51
|
Spred negatively regulates lens growth by modulating epithelial cell proliferation and fiber differentiation. Exp Eye Res 2018; 178:160-175. [PMID: 30290165 DOI: 10.1016/j.exer.2018.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Spred, like Sprouty (Spry) and also Sef proteins, have been identified as important regulators of receptor tyrosine kinase (RTK)-mediated MAPK/ERK-signaling in various developmental systems, controlling cellular processes such as proliferation, migration and differentiation. Spreds are widely expressed during early embryogenesis, and in the eye lens, become more localised in the lens epithelium with later development, overlapping with other antagonists including Spry. Given the synexpression of Spreds and Spry in lens, in order to gain a better understanding of their specific roles in regulating growth factor mediated-signaling and cell behavior, we established and characterised lines of transgenic mice overexpressing Spred1 or Spred2, specifically in the lens. This overexpression of Spreds resulted in a small lens phenotype during ocular morphogenesis, retarding its growth by compromising epithelial cell proliferation and fiber differentiation. These in situ findings were shown to be dependent on the ability of Spreds to suppress MAPK-signaling, in particular FGF-induced ERK1/2-signaling in lens cells. This was validated in vitro using lens epithelial explants, that highlighted the overlapping role of Spreds with Spry2, but not Spry1. This study provides insights into the putative function of Spreds and Spry in situ, some overlapping and some distinct, and their importance in regulating lens cell proliferation and fiber differentiation contributing to lens and eye growth.
Collapse
|
52
|
Chhunchha B, Kubo E, Singh P, Singh DP. Sumoylation-deficient Prdx6 repairs aberrant Sumoylation-mediated Sp1 dysregulation-dependent Prdx6 repression and cell injury in aging and oxidative stress. Aging (Albany NY) 2018; 10:2284-2315. [PMID: 30215601 PMCID: PMC6188488 DOI: 10.18632/aging.101547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Progressive deterioration of antioxidant response in aging is a major culprit in the initiation of age-related pathobiology induced by oxidative stress. We previously reported that oxidative stress leads to a marked reduction in transcription factor Sp1 and its mediated Prdx6 expression in lens epithelial cells (LECs) leading to cell death. Herein, we examined how Sp1 activity goes awry during oxidative stress/aging, and whether it is remediable. We found that Sp1 is hyper-Sumoylated at lysine (K) 16 residue in aging LECs. DNA binding and promoter assays revealed, in aging and oxidative stress, a significant reduction in Sp1 overall binding, and specifically to Prdx6 promoter. Expression/overexpression assay revealed that the observed reduction in Sp1-DNA binding activity was connected to its hyper-Sumoylation due to increased reactive oxygen species (ROS) and Sumo1 levels, and reduced levels of Senp1, Prdx6 and Sp1. Mutagenesis of Sp1 at K16R (arginine) residue restored steady-state, and improved Sp1-DNA binding activity and transactivation potential. Extrinsic expression of Sp1K16R increased cell survival and reduced ROS levels by upregulating Prdx6 expression in LECs under aging/oxidative stress, demonstrating that Sp1K16R escapes the aberrant Sumoylation processes. Intriguingly, the deleterious processes are reversible by the delivery of Sumoylation-deficient Prdx6, an antioxidant, which would be a candidate molecule to restrict aging pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Prerna Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| |
Collapse
|
53
|
Khan SY, Ali M, Kabir F, Renuse S, Na CH, Talbot CC, Hackett SF, Riazuddin SA. Proteome Profiling of Developing Murine Lens Through Mass Spectrometry. Invest Ophthalmol Vis Sci 2018; 59:100-107. [PMID: 29332127 PMCID: PMC5769801 DOI: 10.1167/iovs.17-21601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose We previously completed a comprehensive profile of the mouse lens transcriptome. Here, we investigate the proteome of the mouse lens through mass spectrometry–based protein sequencing at the same embryonic and postnatal time points. Methods We extracted mouse lenses at embryonic day 15 (E15) and 18 (E18) and postnatal day 0 (P0), 3 (P3), 6 (P6), and 9 (P9). The lenses from each time point were preserved in three distinct pools to serve as biological replicates for each developmental stage. The total cellular protein was extracted from the lens, digested with trypsin, and labeled with isobaric tandem mass tags (TMT) for three independent TMT experiments. Results A total of 5404 proteins were identified in the mouse ocular lens in at least one TMT set, 4244 in two, and 3155 were present in all three TMT sets. The majority of the proteins exhibited steady expression at all six developmental time points; nevertheless, we identified 39 proteins that exhibited an 8-fold differential (higher or lower) expression during the developmental time course compared to their respective levels at E15. The lens proteome is composed of diverse proteins that have distinct biological properties and functional characteristics, including proteins associated with cataractogenesis and autophagy. Conclusions We have established a comprehensive profile of the developing murine lens proteome. This repository will be helpful in identifying critical components of lens development and processes essential for the maintenance of its transparency.
Collapse
Affiliation(s)
- Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Chan Hyun Na
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sean F Hackett
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
54
|
Azimi M, Le TT, Brown NL. Presenilin gene function and Notch signaling feedback regulation in the developing mouse lens. Differentiation 2018; 102:40-52. [PMID: 30059908 DOI: 10.1016/j.diff.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Presenilins (Psen1 and Psen2 in mice) are polytopic transmembrane proteins that act in the γ-secretase complex to make intra-membrane cleavages of their substrates, including the well-studied Notch receptors. Such processing releases the Notch intracellular domain, allowing it to physically relocate from the cell membrane to the nucleus where it acts in a transcriptional activating complex to regulate downstream genes in the signal-receiving cell. Previous studies of Notch pathway mutants for Jagged1, Notch2, and Rbpj demonstrated that canonical signaling is a necessary component of normal mouse lens development. However, the central role of Psens within the γ-secretase complex has never been explored in any developing eye tissue or cell type. By directly comparing Psen single and double mutant phenotypes during mouse lens development, we found a stronger requirement for Psen1, although both genes are needed for progenitor cell growth and to prevent apoptosis. We also uncovered a novel genetic interaction between Psen1 and Jagged1. By quantifying protein and mRNA levels of key Notch pathway genes in Psen1/2 or Jagged1 mutant lenses, we identified multiple points in the overall signaling cascade where feedback regulation can occur. Our data are consistent with the loss of particular genes indirectly influencing the transcription level of another. However, we conclude that regulating Notch2 protein levels is particularly important during normal signaling, supporting the importance of post-translational regulatory mechanisms in this tissue.
Collapse
Affiliation(s)
- Mina Azimi
- Department of Cell Biology & Human Anatomy; University of California, Davis One Shields Avenue, Davis, CA 95616, USA
| | - Tien T Le
- Division of Developmental Biology, Cincinnati Childrens Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy; University of California, Davis One Shields Avenue, Davis, CA 95616, USA; Division of Developmental Biology, Cincinnati Childrens Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
55
|
Fan J, Lerner J, Wyatt MK, Cai P, Peterson K, Dong L, Wistow G. The klotho-related protein KLPH (lctl) has preferred expression in lens and is essential for expression of clic5 and normal lens suture formation. Exp Eye Res 2018; 169:111-121. [PMID: 29425878 PMCID: PMC5878992 DOI: 10.1016/j.exer.2018.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
KLPH/lctl belongs to the Klotho family of proteins. Expressed sequence tag analyses unexpectedly revealed that KLPH is highly expressed in the eye lens while northern blots showed that expression is much higher in the eye than in other tissues. In situ hybridization in mouse localized mRNA to the lens, particularly in the equatorial epithelium. Immunofluorescence detected KLPH in lens epithelial cells with highest levels in the germinative/differentiation zone. The gene for KLPH in mouse was deleted by homologous recombination. Littermate knockout (KO) and wild type (WT) mice were compared in a wide panel of pathology examinations and were all grossly normal, showing no systemic effects of the deletion. However, the lens, while superficially normal at young ages, had focusing defects and exhibited age-related cortical cataract by slit lamp examination. Whole-lens imaging showed that KO mice had disorganized lens sutures, forming a loose double-y or x instead of the tight y formation of WT. RNA-seq profiles for KO and WT littermates confirmed the absence of KLPH mRNA in KO lens and also showed complete absence of transcripts for Clic5, a protein associated with cilium/basal body related auditory defects in a mouse model. Immunofluorescence of lens epithelial flat mounts showed that Clic5 localized to cilia/centrosomes. Mice mutant for Clic5 (jitterbug) also had defective sutures. These results suggest that KLPH is required for lens-specific expression of Clic5 and that Clic5 has an important role in the machinery that controls lens fiber cell extension and organization.
Collapse
Affiliation(s)
- Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Lerner
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Keith Wyatt
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Phillip Cai
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
56
|
Tam OH, Pennisi D, Wilkinson L, Little MH, Wazin F, Wan VL, Lovicu FJ. Crim1 is required for maintenance of the ocular lens epithelium. Exp Eye Res 2018; 170:58-66. [PMID: 29458060 DOI: 10.1016/j.exer.2018.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
Abstract
The development and growth of the vertebrate ocular lens is dependent on the regulated proliferation of an anterior monolayer of epithelial cells, and their subsequent differentiation into elongate fiber cells. The growth factor rich ocular media that bathes the lens mediates these cellular processes, and their respective intracellular signaling pathways are in turn regulated to ensure that the proper lens architecture is maintained. Recent studies have proposed that Cysteine Rich Motor Neuron 1 (Crim1), a transmembrane protein involved in organogenesis of many tissues, might influence cell adhesion, polarity and proliferation in the lens by regulating integrin-signaling. Here, we characterise the lens and eyes of the Crim1KST264 mutant mice, and show that the loss of Crim1 function in the ocular tissues results in inappropriate differentiation of the lens epithelium into fiber cells. Furthermore, restoration of Crim1 levels in just the lens tissue of Crim1KST264 mice is sufficient to ameliorate most of the dysgenesis observed in the mutant animals. Based on our findings, we propose that tight regulation of Crim1 activity is required for maintenance of the lens epithelium, and its depletion leads to ectopic differentiation into fiber cells, dramatically altering lens structure and ultimately leading to microphthalmia and aphakia.
Collapse
Affiliation(s)
- Oliver H Tam
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - David Pennisi
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Fatima Wazin
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Victor L Wan
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
57
|
Collins TN, Mao Y, Li H, Bouaziz M, Hong A, Feng GS, Wang F, Quilliam LA, Chen L, Park T, Curran T, Zhang X. Crk proteins transduce FGF signaling to promote lens fiber cell elongation. eLife 2018; 7:32586. [PMID: 29360039 PMCID: PMC5818251 DOI: 10.7554/elife.32586] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
Specific cell shapes are fundamental to the organization and function of multicellular organisms. Fibroblast Growth Factor (FGF) signaling induces the elongation of lens fiber cells during vertebrate lens development. Nonetheless, exactly how this extracellular FGF signal is transmitted to the cytoskeletal network has previously not been determined. Here, we show that the Crk family of adaptor proteins, Crk and Crkl, are required for mouse lens morphogenesis but not differentiation. Genetic ablation and epistasis experiments demonstrated that Crk and Crkl play overlapping roles downstream of FGF signaling in order to regulate lens fiber cell elongation. Upon FGF stimulation, Crk proteins were found to interact with Frs2, Shp2 and Grb2. The loss of Crk proteins was partially compensated for by the activation of Ras and Rac signaling. These results reveal that Crk proteins are important partners of the Frs2/Shp2/Grb2 complex in mediating FGF signaling, specifically promoting cell shape changes. As an embryo develops, its cells divide multiple times to transform into the specialized cell types that form our tissues and organs. To carry out specific roles, cells need to be of a certain shape. For example, in mammals, the cells that make up the main portion of the eye lens, develop into a fiber-like shape to be perfectly aligned with each other. This enables them to transmit light to the retina at the rear end of the eye. To do so, the lens cells increase over 1000 times in length with the help of a group of proteins called the Fibroblast Growth Factor, or FGF for short. The FGF pathway includes a network of interacting proteins that transmit signals to molecules inside the lens cells to control how they specialize and grow. However, until now it was not clear how it does this. Here, Zhang et al. used mouse lens-cells grown in the laboratory to investigate how FGF signaling causes cells to change their structure. The experiments revealed two related proteins called Crk and Crkl that linked the FGF pathway with another signaling system. When these two proteins were removed from the lens cells, the lens cells were still able to specialize, but could no longer grow in length. This suggests that these two processes are independent of each other. Moreover, Crk and Crkl helped the cells to change shape by increasing the amount of another group of proteins called Ras, which are known to both help cells to specialize and to regulate their shape. Zhang et al. discovered that the amount of Ras proteins determined whether cells specialized or modified their shape by changing the organization of proteins in the cell. Millions of children are born with cataracts, a disease caused when lens cells fail to shape properly. A better knowledge of FGF signaling may help to understand how cataracts develop and inspire future treatments. Moreover, the pathways identified in this study could also apply to other organs and diseases in which FGF signaling is active.
Collapse
Affiliation(s)
- Tamica N Collins
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Yingyu Mao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Hongge Li
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Michael Bouaziz
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Angela Hong
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| | - Gen-Sheng Feng
- Department of Pathology, University of California San Diego, La Jolla, United States
| | - Fen Wang
- Center for Cancer Biology and Nutrition, Houston, United States
| | - Lawrence A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
| | - Lin Chen
- Department of Rehabilitation Medicine, Third Military Medical University, Chongqing, China
| | - Taeju Park
- The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
| | - Tom Curran
- The Children's Research Institute, Children's Mercy Kansas City, Kansas City, United States
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, United States
| |
Collapse
|
58
|
Petrova RS, Webb KF, Vaghefi E, Walker K, Schey KL, Donaldson PJ. Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells. Am J Physiol Cell Physiol 2017; 314:C191-C201. [PMID: 29118028 DOI: 10.1152/ajpcell.00214.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the functionality of the lens water channels aquaporin 1 (AQP1; epithelium) and AQP0 (fiber cells) is well established, less is known about the role of AQP5 in the lens. Since in other tissues AQP5 functions as a regulated water channel with a water permeability (PH2O) some 20 times higher than AQP0, AQP5 could function to modulate PH2O in lens fiber cells. To test this possibility, a fluorescence dye dilution assay was used to calculate the relative PH2O of epithelial cells and fiber membrane vesicles isolated from either the mouse or rat lens, in the absence and presence of HgCl2, an inhibitor of AQP1 and AQP5. Immunolabeling of lens sections and fiber membrane vesicles from mouse and rat lenses revealed differences in the subcellular distributions of AQP5 in the outer cortex between species, with AQP5 being predominantly membranous in the mouse but predominantly cytoplasmic in the rat. In contrast, AQP0 labeling was always membranous in both species. This species-specific heterogeneity in AQP5 membrane localization was mirrored in measurements of PH2O, with only fiber membrane vesicles isolated from the mouse lens, exhibiting a significant Hg2+-sensitive contribution to PH2O. When rat lenses were first organ cultured, immunolabeling revealed an insertion of AQP5 into cortical fiber cells, and a significant increase in Hg2+-sensitive PH2O was detected in membrane vesicles. Our results show that AQP5 forms functional water channels in the rodent lens, and they suggest that dynamic membrane insertion of AQP5 may regulate water fluxes in the lens by modulating PH2O in the outer cortex.
Collapse
Affiliation(s)
- Rosica S Petrova
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin F Webb
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,Optics and Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham , Nottingham , United Kingdom
| | - Ehsan Vaghefi
- School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| | - Kerry Walker
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland , Auckland , New Zealand.,School of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland , Auckland , New Zealand
| |
Collapse
|
59
|
Aose M, Linbo TH, Lawrence O, Senoo T, Raible DW, Clark JI. The occhiolino (occ) mutant Zebrafish, a model for development of the optical function in the biological lens. Dev Dyn 2017; 246:915-924. [PMID: 28422363 PMCID: PMC6800130 DOI: 10.1002/dvdy.24511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Zebrafish visual function depends on quality optics. An F3 screen for developmental mutations in the Zebrafish nervous system was conducted in wild-type (wt) AB Zebrafish exposed to 3 mM of N-ethyl-N-nitrosourea (ENU). RESULTS Mutant offspring, identified in an F3 screen, were characterized by a small pupil, resulting from retinal hypertrophy or hyperplasia and a small lens. Deficits in visual function made feeding difficult after hatching at approximately 5-6 days postfertilization (dpf). Special feeding conditions were necessary for survival of the occhiolino (occ) mutants after 6 dpf. Optokinetic response (OKR) tests measured defects in visual function in the occ mutant, although electroretinograms (ERGs) were normal in the mutant and wt. Consistent with the ERGs, histology found normal retinal structure in the occ mutant and wt Zebrafish. However, lens development was abnormal. Multiphoton imaging of the developmental stages of live embryos confirmed the formation of a secondary mass of lens cells in the developing eye of the mutant Zebrafish at 3-4 dpf, and laminin immunohistochemistry indicated the lens capsule was thin and disorganized in the mutant Zebrafish. CONCLUSIONS The occ Zebrafish is a novel disease model for visual defects associated with abnormal lens development. Developmental Dynamics 246:915-924, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masamoto Aose
- Department of Ophthalmology, Dokkyo Medical University, Tochigi, Japan
| | - Tor H Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Tadashi Senoo
- Department of Ophthalmology, Dokkyo Medical University, Tochigi, Japan
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
60
|
Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep 2017; 7:14130. [PMID: 29074861 PMCID: PMC5658327 DOI: 10.1038/s41598-017-14520-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Upon oxidative stress and aging, Nrf2 (NFE2-related factor2) triggers antioxidant defense genes to defends against homeostatic failure. Using human(h) or rat(r) lens epithelial cells (LECs) and aging human lenses, we showed that a progressive increase in oxidative load during aging was linked to a decline in Prdx6 expression. DNA binding experiments using gel-shift and ChIP assays demonstrated a progressive reduction in Nrf2/ARE binding (-357/-349) of Prdx6 promoter. The promoter (-918) with ARE showed a marked reduction in young vs aged hLECs, which was directly correlated to decreased Nrf2/ARE binding. A Nrf2 activator, Sulforaphane (SFN), augmented Prdx6, catalase and GSTπ expression in dose-dependent fashion, and halted Nrf2 dysregulation of these antioxidants. SFN reinforced Nrf2/DNA binding and increased promoter activities by enhancing expression and facilitating Nrf2 translocalization in nucleus. Conversely, promoter mutated at ARE site did not respond to SFN, validating the SFN-mediated restoration of Nrf2/ARE signaling. Furthermore, SFN rescued cells from UVB-induced toxicity in dose-dependent fashion, which was consistent with SFN's dose-dependent activation of Nrf2/ARE interaction. Importantly, knockdown of Prdx6 revealed that Prdx6 expression was prerequisite for SFN-mediated cytoprotection. Collectively, our results suggest that loss of Prdx6 caused by dysregulation of ARE/Nrf2 can be attenuated through a SFN, to combat diseases associated with aging.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan.
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Prerna Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA.
| |
Collapse
|
61
|
Van Cruchten S, Vrolyk V, Perron Lepage MF, Baudon M, Voute H, Schoofs S, Haruna J, Benoit-Biancamano MO, Ruot B, Allegaert K. Pre- and Postnatal Development of the Eye: A Species Comparison. Birth Defects Res 2017; 109:1540-1567. [PMID: 28941218 DOI: 10.1002/bdr2.1100] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/07/2017] [Indexed: 12/26/2022]
Abstract
In this review paper, literature data on pre- and postnatal eye development are compared between humans and nonclinical species that are commonly used for human safety assessment, namely, mouse, rat, rabbit, dog, minipig, and nonhuman primates. Some new data on rat and minipig ocular development are also included. This compiled information can be helpful for species selection in juvenile toxicity studies or assist in the interpretation of (non)clinical data during pediatric drug development. Despite some differences in developmental windows and anatomical peculiarities, such as the lack of a fovea centralis in nonprimate species or the presence of a nictitating membrane in some nonclinical species, the functioning and development of the eye is strikingly similar between humans and other mammals. As such, all commonly used nonclinical species appear to be relatively good models for human eye development, although some practical constraints such as size may be a limiting factor. Birth Defects Research 109:1540-1567, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Vanessa Vrolyk
- Département de pathologie et microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | | | - Marie Baudon
- Charles River, Safety Assessment, Saint-Germain-Nuelles, Lyon, France
| | - Hélène Voute
- Charles River, Safety Assessment, Saint-Germain-Nuelles, Lyon, France
| | | | | | - Marie-Odile Benoit-Biancamano
- Département de pathologie et microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - Benoît Ruot
- Charles River, Safety Assessment, Saint-Germain-Nuelles, Lyon, France
| | - Karel Allegaert
- Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of development and regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
62
|
Growth of hollow cell spheroids in microbead templated chambers. Biomaterials 2017; 143:57-64. [PMID: 28763630 DOI: 10.1016/j.biomaterials.2017.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 02/02/2023]
Abstract
Cells form hollow, spheroidal structures during the development of many tissues, including the ocular lens, inner ear, and many glands. Therefore, techniques for in vitro formation of hollow spheroids are valued for studying developmental and disease processes. Current in vitro methods require cells to self-organize into hollow morphologies; we explored an alternative strategy based on cell growth in predefined, spherical scaffolds. Our method uses sacrificial, gelatin microbeads to simultaneously template spherical chambers within a hydrogel and deliver cells into the chambers. We use mouse lens epithelial cells to demonstrate that cells can populate the internal surfaces of the chambers within a week to create numerous hollow spheroids. The platform supports manipulation of matrix mechanics, curvature, and biochemical composition to mimic in vivo microenvironments. It also provides a starting point for engineering organoids of tissues that develop from hollow spheroids.
Collapse
|
63
|
Maddala R, Rao PV. Switching of α-Catenin From Epithelial to Neuronal Type During Lens Epithelial Cell Differentiation. Invest Ophthalmol Vis Sci 2017; 58:3445-3455. [PMID: 28692740 PMCID: PMC5505122 DOI: 10.1167/iovs.17-21539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Ocular lens fiber cell elongation, differentiation, and compaction are associated with extensive reorganization of cell adhesive interactions and cytoskeleton; however, our knowledge of proteins critical to these events is still evolving. This study characterizes the distribution pattern of neuronal-specific α-catenin (αN-catenin) and its interaction with the N-cadherin–associated adherens junctions (AJs) and their stability in the mouse lens fibers. Methods Expression and distribution of αN-catenin in developing mouse and adult human lenses was determined by RT-PCR, immunoblot, and immunofluorescence analyses. Characterization of αN-catenin and N-cadherin interacting proteins and colocalization analyses were performed using immunoprecipitation, mass spectrometry, and confocal imaging. Effects of periaxin deficiency on the stability of lens fiber cell AJs were evaluated using perixin-null mice. Results αN-catenin exhibits discrete distribution to lens fibers in both mouse and human lenses, undergoing a robust up-regulation during fiber cell differentiation and maturation. Epithelial-specific α-catenin (αE-catenin), in contrast, distributes primarily to the lens epithelium. αN-catenin and N-cadherin reciprocally coimmunoprecipitate and colocalize along with β-catenin, actin, spectrin, vinculin, Armadillo repeat protein deleted in velo-cardio-facial syndrome homolog, periaxin, and ankyrin-B in lens fibers. Fiber cells from periaxin-null mouse lenses revealed disrupted N-cadherin/αN-catenin–based AJs. Conclusions These results suggest that the discrete shift in α-catenin expression from αE-catenin to αN-catenin subtype that occurs during lens epithelial cell differentiation may play a key role in fiber cell cytoarchitecture by regulating the assembly and stability of N-cadherin–based AJs. This study also provides evidence for the importance of the fiber cell–specific cytoskeletal interacting periaxin, in the stability of N-cadherin/αN-catenin–based AJs in lens fibers.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States 2Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
64
|
Sellitto C, Li L, Vaghefi E, Donaldson PJ, Lin RZ, White TW. The Phosphoinosotide 3-Kinase Catalytic Subunit p110α is Required for Normal Lens Growth. Invest Ophthalmol Vis Sci 2017; 57:3145-51. [PMID: 27304846 PMCID: PMC4928694 DOI: 10.1167/iovs.16-19607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Signal transduction pathways influence lens growth, but little is known about the role(s) of the class 1A phosphoinositide 3-kinases (PI3Ks). To further investigate how signaling regulates lens growth, we generated and characterized mice in which the p110α and p110β catalytic subunits of PI3K were conditionally deleted in the mouse lens. Methods Floxed alleles of the catalytic subunits of PI3K were conditionally deleted in the lens by using MLR10-cre transgenic mice. Lenses of age-matched animals were dissected and photographed. Postnatal lenses were fixed, paraffin embedded, sectioned, and stained with hematoxylin-eosin. Cell proliferation was quantified by labeling S-phase cells in intact lenses with 5-ethynyl-2′-deoxyuridine. Protein kinase B (AKT) activation was examined by Western blotting. Results Lens-specific deletion of p110α resulted in a significant reduction of eye and lens size, without compromising lens clarity. Conditional knockout of p110β had no effect on lens size or clarity, and deletion of both the p110α and p110β subunits resulted in a phenotype that resembled the p110α single-knockout phenotype. Levels of activated AKT were decreased more in p110α- than in p110β-deficient lenses. A significant reduction in proliferating cells in the germinative zone was observed on postnatal day 0 in p110α knockout mice, which was temporally correlated with decreased lens volume. Conclusions These data suggest that the class 1A PI3K signaling pathway plays an important role in the regulation of lens size by influencing the extent and spatial location of cell proliferation in the perinatal period.
Collapse
Affiliation(s)
- Caterina Sellitto
- Department of Physiology and Biophysics Stony Brook University, Stony Brook, New York, United States
| | - Leping Li
- Department of Physiology and Biophysics Stony Brook University, Stony Brook, New York, United States
| | - Ehsan Vaghefi
- School of Optometry and Vision Science, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Z Lin
- Department of Physiology and Biophysics Stony Brook University, Stony Brook, New York, United States 4Medical Service, Department of Veterans Affairs Medical Center, Northport, New York, United States
| | - Thomas W White
- Department of Physiology and Biophysics Stony Brook University, Stony Brook, New York, United States
| |
Collapse
|
65
|
Li J, Xia CH, Wang E, Yao K, Gong X. Screening, genetics, risk factors, and treatment of neonatal cataracts. Birth Defects Res 2017; 109:734-743. [PMID: 28544770 DOI: 10.1002/bdr2.1050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/21/2022]
Abstract
Neonatal cataracts remain the most common cause of visual loss in children worldwide and have diverse, often unknown, etiologies. This review summarizes current knowledge about the detection, treatment, genetics, risk factors, and molecular mechanisms of congenital cataracts. We emphasize significant progress and topics requiring further study in both clinical cataract therapy and basic lens research. Advances in genetic screening and surgical technologies have improved the diagnosis, management, and visual outcomes of affected children. For example, mutations in lens crystallins and membrane/cytoskeletal components that commonly underlie genetically inherited cataracts are now known. However, many questions still remain regarding the causes, progression, and pathology of neonatal cataracts. Further investigations are also required to improve diagnostic criteria for determining the timing of appropriate interventions, such as the implantation of intraocular lenses and postoperative management strategies, to ensure safety and predictable visual outcomes for children. Birth Defects Research 109:734-743, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinyu Li
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| | - Ke Yao
- Eye Center, Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Ophthalmology of Zhejiang Province, China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, California, USA
| |
Collapse
|
66
|
May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res 2017; 60:144-180. [PMID: 28504201 DOI: 10.1016/j.preteyeres.2017.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed ciliopathies. Ocular pathogenesis is common in virtually all classes of syndromic ciliopathies, and disruptions in cilia genes have been found to be causative in a growing number of non-syndromic retinal dystrophies. This review will address what is currently known about cilia contribution to visual function. We will focus on the molecular and cellular functions of ciliary proteins and their role in the photoreceptor sensory cilia and their visual phenotypes. We also highlight other ciliated cell types in tissues of the eye (e.g. lens, RPE and Müller glia cells) discussing their possible contribution to disease progression. Progress in basic research on the cilia function in the eye is paving the way for therapeutic options for retinal ciliopathies. In the final section we describe the latest advancements in gene therapy, read-through of non-sense mutations and stem cell therapy, all being adopted to treat cilia dysfunction in the retina.
Collapse
Affiliation(s)
- Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
67
|
Donaldson PJ, Grey AC, Maceo Heilman B, Lim JC, Vaghefi E. The physiological optics of the lens. Prog Retin Eye Res 2017; 56:e1-e24. [DOI: 10.1016/j.preteyeres.2016.09.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
|
68
|
Thein T, de Melo J, Zibetti C, Clark BS, Juarez F, Blackshaw S. Control of lens development by Lhx2-regulated neuroretinal FGFs. Development 2016; 143:3994-4002. [PMID: 27633990 PMCID: PMC5117141 DOI: 10.1242/dev.137760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Abstract
Fibroblast growth factor (FGF) signaling is an essential regulator of lens epithelial cell proliferation and survival, as well as lens fiber cell differentiation. However, the identities of these FGF factors, their source tissue and the genes that regulate their synthesis are unknown. We have found that Chx10-Cre;Lhx2lox/lox mice, which selectively lack Lhx2 expression in neuroretina from E10.5, showed an early arrest in lens fiber development along with severe microphthalmia. These mutant animals showed reduced expression of multiple neuroretina-expressed FGFs and canonical FGF-regulated genes in neuroretina. When FGF expression was genetically restored in Lhx2-deficient neuroretina of Chx10-Cre;Lhx2lox/lox mice, we observed a partial but nonetheless substantial rescue of the defects in lens cell proliferation, survival and fiber differentiation. These data demonstrate that neuroretinal expression of Lhx2 and neuroretina-derived FGF factors are crucial for lens fiber development in vivo.
Collapse
Affiliation(s)
- Thuzar Thein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Jimmy de Melo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Cristina Zibetti
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Brian S Clark
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Felicia Juarez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
69
|
Zu CZ, Kuroki M, Hirako A, Takeuchi T, Furukawa S, Sugiyama A. Effect of methotrexate exposure at middle gestation on the inner plate of the ocular cup and lens in the rat fetus. J Toxicol Pathol 2016; 29:173-80. [PMID: 27559242 PMCID: PMC4958615 DOI: 10.1293/tox.2016-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Pregnant rats were treated intraperitoneally with a single dose of methotrexate (MTX) 90 mg/kg on gestation day (GD) 13, and fetal eyeballs were examined time-dependently from GD 13.5 to 15.5. Throughout the experimental period, the inner plate of the ocular cup in the MTX group was significantly thinner than that in the control group. In the inner plate of the ocular cup on GD 15 and 15.5, whereas a developed ganglion cell layer was observed in the control group, the ganglion cell layer in the MTX group was undeveloped and indistinguishable. Disturbance of the arrangement of lens fiber cells, narrowing of the hyaloid cavity of the optic cup, and hypoplasia of optic nerve fibers were observed in the MTX group on GD 15 and 15.5. Increase of pyknosis and decrease of mitosis were induced in the optic cup and the lens epithelium of the MTX group. In the inner plate of the optic cup and the lens epithelium of the MTX group, the cleaved caspase-3- and TUNEL-positive rates increased significantly throughout the experimental period. The phospho-histone H3-positive rate in the inner plate of the optic cup decreased significantly from GD 13.5 to 14.5, and it recovered on GD 15. On the other hand, the phospho-histone H3-positive rate in the lens epithelium decreased significantly throughout the experimental period. These results suggested that optic tissue on GD 13 in rats was sensitive to MTX.
Collapse
Affiliation(s)
- Cheng Zhe Zu
- Department of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8553, Japan
| | - Masato Kuroki
- Department of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8553, Japan
| | - Ayano Hirako
- Department of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8553, Japan
| | - Takashi Takeuchi
- Department of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8553, Japan
| | - Satoshi Furukawa
- Toxicology and Environmental Science Department, Biological Research Laboratories, Nissan Chemical Industries, Ltd., 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Akihiko Sugiyama
- Department of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8553, Japan
| |
Collapse
|
70
|
Li D, Qiu X, Yang J, Liu T, Luo Y, Lu Y. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells. J Cell Physiol 2016; 231:2555-62. [PMID: 26991066 DOI: 10.1002/jcp.25374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Dan Li
- Research Center; Eye & ENT Hospital of Fudan University; Shanghai China
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- State Key Laboratory of Molecular Engineering of Polymers; Fudan University; Shanghai China
| | - Xiaodi Qiu
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| | - Jin Yang
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| | - Tianjin Liu
- Institute of Biochemistry and Cell Biology; Shanghai Institutes for Biological Sciences; Chinese Academy for Sciences; Shanghai China
| | - Yi Luo
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| | - Yi Lu
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| |
Collapse
|
71
|
Kondo T, Nakamori T, Nagai H, Takeshita A, Kusakabe KT, Okada T. A novel spontaneous mutation of BCAR3 results in extrusion cataracts in CF#1 mouse strain. Mamm Genome 2016; 27:451-9. [PMID: 27364350 DOI: 10.1007/s00335-016-9653-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan.
| | - Taketo Nakamori
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| | - Hiroaki Nagai
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| | - Ai Takeshita
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| | - Ken-Takeshi Kusakabe
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Toshiya Okada
- Department of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, 1-58 Rinku Ourai kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
72
|
Lee S, Shatadal S, Griep AE. Dlg-1 Interacts With and Regulates the Activities of Fibroblast Growth Factor Receptors and EphA2 in the Mouse Lens. Invest Ophthalmol Vis Sci 2016; 57:707-18. [PMID: 26906157 PMCID: PMC4771194 DOI: 10.1167/iovs.15-17727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We previously showed that Discs large-1 (Dlg-1) regulates lens fiber cell structure and the fibroblast growth factor receptor (Fgfr) signaling pathway, a pathway required for fiber cell differentiation. Herein, we investigated the mechanism through which Dlg-1 regulates Fgfr signaling. METHODS Immunofluorescence was used to measure levels of Fgfr1, Fgfr2, and activated Fgfr signaling intermediates, pErk and pAkt, in control and Dlg-1-deficient lenses that were haplodeficient for Fgfr1 or Fgfr2. Immunoblotting was used to measure levels of N-cadherin, EphA2, β-catenin, and tyrosine-phosphorylated EphA2, Fgfr1, Fgfr2, and Fgfr3 in cytoskeletal-associated and cytosolic fractions of control and Dlg-1-deficient lenses. Complex formation between Dlg-1, N-cadherin, β-catenin, Fgfr1, Fgfr2, Fgfr3, and EphA2 was assessed by coimmunoprecipitation. RESULTS Lenses deficient for Dlg-1 and haplodeficient for Fgfr1 or Fgfr2 showed increased levels of Fgfr2 or Fgfr1, respectively. Levels of pErk and pAkt correlated with the level of Fgfr2. N-cadherin was reduced in the cytoskeletal-associated fraction and increased in the cytosolic fraction of Dlg-1-deficient lenses. Dlg-1 complexed with β-catenin, EphA2, Fgfr1, Fgfr2, and Fgfr3. EphA2 complexed with N-cadherin, β-catenin, Fgfr1, Fgfr2, and Fgfr3. Levels of these interactions were altered in Dlg-1-deficient lenses. Loss of Dlg-1 led to changes in Fgfr1, Fgfr2, Fgfr3, and EphA2 levels and to greater changes in the levels of their activation. CONCLUSIONS Dlg-1 complexes with and regulates the activities of EphA2, Fgfr1, Fgfr2, and Fgfr3. As EphA2 contains a Psd95/Dlg/ZO-1 (PDZ) binding motif, whereas Fgfrs do not, we propose that the PDZ protein, Dlg-1, modulates Fgfr signaling through regulation of EphA2.
Collapse
|
73
|
Tjondro HC, Xi YB, Chen XJ, Su JT, Yan YB. Membrane insertion of αA-crystallin is oligomer-size dependent. Biochem Biophys Res Commun 2016; 473:1-7. [DOI: 10.1016/j.bbrc.2016.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
|
74
|
Chaffee BR, Hoang TV, Leonard MR, Bruney DG, Wagner BD, Dowd JR, Leone G, Ostrowski MC, Robinson ML. FGFR and PTEN signaling interact during lens development to regulate cell survival. Dev Biol 2016; 410:150-163. [PMID: 26764128 DOI: 10.1016/j.ydbio.2015.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022]
Abstract
Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIβ expression in the lens fiber cells.
Collapse
Affiliation(s)
- Blake R Chaffee
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Thanh V Hoang
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Melissa R Leonard
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Devin G Bruney
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Brad D Wagner
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Joseph Richard Dowd
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA
| | - Gustavo Leone
- Department of Molecular Virology, Immunology and Medical Genetics, Department of Molecular Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael C Ostrowski
- Department of Molecular Virology, Immunology and Medical Genetics, Department of Molecular Genetics, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael L Robinson
- Department of Biology, Cell Molecular and Structural Biology Graduate Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
75
|
Zhang Y, Fan J, Ho JWK, Hu T, Kneeland SC, Fan X, Xi Q, Sellarole MA, de Vries WN, Lu W, Lachke SA, Lang RA, John SWM, Maas RL. Crim1 regulates integrin signaling in murine lens development. Development 2015; 143:356-66. [PMID: 26681494 PMCID: PMC4725338 DOI: 10.1242/dev.125591] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1glcr11, which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1null and Crim1cko, we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active β1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development. Summary: Crim1, a type I transmembrane protein, acts in lens epithelial cells where it colocalizes with and regulates the levels of active β1 integrin to control cell adhesion during mouse lens morphogenesis.
Collapse
Affiliation(s)
- Ying Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jieqing Fan
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua W K Ho
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Tommy Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Kneeland
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Qiongchao Xi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Sellarole
- Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Wilhelmine N de Vries
- Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Salil A Lachke
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Richard A Lang
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Simon W M John
- Victor Chang Cardiac Research Institute, and The University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Richard L Maas
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
76
|
Khan SY, Hackett SF, Lee MCW, Pourmand N, Talbot CC, Riazuddin SA. Transcriptome Profiling of Developing Murine Lens Through RNA Sequencing. Invest Ophthalmol Vis Sci 2015. [PMID: 26225632 DOI: 10.1167/iovs.14-16253] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Transcriptome is the entire repertoire of transcripts present in a cell at any particular time. We undertook a next-generation whole transcriptome sequencing approach to gain insight into the transcriptional landscape of the developing mouse lens. METHODS We ascertained mouse lenses at six developmental time points including two embryonic (E15 and E18) and four postnatal stages (P0, P3, P6, and P9). The ocular tissue at each time point was maintained as two distinct pools serving as biological replicates for each developmental stage. The mRNA and small RNA libraries were paired-end sequenced on Illumina HiSeq 2000 and subsequently analyzed using bioinformatics tools. RESULTS Mapping of mRNA and small RNA libraries generated 187.56 and 154.22 million paired-end reads, respectively. We detected a total of 14,465 genes in the mouse ocular lens at the above-mentioned six developmental stages. Of these, 46 genes exhibited a 40-fold differential (higher or lower) expression at one the five developmental stages (E18, P0, P3, P6, and P9) compared with their expression level at E15. Likewise, small RNA profiling identified 379 microRNAs (miRNAs) expressed in mouse lens at six developmental time points. Of these, 49 miRNAs manifested an 8-fold differential (higher or lower) expression at one the five developmental stages, as mentioned above compared with their expression level at E15. CONCLUSIONS We report a comprehensive profile of developing murine lens transcriptome including both mRNA and miRNA through next-generation RNA sequencing. A complete repository of the lens transcriptome of six developmental time points will be monumental in elucidating processes essential for the development of the ocular lens and maintenance of its transparency.
Collapse
Affiliation(s)
- Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Sean F Hackett
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mei-Chong W Lee
- Departpart of Biomolecular Engineering, University of California, Santa Cruz, California, United States
| | - Nader Pourmand
- Departpart of Biomolecular Engineering, University of California, Santa Cruz, California, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
77
|
Morishita H, Mizushima N. Autophagy in the lens. Exp Eye Res 2015; 144:22-8. [PMID: 26302409 DOI: 10.1016/j.exer.2015.08.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/30/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
The lens of the eye is a transparent tissue composed of lens fiber cells that differentiate from lens epithelial cells and degrade all cytoplasmic organelles during terminal differentiation. Autophagy is a major intracellular degradation system in which cytoplasmic proteins and organelles are degraded in the lysosome. Although autophagy is constitutively activated in the lens and has been proposed to be involved in lens organelle degradation, its precise role is not well understood. Recent genetic studies in mice have demonstrated that autophagy is critically important for intracellular quality control in the lens but can be dispensable for lens organelle degradation. Here, we review recent findings on the roles of autophagy and lysosomes in organelle degradation and intracellular quality control in the lens, and discuss their possible involvement in the development of human cataract.
Collapse
Affiliation(s)
- Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
78
|
Huang M, Li D, Huang Y, Cui X, Liao S, Wang J, Liu F, Li C, Gao M, Chen J, Tang Z, Li DWC, Liu M. HSF4 promotes G1/S arrest in human lens epithelial cells by stabilizing p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1808-17. [DOI: 10.1016/j.bbamcr.2015.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
|
79
|
Maddala R, Nagendran T, Lang RA, Morozov A, Rao PV. Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis. Dev Biol 2015. [PMID: 26212757 DOI: 10.1016/j.ydbio.2015.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tharkika Nagendran
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard A Lang
- The Visual System Group, Division of Pediatric Ophthalmology and Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Alexei Morozov
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
80
|
Boswell BA, Musil LS. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell 2015; 26:2561-72. [PMID: 25947138 PMCID: PMC4571308 DOI: 10.1091/mbc.e15-02-0117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Relatively little is known about how receptor tyrosine kinase ligands can positively cooperate with BMP signaling. Primary cultures of lens cells were used to reveal an unprecedented type of cross-talk between the canonical FGF and BMP signaling pathways that regulates lens cell differentiation and intercellular coupling. Fibroblast growth factors (FGFs) play a central role in two processes essential for lens transparency—fiber cell differentiation and gap junction–mediated intercellular communication (GJIC). Using serum-free primary cultures of chick lens epithelial cells (DCDMLs), we investigated how the FGF and bone morphogenetic protein (BMP) signaling pathways positively cooperate to regulate lens development and function. We found that culturing DCDMLs for 6 d with the BMP blocker noggin inhibits the canonical FGF-to-ERK pathway upstream of FRS2 activation and also prevents FGF from stimulating FRS2- and ERK-independent gene expression, indicating that BMP signaling is required at the level of FGF receptors. Other experiments revealed a second type of BMP/FGF interaction by which FGF promotes expression of BMP target genes as well as of BMP4. Together these studies reveal a novel mode of cooperation between the FGF and BMP pathways in which BMP keeps lens cells in an optimally FGF-responsive state and, reciprocally, FGF enhances BMP-mediated gene expression. This interaction provides a mechanistic explanation for why disruption of either FGF or BMP signaling in the lens leads to defects in lens development and function.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239 )
| |
Collapse
|
81
|
Treweek TM, Meehan S, Ecroyd H, Carver JA. Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 2015; 72:429-451. [PMID: 25352169 PMCID: PMC11113218 DOI: 10.1007/s00018-014-1754-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.
Collapse
Affiliation(s)
- Teresa M Treweek
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Sarah Meehan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
82
|
Kawane K, Motani K, Nagata S. DNA degradation and its defects. Cold Spring Harb Perspect Biol 2014; 6:6/6/a016394. [PMID: 24890510 DOI: 10.1101/cshperspect.a016394] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA is one of the most essential molecules in organisms, containing all the information necessary for organisms to live. It replicates and provides a mechanism for heredity and evolution. Various events cause the degradation of DNA into nucleotides. DNA also has a darker side that has only recently been recognized; DNA that is not properly degraded causes various diseases. In this review, we discuss four deoxyribonucleases that function in the nucleus, cytosol, and lysosomes, and how undigested DNA causes such diseases as cancer, cataract, and autoinflammation. Studies on the biochemical and physiological functions of deoxyribonucleases should continue to increase our understanding of cellular functions and human diseases.
Collapse
Affiliation(s)
- Kohki Kawane
- Department of Medical Chemistry, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto 606-8501, Japan
| | - Kou Motani
- Department of Medical Chemistry, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto 606-8501, Japan
| | - Shigekazu Nagata
- Department of Medical Chemistry, Kyoto University Graduate School of Medicine, Yoshida-Konoe, Kyoto 606-8501, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Yoshida-Konoe, Kyoto 606-8501, Japan
| |
Collapse
|
83
|
Kondo T, Ishiga-Hashimoto N, Nagai H, Takeshita A, Mino M, Morioka H, Kusakabe KT, Okada T. Expression of transforming growth factor β and fibroblast growth factor 2 in the lens epithelium of Morioka cataract mice. Congenit Anom (Kyoto) 2014; 54:104-9. [PMID: 24279395 DOI: 10.1111/cga.12042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023]
Abstract
In the Morioka cataract (MCT) mice, lens opacity appears at 6 to 8 weeks of age, and swollen lens fiber is electron-microscopically observed at 3 weeks after birth. The present study was designed to characterize the expression of transforming growth factor β (TGFβ) and fibroblast growth factor 2 (FGF2) in the lens epithelium of the MCT mice. Immunohistochemical analysis showed that the expression of TGFβ in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 2 and 4 weeks after birth. The expression of TGFβ receptors (TGFβRI and TGFβRII) and FGF2 in the lens epithelium of the MCT mice was stronger than that of the wild-type ddY mice at 4 weeks and weaker than that of the wild-type ddY mice at 15 weeks after birth. Using real time polymerase chain reaction (PCR), quantitative RT-PCR analysis showed that expression of TGFβ1 and TGFβ2 mRNA in the lens of 2-week-old MCT mice was significantly higher compared to age-matched wild-type ddY mice. These findings indicate that the lens epithelium of MCT mice has increased expression of TGFβ before cataract affection and that changes in the expression of FGF2 as well as TGFβ may contribute to the progression of the cataract in the mice.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumi-Sano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Antosova B, Smolikova J, Borkovcova R, Strnad H, Lachova J, Machon O, Kozmik Z. Ectopic activation of Wnt/β-catenin signaling in lens fiber cells results in cataract formation and aberrant fiber cell differentiation. PLoS One 2013; 8:e78279. [PMID: 24205179 PMCID: PMC3813504 DOI: 10.1371/journal.pone.0078279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/09/2013] [Indexed: 12/04/2022] Open
Abstract
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.
Collapse
Affiliation(s)
- Barbora Antosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jana Smolikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Romana Borkovcova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jitka Lachova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondrej Machon
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
85
|
Dave A, Laurie K, Staffieri SE, Taranath D, Mackey DA, Mitchell P, Wang JJ, Craig JE, Burdon KP, Sharma S. Mutations in the EPHA2 gene are a major contributor to inherited cataracts in South-Eastern Australia. PLoS One 2013; 8:e72518. [PMID: 24014202 PMCID: PMC3754966 DOI: 10.1371/journal.pone.0072518] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/05/2013] [Indexed: 12/21/2022] Open
Abstract
Congenital cataract is the most common cause of treatable visual impairment in children worldwide. Mutations in many different genes lead to congenital cataract. Recently, mutations in the receptor tyrosine kinase gene, EPHA2, have been found to cause congenital cataract in six different families. Although these findings have established EPHA2 as a causative gene, the total contribution of mutations in this gene to congenital cataract is unknown. In this study, for the first time, a population-based approach was used to investigate the frequency of disease causing mutations in the EPHA2 gene in inherited cataract cases in South-Eastern Australia. A cohort of 84 familial congenital or juvenile cataract index cases was screened for mutations in the EPHA2 gene by direct sequencing. Novel changes were assessed for segregation with the disease within the family and in unrelated controls. Microsatellite marker analysis was performed to establish any relationship between families carrying the same mutation. We report a novel congenital cataract causing mutation c.1751C>T in the EPHA2 gene and the previously reported splice mutation c.2826-9G>A in two new families. Additionally, we report a rare variant rs139787163 potentially associated with increased susceptibility to cataract. Thus mutations in EPHA2 account for 4.7% of inherited cataract cases in South-Eastern Australia. Interestingly, the identified rare variant provides a link between congenital and age-related cataract.
Collapse
Affiliation(s)
- Alpana Dave
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Kate Laurie
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Royal Children’s Hospital, Melbourne, Australia
| | - Deepa Taranath
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - David A. Mackey
- Lions Eye Institute, University of Western Australia, Centre for Ophthalmology and Visual Science, Perth, Australia
- Discipline of Medicine, University of Tasmania, Hobart, Australia
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jie Jin Wang
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Kathryn P. Burdon
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders University, Bedford Park, SA, Australia
- * E-mail:
| |
Collapse
|
86
|
Morishita H, Eguchi S, Kimura H, Sasaki J, Sakamaki Y, Robinson ML, Sasaki T, Mizushima N. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation. J Biol Chem 2013; 288:11436-47. [PMID: 23479732 DOI: 10.1074/jbc.m112.437103] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lens of the eye is composed of fiber cells, which differentiate from epithelial cells and undergo programmed organelle degradation during terminal differentiation. Although autophagy, a major intracellular degradation system, is constitutively active in these cells, its physiological role has remained unclear. We have previously shown that Atg5-dependent macroautophagy is not necessary for lens organelle degradation, at least during the embryonic period. Here, we generated lens-specific Atg5 knock-out mice and showed that Atg5 is not required for lens organelle degradation at any period of life. However, deletion of Atg5 in the lens results in age-related cataract, which is accompanied by accumulation of polyubiquitinated and oxidized proteins, p62, and insoluble crystallins, suggesting a defect in intracellular quality control. We also produced lens-specific Pik3c3 knock-out mice to elucidate the possible involvement of Atg5-independent alternative autophagy, which is proposed to be dependent on Pik3c3 (also known as Vps34), in lens organelle degradation. Deletion of Pik3c3 in the lens does not affect lens organelle degradation, but it leads to congenital cataract and a defect in lens development after birth likely due to an impairment of the endocytic pathway. Taken together, these results suggest that clearance of lens organelles is independent of macroautophagy. These findings also clarify the physiological role of Atg5 and Pik3c3 in quality control and development of the lens, respectively.
Collapse
Affiliation(s)
- Hideaki Morishita
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
87
|
New insights into the mechanism of lens development using zebra fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:1-61. [PMID: 22559937 DOI: 10.1016/b978-0-12-394307-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of recent advances in molecular biology, genetics, and live-embryo imaging, direct comparisons between zebra fish and human lens development are being made. The zebra fish has numerous experimental advantages for investigation of fundamental biomedical problems that are often best studied in the lens. The physical characteristics of visible light can account for the highly coordinated cell differentiation during formation of a beautifully transparent, refractile, symmetric optical element, the biological lens. The accessibility of the zebra fish lens for direct investigation during rapid development will result in new knowledge about basic functional mechanisms of epithelia-mesenchymal transitions, cell fate, cell-matrix interactions, cytoskeletal interactions, cytoplasmic crowding, membrane transport, cell adhesion, cell signaling, and metabolic specialization. The lens is well known as a model for characterization of cell and molecular aging. We review the recent advances in understanding vertebrate lens development conducted with zebra fish.
Collapse
|
88
|
Shin EHH, Basson MA, Robinson ML, McAvoy JW, Lovicu FJ. Sprouty is a negative regulator of transforming growth factor β-induced epithelial-to-mesenchymal transition and cataract. Mol Med 2012; 18:861-73. [PMID: 22517312 DOI: 10.2119/molmed.2012.00111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023] Open
Abstract
Fibrosis affects an extensive range of organs and is increasingly acknowledged as a major component of many chronic disorders. It is now well accepted that the elevated expression of certain inflammatory cell-derived cytokines, especially transforming growth factor β (TGFβ), is involved in the epithelial-to-mesenchymal transition (EMT) leading to the pathogenesis of a diverse range of fibrotic diseases. In lens, aberrant TGFβ signaling has been shown to induce EMT leading to cataract formation. Sproutys (Sprys) are negative feedback regulators of receptor tyrosine kinase (RTK)-signaling pathways in many vertebrate systems, and in this study we showed that they are important in the murine lens for promoting the lens epithelial cell phenotype. Conditional deletion of Spry1 and Spry2 specifically from the lens leads to an aberrant increase in RTK-mediated extracellular signal-regulated kinase 1/2 phosphorylation and, surprisingly, elevated TGFβ-related signaling in lens epithelial cells, leading to an EMT and subsequent cataract formation. Conversely, increased Spry overexpression in lens cells can suppress not only TGFβ-induced signaling, but also the accompanying EMT and cataract formation. On the basis of these findings, we propose that a better understanding of the relationship between Spry and TGFβ signaling will not only elucidate the etiology of lens pathology, but will also lead to the development of treatments for other fibrotic-related diseases associated with TGFβ-induced EMT.
Collapse
Affiliation(s)
- Eun Hye H Shin
- Anatomy and Histology, Bosch Institute & Save Sight Institute, University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
89
|
Primary cultures of embryonic chick lens cells as a model system to study lens gap junctions and fiber cell differentiation. J Membr Biol 2012; 245:357-68. [PMID: 22797938 DOI: 10.1007/s00232-012-9458-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/20/2012] [Indexed: 01/31/2023]
Abstract
A major limitation in lens gap junction research has been the lack of experimentally tractable ex vivo systems to study the formation and regulation of fiber-type gap junctions. Although immortalized lens-derived cell lines are amenable to both gene transfection and siRNA-mediated knockdown, to our knowledge none are capable of undergoing appreciable epithelial-to-fiber differentiation. Lens central epithelial explants have the converse limitation. A key advance in the field was the development of a primary embryonic chick lens cell culture system by Drs. Sue Menko and Ross Johnson. Unlike central epithelial explants, these cultures also include cells from the peripheral (preequatorial and equatorial) epithelium, which is the most physiologically relevant population for the study of fiber-type gap junction formation. We have modified the Menko/Johnson system and refer to our cultures as dissociated cell-derived monolayer cultures (DCDMLs). We culture DCDMLs without serum to mimic the avascular lens environment and on laminin, the major matrix component of the lens capsule. Here, I review the features of the DCDML system and how we have used it to study lens gap junctions and fiber cell differentiation. Our results demonstrate the power of DCDMLs to generate new findings germane to the mammalian lens and how these cultures can be exploited to conduct experiments that would be impossible, prohibitively expensive and/or difficult to interpret using transgenic animals in vivo.
Collapse
|
90
|
Cammas L, Wolfe J, Choi SY, Dedhar S, Beggs HE. Integrin-linked kinase deletion in the developing lens leads to capsule rupture, impaired fiber migration and non-apoptotic epithelial cell death. Invest Ophthalmol Vis Sci 2012; 53:3067-81. [PMID: 22491404 DOI: 10.1167/iovs.11-9128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The lens is a powerful model system to study integrin-mediated cell-matrix interaction in an in vivo context, as it is surrounded by a true basement membrane, the lens capsule. To characterize better the function of integrin-linked kinase (ILK), we examined the phenotypic consequences of its deletion in the developing mouse lens. METHODS ILK was deleted from the embryonic lens either at the time of placode invagination using the Le-Cre line or after initial lens formation using the Nestin-Cre line. RESULTS Early deletion of ILK leads to defects in extracellular matrix deposition that result in lens capsule rupture at the lens vesicle stage (E13.5). If ILK was deleted at a later time-point after initial establishment of the lens capsule, rupture was prevented. Instead, ILK deletion resulted in secondary fiber migration defects and, most notably, in cell death of the anterior epithelium (E18.5-P0). Remarkably, dying cells did not stain positively for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or activated-caspase 3, suggesting that they were dying from a non-apoptotic mechanism. Moreover, cross to a Bax(fl/fl)/Bak⁻/⁻ mouse line that is resistant to most forms of apoptosis failed to promote cell survival in the ILK-deleted lens epithelium. Electron microscopy revealed the presence of numerous membranous vacuoles containing degrading cellular material. CONCLUSIONS. Our study reveals a role for ILK in extracellular matrix organization, fiber migration, and cell survival. Furthermore, to our knowledge we show for the first time that ILK disruption results in non-apoptotic cell death in vivo.
Collapse
Affiliation(s)
- Laura Cammas
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
91
|
Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton (Hoboken) 2012; 69:337-70. [PMID: 22488942 DOI: 10.1002/cm.21031] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/31/2023]
Abstract
Tropomodulins are a family of four proteins (Tmods 1-4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a TM-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods' functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1-3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
92
|
Le TT, Conley KW, Mead TJ, Rowan S, Yutzey KE, Brown NL. Requirements for Jag1-Rbpj mediated Notch signaling during early mouse lens development. Dev Dyn 2012; 241:493-504. [PMID: 22275127 DOI: 10.1002/dvdy.23739] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND During vertebrate lens development, the lens placode in the embryonic ectoderm invaginates into a lens vesicle, which then separates from the surface epithelium, followed by two waves of fiber cell differentiation. In the mouse, multiple labs have shown that Jag1-Notch signaling is critically required during the second wave of lens fiber cell formation. However, Notch signaling appears to play no obvious role during lens induction or morphogenesis, although multiple pathway genes are expressed at these earlier stages. RESULTS Here, we explored functions for Notch signaling specifically during early lens development, by using the early-acting AP2α-Cre driver to delete Jag1 or Rbpj. We found that Jag1 and Rbpj are not required during lens induction, but are necessary for proper lens vesicle separation from the surface ectoderm. CONCLUSIONS We conclude that precise levels of Notch signaling are essential during lens vesicle morphogenesis. In addition, AP2α-Cre-mediated deletion of Rbpj resulted in embryos with cardiac outflow tract and liver deformities, and perinatal lethality.
Collapse
Affiliation(s)
- Tien T Le
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
93
|
Shang F, Taylor A. Role of the ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:347-96. [PMID: 22727427 DOI: 10.1016/b978-0-12-397863-9.00010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or otherwise abnormal proteins. Conversely, accumulation of the cytotoxic abnormal proteins in eye tissues is etiologically associated with many age-related eye diseases such as retina degeneration, cataract, and certain types of glaucoma. Age- or stress-induced impairment or overburdening of the UPP appears to contribute to the accumulation of abnormal proteins in eye tissues. Cell cycle and signal transduction are regulated by the conditional UPP-dependent degradation of the regulators of these processes. Impairment or overburdening of the UPP could also result in dysregulation of cell cycle control and signal transduction. The consequences of the improper cell cycle and signal transduction include defects in ocular development, wound healing, angiogenesis, or inflammatory responses. Methods that enhance or preserve UPP function or reduce its burden may be useful strategies for preventing age-related eye diseases.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Boston, Massachusetts, USA
| | | |
Collapse
|
94
|
Kondo T, Ishiga-Hashimoto N, Nagai H, Takeshita A, Mino M, Morioka H, Kusakabe KT, Okada T. An increase in apoptosis and reduction in αB-crystallin expression levels in the lens underlie the cataractogenesis of Morioka cataract (MCT) mice. Med Mol Morphol 2011; 44:221-7. [PMID: 22179185 DOI: 10.1007/s00795-010-0531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
Abstract
We examined the morphological changes in fibers, localization of apoptotic cells, and protein expression of αB-crystallin in the lens of Morioka cataract (MCT) mice, a novel cataract model. Using a scanning electron microscope, swollen lens fibers and enlarged spaces between lens fibers were observed in the lens of 3-week-old MCT mice. At 2 weeks of age (before cataract), the single-strand DNA (ssDNA)-positive (indicating apoptosis) cell ratio of the lens epithelium was significantly higher in MCT than in wild-type ddY mice. At 2 and 4 weeks of age, αB-crystallin protein expression of the lens in MCT mice was significantly lower than that in wild-type ddY mice. These findings suggest that increase in apoptosis and reduction in αBcrystallin level are involved in the cataractogenesis of MCT mice.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinku Ourai Kita, Izumi-Sano, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Saravanamuthu SS, Le TT, Gao CY, Cojocaru RI, Pandiyan P, Liu C, Zhang J, Zelenka PS, Brown NL. Conditional ablation of the Notch2 receptor in the ocular lens. Dev Biol 2011; 362:219-29. [PMID: 22173065 DOI: 10.1016/j.ydbio.2011.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/08/2011] [Accepted: 11/17/2011] [Indexed: 01/22/2023]
Abstract
Notch signaling is essential for proper lens development, however the specific requirements of individual Notch receptors have not been investigated. Here we report the lens phenotypes of Notch2 conditionally mutant mice, which exhibited severe microphthalmia, reduced pupillary openings, disrupted fiber cell morphology, eventual loss of the anterior epithelium, fiber cell dysgenesis, denucleation defects, and cataracts. Notch2 mutants also had persistent lens stalks as early as E11.5, and aberrant DNA synthesis in the fiber cell compartment by E14.5. Gene expression analyses showed that upon loss of Notch2, there were elevated levels of the cell cycle regulators Cdkn1a (p21Cip1), Ccnd2 (CyclinD2), and Trp63 (p63) that negatively regulates Wnt signaling, plus down-regulation of Cdh1 (E-Cadherin). Removal of Notch2 also resulted in an increased proportion of fiber cells, as was found in Rbpj and Jag1 conditional mutant lenses. However, Notch2 is not required for AEL proliferation, suggesting that a different receptor regulates this process. We found that Notch2 normally blocks lens progenitor cell death. Overall, we conclude that Notch2-mediated signaling regulates lens morphogenesis, apoptosis, cell cycle withdrawal, and secondary fiber cell differentiation.
Collapse
Affiliation(s)
- Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
GABAergic signaling in primary lens epithelial and lentoid cells and its involvement in intracellular Ca2+ modulation. Cell Calcium 2011; 50:381-92. [DOI: 10.1016/j.ceca.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 01/05/2023]
|
97
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|
98
|
Sharma A, Pirouzmanesh A, Patil J, Estrago-Franco MF, Zacharias LC, Pirouzmanesh A, Andley UP, Kenney MC, Kuppermann BD. Evaluation of the toxicity of triamcinolone acetonide and dexamethasone sodium phosphate on human lens epithelial cells (HLE B-3). J Ocul Pharmacol Ther 2011; 27:265-71. [PMID: 21574867 DOI: 10.1089/jop.2010.0120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The purpose of this study was to compare the in vitro effects of triamcinolone acetonide (TA) and dexamethasone sodium phosphate (DEX) on human lens epithelial cells (HLE B-3). METHODS HLE B-3 cells were exposed for 24 h to commercially available TA (c-TA) and dimethylsulfoxide-solubilized TA (s-TA). The cells were treated with 1,000 (clinical dose), 750, 500, 200, and 100 μg/mL concentrations of c-TA, s-TA, and supernatant for 24 h. The cells were also treated with DEX at 2, 1, 0.5, 0.2, 0.1 (clinical dose), and 0.05 mg/mL. Cell viability, caspase-3/7 activity, and DNA fragmentation analyses were performed. RESULTS The mean cell viabilities of HLE B-3 after exposure to c-TA at 1,000, 750, 500, 200, and 100 μg/mL were significantly reduced compared with control untreated cells. The s-TA also significantly reduced cell viability at 1,000, 750, and 500 μg/mL compared with dimethylsulfoxide control. The supernatant did not reduce cell viability. Caspase-3/7 activity significantly increased after treatment with c-TA and s-TA. DNA laddering revealed bands at 200 bp intervals with both c-TA at≥100 μg/mL and s-TA at ≥500 μg/mL. The cell viabilities of HLE B-3 after 24 h exposure to DEX were significantly reduced at 2 and 1 mg/mL but not at lower concentrations tested. Caspase-3/7 activities in HLE B-3 cells were not increased significantly after treatment with DEX at any dose tested. DNA laddering did not reveal any band at any dose tested. CONCLUSION This study showed that TA at its clinical dose (1,000 μg/mL) in both commercial preparation and solubilized forms decrease HLE B-3 cell viability through an apoptotic pathway. DEX at its clinical dose (0.1 mg/mL) does not decrease cell viability or cause any increase of caspase-3/7 activity. This study suggests that for long-term sustained-release devices, DEX may be less damaging to human lens cells than TA.
Collapse
Affiliation(s)
- Ashish Sharma
- Gavin Herbert Eye Institute Department of Ophthalmology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Jiang JX. Gap junctions or hemichannel-dependent and independent roles of connexins in cataractogenesis and lens development. Curr Mol Med 2010; 10:851-63. [PMID: 21091421 PMCID: PMC6263138 DOI: 10.2174/156652410793937750] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
In the last decade or so, increasing evidences suggest that the mutations of two connexin genes, GJA3 and GJA8, are directly linked to human congenital cataracts in North and Central America, Europe and Asia. GIA3 and GIA8 genes encode gap junction-forming proteins, connexin (Cx) 46 and Cx50, respectively. These two connexins are predominantly expressed in lens fiber cells. Majority of identified mutations are missense, and the mutated sites are scattered across various domains of connexin molecules. Genetic deletion of either of these two genes leads to the development of cataracts; however, the types of cataracts developed are distinctive. More interestingly, microphthalmia is only developed in Cx50, but not Cx46 deficient mice, suggesting the unique role of Cx50 in lens cell growth and development. Knockin studies with the replacement of Cx46 or Cx50 at their respective gene locus further demonstrate the unique properties of these two connexins. Furthermore, the function of Cx50 in epithelial-fiber differentiation appears to be independent of its conventional role in forming gap junction junction channels. Due to their specific functions in maintaining lens clarity and development, and their malfunctions resulting in lens cataractogenesis and developmental impairment, connexin molecules could be developed as potential drug targets for therapeutic intervention for treatment of cataracts and other eye disorders. Recent advances in basic research of lens connexins and the discoveries of clinical disorders as a result of lens connexin dysfunctions are summarized and discussed here.
Collapse
Affiliation(s)
- J X Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
100
|
Abstract
Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.
Collapse
Affiliation(s)
- Ryma Abane
- CNRS, UMR7216 Epigenetics and Cell Fate, Paris, France
| | | |
Collapse
|