51
|
Yang X, Liang Y, Bamunuarachchi G, Xu Y, Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C, Liu L. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol 2020; 166:363-373. [PMID: 33206218 DOI: 10.1007/s00705-020-04877-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Influenza A virus (IAV) infections result in a large number of deaths and substantial economic losses each year. MicroRNAs repress gene expression and are involved in virus-host interactions. miR-29a is known to have anti-tumor and anti-fibrotic effects. However, the role of miR-29a in IAV infection is unclear. In the present study, we investigated the effect of miR-29a on IAV infection and the mechanisms by which it functions. IAV infection was found to cause decreased miR-29a expression in lung epithelial A549 cells and mouse lungs. Overexpression of miR-29a reduced IAV mRNA and protein levels and progeny virus production in HEK293 and A549 cells. Inhibition of IAV infection by miR-29a was observed with different strains of IAV, including A/PR/8/34, A/WSN/1933, and clinical isolates A/OK/3052/09 and A/OK/309/06 H3N2. Knockout of miR-29a using CRISPR/Cas9 resulted in an increase in viral mRNA and protein levels, confirming that miR-29a suppresses IAV infection. A 3' untranslated region (3'-UTR) reporter assay showed that miR-29a had binding sites in the 3'-UTR of the Wnt-Ca2+ signaling receptor frizzled 5 gene, and overexpression of miR-29a reduced the level of the endogenous frizzled 5 protein. Wnt5a treatment of HEK293 and A549 cells enhanced IAV infection. Our results suggest that miR-29a inhibits IAV infection, probably via the frizzled 5 receptor.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yanzhao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Rachel Blaha
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
52
|
Sakuma H, Hagiwara S, Kantharidis P, Gohda T, Suzuki Y. Potential Targeting of Renal Fibrosis in Diabetic Kidney Disease Using MicroRNAs. Front Pharmacol 2020; 11:587689. [PMID: 33364960 PMCID: PMC7751689 DOI: 10.3389/fphar.2020.587689] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major health problem and one of the leading causes of end-stage renal disease worldwide. Despite recent advances, there exists an urgent need for the development of new treatments for DKD. DKD is characterized by the excessive synthesis and deposition of extracellular matrix proteins in glomeruli and the tubulointerstitium, ultimately leading to glomerulosclerosis as well as interstitial fibrosis. Renal fibrosis is the final common pathway at the histological level leading to an end-stage renal failure. In fact, activation of the nuclear factor erythroid 2-related factor 2 pathway by bardoxolone methyl and inhibition of transforming growth factor beta signaling by pirfenidone have been assumed to be effective therapeutic targets for DKD, and various basic and clinical studies are currently ongoing. MicroRNAs (miRNAs) are endogenously produced small RNA molecules of 18–22 nucleotides in length, which act as posttranscriptional repressors of gene expression. Studies have demonstrated that several miRNAs contribute to renal fibrosis. In this review, we outline the potential of using miRNAs as an antifibrosis treatment strategy and discuss their clinical application in DKD.
Collapse
Affiliation(s)
- Hiroko Sakuma
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shinji Hagiwara
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Kidney and Hypertension, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | | | - Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
53
|
Amberger M, Ivics Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. Bioessays 2020; 42:e2000136. [PMID: 32939778 DOI: 10.1002/bies.202000136] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
The Sleeping Beauty transposon system is a nonviral DNA transfer tool capable of efficiently mediating transposition-based, stable integration of DNA sequences of choice into eukaryotic genomes. Continuous refinements of the system, including the emergence of hyperactive transposase mutants and novel approaches in vectorology, greatly improve upon transposition efficiency rivaling viral-vector-based methods for stable gene insertion. Current developments, such as reversible transgenesis and proof-of-concept RNA-guided transposition, further expand on possible applications in the future. In addition, innate advantages such as lack of preferential integration into genes reduce insertional mutagenesis-related safety concerns while comparably low manufacturing costs enable widespread implementation. Accordingly, the system is recognized as a powerful and versatile tool for genetic engineering and is playing a central role in an ever-expanding number of gene and cell therapy clinical trials with the potential to become a key technology to meet the growing demand for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Maximilian Amberger
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, D-63225, Germany
| |
Collapse
|
54
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
55
|
Zhang X, Chen Q, Song H, Jiang W, Xie S, Huang J, Kang G. MicroRNA‑375 prevents TGF‑β‑dependent transdifferentiation of lung fibroblasts via the MAP2K6/P38 pathway. Mol Med Rep 2020; 22:1803-1810. [PMID: 32582987 PMCID: PMC7411355 DOI: 10.3892/mmr.2020.11261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Transdifferentiation of lung fibroblasts to myofibroblasts is a crucial pathophysiological process in pulmonary fibrosis. MicroRNA‑375 (miR‑375) was initially identified as a tumor‑suppressive factor, and its expression was negatively associated with the severity of lung cancer; however, its role and potential mechanism in myofibroblast transdifferentiation and pulmonary fibrosis remain unclear. In the present study, human lung fibroblasts were stimulated with transforming growth factor‑β (TGF‑β) to induce myofibroblast transdifferentiation. A mimic and inhibitor of miR‑375, and their negative controls, were used to overexpress or suppress miR‑375 in lung fibroblasts, respectively. The mRNA expression levels of fibrotic markers, and protein expression of α‑smooth muscle actin and periostin, were subsequently detected by reverse transcription‑quantitative PCR and western blotting, to assess myofibroblast transdifferentiation. miR‑375 was markedly upregulated in human lung fibroblasts after TGF‑β stimulation. The miR‑375 mimic alleviated, whereas the miR‑375 inhibitor aggravated TGF‑β‑dependent transdifferentiation of lung fibroblasts. Mechanistically, miR‑375 prevented myofibroblast transdifferentiation and collagen synthesis by blocking the P38 mitogen‑activated protein kinases (P38) pathway, and P38 suppression abrogated the deleterious effect of the miR‑375 inhibitor on myofibroblast transdifferentiation. Furthermore, the present study revealed that mitogen‑activated protein kinase kinase 6 was involved in P38 inactivation by miR‑375. In conclusion, miR‑375 was implicated in modulating TGF‑β‑dependent transdifferentiation of lung fibroblasts, and targeting miR‑375 expression may help to develop therapeutic approaches for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hengya Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ganjun Kang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
56
|
Guiot J, Cambier M, Boeckx A, Henket M, Nivelles O, Gester F, Louis E, Malaise M, Dequiedt F, Louis R, Struman I, Njock MS. Macrophage-derived exosomes attenuate fibrosis in airway epithelial cells through delivery of antifibrotic miR-142-3p. Thorax 2020; 75:870-881. [PMID: 32759383 PMCID: PMC7509395 DOI: 10.1136/thoraxjnl-2019-214077] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology and cure. Recent studies have reported a dysregulation of exosomal microRNAs (miRs) in the IPF context. However, the impact of IPF-related exosomal miRs on the progression of pulmonary fibrosis is unknown. Methods Two independent cohorts were enrolled at the ambulatory care polyclinic of Liège University. Exosomes from sputum were obtained from 19 patients with IPF and 23 healthy subjects (HSs) (cohort 1), and the ones from plasma derived from 14 patients with IPF and 14 HSs (cohort 2). Exosomal miR expression was performed by quantitative reverse transcription–PCR. The functional role of exosomal miRs was assessed in vitro by transfecting miR mimics in human alveolar epithelial cells and lung fibroblasts. Results Exosomal miR analysis showed that miR-142-3p was significantly upregulated in sputum and plasma of patients with IPF (8.06-fold, p<0.0001; 1.64 fold, p=0.008, respectively). Correlation analysis revealed a positive association between exosomal miR-142-3p and the percentage of macrophages from sputum of patients with IPF (r=0.576, p=0.012), suggesting macrophage origin of exosomal miR-142-3p upregulation. The overexpression of miR-142-3p in alveolar epithelial cells and lung fibroblasts was able to reduce the expression of transforming growth factor β receptor 1 (TGFβ-R1) and profibrotic genes. Furthermore, exosomes isolated from macrophages present antifibrotic properties due in part to the repression of TGFβ-R1 by miR-142-3p transfer in target cells. Discussion Our results suggest that macrophage-derived exosomes may fight against pulmonary fibrosis progression via the delivery of antifibrotic miR-142–3 p to alveolar epithelial cells and lung fibroblasts.
Collapse
Affiliation(s)
- Julien Guiot
- Department of Pneumology, GIGA-I3 Research Group, University of Liège (ULiege) and University Hospital of Liège (CHU Liege), Liège, Belgium
| | - Maureen Cambier
- Laboratory of Molecular Angiogenesis, GIGA Research, University of Liège, Liège, Belgium
| | - Amandine Boeckx
- Laboratory of Molecular Angiogenesis, GIGA Research, University of Liège, Liège, Belgium
| | - Monique Henket
- Department of Pneumology, GIGA-I3 Research Group, University of Liège (ULiege) and University Hospital of Liège (CHU Liege), Liège, Belgium
| | - Olivier Nivelles
- Laboratory of Molecular Angiogenesis, GIGA Research, University of Liège, Liège, Belgium
| | - Fanny Gester
- Department of Pneumology, GIGA-I3 Research Group, University of Liège (ULiege) and University Hospital of Liège (CHU Liege), Liège, Belgium
| | - Edouard Louis
- Department of Gastroenterology, GIGA-I3 Research Group, University of Liège (ULiege) and University Hospital of Liège (CHU Liege), Liège, Belgium
| | - Michel Malaise
- Department of Rheumatology, GIGA-I3 Research Group, University of Liège (ULiege) and University Hospital of Liège (CHU Liege), Liège, Belgium
| | - Franck Dequiedt
- GIGA-Molecular Biology of Diseases, Laboratory of Gene expression and Cancer, GIGA Research, University of Liège, Liège, Belgium
| | - Renaud Louis
- Department of Pneumology, GIGA-I3 Research Group, University of Liège (ULiege) and University Hospital of Liège (CHU Liege), Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA Research, University of Liège, Liège, Belgium
| | - Makon-Sébastien Njock
- Department of Pneumology, GIGA-I3 Research Group, University of Liège (ULiege) and University Hospital of Liège (CHU Liege), Liège, Belgium
| |
Collapse
|
57
|
Juglanin alleviates bleomycin-induced lung injury by suppressing inflammation and fibrosis via targeting sting signaling. Biomed Pharmacother 2020; 127:110119. [DOI: 10.1016/j.biopha.2020.110119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
|
58
|
Castaldi A, Horie M, Rieger ME, Dubourd M, Sunohara M, Pandit K, Zhou B, Offringa IA, Marconett CN, Borok Z. Genome-wide integration of microRNA and transcriptomic profiles of differentiating human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 319:L173-L184. [PMID: 32432919 DOI: 10.1152/ajplung.00519.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells, the latter being capable of self-renewal and transdifferentiation into AT1 cells for normal maintenance and restoration of epithelial integrity following injury. MicroRNAs (miRNAs) are critical regulators of several biological processes, including cell differentiation; however, their role in establishment/maintenance of cellular identity in adult alveolar epithelium is not well understood. To investigate this question, we performed genome-wide analysis of sequential changes in miRNA and gene expression profiles using a well-established model in which human AT2 (hAT2) cells transdifferentiate into AT1-like cells over time in culture that recapitulates many aspects of transdifferentiation in vivo. We defined three phases of miRNA expression during the transdifferentiation process as "early," "late," and "consistently" changed, which were further subclassified as up- or downregulated. miRNAs with altered expression at all time points during transdifferentiation were the largest subgroup, suggesting the need for consistent regulation of signaling pathways to mediate this process. Target prediction analysis and integration with previously published gene expression data identified glucocorticoid signaling as the top pathway regulated by miRNAs. Serum/glucocorticoid-regulated kinase 1 (SGK1) emerged as a central regulatory factor, whose downregulation correlated temporally with gain of hsa-miR-424 and hsa-miR-503 expression. Functional validation demonstrated specific targeting of these miRNAs to the 3'-untranslated region of SGK1. These data demonstrate the time-related contribution of miRNAs to the alveolar transdifferentiation process and suggest that inhibition of glucocorticoid signaling is necessary to achieve the AT1-like cell phenotype.
Collapse
Affiliation(s)
- Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Masafumi Horie
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Megan E Rieger
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mickael Dubourd
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsuhiro Sunohara
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kusum Pandit
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ite A Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
59
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
60
|
Wei Y, Wu Y, Feng K, Zhao Y, Tao R, Xu H, Tang Y. Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112404. [PMID: 31739105 DOI: 10.1016/j.jep.2019.112404] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/19/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac fibrosis is a common characteristic of many cardiac diseases. Our previous results showed that TRPM7 channel played an important role in the fibrosis process. MicroRNA-135a was reported to get involved in the fibrotic process. Astragalus membranaceus (Fisch.) Bunge was widely used in Chinese traditional medicine and showed cardiac protective effects in previous researches. Astragaloside IV(ASG), which is regarded as the most important ingredient of Astragalus, has been showed the effect of cardiac protection via various mechanisms, while no data suggested its action related to miRNAs regulation. AIM OF THE STUDY The objective of this article is to investigate the inhibition effect of ASG on cardiac fibrosis through the miR-135a-TRPM7-TGF-β/Smads pathway. MATERIALS AND METHODS We extracted the active components from herb according to the paper and measured the content of ASG from the mixture via HPLC. The inhibition potency of cardiac hypertrophy between total extract of Astragalus and ASG was compared. SD rats were treated with ISO (5 mg/kg/day) subcutaneously (s.c.) for 14 days, ASG (10 mg/kg/d) and Astragalus extract (AE) (4.35 g/kg/d, which contained about ASG 10 mg) were given p.o. from the 6th day of the modeling. Cardiac fibroblasts (CFs) of neonatal rats were incubated with ISO (10 μM) and treated with ASG (10 μM) simultaneously for 24 h. RESULTS The results showed that both AE and ASG treatment reduced the TRPM7 expression from the gene level and inhibited cardiac fibrosis. ASG group showed similar potency as the AE mixture. ASG treatment significantly decreased the current, mRNA and protein expression of TRPM7 which was one of targets of miR-135a. The activation of TGF-β/Smads pathway was suppressed and the expression of α-SMA and Collagen I were also decreased obviously. In addition, our results showed that there was a positive feedback between the activation of TGF-β/Smads pathway and the elevation of TRPM7, both of which could promote the development of myocardial fibrosis. CONCLUSIONS AE had the effect of cardiac fibrosis inhibition and decreased the mRNA expression of TRPM7. ASG, as one of the effective ingredients of AE, showed the same potency when given the same dose. ASG inhibited cardiac fibrosis by targeting the miR-135a-TRPM7-TGF-β/Smads pathway.
Collapse
Affiliation(s)
- Yanchun Wei
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yan Wu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Kai Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yizhuo Zhao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Ru Tao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Haonan Xu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
61
|
Zhang Y, Distler JHW. Therapeutic molecular targets of SSc-ILD. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:17-30. [DOI: 10.1177/2397198319899013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis is a fibrosing chronic connective tissue disease of unknown etiology. A major hallmark of systemic sclerosis is the uncontrolled and persistent activation of fibroblasts, which release excessive amounts of extracellular matrix, lead to organ dysfunction, and cause high mobility and motility of patients. Systemic sclerosis–associated interstitial lung disease is one of the most common fibrotic organ manifestations in systemic sclerosis and a major cause of death. Treatment options for systemic sclerosis–associated interstitial lung disease and other fibrotic manifestations, however, remain very limited. Thus, there is a huge medical need for effective therapies that target tissue fibrosis, vascular alterations, inflammation, and autoimmune disease in systemic sclerosis–associated interstitial lung disease. In this review, we discuss data suggesting therapeutic ways to target different genes in distinct tissues/organs that contribute to the development of SSc.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg HW Distler
- Department of Internal Medicine 3—Rheumatology and Immunology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
62
|
Calyeca J, Balderas-Martínez YI, Olmos R, Jasso R, Maldonado V, Rivera Q, Selman M, Pardo A. Accelerated aging induced by deficiency of Zmpste24 protects old mice to develop bleomycin-induced pulmonary fibrosis. Aging (Albany NY) 2019; 10:3881-3896. [PMID: 30530916 PMCID: PMC6326652 DOI: 10.18632/aging.101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis is a devastating aging-associated disease of unknown etiology. Despite that aging is a major risk factor, the mechanisms linking aging with this disease are uncertain, and experimental models to explore them in lung fibrosis are scanty. We examined the fibrotic response to bleomycin-induced lung injury in Zmpste24-deficient mice, which exhibit nuclear lamina defects developing accelerated aging. We found that young WT and Zmpste24(-/-) mice developed a similar fibrotic response to bleomycin. Unexpectedly, while old WT mice developed severe lung fibrosis, accelerated aged Zmpste24-/- mice were protected showing scant lung damage. To investigate possible mechanisms associated with this resistance to fibrosis, we compared the transcriptome signature of the lungs and found that Zmpste24(-/-) mice showed downregulation of several core and associated matrisome genes compared with WT mice. Interestingly, some microRNAs that target extracellular matrix molecules such as miR23a, miR27a, miR29a, miR29b-1, miR145a, and miR491 were dysregulated resulting in downregulation of profibrotic pathways such as TGF-β/SMAD3/NF-κB and Wnt3a/β-catenin signaling axis. These results indicate that the absence of Zmpste24 in aging mice results in impaired lung fibrotic response after injury, which is likely associated to the dysregulation of fibrosis-related miRNAs.
Collapse
Affiliation(s)
- Jazmín Calyeca
- Facultad de Ciencias Universidad Nacional Autonoma de México, Mexico City, Mexico
| | | | - Raúl Olmos
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rogelio Jasso
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Vilma Maldonado
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Quetzali Rivera
- Facultad de Ciencias Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias Universidad Nacional Autonoma de México, Mexico City, Mexico
| |
Collapse
|
63
|
MicroRNA-29a Mitigates Subacromial Bursa Fibrosis in Rotator Cuff Lesion with Shoulder Stiffness. Int J Mol Sci 2019; 20:ijms20225742. [PMID: 31731750 PMCID: PMC6888443 DOI: 10.3390/ijms20225742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Rotator cuff lesion with shoulder stiffness is a major cause of shoulder pain and motionlessness. Subacromial bursa fibrosis is a prominent pathological feature of the shoulder disorder. MicroRNA-29a (miR-29a) regulates fibrosis in various tissues; however, the miR-29a action to subacromial bursa fibrosis remains elusive. Here, we reveal that subacromial synovium in patients with rotator cuff tear with shoulder stiffness showed severe fibrosis, hypertrophy, and hyperangiogenesis histopathology along with significant increases in fibrotic matrices collagen (COL) 1A1, 3A1, and 4A1 and inflammatory cytokines, whereas miR-29a expression was downregulated. Supraspinatus and infraspinatus tenotomy-injured shoulders in transgenic mice overexpressing miR-29a showed mild swelling, vascularization, fibrosis, and regular gait profiles as compared to severe rotator cuff damage in wild-type mice. Treatment with miR-29a precursor compromised COL3A1 production and hypervascularization in injured shoulders. In vitro, gain of miR-29a function attenuated COL3A1 expression through binding to the 3’-untranslated region (3′-UTR) of COL3A1 in inflamed tenocytes, whereas silencing miR-29a increased the matrix expression. Taken together, miR-29a loss is correlated with subacromial bursa inflammation and fibrosis in rotator cuff tear with shoulder stiffness. miR-29a repressed subacromial bursa fibrosis through directly targeting COL3A1 mRNA, improving rotator cuff integrity and shoulder function. Collective analysis offers a new insight into the molecular mechanism underlying rotator cuff tear with shoulder stiffness. This study also highlights the remedial potential of miR-29a precursor for alleviating the shoulder disorder.
Collapse
|
64
|
Wu H, Chen Y, Zhu H, Zhao M, Lu Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front Immunol 2019; 10:2305. [PMID: 31611879 PMCID: PMC6776919 DOI: 10.3389/fimmu.2019.02305] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases can be chronic with relapse of inflammatory symptoms, but it can be also acute and life-threatening if immune cells destroy life-supporting organs, such as lupus nephritis. The etiopathogenesis of autoimmune diseases has been revealed as that genetics and environmental factors-mediated dysregulated immune responses contribute to the initiation and development of autoimmune disorders. However, the current understanding of pathogenesis is limited and the underlying mechanism has not been well defined, which lows the development of novel biomarkers and new therapeutic strategies for autoimmune diseases. To improve this, broadening and deepening our understanding of pathogenesis is an unmet need. As genetic susceptibility cannot explain the low accordance rate of incidence in homozygous twins, epigenetic regulations might be an additional explanation. Therefore, this review will summarize current progress of studies on epigenetic dysregulations contributing to autoimmune diseases, including SLE, rheumatoid arthritis (RA), psoriasis, type 1 diabetes (T1D), and systemic sclerosis (SSc), hopefully providing opinions on orientation of future research, as well as discussing the clinical utilization of potential biomarkers and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
65
|
Henry TW, Mendoza FA, Jimenez SA. Role of microRNA in the pathogenesis of systemic sclerosis tissue fibrosis and vasculopathy. Autoimmun Rev 2019; 18:102396. [PMID: 31520794 DOI: 10.1016/j.autrev.2019.102396] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Systemic Sclerosis (SSc) pathogenesis involves multiple immunological, vascular and fibroproliferative abnormalities that contribute to a severe and complex clinical picture. Vasculopathy and fibroproliferative alterations are two hallmark pathological processes in SSc that are responsible for the most severe clinical manifestations of the disease and determine its clinical outcome and mortality. However, the pathogenesis of SSc vasculopathy and of the uncontrolled SSc fibrotic process remain incompletely understood. Recent investigations into the molecular pathways involved in these processes have identified an important role for epigenetic processes that contribute to overall disease progression and have emphasized microRNAs (miRNAs) as crucial epigenetic regulators. MiRNAs hold unique potential for elucidating SSc pathogenesis, improving diagnosis and developing effective targeted therapies for the disease. This review examines the important role that miRNAs play in the development and regulation of vascular and fibroproliferative alterations associated with SSc pathogenesis and their possible participation in the establishment of pathogenetic connections between these two processes. This review also emphasizes that further understanding of the involvement of miRNA in SSc fibrosis and vasculopathy will very likely provide novel future research directions and allow for the identification of groundbreaking therapeutic interventions within these processes. MiR-21, miR- 31, and miR-155 are of particular interest owing to their important involvement in both SSc vasculopathy and fibroproliferative alterations.
Collapse
Affiliation(s)
- Tyler W Henry
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, USA
| | - Fabian A Mendoza
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, USA; Division of Rheumatology, Department of Medicine, Thomas Jefferson University, USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, USA.
| |
Collapse
|
66
|
Liu G, Cooley MA, Jarnicki AG, Borghuis T, Nair PM, Tjin G, Hsu AC, Haw TJ, Fricker M, Harrison CL, Jones B, Hansbro NG, Wark PA, Horvat JC, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Fibulin-1c regulates transforming growth factor-β activation in pulmonary tissue fibrosis. JCI Insight 2019; 5:124529. [PMID: 31343988 DOI: 10.1172/jci.insight.124529] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-β binding protein-1 (LTBP1) to induce TGF-β activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-β-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, Georgia, USA
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Gavin Tjin
- Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Celeste L Harrison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
67
|
The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2441-2450. [PMID: 31175931 DOI: 10.1016/j.bbadis.2019.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Although macrophage migration inhibitory factor (MIF) is known to have antioxidant property, the role of MIF in cardiac fibrosis has not been well understood. We found that MIF was markedly increased in angiotension II (Ang-II)-infused mouse myocardium. Myocardial function was impaired and cardiac fibrosis was aggravated in Mif-knockout (Mif-KO) mice. Functionally, overexpression of MIF and MIF protein could inhibit the expression of fibrosis-associated collagen (Col) 1a1, COL3A1 and α-SMA, and Smad3 activation in mouse cardiac fibroblasts (CFs). Consistently, MIF deficiency could exacerbate the expression of COL1A1, COL3A1 and α-SMA, and Smad3 activation in Ang-II-treated CFs. Interestingly, microRNA-29b-3p (miR-29b-3p) and microRNA-29c-3p (miR-29c-3p) were down-regulated in the myocardium of Ang-II-infused Mif-KO mice but upregulated in CFs with MIF overexpression or by treatment with MIF protein. MiR-29b-3p and miR-29c-3p could suppress the expression of COL1A1, COL3A1 and α-SMA in CFs through targeting the pro-fibrosis genes of transforming growth factor beta-2 (Tgfb2) and matrix metallopeptidase 2 (Mmp2). We further demonstrated that Mif inhibited reactive oxygen species (ROS) generation and Smad3 activation, and rescued the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Smad3 inhibitors, SIS3 and Naringenin, and Smad3 siRNA could reverse the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Taken together, our data demonstrated that the Smad3-miR-29b/miR-29c axis mediates the inhibitory effect of macrophage migration inhibitory factor on cardiac fibrosis.
Collapse
|
68
|
Jafarinejad-Farsangi S, Gharibdoost F, Farazmand A, Kavosi H, Jamshidi A, Karimizadeh E, Noorbakhsh F, Mahmoudi M. MicroRNA-21 and microRNA-29a modulate the expression of collagen in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 2019; 52:108-116. [DOI: 10.1080/08916934.2019.1621856] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, University of Tehran, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Karimizadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Immunology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Knockdown of Long Noncoding RNA H19 Represses the Progress of Pulmonary Fibrosis through the Transforming Growth Factor β/Smad3 Pathway by Regulating MicroRNA 140. Mol Cell Biol 2019; 39:MCB.00143-19. [PMID: 30988156 DOI: 10.1128/mcb.00143-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in various human diseases. Recently, H19 was reported to be upregulated in fibrotic rat lung and play a stimulative role in bleomycin (BLM)-induced pulmonary fibrosis in mice. However, its expression in human fibrotic lung tissues and mechanism of action remain unclear. Here, our observations showed that H19 expression was significantly upregulated and that of microRNA 140 (miR-140) was markedly reduced in pulmonary fibrotic tissues from idiopathic pulmonary fibrosis (IPF) patients and transforming growth factor β1 (TGF-β1)-induced HBE and A549 cells. Moreover, the expression of H19 was negatively correlated with the expression of miR-140 in IPF tissues. H19 knockdown attenuated TGF-β1-induced pulmonary fibrosis in vitro Furthermore, animal experiments showed that H19 knockdown attenuated BLM-induced pulmonary fibrosis in mice. The study of molecular mechanisms showed that H19 functioned via reduction of miR-140 expression by binding to miR-140. The increase of miR-140 inhibited TGF-β1-induced pulmonary fibrosis, and H19 upregulation diminished the inhibitory effects of miR-140 on TGF-β1-induced pulmonary fibrosis, which was involved in the TGF-β/Smad3 pathway. Taken together, our findings showed that H19 knockdown attenuated pulmonary fibrosis via the regulatory network of lncRNA H19-miR-140-TGF-β/Smad3 signaling, and H19 and miR-140 might represent therapeutic targets and early diagnostic and prognostic biomarkers for patients with pulmonary fibrosis.
Collapse
|
70
|
Suryadevara V, Huang L, Kim SJ, Cheresh P, Shaaya M, Bandela M, Fu P, Feghali-Bostwick C, Di Paolo G, Kamp DW, Natarajan V. Role of phospholipase D in bleomycin-induced mitochondrial reactive oxygen species generation, mitochondrial DNA damage, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L175-L187. [PMID: 31090437 DOI: 10.1152/ajplung.00320.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a pernicious lung disease characterized by alveolar epithelial apoptosis, dysregulated repair of epithelial injury, scar formation, and respiratory failure. In this study, we identified phospholipase D (PLD)-generated phosphatidic acid (PA) signaling in the development of pulmonary fibrosis (PF). Of the PLD isoenzymes, the protein expression of PLD2, but not PLD1, was upregulated in lung tissues from IPF patients and bleomycin challenged mice. Both PLD1 (Pld1-/-)- and PLD2 (Pld2-/-)-deficient mice were protected against bleomycin-induced lung inflammation and fibrosis, thereby establishing the role of PLD in fibrogenesis. The role of PLD1 and PLD2 in bleomycin-induced lung epithelial injury was investigated by infecting bronchial airway epithelial cells (Beas2B) with catalytically inactive mutants of PLD (hPLD1-K898R or mPld2-K758R) or downregulation of expression of PLD1 or PLD2 with siRNA. Bleomycin stimulated mitochondrial (mt) superoxide production, mtDNA damage, and apoptosis in Beas2B cells, which was attenuated by the catalytically inactive mutants of PLD or PLD2 siRNA. These results show a role for PLD1 and PLD2 in bleomycin-induced generation of mt reactive oxygen species, mt DNA damage, and apoptosis of lung epithelial cells in mice. Thus, PLD may be a novel therapeutic target in ameliorating experimental PF in mice.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Seok-Jo Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine and the Jesse Brown VA Medical Center , Chicago, Illinois
| | - Paul Cheresh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine and the Jesse Brown VA Medical Center , Chicago, Illinois
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Mounica Bandela
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | | | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center , New York, New York
| | - David W Kamp
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine and the Jesse Brown VA Medical Center , Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois.,Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| |
Collapse
|
71
|
Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y, Shen G, Wang F. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol 2019; 292:188-196. [PMID: 30967276 DOI: 10.1016/j.ijcard.2019.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are emerging as powerful regulators of cardiac development and disease. Nevertheless, detailed studies describing circRNA-mediated regulation of cardiac fibroblasts (CFs) biology and their role in cardiac fibrosis remain limited. METHODS PCR and Sanger sequencing were performed to identify the expression of circHIPK3 in CFs. Edu corporation assays, Transwell migration assays, and immunofluorescence staining assays were conducted to detect the function of circHIPK3 in CFs in vitro. Bioinformatics analysis, dual luciferase activity assays, RNA immunoprecipitation, and fluorescent in situ hybridization experiments were conducted to investigate the mechanism of circHIPK3-mediated cardiac fibrosis. Echocardiographic analysis, Sirius Red staining and immunofluorescence staining were performed to investigate the function of circHIPK3 in angiotensin II (Ang II) induced cardiac fibrosis in vivo. RESULTS circHIPK3 expression markedly increased in CFs and heart tissues after the treatment of Ang II. circHIPK3 silencing attenuates CFs proliferation, migration and the upregulation of a-SMA expression levels induced by Ang II in vitro. circHIPK3 acted as a miR-29b-3p sponge and overexpression of circHIPK3 effectively reverses miR-29b-3p-induced inhibition of CFs proliferation and migration and alters the expression levels of miR-29b-3p targeting genes (a-SMA, COL1A1, COL3A1) in vitro. Combination of circHIPK3 silencing and miR-29b-3p overexpression had a stronger effect on cardiac fibrosis suppression in vivo than did circHIPK3 silencing or miR-29b-3p overexpression alone. CONCLUSIONS Our data suggest that circHIPK3 serves as a miR-29b-3p sponge to regulate CF proliferation, migration and development of cardiac fibrosis, revealing a potential new target for the prevention of Ang II-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Huaner Ni
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Weifeng Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Shuang Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Yue Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Yang Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Gu Shen
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China.
| |
Collapse
|
72
|
Mazzone R, Zwergel C, Artico M, Taurone S, Ralli M, Greco A, Mai A. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics 2019; 11:34. [PMID: 30808407 PMCID: PMC6390373 DOI: 10.1186/s13148-019-0632-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Epigenetic pathways play a pivotal role in the development and function of the immune system. Over the last decade, a growing body of studies has been published out seeking to explain a correlation between epigenetic modifications and the development of autoimmune disorders. Epigenetic changes, such as DNA methylation, histone modifications, and noncoding RNAs, are involved in the pathogenesis of autoimmune diseases mainly by regulating gene expression. This paper reviews the importance of epigenetic alterations during the development of the most prevalent human autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), Sjogren’s syndrome (SS), autoimmune thyroid diseases (AITD), and type 1 diabetes (T1D), aiming to provide new insights in the pathogenesis of autoimmune diseases and the possibility to develop novel therapeutic approaches targeting the epigenome.
Collapse
Affiliation(s)
- Roberta Mazzone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.,Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161, Rome, Italy
| | - Clemens Zwergel
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Marco Artico
- Department of Sense Organs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Samanta Taurone
- IRCCS G.B. Bietti Foundation, Via Livenza, 3, 00198, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Pasteur Institute - Cenci Bolognetti Foundation, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
73
|
Tang K, Zhao J, Xie J, Wang J. Decreased miR-29b expression is associated with airway inflammation in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2019; 316:L621-L629. [PMID: 30652495 DOI: 10.1152/ajplung.00436.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic airway inflammatory disease. MicroRNAs are shown to be involved in the regulation of inflammation. We investigated the role of microRNA-29b (miR-29b) in the airway inflammation in COPD. The expression of miR-29b in the lung and plasma was examined. The target of miR-29b, bromodomain protein 4 (BRD4), was predicted by online algorithms and verified in human bronchial epithelial (HBE) cells. The expression of BRD4, interleukin (IL)-8, and IL-6 in the lung was also examined. The role of miR-29b in the inflammatory cytokine expression of airway epithelial cells was studied using an in vitro model system. In total, 60 subjects were recruited, including 10 nonsmokers, 24 smokers, and 26 patients with COPD. Both lung and plasma miR-29b are decreased in patients with COPD, and miR-29b expression levels are correlated with pulmonary function and inflammation. BRD4 is increased in the lung of patients with COPD and is correlated with miR-29b and IL-8 expression. miR-29b regulates cigarette smoke extract (CSE)-induced IL-8 expression by targeting BRD4 in HBE cells. The antioxidant N-acetylcysteine prevents CSE-induced miR-29b downregulation and BRD4 and IL-8 upregulation. Our findings indicate that miR-29b may participate in the airway inflammation in COPD by regulating inflammatory cytokine expression through targeting BRD4, plasma miR-29b may serve as a biomarker for disease severity in COPD, and oxidative stress may contribute to the decrease of miR-29b induced by cigarette smoke.
Collapse
Affiliation(s)
- Kun Tang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jianmiao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
74
|
YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR-15a loss in IPF. Cell Death Differ 2019; 26:1832-1844. [PMID: 30644438 DOI: 10.1038/s41418-018-0250-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic parenchymal lung disease of unknown etiology and lack effective interventions. Using a combination of in vitro and in vivo studies, we found that overexpression of YAP1, a key effector in the Hippo pathway, promoted cell proliferation, migration, and collagen production in lung fibroblasts. Furthermore, the pro-fibrotic action of YAP1 was mediated by transcriptional activation of Twist1 through interacting with its partner TEAD. In contrast, knockdown of YAP1 inhibited extracellular matrix (ECM) deposition, which ultimately ameliorated lung fibrosis in vitro and in vivo. Additionally, we constructed a dysregulated miRNA regulatory network that affects the expression of the Hippo pathway effectors in IPF and identified miR-15a, which is significantly down-regulated in IPF patients, as one of the most essential miRNAs regulating this pathway. Moreover, knockdown of miR-15a resulted in fibroblast activation and lung fibrosis through promoting Twist expression by targeting inhibition of YAP1. In contrast, therapeutic restoration of miR-15a inhibits fibrogenesis in lung fibroblast and abrogated BLM-induced lung fibrosis in mice. These results highlight a role for miR-15a/YAP1/Twist axis in IPF that offer novel strategies for the prevention and treatment of lung fibrosis.
Collapse
|
75
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
76
|
Ji E, Kim C, Kim W, Lee EK. Role of long non-coding RNAs in metabolic control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1863:194348. [PMID: 30594638 DOI: 10.1016/j.bbagrm.2018.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression by influencing various biological processes including proliferation, apoptosis, differentiation, and senescence. Accumulating evidence implicates lncRNAs in the maintenance of metabolic homeostasis; dysregulation of certain lncRNAs promotes the progression of metabolic disorders such as diabetes, obesity, and cardiovascular diseases. In this review, we discuss our understanding of lncRNAs implicated in metabolic control, focusing on in particular diseases arising from chronic inflammation, insulin resistance, and lipid homeostasis. We have analyzed lncRNAs and their molecular targets involved in the pathogenesis of chronic liver disease, diabetes, and obesity, and have discussed the rising interest in lncRNAs as diagnostic and therapeutic targets improving metabolic homeostasis. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Eunbyul Ji
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea
| | - Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, South Korea.
| |
Collapse
|
77
|
Stolzenburg LR, Harris A. The role of microRNAs in chronic respiratory disease: recent insights. Biol Chem 2018; 399:219-234. [PMID: 29148977 DOI: 10.1515/hsz-2017-0249] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 01/16/2023]
Abstract
Chronic respiratory diseases encompass a group of diverse conditions affecting the airways, which all impair lung function over time. They include cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma, which together affect hundreds of millions of people worldwide. MicroRNAs (miRNAs), a class of small non-coding RNAs involved in post-transcriptional gene repression, are now recognized as major regulators in the development and progression of chronic lung disease. Alterations in miRNA abundance occur in lung tissue, inflammatory cells, and freely circulating in blood and are thought to function both as drivers and modifiers of disease. Their importance in lung pathology has prompted the development of miRNA-based therapies and biomarker tools. Here, we review the current literature on miRNA expression and function in chronic respiratory disease and highlight further research that is needed to propel miRNA treatments for lung disorders towards the clinic.
Collapse
Affiliation(s)
- Lindsay R Stolzenburg
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44016, USA
| |
Collapse
|
78
|
Systems Analysis of Transcriptomic and Proteomic Profiles Identifies Novel Regulation of Fibrotic Programs by miRNAs in Pulmonary Fibrosis Fibroblasts. Genes (Basel) 2018; 9:genes9120588. [PMID: 30501089 PMCID: PMC6316743 DOI: 10.3390/genes9120588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/10/2023] Open
Abstract
Fibroblasts/myofibroblasts are the key effector cells responsible for excessive extracellular matrix (ECM) deposition and fibrosis progression in both idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) patient lungs, thus it is critical to understand the transcriptomic and proteomic programs underlying their fibrogenic activity. We conducted the first integrative analysis of the fibrotic programming in these cells at the levels of gene and microRNA (miRNA) expression, as well as deposited ECM protein to gain insights into how fibrotic transcriptional programs culminate in aberrant ECM protein production/deposition. We identified messenger RNA (mRNA), miRNA, and deposited matrisome protein signatures for IPF and SSc fibroblasts obtained from lung transplants using next-generation sequencing and mass spectrometry. SSc and IPF fibroblast transcriptional signatures were remarkably similar, with enrichment of WNT, TGF-β, and ECM genes. miRNA-seq identified differentially regulated miRNAs, including downregulation of miR-29b-3p, miR-138-5p and miR-146b-5p in disease fibroblasts and transfection of their mimics decreased expression of distinct sets of fibrotic signature genes as assessed using a Nanostring fibrosis panel. Finally, proteomic analyses uncovered a distinct "fibrotic" matrisome profile deposited by IPF and SSc fibroblasts compared to controls that highlights the dysregulated ECM production underlying their fibrogenic activities. Our comprehensive analyses of mRNA, miRNA, and matrisome proteomic profiles in IPF and SSc lung fibroblasts revealed robust fibrotic signatures at both the gene and protein expression levels and identified novel fibrogenesis-associated miRNAs whose aberrant downregulation in disease fibroblasts likely contributes to their fibrotic and ECM gene expression.
Collapse
|
79
|
Song C, Xu X, Wu Y, Ji B, Zhou X, Qin L. Study of the mechanism underlying hsa-miR338-3p downregulation to promote fibrosis of the synovial tissue in osteoarthritis patients. Mol Biol Rep 2018; 46:627-637. [PMID: 30484106 DOI: 10.1007/s11033-018-4518-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the degradation of joint cartilage, the formation of osteophyma at joint margins, and synovial changes. Whereas lesions of the joint cartilage were the key point of the research and treatment of osteoarthritis before, a recent study showed that the synovium plays a crucial role in the pathological progress of OA. The inflammatory environment in the joints of OA patients always results in the overactivation of fibroblast-like synoviocytes (FLSs), which produce a multitude of inflammatory factors and media, not only leading to the degradation and injury of the cartilage tissue and promoting the development of osteoarthritis but also resulting in synovial fibrosis and joint stiffness. Therefore, the synovium has attracted increasing attention in the research of OA, and the study of the mechanism of activation of FLSs and the fibrosis of joint synovium may shed new light on OA treatment. By using high-throughput screening, we have identified that hsa-miR338-3p is significantly downregulated in the synovial tissue and joint effusion from OA patients. A functional study showed that overexpression of hsa-miR338-3p in the FLSs inhibited the TGF-β1-induced overactivation of the TGF-β/Smad fibrosis regulation pathway by suppressing TRAP-1 expression and thus reducing the TGF-β1-induced activation of the FLSs and the expression of vimentin and collagen I, two fibrosis markers. Meanwhile, a mechanism study also showed that the upregulation of hsa-miR338-3p reduced Smad2/3 phosphorylation by suppressing TRAP-1 and thus inhibited the TGF-β/Smad pathway and TIMP1, a downstream protein. The present study, for the first time, illustrates the role of hsa-miR338-3p in synovial fibrosis in OA patients and the related mechanism, which is of importance to the treatment of OA and its complications by targeting the FLSs and synovial tissue. Hsa-miR338-3p not only has the potential to be a target for the gene therapy of OA but also has the potential to be a new marker for the diagnosis of clinical progression in OA patients.
Collapse
Affiliation(s)
- Changzhi Song
- Department of Orthopaedics, Yancheng City No. 1 People's Hospital, Yancheng, 224006, China
| | - Xiaozu Xu
- Department of Orthopaedics, Yancheng City No. 1 People's Hospital, Yancheng, 224006, China.
| | - Ya Wu
- Department of Orthopaedics, Yancheng City No. 1 People's Hospital, Yancheng, 224006, China
| | - Biao Ji
- Department of Orthopaedics, Yancheng City No. 1 People's Hospital, Yancheng, 224006, China
| | - Xiaoye Zhou
- Department of Gynecology and Obstetrics, Yancheng City No. 1 People's Hospital, Yancheng, 224006, China
| | - Ling Qin
- Department of Orthopaedics, Yancheng City No. 1 People's Hospital, Yancheng, 224006, China
| |
Collapse
|
80
|
Souma K, Shichino S, Hashimoto S, Ueha S, Tsukui T, Nakajima T, Suzuki HI, Shand FHW, Inagaki Y, Nagase T, Matsushima K. Lung fibroblasts express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis. Sci Rep 2018; 8:16642. [PMID: 30413725 PMCID: PMC6226532 DOI: 10.1038/s41598-018-34839-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Lung fibroblasts play a pivotal role in pulmonary fibrosis, a devastating lung disease, by producing extracellular matrix. MicroRNAs (miRNAs) suppress numerous genes post-transcriptionally; however, the roles of miRNAs in activated fibroblasts in fibrotic lungs remain poorly understood. To elucidate these roles, we performed global miRNA-expression profiling of fibroblasts from bleomycin- and silica-induced fibrotic lungs and investigated the functions of miRNAs in activated lung fibroblasts. Clustering analysis of global miRNA-expression data identified miRNA signatures exhibiting increased expression during fibrosis progression. Among these signatures, we found that a miR-19a-19b-20a sub-cluster suppressed TGF-β-induced activation of fibroblasts in vitro. Moreover, to elucidate whether fibroblast-specific intervention against the sub-cluster modulates pathogenic activation of fibroblasts in fibrotic lungs, we intratracheally transferred the sub-cluster-overexpressing fibroblasts into bleomycin-treated lungs. Global transcriptome analysis of the intratracheally transferred fibroblasts revealed that the sub-cluster not only downregulated expression of TGF-β-associated pro-fibrotic genes, including Acta2, Col1a1, Ctgf, and Serpine1, but also upregulated expression of the anti-fibrotic genes Dcn, Igfbp5, and Mmp3 in activated lung fibroblasts. Collectively, these findings indicated that upregulation of the miR-19a-19b-20a sub-cluster expression in lung fibroblasts counteracted TGF-β-associated pathogenic activation of fibroblasts in murine pulmonary fibrosis.
Collapse
Affiliation(s)
- Kunihiko Souma
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Shichino
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shinichi Hashimoto
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan.
| | - Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Nakajima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Francis H W Shand
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
81
|
Sun J, Li Q, Lian X, Zhu Z, Chen X, Pei W, Li S, Abbas A, Wang Y, Tian L. MicroRNA-29b Mediates Lung Mesenchymal-Epithelial Transition and Prevents Lung Fibrosis in the Silicosis Model. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:20-31. [PMID: 30529807 PMCID: PMC6282658 DOI: 10.1016/j.omtn.2018.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Lung epithelial-mesenchymal transition (EMT) plays an important role in silicosis fibrosis. The reverse process of EMT is mesenchymal-epithelial transition (MET), which is viewed as an anti-EMT therapy and is a good target toward fibrosis. MicroRNAs (miRNAs) have emerged as potent regulators of EMT and MET programs, and, hence, we tested the miRNA expression using microarray assay and investigated their roles in silica-induced EMT in lung epithelial cells. We found that miRNA-29b (miR-29b) was dynamically downregulated by silica and influenced the promotion of MET in RLE-6TN cells. Furthermore, delivery of miR-29b to mice significantly inhibited silica-induced EMT, prevented lung fibrosis, and improved lung function. Together, our results clearly demonstrated that miR-29b acted as a novel negative regulator of silicosis fibrosis-inhibited lung fibrosis, probably by promoting MET and by suppressing EMT in the lung. These findings may represent a new potential therapeutic target for treating silicosis fibrosis.
Collapse
Affiliation(s)
- Jingping Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiuyue Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ximeng Lian
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaowei Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wanying Pei
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Siling Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ali Abbas
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
82
|
The microRNA-29/PGC1α regulatory axis is critical for metabolic control of cardiac function. PLoS Biol 2018; 16:e2006247. [PMID: 30346946 PMCID: PMC6211751 DOI: 10.1371/journal.pbio.2006247] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/01/2018] [Accepted: 10/09/2018] [Indexed: 01/10/2023] Open
Abstract
Different microRNAs (miRNAs), including miR-29 family, may play a role in the development of heart failure (HF), but the underlying molecular mechanisms in HF pathogenesis remain unclear. We aimed at characterizing mice deficient in miR-29 in order to address the functional relevance of this family of miRNAs in the cardiovascular system and its contribution to heart disease. In this work, we show that mice deficient in miR-29a/b1 develop vascular remodeling and systemic hypertension, as well as HF with preserved ejection fraction (HFpEF) characterized by myocardial fibrosis, diastolic dysfunction, and pulmonary congestion, and die prematurely. We also found evidence that the absence of miR-29 triggers the up-regulation of its target, the master metabolic regulator PGC1α, which in turn generates profound alterations in mitochondrial biogenesis, leading to a pathological accumulation of small mitochondria in mutant animals that contribute to cardiac disease. Notably, we demonstrate that systemic hypertension and HFpEF caused by miR-29 deficiency can be rescued by PGC1α haploinsufficiency, which reduces cardiac mitochondrial accumulation and extends longevity of miR-29–mutant mice. In addition, PGC1α is overexpressed in hearts from patients with HF. Collectively, our findings demonstrate the in vivo role of miR-29 in cardiovascular homeostasis and unveil a novel miR-29/PGC1α regulatory circuitry of functional relevance for cell metabolism under normal and pathological conditions. To combat diseases, we first need to gain knowledge on how cells function at the molecular level to maintain normal physiology. One great scientific achievement of the last decade was the identification of thousands of small regulatory RNA molecules, called microRNAs. Strikingly, each microRNA has the potential to fine-tune the expression of hundreds of target genes depending on the spatiotemporal context. Therefore, defects in key microRNAs can contribute to the development of diseases. In the present work, we characterize the role for miR-29 in cardiac function in a mouse model. We found that mice deficient for miR-29 develop life-threatening cardiometabolic alterations that subsequently cause heart failure with diastolic dysfunction and systemic hypertension. We also demonstrate that these pathological phenotypes originate in part by the anomalous up-regulation of the transcriptional coactivator PGC1α, which can lead to mitochondrial hyperplasia in the heart. Genetic removal of one copy of PGC1α significantly attenuated the severity of the cardiovascular phenotype observed in miR-29–deficient mice. In addition, we show that PGC1α expression is misregulated in heart failure patients, suggesting that the implementation of miR-29 replacement therapy could potentially be used to treat these fatal pathologies.
Collapse
|
83
|
Suppression of SMOC2 reduces bleomycin (BLM)-induced pulmonary fibrosis by inhibition of TGF-β1/SMADs pathway. Biomed Pharmacother 2018; 105:841-847. [DOI: 10.1016/j.biopha.2018.03.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022] Open
|
84
|
Györfi AH, Matei AE, Distler JH. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol 2018; 68-69:8-27. [DOI: 10.1016/j.matbio.2017.12.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
|
85
|
Hodge R, Narayanavari SA, Izsvák Z, Ivics Z. Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System. Hum Gene Ther 2018; 28:842-855. [PMID: 28870121 DOI: 10.1089/hum.2017.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.
Collapse
Affiliation(s)
- Russ Hodge
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Suneel A Narayanavari
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zoltán Ivics
- 2 Division of Medical Biotechnology, Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
86
|
Jiang H, Chen Y, Yu T, Zhao X, Shan H, Sun J, Zhang L, Li X, Shan H, Liang H. Inhibition of lncRNA PFRL prevents pulmonary fibrosis by disrupting the miR-26a/smad2 loop. Am J Physiol Lung Cell Mol Physiol 2018; 315:L563-L575. [PMID: 29952219 DOI: 10.1152/ajplung.00434.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with increasing mortality and poor prognosis. The current understanding of the role of long noncoding RNAs (lncRNAs) in IPF remains limited. In the present study, we identified a lncRNA NONMMUT022554, designated pulmonary fibrosis-regulatory lncRNA (PFRL), with unknown functions and found that its levels were increased in fibrotic lung tissues of mice and pulmonary fibroblasts exposed to transforming growth factor (TGF)-β1. Furthermore, we found that enforced expression of PFRL induced fibroblast activation and collagen deposition, which could be mitigated by the overexpression of microRNA (miR)-26a. By contrast, the inhibition of PFRL could markedly alleviate the TGF-β1-induced upregulation of fibrotic markers and attenuate fibroblast proliferation and differentiation by regulating miR-26a. Meanwhile, our study confirmed that PFRL inhibited the expression and activity of miR-26a, which has been identified as an antifibrotic miRNA in our previous study. Interestingly, our molecular study further confirmed that Smad2 transcriptionally inhibits the expression of miR-26a and that the miR-26a/Smad2 feedback loop mediates the profibrotic effects of PFRL in lung fibrosis. More importantly, knockdown of PFRL ablated bleomycin-induced pulmonary fibrosis in vivo. Taken together, our findings indicate that lncRNA PFRL contributes to the progression of lung fibrosis by modulating the reciprocal repression between miR-26a and Smad2 and that this lncRNA may be a therapeutic target for IPF.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Yingzhun Chen
- Department of Pathology, the Second Affiliated Hospital, Harbin Medical University , Harbin , People's Republic of China
| | - Tong Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Huitong Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Lu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin , People's Republic of China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin , People's Republic of China
| |
Collapse
|
87
|
Panizo S, Carrillo-López N, Naves-Díaz M, Solache-Berrocal G, Martínez-Arias L, Rodrigues-Díez RR, Fernández-Vázquez A, Martínez-Salgado C, Ruiz-Ortega M, Dusso A, Cannata-Andía JB, Rodríguez I. Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrol Dial Transplant 2018; 32:1831-1840. [PMID: 28460073 DOI: 10.1093/ndt/gfx060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
Background Uraemic cardiomyopathy, a process mainly associated with increased myocardial fibrosis, is the leading cause of death in chronic kidney disease patients and can be prevented by vitamin D receptor activators (VDRAs). Since some microRNAs (miRNAs) have emerged as regulators of the fibrotic process, we aimed to analyse the role of specific miRNAs in VDRA prevention of myocardial fibrosis as well as their potential use as biomarkers. Methods Wistar rats were nephrectomized and treated intraperitoneally with equivalent doses of two VDRAs: calcitriol and paricalcitol. Biochemical parameters, cardiac fibrosis, miRNA (miR-29b, miR-30c and miR-133b) levels in the heart and serum and expression of their target genes collagen I (COL1A1), matrix metalloproteinase 2 (MMP-2) and connective tissue growth factor (CTGF) in the heart were evaluated. Results Both VDRAs attenuated cardiac fibrosis, achieving a statistically significant difference in the paricalcitol-treated group. Increases in RNA and protein levels of COL1A1, MMP-2 and CTGF and reduced expression of miR-29b and miR-30c, known regulators of these pro-fibrotic genes, were observed in the heart of chronic renal failure (CRF) rats and were attenuated by both VDRAs. In serum, significant increases in miR-29b, miR-30c and miR-133b levels were observed in CRF rats, which were prevented by VDRA use. Moreover, vitamin D response elements were identified in the three miRNA promoters. Conclusions VDRAs, particularly paricalcitol, attenuated cardiac fibrosis acting on COL1A1, MMP-2 and CTGF expression, partly through regulation of miR-29b and miR-30c. These miRNAs and miR-133b could be useful serum biomarkers for cardiac fibrosis and also potential new therapeutic targets.
Collapse
Affiliation(s)
- Sara Panizo
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Guillermo Solache-Berrocal
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Raúl R Rodrigues-Díez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Amalia Fernández-Vázquez
- Servicio de Anatomía Patológica, Centro Médico de Asturias, Oviedo, Spain.,Hospital Carmen y Severo Ochoa, Cangas del Narcea, Spain
| | - Carlos Martínez-Salgado
- Department of Physiology and Pharmacology, Renal and Cardiovascular Pathophysiology Unit, Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adriana Dusso
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, REDinREN del ISCIII, Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
88
|
Han Z, Zhang T, He Y, Li G, Li G, Jin X. Inhibition of prostaglandin E2 protects abdominal aortic aneurysm from expansion through regulating miR-29b-mediated fibrotic ECM expression. Exp Ther Med 2018; 16:155-160. [PMID: 29896234 PMCID: PMC5995085 DOI: 10.3892/etm.2018.6160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
The risk of rupture, the most feared clinical consequence of abdominal aortic aneurysm, increases with the enlargement of aorta. MicroRNA-29b (miR-29b) has emerged as a key modulator of extracellular matrix (ECM) homeostasis and thereby is proposed to play a crucial role in vascular remodeling. However, agents that alter miR-29b expression are relatively inefficient in the aorta, likely due to inferior uptake. Herein we found that miR-29b was upregulated in aortic smooth muscle cells upon prostaglandin E2 (PGE2) stimulation whereas indomethacin treatment downregulated miR-29b expression. In order to obtain insight into the pathological processes associated with the vascular remodeling that accompanies aortic dilatation, we compared expression profiles of several representative ECM components in aortic walls. Notably, PGE2 induced a dramatic decline in these ECM components, which was rescued by introduction of indomethacin. In addition, COL1A1 was validated as a direct target gene of miR-29b by dual-luciferase reporter assay. In aggregate, our study suggests that PGE2 may accelerate ECM degradation through decreasing miR-29b expression. Thus those anti-inflammatory drugs that inhibit PGE2 synthesis represent an effective means of inducing an augmented profibrotic response in the aortic walls and thereby inhibiting aneurysmal expansion.
Collapse
Affiliation(s)
- Zonglin Han
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Tangshan Zhang
- Department of Vascular Surgery, The Seventh People's Hospital, Jinan, Shandong 251400, P.R. China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Gang Li
- Department of General Surgery, Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
89
|
Zhang JJ, Yano H, Sasaki T, Matsuo N, Yoshioka H. The pro-α1(V) collagen gene (Col5a1) is coordinately regulated by miR-29b with core promoter in cultured cells. Connect Tissue Res 2018; 59:263-273. [PMID: 28829698 DOI: 10.1080/03008207.2017.1370465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Col5a1 encodes the α1 chain of type V collagen, a quantitatively minor fibrillar collagen that is critical for the formation and function of the organs in the body. MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate biological functions by binding to the 3'-untranslated region (3'UTR) of specific target mRNA. In this study, we investigated the posttranscriptional regulation of miRNAs on the Col5a1 gene expression. MATERIALS AND METHODS We cultured osteoblasts and fibroblasts of cell lines. To examine the 3'UTR activity of the Col5a1 gene, chimeric plasmids constructs containing the core promoter and 3'UTR of Col5a1 were generated and luciferase assays were performed. We also evaluated the role of miRNA using constructs that were mutated at the putative binding sites of miRNA. In addition, we evaluated the endogenous mRNA and protein, and luciferase activity of the Col5a1 gene after miRNA overexpression/knockdown or CRISPR/Cas9-induced knockout. RESULTS The luciferase assay showed a decreased activity of the 3'UTR of Col5a1 gene. However, the expression of the mutant constructs of miRNA-binding sites was restored. The overexpression of miRNA inhibited the Col5a1 gene not only with regard to the luciferase activity and endogenous mRNA but also at the protein level. In contrast, the RNAi-mediated knockdown or CRISPR/Cas9 system increased the expression of the Col5a1 gene. CONCLUSION These results provided evidence that miR-29b regulates the Col5a1 gene expression through binding to the 3'UTR, which might play an important role in the pathogenesis of disease related to bone metabolism and fibrogenic reactions.
Collapse
Affiliation(s)
- Juan Juan Zhang
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| | - Hiroyuki Yano
- b Research Promotion Institute , Oita University , Oita , Japan
| | - Takako Sasaki
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| | - Noritaka Matsuo
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| | - Hidekatsu Yoshioka
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| |
Collapse
|
90
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018. [PMID: 29518614 DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
91
|
Kokosi MA, Margaritopoulos GA, Wells AU. Personalised medicine in interstitial lung diseases. Eur Respir Rev 2018; 27:27/148/170117. [DOI: 10.1183/16000617.0117-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
Interstitial lung diseases in general, and idiopathic pulmonary fibrosis in particular, are complex disorders with multiple pathogenetic pathways, various disease behaviour profiles and different responses to treatment, all facets that make personalised medicine a highly attractive concept. Personalised medicine is aimed at describing distinct disease subsets taking into account individual lifestyle, environmental exposures, genetic profiles and molecular pathways. The cornerstone of personalised medicine is the identification of biomarkers that can be used to inform diagnosis, prognosis and treatment stratification. At present, no data exist validating a personalised approach in individual diseases. However, the importance of the goal amply justifies the characterisation of genotype and pathway signatures with a view to refining prognostic evaluation and trial design, with the ultimate aim of selecting treatments according to profiles in individual patients.
Collapse
|
92
|
Liu P, Peng L, Zhang H, Tang PMK, Zhao T, Yan M, Zhao H, Huang X, Lan H, Li P. Tangshen Formula Attenuates Diabetic Nephropathy by Promoting ABCA1-Mediated Renal Cholesterol Efflux in db/db Mice. Front Physiol 2018; 9:343. [PMID: 29681863 PMCID: PMC5897509 DOI: 10.3389/fphys.2018.00343] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/20/2018] [Indexed: 01/01/2023] Open
Abstract
The commonly prescribed Tangshen Formula (TSF) is a traditional Chinese formulation that has been shown to reduce plasma lipid metabolism and proteinuria and improve the estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease. This study investigated the underlying mechanism whereby TSF regulates renal lipid accumulation and ameliorates diabetic renal injuries in spontaneous diabetic db/db mice and in vitro in sodium palmitate (PA)-stimulated and Abca1-SiRNA-transfected mouse tubular epithelial cells (mTECs). The results revealed that TSF treatment significantly ameliorated the renal injuries by lowering urinary albumin excretion and improving renal tissue injuries in diabetic (db/db) mice. Interestingly, the treatment with TSF also resulted in decreased cholesterol levels in the renal tissues of db/db mice, which was associated with increased expression of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), the Liver X receptors (LXR), and ATP-binding cassette subfamily A member 1 (ABCA1), suggesting that TSF might attenuate diabetic kidney injury via a mechanism associated with improving cholesterol efflux in the diabetic kidney. This was investigated in vitro in mTECs, and the results showed that TSF reduced the PA-stimulated cholesterol accumulation in mTECs. Mechanistically, the addition of TSF was capable of reversing PA-induced downregulation of PGC-1α, LXR, and ABCA1 expression and cholesterol accumulation in mTECs, suggesting that TSF might act the protection via the PGC-1α-LXR-ABCA1 pathway to improve the cholesterol efflux in the renal tissues of db/db mice. This was further confirmed by silencing ABCA1 to block the promotive effect of TSF on cholesterol efflux in vitro. In conclusion, TSF might ameliorate diabetic kidney injuries by promoting ABCA1-mediated renal cholesterol efflux.
Collapse
Affiliation(s)
- Peng Liu
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.,Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Peng
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Haojun Zhang
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tingting Zhao
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Meihua Yan
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hailing Zhao
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoru Huang
- Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Huiyao Lan
- Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ping Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
93
|
Vukmirovic M, Kaminski N. Impact of Transcriptomics on Our Understanding of Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:87. [PMID: 29670881 PMCID: PMC5894436 DOI: 10.3389/fmed.2018.00087] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by aberrant remodeling of the lung parenchyma with extensive changes to the phenotypes of all lung resident cells. The introduction of transcriptomics, genome scale profiling of thousands of RNA transcripts, caused a significant inversion in IPF research. Instead of generating hypotheses based on animal models of disease, or biological plausibility, with limited validation in humans, investigators were able to generate hypotheses based on unbiased molecular analysis of human samples and then use animal models of disease to test their hypotheses. In this review, we describe the insights made from transcriptomic analysis of human IPF samples. We describe how transcriptomic studies led to identification of novel genes and pathways involved in the human IPF lung such as: matrix metalloproteinases, WNT pathway, epithelial genes, role of microRNAs among others, as well as conceptual insights such as the involvement of developmental pathways and deep shifts in epithelial and fibroblast phenotypes. The impact of lung and transcriptomic studies on disease classification, endotype discovery, and reproducible biomarkers is also described in detail. Despite these impressive achievements, the impact of transcriptomic studies has been limited because they analyzed bulk tissue and did not address the cellular and spatial heterogeneity of the IPF lung. We discuss new emerging technologies and applications, such as single-cell RNAseq and microenvironment analysis that may address cellular and spatial heterogeneity. We end by making the point that most current tissue collections and resources are not amenable to analysis using the novel technologies. To take advantage of the new opportunities, we need new efforts of sample collections, this time focused on access to all the microenvironments and cells in the IPF lung.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Precision Pulmonary Medicine Center (P2MED), Yale University School of Medicine, New Haven, CT, United States
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Precision Pulmonary Medicine Center (P2MED), Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
94
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
95
|
Sun SF, Tang PMK, Feng M, Xiao J, Huang XR, Li P, Ma RCW, Lan HY. Novel lncRNA Erbb4-IR Promotes Diabetic Kidney Injury in db/db Mice by Targeting miR-29b. Diabetes 2018; 67:731-744. [PMID: 29222368 DOI: 10.2337/db17-0816] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/30/2017] [Indexed: 11/13/2022]
Abstract
Transforming growth factor-β/Smad signaling plays an important role in diabetic nephropathy. The current study identified a novel Smad3-dependent long noncoding RNA (lncRNA) Erbb4-IR in the development of type 2 diabetic nephropathy (T2DN) in db/db mice. We found that Erbb4-IR was highly expressed in T2DN of db/db mice and specifically induced by advanced glycosylation end products (AGEs) via a Smad3-dependent mechanism. The functional role of Erbb4-IR in T2DN was revealed by kidney-specific silencing of Erbb4-IR to protect against the development of T2DN, such as elevated microalbuminuria, serum creatinine, and progressive renal fibrosis in db/db mice, and to block AGE-induced collagen I and IV expression in mouse mesangial cells (mMCs) and mouse tubular epithelial cells (mTECs). Mechanistically, we identified that the Erbb4-IR-microRNA (miR)-29b axis was a key mechanism of T2DN because Erbb4-IR was able to bind the 3' untranslated region of miR-29b genomic sequence to suppress miR-29b expression at transcriptional level. In contrast, silencing of renal Erbb4-IR increased miR-29b and therefore protected the kidney from progressive renal injury in db/db mice and prevented mTECs and mMCs from AGE-induced loss of miR-29b and fibrotic response in vitro. Collectively, we identify that Erbb4-IR is a Smad3-dependent lncRNA that promotes renal fibrosis in T2DN by suppressing miR-29b. Targeting Erbb4-IR may represent a novel therapy for T2DN.
Collapse
Affiliation(s)
- Si F Sun
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Patrick M K Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Feng
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun Xiao
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao R Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ping Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
96
|
Wu H, Liao J, Li Q, Yang M, Zhao M, Lu Q. Epigenetics as biomarkers in autoimmune diseases. Clin Immunol 2018; 196:34-39. [PMID: 29574040 DOI: 10.1016/j.clim.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are immune system disorders in which immune cells cannot distinguish self-antigens from foreign ones. The current criteria for autoimmune disease diagnosis are based on clinical manifestations and laboratory tests. However, none of these markers shows both high sensitivity and specificity. In addition, some autoimmune diseases, for example, systemic lupus erythematosus (SLE), are highly heterogeneous and often exhibit various manifestations. On the other hand, certain autoimmune diseases, such as Sjogren's syndrome versus SLE, share similar symptoms and autoantibodies, which also causes difficulties in diagnosis. Therefore, biomarkers that have both high sensitivity and high specificity for diagnosis, reflect disease activity and predict drug response are necessary. An increasing number of publications have proposed the abnormal epigenetic modifications as biomarkers of autoimmune diseases. Therefore, this review will comprehensively summarize the epigenetic progress in the pathogenesis of autoimmune disorders and unearth potential biomarkers that might be appropriate for disease diagnosis and prediction.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jieyue Liao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianwen Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
97
|
Duong TE, Hagood JS. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:79-96. [PMID: 30271681 DOI: 10.1007/s40139-018-0155-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs. Recent Findings Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis. Summary Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
98
|
Abstract
Fibrosis is a common pathological state characterized by the excessive accumulation of extracellular matrix components, but the pathogenesis of the disease is still not clear. Previous studies have shown that microRNA-29 (miR-29) can play pivotal roles in the regulation of a variety of organ fibrosis, including cardiac fibrosis, hepatic fibrosis, lung fibrosis, systemic sclerosis, and keloid. In this review, we outline the structure, expression, and regulation of miR-29 as well as its role in fibrotic diseases.
Collapse
|
99
|
A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis. Int Urol Nephrol 2018; 50:973-982. [DOI: 10.1007/s11255-017-1779-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
|
100
|
Aslani S, Sobhani S, Gharibdoost F, Jamshidi A, Mahmoudi M. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 2018; 79:178-187. [PMID: 29330110 DOI: 10.1016/j.humimm.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
The pathogenesis of many diseases is influenced by environmental factors which can affect human genome and be inherited from generation to generation. Adverse environmental stimuli are recognized through the epigenetic regulatory complex, leading to gene expression alteration, which in turn culminates in disease outcomes. Three epigenetic regulatory mechanisms modulate the manifestation of a gene, namely DNA methylation, histone changes, and microRNAs. Both epigenetics and genetics have been implicated in the pathogenesis of systemic sclerosis (SSc) disease. Genetic inheritance rate of SSc is low and the concordance rate in both monozygotic (MZ) and dizygotic (DZ) twins is little, implying other possible pathways in SSc pathogenesis scenario. Here, we provide an extensive overview of the studies regarding different epigenetic events which may offer insights into the pathology of SSc. Furthermore, epigenetic-based interventions to treat SSc patients were discussed.
Collapse
Affiliation(s)
- Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sobhani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|