 19802571 DOI: 10.1007/978-3-642-00302-8_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy performs a variety of established functions during plant growth and development. Recently, autophagy has been further implicated in the regulation of programmed cell death induced during the plant innate immune response. In this chapter we describe specific mechanisms through which autophagy may contribute to a successful defense against pathogen invasion. Accumulating evidence shows that the plant immune system utilizes the chloroplasts as primary sites for the regulation of cell death programs. Viruses also appear to utilize the chloroplast as a site of replication and accumulation, potentially inactivating chloroplast defense signaling in the process. Autophagy-like mechanisms have been observed to target the chloroplast, which we refer to as "chlorophagy," potentially targeting invasive viruses for degradation or regulating chloroplast-based signaling during the immune response. We hypothesize that chlorophagy is significant for the execution of plant immune defenses, during both basal and effector-triggered immunity.
Collapse
Affiliation(s)
- Montrell Seay
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | |
Collapse
|
85
|
Bassham DC, Brandizzi F, Otegui MS, Sanderfoot AA. The secretory system of Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0116. [PMID: 22303241 PMCID: PMC3243370 DOI: 10.1199/tab.0116] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past few years, a vast amount of research has illuminated the workings of the secretory system of eukaryotic cells. The bulk of this work has been focused on the yeast Saccharomyces cerevisiae, or on mammalian cells. At a superficial level, plants are typical eukaryotes with respect to the operation of the secretory system; however, important differences emerge in the function and appearance of endomembrane organelles. In particular, the plant secretory system has specialized in several ways to support the synthesis of many components of the complex cell wall, and specialized kinds of vacuole have taken on a protein storage role-a role that is intended to support the growing seedling, but has been co-opted to support human life in the seeds of many crop plants. In the past, most research on the plant secretory system has been guided by results in mammalian or fungal systems but recently plants have begun to stand on their own as models for understanding complex trafficking events within the eukaryotic endomembrane system.
Collapse
Affiliation(s)
- Diane C. Bassham
- Department of Genetics, Development and Cell Biology and Plant Sciences Institute, Iowa State University, 455 Bessey Hall, Ames, Iowa 50011
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, S-238 Plant Biology, East Lansing, Michigan 48824
| | - Marisa S. Otegui
- Department of Botany, University of Wisconsin- Madison, 224 Birge Hall, 430 Lincoln Drive, Madison, Wisconsin 53706
| | - Anton A. Sanderfoot
- Department of Plant Biology, University of Minnesota-Twin Cities, 250 Bioscience Center, 1445 Gortner Ave, St. Paul, Minnesota 55108
| |
Collapse
|
86
|
Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY, Lee Y. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. PLANT PHYSIOLOGY 2008; 147:1886-97. [PMID: 18515640 PMCID: PMC2492648 DOI: 10.1104/pp.108.121590] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/02/2008] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol 3-kinase has been reported to be important for normal plant growth. To characterize the role of the enzyme further, we attempted to isolate Arabidopsis (Arabidopsis thaliana) plants that do not express the gene, but we could not recover homozygous mutant plants. The progeny of VPS34/vps34 heterozygous plants, harboring a T-DNA insertion, showed a segregation ratio of 1:1:0 for wild-type, heterozygous, and homozygous mutant plants, indicating a gametophytic defect. Genetic transmission analysis showed that the abnormal segregation ratio was due to failure to transmit the mutant allele through the male gametophyte. Microscopic observation revealed that 2-fold higher proportions of pollen grains in heterozygous plants than wild-type plants were dead or showed reduced numbers of nuclei. Many mature pollen grains from the heterozygous plants contained large vacuoles even until the mature pollen stage, whereas pollen from wild-type plants contained many small vacuoles beginning from the vacuolated pollen stage, which indicated that vacuoles in many of the heterozygous mutant pollen did not undergo normal fission after the first mitotic division. Taken together, our results suggest that phosphatidylinositol 3-kinase is essential for vacuole reorganization and nuclear division during pollen development.
Collapse
Affiliation(s)
- Yuree Lee
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, POSTECH, Pohang 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
87
|
The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 2008; 178:1339-53. [PMID: 18245858 DOI: 10.1534/genetics.107.086199] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autophagy is an important intracellular recycling system in eukaryotes that utilizes small vesicles to traffic cytosolic proteins and organelles to the vacuole for breakdown. Vesicle formation requires the conjugation of the two ubiquitin-fold polypeptides ATG8 and ATG12 to phosphatidylethanolamine and the ATG5 protein, respectively. Using Arabidopsis thaliana mutants affecting the ATG5 target or the ATG7 E1 required to initiate ligation of both ATG8 and ATG12, we previously showed that the ATG8/12 conjugation pathways together are important when plants encounter nutrient stress and during senescence. To characterize the ATG12 conjugation pathway specifically, we characterized a null mutant eliminating the E2-conjugating enzyme ATG10 that, similar to plants missing ATG5 or ATG7, cannot form the ATG12-ATG5 conjugate. atg10-1 plants are hypersensitive to nitrogen and carbon starvation and initiate senescence and programmed cell death (PCD) more quickly than wild type, as indicated by elevated levels of senescence- and PCD-related mRNAs and proteins during carbon starvation. As detected with a GFP-ATG8a reporter, atg10-1 and atg5-1 mutant plants fail to accumulate autophagic bodies inside the vacuole. These results indicate that ATG10 is essential for ATG12 conjugation and that the ATG12-ATG5 conjugate is necessary to form autophagic vesicles and for the timely progression of senescence and PCD in plants.
Collapse
|
88
|
Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 2007; 17:839-49. [PMID: 17893711 DOI: 10.1038/cr.2007.78] [Citation(s) in RCA: 452] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process of macroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role of autophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function of autophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge of Atg6/Beclin 1 in different model organisms and its unique function in the cell.
Collapse
Affiliation(s)
- Yang Cao
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | |
Collapse
|
89
|
Bassham DC. Plant autophagy--more than a starvation response. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:587-93. [PMID: 17702643 DOI: 10.1016/j.pbi.2007.06.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/07/2007] [Indexed: 05/16/2023]
Abstract
Autophagy is a conserved mechanism for the degradation of cellular contents in order to recycle nutrients or break down damaged or toxic material. This occurs by the uptake of cytoplasmic constituents into the vacuole, where they are degraded by vacuolar hydrolases. In plants, autophagy has been known for some time to be important for nutrient remobilization during sugar and nitrogen starvation and leaf senescence, but recent research has uncovered additional crucial roles for plant autophagy. These roles include the degradation of oxidized proteins during oxidative stress, disposal of protein aggregates, and possibly even removal of damaged proteins and organelles during normal growth conditions as a housekeeping function. A surprising regulatory function for autophagy in programmed cell death during the hypersensitive response to pathogen infection has also been identified.
Collapse
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development and Cell Biology, 253 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|