51
|
Zuena AR, Iacovelli L, Orlando R, Di Menna L, Casolini P, Alemà GS, Di Cicco G, Battaglia G, Nicoletti F. In Vivo Non-radioactive Assessment of mGlu5 Receptor-Activated Polyphosphoinositide Hydrolysis in Response to Systemic Administration of a Positive Allosteric Modulator. Front Pharmacol 2018; 9:804. [PMID: 30108503 PMCID: PMC6079191 DOI: 10.3389/fphar.2018.00804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
mGlu5 receptor-mediated polyphosphoinositide (PI) hydrolysis is classically measured by determining the amount of radioactivity incorporated in inositolmonophosphate (InsP) after labeling of membrane phospholipids with radioactive inositol. Although this method is historically linked to the study of mGlu receptors, it is inappropriate for the assessment of mGlu5 receptor signaling in vivo. Using a new ELISA kit we showed that systemic treatment with the selective positive allosteric modulator (PAM) of mGlu5 receptors VU0360172 enhanced InsP formation in different brain regions of CD1 or C57Black mice. The action of VU0360172 was sensitive to the mGlu5 receptor, negative allosteric modulator (NAM), MTEP, and was abolished in mice lacking mGlu5 receptors. In addition, we could demonstrate that endogenous activation of mGlu5 receptors largely accounted for the basal PI hydrolysis particularly in the prefrontal cortex. This method offers opportunity for investigation of mGlu5 receptor signaling in physiology and pathology, and could be used for the functional screening of mGlu5 receptor PAMs in living animals.
Collapse
Affiliation(s)
- Anna R Zuena
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University, Rome, Italy
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University, Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University, Rome, Italy
| | | | - Paola Casolini
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University, Rome, Italy
| | | | - Gabriele Di Cicco
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University, Rome, Italy
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
52
|
Lee S, Lee E, Kim R, Kim J, Lee S, Park H, Yang E, Kim H, Kim E. Shank2 Deletion in Parvalbumin Neurons Leads to Moderate Hyperactivity, Enhanced Self-Grooming and Suppressed Seizure Susceptibility in Mice. Front Mol Neurosci 2018; 11:209. [PMID: 29970987 PMCID: PMC6018407 DOI: 10.3389/fnmol.2018.00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/28/2018] [Indexed: 01/05/2023] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
53
|
Zurawek D, Salerno-Kochan A, Dziedzicka-Wasylewska M, Nikiforuk A, Kos T, Popik P. Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in a ketamine-based animal model of schizophrenia. Schizophr Res 2018; 192:423-430. [PMID: 28433499 DOI: 10.1016/j.schres.2017.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/26/2022]
Abstract
It has been shown that the metabotropic glutamate receptor subtype 5 (mGluR5) is functionally associated with the NMDA subtype of the glutamate receptor family (NMDA receptors). These two receptors colocalize in brain regions associated with schizophrenia. Although the role of the NMDA receptor in cognitive and negative symptoms of schizophrenia is well studied, information about the role of mGluR5 receptors in schizophrenia is sparse. In our work, we show that subchronic administration of ketamine, a well-studied, non-competitive antagonist of NMDA receptors, caused cognitive deficits in rats as shown by testing novel object recognition (NOR). Moreover, we reveal that subchronic administration of ketamine increased the mRNA and protein expression levels of mGluR5 receptors in regions CA1 and CA3 of the dorsal part of the hippocampus, both of which are strongly associated with the formation of visual memory, which is tested via NOR. We postulate that increased expression of mGluR5 receptors in the dorsal part of the hippocampus may reflect compensatory changes to imbalanced glutamate neurotransmission associated with the hypoactivation of NMDA receptors.
Collapse
Affiliation(s)
- Dariusz Zurawek
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343 Krakow, Smetna Street 12, Poland.
| | - Anna Salerno-Kochan
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343 Krakow, Smetna Street 12, Poland
| | - Marta Dziedzicka-Wasylewska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343 Krakow, Smetna Street 12, Poland
| | - Agnieszka Nikiforuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioural Neuroscience and Drug Development, 31-343 Krakow, Smetna Street 12, Poland
| | - Tomasz Kos
- Institute of Pharmacology, Polish Academy of Sciences, Department of Behavioural Neuroscience and Drug Development, 31-343 Krakow, Smetna Street 12, Poland
| | - Piotr Popik
- Faculty of Health Sciences, Collegium Medicum, Jagiellonian University, Krakow, Poland
| |
Collapse
|
54
|
Luoni A, Gass P, Brambilla P, Ruggeri M, Riva MA, Inta D. Altered expression of schizophrenia-related genes in mice lacking mGlu5 receptors. Eur Arch Psychiatry Clin Neurosci 2018; 268:77-87. [PMID: 27581816 DOI: 10.1007/s00406-016-0728-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022]
Abstract
The evidence underlying the so-called glutamatergic hypothesis ranges from NMDA receptor hypofunction to an imbalance between excitatory and inhibitory circuits in specific brain structures. Among all glutamatergic system components, metabotropic receptors play a main role in regulating neuronal excitability and synaptic plasticity. Here, we investigated, using qRT-PCR and western blot, consequences in the hippocampus and prefrontal/frontal cortex (PFC/FC) of mice with a genetic deletion of the metabotropic glutamate receptor 5 (mGlu5), addressing key components of the GABAergic and glutamatergic systems. We found that mGlu5 knockout (KO) mice showed a significant reduction of reelin, GAD65, GAD67 and parvalbumin mRNA levels, which is specific for the PFC/FC, and that is paralleled by a significant reduction of protein levels in male KO mice. We next analyzed the main NMDA and AMPA receptor subunits, namely GluN1, GluN2A, GluN2B and GluA1, and we found that mGlu5 deletion determined a significant reduction of their mRNA levels, also within the hippocampus, with differences between the two genders. Our data suggest that neurochemical abnormalities impinging the glutamatergic and GABAergic systems may be responsible for the behavioral phenotype associated with mGlu5 KO animals and point to the close interaction of these molecular players for the development of neuropsychiatric disorders such as schizophrenia. These data could contribute to a better understanding of the involvement of mGlu5 alterations in the molecular imbalance between excitation and inhibition underlying the emergence of a schizophrenic-like phenotype and to understand the potential of mGlu5 modulators in reversing the deficits characterizing the schizophrenic pathology.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Center of Neuropharmacology, Università degli Studi di Milano, Milan, Italy
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany. .,Department of Psychiatry (UPK), University of Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland.
| |
Collapse
|
55
|
Geiser E, Retsa C, Knebel JF, Ferrari C, Jenni R, Fournier M, Alameda L, Baumann PS, Clarke S, Conus P, Do KQ, Murray MM. The coupling of low-level auditory dysfunction and oxidative stress in psychosis patients. Schizophr Res 2017; 190:52-59. [PMID: 28189532 DOI: 10.1016/j.schres.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023]
Abstract
Patients diagnosed with schizophrenia often present with low-level sensory deficits. It is an open question whether there is a functional link between these deficits and the pathophysiology of the disease, e.g. oxidative stress and glutathione (GSH) metabolism dysregulation. Auditory evoked potentials (AEPs) were recorded from 21 psychosis disorder patients and 30 healthy controls performing an active, auditory oddball task. AEPs to standard sounds were analyzed within an electrical neuroimaging framework. A peripheral measure of participants' redox balance, the ratio of glutathione peroxidase and glutathione reductase activities (GPx/GR), was correlated with the AEP data. Patients displayed significantly decreased AEPs over the time window of the P50/N100 complex resulting from significantly weaker responses in the left temporo-parietal lobe. The GPx/GR ratio significantly correlated with patients' brain activity during the time window of the P50/N100 in the medial frontal lobe. We show for the first time a direct coupling between electrophysiological indices of AEPs and peripheral redox dysregulation in psychosis patients. This coupling is limited to stages of auditory processing that are impaired relative to healthy controls and suggests a link between biochemical and sensory dysfunction. The data highlight the potential of low-level sensory processing as a trait-marker of psychosis.
Collapse
Affiliation(s)
- Eveline Geiser
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Chrysa Retsa
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-François Knebel
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Carina Ferrari
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Luis Alameda
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Psychiatric Liaison Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland; Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly-Lausanne, Switzerland
| | - Micah M Murray
- Neuropsychology and Neurorehabilitation Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; The EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland; Psychiatric Liaison Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
56
|
Di Menna L, Joffe ME, Iacovelli L, Orlando R, Lindsley CW, Mairesse J, Gressèns P, Cannella M, Caraci F, Copani A, Bruno V, Battaglia G, Conn PJ, Nicoletti F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology 2017; 128:301-313. [PMID: 29079293 DOI: 10.1016/j.neuropharm.2017.10.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 12/19/2022]
Abstract
mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca2+ mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.
Collapse
Affiliation(s)
| | - Max E Joffe
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Jèrome Mairesse
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France
| | - Pierre Gressèns
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 1141 Paris, France; Centre for the Developing Brain, Department of Perinatal Health and Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | | | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Oasi Maria SS, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; Institute of Biostructure and Bioimaging, National Research Council, 95126 Catania, Italy
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy
| | | | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-0697, USA
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, University Sapienza of Roma, 00185 Roma, Italy.
| |
Collapse
|
57
|
Ghoshal A, Moran SP, Dickerson JW, Joffe ME, Grueter BA, Xiang Z, Lindsley CW, Rook JM, Conn PJ. Role of mGlu 5 Receptors and Inhibitory Neurotransmission in M 1 Dependent Muscarinic LTD in the Prefrontal Cortex: Implications in Schizophrenia. ACS Chem Neurosci 2017; 8:2254-2265. [PMID: 28679049 DOI: 10.1021/acschemneuro.7b00167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Selective potentiation of the mGlu5 subtype of metabotropic glutamate (mGlu) receptor using positive allosteric modulators (PAMs) has robust cognition-enhancing effects in rodent models that are relevant for schizophrenia. Until recently, these effects were thought to be due to potentiation of mGlu5-induced modulation of NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity. However, "biased" mGlu5 PAMs that do not potentiate mGlu5 effects on NMDAR currents show efficacy that is similar to that of prototypical mGlu5 PAMs, suggesting that NMDAR-independent mechanisms must be involved in these actions. We now report that synaptic activation of mGlu5 is required for a form of long-term depression (mLTD) in mouse prefrontal cortex (PFC) that is induced by activation of M1 muscarinic acetylcholine (mAChR) receptors, which was previously thought to be independent of mGlu5 activation. Interestingly, a biased mGlu5 PAM, VU0409551, that does not potentiate mGlu5 modulation of NMDAR currents, potentiated induction of mLTD. Furthermore, coactivation of mGlu5 and M1 receptors increased GABAA-dependent inhibitory tone in the PFC pyramidal neurons, which likely contributes to the observed mLTD. Finally, systemic administration of the biased mGlu5 PAM reversed deficits in mLTD and associated cognitive deficits in a model of cortical disruption caused by repeated phencyclidine exposure that is relevant for schizophrenia and was previously shown to be responsive to selective M1 muscarinic receptor PAMs. These studies provide exciting new insights into a novel mechanism by which mGlu5 PAMs can reverse deficits in PFC function and cognition that is independent of modulation of NMDAR currents.
Collapse
Affiliation(s)
- Ayan Ghoshal
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Sean P. Moran
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Jonathan W. Dickerson
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Max E. Joffe
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Brad A. Grueter
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Zixiu Xiang
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Craig W. Lindsley
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Jerri M. Rook
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - P. Jeffrey Conn
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| |
Collapse
|
58
|
Nomura J, Kannan G, Takumi T. Rodent models of genetic and chromosomal variations in psychiatric disorders. Psychiatry Clin Neurosci 2017; 71:508-517. [PMID: 28317218 DOI: 10.1111/pcn.12524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Elucidating the molecular basis of complex human psychiatric disorders is challenging due to the multitude of factors that underpin these disorders. Genetic and chromosomal changes are two factors that have been suggested to be involved in psychiatric disorders. Indeed, numerous risk loci have been identified in autism spectrum disorders, schizophrenia, and related psychiatric disorders. Here, we introduce genetic animal models that disturb excitatory-inhibitory balance in the brain and animal models mirroring human chromosomal abnormalities, both of which may be implicated in autism spectrum disorder pathophysiology. In addition, we discuss recent unique translational research using rodent models, such as Cntnap2 knockout mouse, Mecp2 mutant mouse, Pick1 knockout mouse, and neonatal ventral hippocampal lesion rat. By using these models, several types of drugs are administered during the developmental period to see the effect on psychotic symptoms and neural activities in adults. The accumulating evidence from recent animal studies provides an informative intervention strategy as a translational research.
Collapse
Affiliation(s)
- Jun Nomura
- RIKEN Brain Science Institute, Saitama, Japan
| | - Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, USA
| | - Toru Takumi
- RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
59
|
Enhanced Neuronal Activity in the Medial Prefrontal Cortex during Social Approach Behavior. J Neurosci 2017; 36:6926-36. [PMID: 27358451 DOI: 10.1523/jneurosci.0307-16.2016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/18/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Although the medial prefrontal cortex (mPFC) is known to play a crucial role in rodent social behavior, little is known about mPFC neural correlates of social behavior. In the present study, we examined single-neuron activity in the mPFC of mice performing a modified version of the three-chamber test. We found that a subset of mPFC neurons elevate discharge rates when approaching a stranger mouse but not when approaching an inanimate object or an empty chamber. Our results reveal mPFC neural activity that is correlated with social approach behavior in a widely used social-interaction paradigm. These findings might be helpful for future investigations of mPFC neural processes underlying social interaction in health and disease. SIGNIFICANCE STATEMENT Although the prefrontal cortex is known to play a crucial role in rodent social behavior, little is known about prefrontal neural correlates of social behavior. This study shows that the activity of a subset of prefrontal neurons increases in association with social approach behavior during a three-chamber test-a widely used behavioral paradigm. Such responses might be a signature of prefrontal neural processes underlying social approach behavior.
Collapse
|
60
|
Foster DJ, Conn PJ. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 2017; 94:431-446. [PMID: 28472649 PMCID: PMC5482176 DOI: 10.1016/j.neuron.2017.03.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) play critical roles in regulating brain function. Recent advances have greatly expanded our understanding of these receptors as complex signaling machines that can adopt numerous conformations and modulate multiple downstream signaling pathways. While agonists and antagonists have traditionally been pursued to target GPCRs, allosteric modulators provide several mechanistic advantages, including the ability to distinguish between closely related receptor subtypes. Recently, the discovery of allosteric ligands that confer bias and modulate some, but not all, of a given receptor's downstream signaling pathways can provide pharmacological modulation of brain circuitry with remarkable precision. In addition, allosteric modulators with unprecedented specificity have been developed that can differentiate between subpopulations of a given receptor subtype based on the receptor's dimerization state. These advances are not only providing insight into the biological roles of specific receptor populations, but hold great promise for treating numerous CNS disorders.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
61
|
Lum JS, Fernandez F, Matosin N, Andrews JL, Huang XF, Ooi L, Newell KA. Neurodevelopmental Expression Profile of Dimeric and Monomeric Group 1 mGluRs: Relevance to Schizophrenia Pathogenesis and Treatment. Sci Rep 2016; 6:34391. [PMID: 27721389 PMCID: PMC5056358 DOI: 10.1038/srep34391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (mGluR1/mGluR5) play an integral role in neurodevelopment and are implicated in psychiatric disorders, such as schizophrenia. mGluR1 and mGluR5 are expressed as homodimers, which is important for their functionality and pharmacology. We examined the protein expression of dimeric and monomeric mGluR1α and mGluR5 in the prefrontal cortex (PFC) and hippocampus throughout development (juvenile/adolescence/adulthood) and in the perinatal phencyclidine (PCP) model of schizophrenia. Under control conditions, mGluR1α dimer expression increased between juvenile and adolescence (209-328%), while monomeric levels remained consistent. Dimeric mGluR5 was steadily expressed across all time points; monomeric mGluR5 was present in juveniles, dramatically declining at adolescence and adulthood (-97-99%). The mGluR regulators, Homer 1b/c and Norbin, significantly increased with age in the PFC and hippocampus. Perinatal PCP treatment significantly increased juvenile dimeric mGluR5 levels in the PFC and hippocampus (37-50%) but decreased hippocampal mGluR1α (-50-56%). Perinatal PCP treatment also reduced mGluR1α dimer levels in the PFC at adulthood (-31%). These results suggest that Group 1 mGluRs have distinct dimeric and monomeric neurodevelopmental patterns, which may impact their pharmacological profiles at specific ages. Perinatal PCP treatment disrupted the early expression of Group 1 mGluRs which may underlie neurodevelopmental alterations observed in this model.
Collapse
Affiliation(s)
- Jeremy S. Lum
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
- School of Psychology, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10 Munich Germany
| | - Jessica L. Andrews
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522 Australia
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522 Australia
- Schizophrenia Research Institute, Sydney, NSW 2010 Australia
| |
Collapse
|
62
|
Schür RR, Draisma LWR, Wijnen JP, Boks MP, Koevoets MGJC, Joëls M, Klomp DW, Kahn RS, Vinkers CH. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp 2016; 37:3337-52. [PMID: 27145016 DOI: 10.1002/hbm.23244] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy ((1) H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical (1) H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = -0.74, P = 0.001) and in depressed MDD patients (SMD = -0.52, P = 0.005), but not in remitted MDD patients (SMD = -0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = -0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future (1) H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that (1) H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders. Hum Brain Mapp 37:3337-3352, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Remmelt R Schür
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Luc W R Draisma
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Martijn G J C Koevoets
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dennis W Klomp
- Department of Radiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| |
Collapse
|
63
|
Inan M, Zhao M, Manuszak M, Karakaya C, Rajadhyaksha AM, Pickel VM, Schwartz TH, Goldstein PA, Manfredi G. Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiol Dis 2016; 93:35-46. [PMID: 27105708 DOI: 10.1016/j.nbd.2016.04.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022] Open
Abstract
Parvalbumin-expressing, fast spiking interneurons have high-energy demands, which make them particularly susceptible to energy impairment. Recent evidence suggests a link between mitochondrial dysfunction in fast spiking cortical interneurons and neuropsychiatric disorders. However, the effect of mitochondrial dysfunction restricted to parvalbumin interneurons has not been directly addressed in vivo. To investigate the consequences of mitochondrial dysfunction in parvalbumin interneurons in vivo, we generated conditional knockout mice with a progressive decline in oxidative phosphorylation by deleting cox10 gene selectively in parvalbumin neurons (PV-Cox10 CKO). Cox10 ablation results in defective assembly of cytochrome oxidase, the terminal enzyme of the electron transfer chain, and leads to mitochondrial bioenergetic dysfunction. PV-Cox10 CKO mice showed a progressive loss of cytochrome oxidase in cortical parvalbumin interneurons. Cytochrome oxidase protein levels were significantly reduced starting at postnatal day 60, and this was not associated with a change in parvalbumin interneuron density. Analyses of intrinsic electrophysiological properties in layer 5 primary somatosensory cortex revealed that parvalbumin interneurons could not sustain their typical high frequency firing, and their overall excitability was enhanced. An increase in both excitatory and inhibitory input onto parvalbumin interneurons was observed in PV-Cox10 CKO mice, resulting in a disinhibited network with an imbalance of excitation/inhibition. Investigation of network oscillations in PV-Cox10 CKO mice, using local field potential recordings in anesthetized mice, revealed significantly increased gamma and theta frequency oscillation power in both medial prefrontal cortex and hippocampus. PV-Cox10 CKO mice did not exhibit muscle strength or gross motor activity deficits in the time frame of the experiments, but displayed impaired sensory gating and sociability. Taken together, these data reveal that mitochondrial dysfunction in parvalbumin interneurons can alter their intrinsic physiology and network connectivity, resulting in behavioral alterations similar to those observed in neuropsychiatric disorders, such as schizophrenia and autism.
Collapse
Affiliation(s)
- Melis Inan
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Mingrui Zhao
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Monica Manuszak
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Cansu Karakaya
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Anjali M Rajadhyaksha
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; Department of Pediatric Neurology, Weill Cornell Medical College, New York, NY, United States; Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Virginia M Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Theodore H Schwartz
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States; Department of Medicine, Weill Cornell Medical College, New York, NY, United States.
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
64
|
Ethridge LE, White SP, Mosconi MW, Wang J, Byerly MJ, Sweeney JA. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry 2016; 6:e787. [PMID: 27093069 PMCID: PMC4872406 DOI: 10.1038/tp.2016.48] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/09/2022] Open
Abstract
Sensory hypersensitivities are common, clinically distressing features of Fragile X Syndrome (FXS). Preclinical evidence suggests this abnormality may result from synaptic hyper-excitability in sensory systems. This model predicts reduced sensory habituation to repeated stimulus presentation. Fourteen adolescents and adults with FXS and 15 age-matched controls participated in a modified auditory gating task using trains of 4 identical tones during dense array electroencephalography (EEG). Event-related potential and single trial time-frequency analyses revealed decreased habituation of the N1 event-related potential response in FXS, and increased gamma power coupled with decreases in gamma phase-locking during the early-stimulus registration period. EEG abnormalities in FXS were associated with parent reports of heightened sensory sensitivities and social communication deficits. Reduced habituation and altered gamma power and phase-locking to auditory cues demonstrated here in FXS patients parallels preclinical findings with Fmr1 KO mice. Thus, the EEG abnormalities seen in FXS patients support the model of neocortical hyper-excitability in FXS, and may provide useful translational biomarkers for evaluating novel treatment strategies targeting its neural substrate.
Collapse
Affiliation(s)
- L E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA,Department of Psychology, University of Oklahoma, Norman, OK, USA,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, 1100 North East 13th Street, Nicholson Tower, Suite 4900, Oklahoma City, OK 73104, USA. E-mail:
| | - S P White
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M W Mosconi
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA,Departments of Applied Behavioral Science and Psychology, Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - J Wang
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M J Byerly
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J A Sweeney
- Department of Psychiatry, Center for Autism and Developmental Disabilities, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
65
|
Grayson B, Barnes SA, Markou A, Piercy C, Podda G, Neill JC. Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review. Curr Top Behav Neurosci 2016; 29:403-428. [PMID: 26510740 DOI: 10.1007/7854_2015_403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cognitive dysfunction and negative symptoms of schizophrenia remain an unmet clinical need. Therefore, it is essential that new treatments and approaches are developed to recover the cognitive and social impairments that are seen in patients with schizophrenia. These may only be discovered through the use of carefully validated, aetiologically relevant and translational animal models. With recent renewed interest in the neurodevelopmental hypothesis of schizophrenia, postnatal administration of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) has been proposed as a model that can mimic aspects of schizophrenia pathophysiology. The purpose of the current review is to examine the validity of this model and compare it with the adult subchronic PCP model. We review the ability of postnatal PCP administration to produce behaviours (specifically cognitive deficits) and neuropathology of relevance to schizophrenia and their subsequent reversal by pharmacological treatments. We review studies investigating effects of postnatal PCP on cognitive domains in schizophrenia in rats. Morris water maze and delayed spontaneous alternation tasks have been used for working memory, attentional set-shifting for executive function, social novelty discrimination for selective attention and prepulse inhibition of acoustic startle for sensorimotor gating. In addition, we review studies on locomotor activity and neuropathology. We also include two studies using dual hit models incorporating postnatal PCP and two studies on social behaviour deficits following postnatal PCP. Overall, the evidence we provide supports the use of postnatal PCP to model cognitive and neuropathological disturbances of relevance to schizophrenia. To date, there is a lack of evidence to support a significant advantage of postnatal PCP over the adult subchronic PCP model and full advantage has not been taken of its neurodevelopmental component. When thoroughly characterised, it is likely that it will provide a useful neurodevelopmental model to complement other models such as maternal immune activation, particularly when combined with other manipulations to produce dual or triple hit models. However, the developmental trajectory of behavioural and neuropathological changes induced by postnatal PCP and their relevance to schizophrenia must be carefully mapped out. Overall, we support further development of dual (or triple) hit models incorporating genetic, neurodevelopmental and appropriate environmental elements in the search for more aetiologically valid animal models of schizophrenia and neurodevelopmental disorders (NDDs).
Collapse
Affiliation(s)
- B Grayson
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - S A Barnes
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0603, USA
| | - A Markou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0603, USA
| | - C Piercy
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - G Podda
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - J C Neill
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
66
|
Kesby JP, Kim JJ, Scadeng M, Woods G, Kado DM, Olefsky JM, Jeste DV, Achim CL, Semenova S. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet. PLoS One 2015; 10:e0140034. [PMID: 26448649 PMCID: PMC4598128 DOI: 10.1371/journal.pone.0140034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023] Open
Abstract
Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions.
Collapse
Affiliation(s)
- James P. Kesby
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jane J. Kim
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Miriam Scadeng
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Gina Woods
- Department of Family Medicine & Public Health and Internal Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Deborah M. Kado
- Department of Family Medicine & Public Health and Internal Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jerrold M. Olefsky
- Department of Family Medicine & Public Health and Internal Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dilip V. Jeste
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Sam and Rose Stein Institute for Research on Aging, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Cristian L. Achim
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Sam and Rose Stein Institute for Research on Aging, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|