51
|
Leal FE, Premeaux TA, Abdel-Mohsen M, Ndhlovu LC. Role of Natural Killer Cells in HIV-Associated Malignancies. Front Immunol 2017; 8:315. [PMID: 28377768 PMCID: PMC5359293 DOI: 10.3389/fimmu.2017.00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
Now in its fourth decade, the burden of HIV disease still persists, despite significant milestone achievements in HIV prevention, diagnosis, treatment, care, and support. Even with long-term use of currently available antiretroviral therapies (ARTs), eradication of HIV remains elusive and now poses a unique set of challenges for the HIV-infected individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much greater than the age-matched uninfected population. The underlying mechanism is now recognized in part to be related to the immune dysregulated and inflammatory status characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are multifunctional effector immune cells that play a critical role in shaping the innate immune responses to viral infections and cancer. NK cells can modulate the adaptive immune response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore poised as attractive therapeutic targets that can be harnessed to control or clear both HIV and HIV-associated malignancies. To date, features of the tumor microenvironment and the evolution of NK-cell function among individuals with HIV-related malignancies remain unclear and may be distinct from malignancies observed in uninfected persons. This review intends to uncouple anti-HIV and antitumor NK-cell features that can be manipulated to halt the evolution of HIV disease and HIV-associated malignancies and serve as potential preventative and curative immunotherapeutic options.
Collapse
Affiliation(s)
- Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional de Cancer , Rio de Janeiro , Brazil
| | - Thomas A Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| |
Collapse
|
52
|
Mehta RS, Rezvani K. Can we make a better match or mismatch with KIR genotyping? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:106-118. [PMID: 27913469 PMCID: PMC6142490 DOI: 10.1182/asheducation-2016.1.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural killer (NK) cell function is regulated by a fine balance between numerous activating and inhibitory receptors, of which killer-cell immunoglobulin-like receptors (KIRs) are among the most polymorphic and comprehensively studied. KIRs allow NK cells to recognize downregulation or the absence of HLA class I molecules on target cells (known as missing-self), a phenomenon that is commonly observed in virally infected cells or cancer cells. Because KIR and HLA genes are located on different chromosomes, in an allogeneic environment such as after hematopoietic stem cell transplantation, donor NK cells that express an inhibitory KIR for an HLA class I molecule that is absent on recipient targets (KIR/KIR-ligand mismatch), can recognize and react to this missing self and mediate cytotoxicity. Accumulating data indicate that epistatic interactions between KIR and HLA influence outcomes in several clinical conditions. Herein, we discuss the genetic and functional features of KIR/KIR-ligand interactions in hematopoietic stem cell transplantation and how these data can guide donor selection. We will also review clinical studies of adoptive NK cell therapy in leukemia and emerging data on the use of genetically modified NK cells that could broaden the scope of cancer immunotherapy.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
53
|
Isernhagen A, Malzahn D, Viktorova E, Elsner L, Monecke S, von Bonin F, Kilisch M, Wermuth JM, Walther N, Balavarca Y, Stahl-Hennig C, Engelke M, Walter L, Bickeböller H, Kube D, Wulf G, Dressel R. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol Med 2016; 7:1480-502. [PMID: 26483398 PMCID: PMC4644379 DOI: 10.15252/emmm.201505246] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8+ T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8+ T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.
Collapse
Affiliation(s)
- Antje Isernhagen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe Malzahn
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Elena Viktorova
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Frederike von Bonin
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Kilisch
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Janne Marieke Wermuth
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Neele Walther
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Yesilda Balavarca
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Engelke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany
| | - Heike Bickeböller
- Institute of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dieter Kube
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerald Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
54
|
Smits NC, Coupet TA, Godbersen C, Sentman CL. Designing multivalent proteins based on natural killer cell receptors and their ligands as immunotherapy for cancer. Expert Opin Biol Ther 2016; 16:1105-12. [PMID: 27248342 DOI: 10.1080/14712598.2016.1195364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Natural killer (NK) cells are an important component of the innate immune system that play a key role in host immunity against cancer. NK cell recognition and activation is based on cell surface receptors recognizing specific ligands that are expressed on many types of tumor cells. Some of these receptors are capable of activating NK cell function while other receptors inhibit NK cell function. Therapeutic approaches to treat cancer have been developed based on preventing NK cell inhibition or using NK cell receptors and their ligands to activate NK cells or T cells to destroy tumor cells. AREAS COVERED This article describes the various strategies for targeting NK cell receptors and NK cell receptor ligands using multivalent proteins to activate immunity against cancer. EXPERT OPINION NK cell receptors work in synergy to activate NK cell effector responses. Effective anti-cancer strategies will need to not only kill tumor cells but must also lead to the destruction of the tumor microenvironment. Immunotherapy based on NK cells and their receptors has the capacity to accomplish this through triggering lymphocyte cytotoxicity and cytokine production.
Collapse
Affiliation(s)
- Nicole C Smits
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Tiffany A Coupet
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Claire Godbersen
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| | - Charles L Sentman
- a Department of Microbiology and Immunology and the Center for Synthetic Immunity , The Geisel School of Medicine at Dartmouth , Lebanon , NH , USA
| |
Collapse
|
55
|
Rusakiewicz S, Perier A, Semeraro M, Pitt JM, Pogge von Strandmann E, Reiners KS, Aspeslagh S, Pipéroglou C, Vély F, Ivagnes A, Jegou S, Halama N, Chaigneau L, Validire P, Christidis C, Perniceni T, Landi B, Berger A, Isambert N, Domont J, Bonvalot S, Terrier P, Adam J, Coindre JM, Emile JF, Poirier-Colame V, Chaba K, Rocha B, Caignard A, Toubert A, Enot D, Koch J, Marabelle A, Lambert M, Caillat-Zucman S, Leyvraz S, Auclair C, Vivier E, Eggermont A, Borg C, Blay JY, Le Cesne A, Mir O, Zitvogel L. NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients. Oncoimmunology 2016; 6:e1137418. [PMID: 28197361 DOI: 10.1080/2162402x.2015.1137418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Despite effective targeted therapy acting on KIT and PDGFRA tyrosine kinases, gastrointestinal stromal tumors (GIST) escape treatment by acquiring mutations conveying resistance to imatinib mesylate (IM). Following the identification of NKp30-based immunosurveillance of GIST and the off-target effects of IM on NK cell functions, we investigated the predictive value of NKp30 isoforms and NKp30 soluble ligands in blood for the clinical response to IM. The relative expression and the proportions of NKp30 isoforms markedly impacted both event-free and overall survival, in two independent cohorts of metastatic GIST. Phenotypes based on disbalanced NKp30B/NKp30C ratio (ΔBClow) and low expression levels of NKp30A were identified in one third of patients with dismal prognosis across molecular subtypes. This ΔBClow blood phenotype was associated with a pro-inflammatory and immunosuppressive tumor microenvironment. In addition, detectable levels of the NKp30 ligand sB7-H6 predicted a worse prognosis in metastatic GIST. Soluble BAG6, an alternate ligand for NKp30 was associated with low NKp30 transcription and had additional predictive value in GIST patients with high NKp30 expression. Such GIST microenvironments could be rescued by therapy based on rIFN-α and anti-TRAIL mAb which reinstated innate immunity.
Collapse
Affiliation(s)
- Sylvie Rusakiewicz
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Aurélie Perier
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Michaela Semeraro
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Department of Pediatric Oncology, GRCC, Villejuif, France
| | - Jonathan M Pitt
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | | | - Katrin S Reiners
- Department of Internal Medicine I, University Hospital of Cologne , Cologne, Germany
| | - Sandrine Aspeslagh
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Drug Development Department (DITEP), GRCC, Villejuif, France
| | - Christelle Pipéroglou
- Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille , Marseille, France
| | - Frédéric Vély
- Hôpital de la Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France; INSERM, U1104, Centre d'Immunologie de Marseille-Luminy, Marseille, France; CNRS, UMR7280, Marseille, France
| | - Alexandre Ivagnes
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Sarah Jegou
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Niels Halama
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany; National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Loic Chaigneau
- Department of Medical Oncology, Centre Hospitalier Universitaire Jean Minjoz , Besançon, France
| | - Pierre Validire
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France; Department of Medical Oncology, Sarcoma, Institut Mutualiste Montsouris, Paris, France
| | - Christos Christidis
- Department of Medical Oncology, Sarcoma, Institut Mutualiste Montsouris, Paris, France; Department of Surgery, Institut Mutualiste Montsouris, University of Paris Descartes 5, Paris, France
| | - Thierry Perniceni
- Department of Medical Oncology, Sarcoma, Institut Mutualiste Montsouris , Paris, France
| | - Bruno Landi
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, University of Paris Descartes 5 , Paris, France
| | - Anne Berger
- Department of Surgery, Georges Pompidou European Hospital, University of Paris Descartes , Paris, France
| | - Nicolas Isambert
- Department of Medical Oncology, Centre Georges-François Leclerc , Dijon, France
| | - Julien Domont
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France
| | - Sylvie Bonvalot
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France; Department of Surgery, GRCC, Villejuif, France
| | - Philippe Terrier
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France; Department of Pathology, GRCC, Villejuif, France; Center of Biological Resources, GRCC, Villejuif, France
| | - Julien Adam
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Pathology, GRCC, Villejuif, France; Center of Biological Resources, GRCC, Villejuif, France
| | | | | | - Vichnou Poirier-Colame
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France
| | - Kariman Chaba
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Benedita Rocha
- INSERM, U1020, Paris, France; Faculté de Médecine René Descartes, Paris, France
| | - Anne Caignard
- INSERM, U1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - Antoine Toubert
- INSERM, U1160, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Groupe Hospitalier Saint Louis-Lariboisière - F. Vidal, Paris, France
| | - David Enot
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Metabolomics and Cell Biology platforms, GRCC, Villejuif, France
| | - Joachim Koch
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Centre , Mainz, Germany
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Drug Development Department (DITEP), GRCC, Villejuif, France
| | - Marion Lambert
- INSERM, U1149, Equipe "Immunité innée chez l'enfant", Hôpital Robert Debré , Paris, France
| | - Sophie Caillat-Zucman
- INSERM, U1149, Equipe "Immunité innée chez l'enfant", Hôpital Robert Debré , Paris, France
| | - Serge Leyvraz
- Department of Oncology, University Hospital , Lausanne, Switzerland
| | - Christian Auclair
- Applied Biology and Pharmacology Laboratory, Ecole Normale Supèrieur of Cachan , Cachan, France
| | - Eric Vivier
- INSERM, U1104, Centre d'Immunologie de Marseille-Luminy, Marseille, France; CNRS, UMR7280, Marseille, France; Aix Marseille Université, UM2, Marseille, France
| | | | | | - Jean-Yves Blay
- Department of Medicine, Centre Léon Bérard & Université Claude Bernard Lyon I, DGOS-INCA SIRIC , Lyon, France
| | - Axel Le Cesne
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France
| | - Olivier Mir
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Medicine, Sarcoma committee, GRCC, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, U1015, IGR, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France; University of Paris Sud XI, Villejuif, France
| |
Collapse
|
56
|
Caocci G, Greco M, Fanni D, Senes G, Littera R, Lai S, Risso P, Carcassi C, Faa G, La Nasa G. HLA-G expression and role in advanced-stage classical Hodgkin lymphoma. Eur J Histochem 2016; 60:2606. [PMID: 27349312 PMCID: PMC4933823 DOI: 10.4081/ejh.2016.2606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Non-classical human leucocyte antigen (HLA)-G class I molecules have an important role in tumor immune escape mechanisms. We investigated HLA-G expression in lymphonode biopsies taken from 8 controls and 20 patients with advanced-stage classical Hodgkin lymphoma (cHL), in relationship to clinical outcomes and the HLA-G 14-basepair (14-bp) deletion-insertion (del-ins) polymorphism. Lymphnode tissue sections were stained using a specific murine monoclonal HLA-G antibody. HLA-G protein expression was higher in cHL patients than controls. In the group of PET-2 positive (positron emission tomography carried out after 2 cycles of standard chemotherapy) patients with a 2-year progression-free survival rate (PFS) of 40%, we observed high HLA-G protein expression within the tumor microenvironment with low expression on Hodgkin and Reed-Sternberg (HRS) cells. Conversely, PET-2 negative patients with a PFS of 86% had higher HLA-G protein expression levels on HRS cells compared to the microenvironment. Lower expression on HRS cells was significantly associated with the HLA-G 14-bp ins/ins genotype. These preliminary data suggest that the immunohistochemical pattern of HLA-G protein expression may represent a useful tool for a tailored therapy in patients with cHL, based on the modulation of HLA-G expression in relation to achievement of negative PET-2.
Collapse
|
57
|
Abstract
Natural killer cells are cytotoxic lymphocytes important in immune responses to cancer and multiple pathogens. However, chronic activation of NK cells can induce a hyporesponsive state. The molecular basis of the mechanisms underlying the generation and maintenance of this hyporesponsive condition are unknown, thus an easy and reproducible mechanism able to induce hyporesponsiveness on human NK cells would be very useful to gain understanding of this process. Human NK cells treated with ionomycin lose their ability to degranulate and secrete IFN-γ in response to a variety of stimuli, but IL-2 stimulation can compensate these defects. Apart from reductions in the expression of CD11a/CD18, no great changes were observed in the activating and inhibitory receptors expressed by these NK cells, however their transcriptional signature is different to that described for other hyporesponsive lymphocytes.
Collapse
|
58
|
Abstract
INTRODUCTION Bispecific antibodies (BsAb) are emerging as a novel approach for dual targeting strategies. Two bispecific antibodies are approved for therapy and >30 are in clinical development. The first generation of BsAb were produced by chemical cross-linking or hybridoma technology; with the recent advent of genetic and protein engineering technologies numerous formats of bispecific antibodies have emerged using either the fragments of IgG or whole IgG molecules. Further areas of development include dual blockade of different disease pathways, diagnosis and imaging. AREAS COVERED Biologics, including bi- or multi-specific antibodies and T cell-based approaches are rapidly changing the landscape of cancer therapeutics. New engineering platforms for bi- or multi-specific antibodies and scaffolds offer improved efficacy and reduced toxicities over IgG-based monoclonal antibodies. Preclinical and clinical studies using different formats of BsAbs are described in this review using PubMed as a literature search tool. EXPERT OPINION A comprehensive presentation of preclinical data and clinical trials evaluating the various formats of BsAbs indicate their safety and efficacy. However, a vast opportunity to fine tune physical properties and functional activity of biologics to improve the stability, engagement of cytotoxic CD8 T cells and multi-antigen targeting strategy through protein engineering holds a greater therapeutic potential.
Collapse
Affiliation(s)
- Archana Thakur
- a Department of Oncology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
| | - Lawrence G Lum
- a Department of Oncology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
- b Department of Medicine , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
- c Department of Pediatrics , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
- d Department of Immunology and Microbiology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
| |
Collapse
|
59
|
Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of BiKEs and TriKEs to Improve NK Cell-Mediated Targeting of Tumor Cells. Methods Mol Biol 2016; 1441:333-46. [PMID: 27177679 PMCID: PMC5823010 DOI: 10.1007/978-1-4939-3684-7_28] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer immunotherapies have gained significant momentum over the past decade, particularly with the advent of checkpoint inhibitors and CAR T-cells. While the latter personalized targeted immunotherapy has revolutionized the field, a need for off-the-shelf therapies remains. The ability of NK cells to quickly lyse antibody-coated tumors and potently secrete cytokines without prior priming has made NK cells ideal candidates for antigen-specific immunotherapy. NK cells have been targeted to tumors through two main strategies: mono-specific antibodies and bi/tri-specific antibodies. Mono-specific antibodies drive NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells. Bi/tri-specific antibodies drive re-directed lysis of tumor cells through binding of a tumor antigen and direct binding and crosslinking of the CD16 receptor on NK cells, thus bypassing the need for binding of the Fc portion of mono-specific antibodies. This chapter focuses on the generation of bi- and tri-specific killer engagers (BiKEs and TriKEs) meant to target NK cells to tumors. BiKEs and TriKEs are smaller molecules composed of 2-3 variable portions of antibodies with different specificities, and represent a novel and more versatile strategy compared to traditional bi- and tri-specific antibody platforms.
Collapse
Affiliation(s)
- Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Todd R Lenvik
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Zachary B Davis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Daniel A Vallera
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
60
|
Pogge von Strandmann E, Shatnyeva O, Hansen HP. NKp30 and its ligands: emerging players in tumor immune evasion from natural killer cells. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:314. [PMID: 26697474 DOI: 10.3978/j.issn.2305-5839.2015.09.08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | - Olga Shatnyeva
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
61
|
Abstract
Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.
Collapse
Key Words
- ADC, antibody-drug conjugate
- ADCC, antibody-dependent cell-mediated cytotoxicity
- ADCP
- ADCP, antibody-dependent cellular phagocytosis
- AML, acute myelogenous leukemia
- BTK, Bruton's tyrosine kinase
- CD, cluster of differentiation
- CD47
- CLL, chronic lymphocytic leukemia
- EGFR, epidermal growth factor receptor
- Fc receptor
- Fc, fragment crystallizable
- FcγR, Fcγ receptors
- GM-CSF, granulocyte-macrophage colony stimulating factor
- HER2, human epidermal growth factor receptor 2
- HSC, haematopoietic stem cell
- ITAM, immunoreceptor tyrosine-based activation motif
- ITIM, immunoreceptor tyrosine-based inhibitory motif
- IgG, immunoglobulin G
- M-CSF, macrophage colony stimulating factor
- NK, natural killer
- SHP, Src homology 2 domain-containing phosphatase
- SIRPα
- SIRPα, signal-regulatory protein α
- antibodies
- cancer
- immune checkpoint
- immunotherapy
- macrophages
- phagocytosis
Collapse
Affiliation(s)
- Kipp Weiskopf
- a Institute for Stem Cell Biology and Regenerative Medicine ; Stanford University School of Medicine ; Stanford , CA USA
| | | |
Collapse
|
62
|
Garapaty A, Champion JA. Biomimetic and synthetic interfaces to tune immune responses. Biointerphases 2015; 10:030801. [PMID: 26178262 PMCID: PMC4506308 DOI: 10.1116/1.4922798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/06/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell-cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell-particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, Georgia 30332
| |
Collapse
|
63
|
Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Théry C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, Pogge von Strandmann E, Vély F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 2015; 5:e1071008. [PMID: 27141373 PMCID: PMC4839329 DOI: 10.1080/2162402x.2015.1071008] [Citation(s) in RCA: 595] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/03/2015] [Accepted: 07/05/2015] [Indexed: 01/11/2023] Open
Abstract
Dendritic cell-derived exosomes (Dex) are small extracellular vesicles secreted by viable dendritic cells. In the two phase-I trials that we conducted using the first generation of Dex (IFN-γ-free) in end-stage cancer, we reported that Dex exerted natural killer (NK) cell effector functions in patients. A second generation of Dex (IFN-γ-Dex) was manufactured with the aim of boosting NK and T cell immune responses. We carried out a phase II clinical trial testing the clinical benefit of IFN-γ-Dex loaded with MHC class I- and class II-restricted cancer antigens as maintenance immunotherapy after induction chemotherapy in patients bearing inoperable non-small cell lung cancer (NSCLC) without tumor progression. The primary endpoint was to observe at least 50% of patients with progression-free survival (PFS) at 4 mo after chemotherapy cessation. Twenty-two patients received IFN-γ-Dex. One patient exhibited a grade three hepatotoxicity. The median time to progression was 2.2 mo and median overall survival (OS) was 15 mo. Seven patients (32%) experienced stabilization of >4 mo. The primary endpoint was not reached. An increase in NKp30-dependent NK cell functions were evidenced in a fraction of these NSCLC patients presenting with defective NKp30 expression. Importantly, MHC class II expression levels of the final IFN-γ-Dex product correlated with expression levels of the NKp30 ligand BAG6 on Dex, and with NKp30-dependent NK functions, the latter being associated with longer progression-free survival. This phase II trial confirmed the capacity of Dex to boost the NK cell arm of antitumor immunity in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Benjamin Besse
- Gustave Roussy Cancer Campus, Villejuif, France; Département de Médecine Oncologique (Unité thorax), Gustave Roussy Cancer Campus, Villejuif, France; Faculté de médecine, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - Mélinda Charrier
- Gustave Roussy Cancer Campus, Villejuif, France; Faculté de médecine, Université Paris Sud, Le Kremlin-Bicêtre, France; Laboratoire d'Immunomonitoring en Oncologie, UMS 3655 CNRS / US 23 INSERM Gustave Roussy Cancer Campus, Villejuif, France; Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France
| | - Valérie Lapierre
- Gustave Roussy Cancer Campus, Villejuif, France; Laboratoire de Thérapie Cellulaire, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Dansin
- Département d'oncologie générale, CLCC Oscar Lambret , Lille, France
| | - Olivier Lantz
- Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; Inserm U932, Institut Curie, Paris, France
| | - David Planchard
- Département de Médecine Oncologique (Unité thorax), Gustave Roussy Cancer Campus , Villejuif, France
| | - Thierry Le Chevalier
- Département de Médecine Oncologique (Unité thorax), Gustave Roussy Cancer Campus , Villejuif, France
| | - Alain Livartoski
- Institut Curie, Département de médecine oncologique , Paris, France
| | - Fabrice Barlesi
- Service d'Oncologie Multidisciplinaire & Innovations Thérapeutiques, Université Aix Marseille, Assistance Publique Hôpitaux de Marseille , Marseille, France
| | - Agnès Laplanche
- Département de Biostatistique et d'épidémiologie, Gustave Roussy Cancer Campus , Villejuif, France
| | - Stéphanie Ploix
- Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France
| | - Nadège Vimond
- Laboratoire d'Immunomonitoring en Oncologie, UMS 3655 CNRS / US 23 INSERM Gustave Roussy Cancer Campus, Villejuif, France; Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France
| | - Isabelle Peguillet
- Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France; Inserm U932, Institut Curie, Paris, France
| | - Clotilde Théry
- Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France; Inserm U932, Institut Curie, Paris, France
| | - Ludovic Lacroix
- Département de biologie et pathologie médicale, Gustave Roussy Cancer Campus, Villejuif, France; Laboratoire de Recherche Translationnelle, UMS 3655 CNRS / US 23 INSERM Gustave Roussy Cancer Campus, Villejuif, France
| | - Inka Zoernig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital , Heidelberg, Germany
| | - Kavita Dhodapkar
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, USA; Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Madhav Dhodapkar
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Sophie Viaud
- Gustave Roussy Cancer Campus, Villejuif, France; Faculté de médecine, Université Paris Sud, Le Kremlin-Bicêtre, France; INSERM, U1015, Villejuif, France
| | - Jean-Charles Soria
- Gustave Roussy Cancer Campus, Villejuif, France; Faculté de médecine, Université Paris Sud, Le Kremlin-Bicêtre, France; INSERM, U981, Villejuif, France; Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave Roussy Cancer Campus, Villejuif, France
| | - Katrin S Reiners
- Department of Internal Medicine I, University Hospital of Cologne , Cologne, Germany
| | | | - Frédéric Vély
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Case 906, France; INSERM, U1104, Marseille, France; CNRS, UMR7280, Marseille, France; Laboratoire d'immunologie- Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Sylvie Rusakiewicz
- Gustave Roussy Cancer Campus, Villejuif, France; Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France; INSERM, U1015, Villejuif, France
| | - Alexander Eggermont
- Gustave Roussy Cancer Campus, Villejuif, France; Faculté de médecine, Université Paris Sud, Le Kremlin-Bicêtre, France; INSERM, U1015, Villejuif, France
| | - Jonathan M Pitt
- Gustave Roussy Cancer Campus, Villejuif, France; Faculté de médecine, Université Paris Sud, Le Kremlin-Bicêtre, France; INSERM, U1015, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; Faculté de médecine, Université Paris Sud, Le Kremlin-Bicêtre, France; Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France; INSERM, U1015, Villejuif, France
| | - Nathalie Chaput
- Gustave Roussy Cancer Campus, Villejuif, France; Laboratoire d'Immunomonitoring en Oncologie, UMS 3655 CNRS / US 23 INSERM Gustave Roussy Cancer Campus, Villejuif, France; Centre d'Investigation Clinique en Biothérapies (CICBT) 1428, Villejuif, France; Laboratoire de Thérapie Cellulaire, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
64
|
Battella S, Cox MC, Santoni A, Palmieri G. Natural killer (NK) cells and anti-tumor therapeutic mAb: unexplored interactions. J Leukoc Biol 2015; 99:87-96. [PMID: 26136506 DOI: 10.1189/jlb.5vmr0415-141r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor-targeting mAb are widely used in the treatment of a variety of solid and hematopoietic tumors and represent the first immunotherapeutic approach successfully arrived to the clinic. Nevertheless, the role of distinct immune mechanisms in contributing to their therapeutic efficacy is not completely understood and may vary depending on tumor- or antigen/antibody-dependent characteristics. Availability of next-generation, engineered, tumor-targeting mAb, optimized in their capability to recruit selected immune effectors, re-enforces the need for a deeper understanding of the mechanisms underlying anti-tumor mAb functionality. NK cells participate with a major role to innate anti-tumor responses, by exerting cytotoxic activity and producing a vast array of cytokines. As the CD16 (low-affinity FcγRIIIA)-activating receptor is expressed on the majority of NK cells, its effector functions can be ideally recruited against therapeutic mAb-opsonized tumor cells. The exact role of NK cells in determining therapeutic efficacy of tumor-targeting mAb is still unclear and much sought after. This knowledge will be instrumental to design innovative combination schemes with newly validated immunomodulatory agents. We will summarize what is known about the role of NK cells in therapeutic anti-tumor mAb therapy, with particular emphasis on RTX chimeric anti-CD20 mAb, the first one used in clinical practice for treating B cell malignancies.
Collapse
Affiliation(s)
- Simone Battella
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Maria Christina Cox
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Angela Santoni
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Gabriella Palmieri
- Departments of *Experimental Medicine and Molecular Medicine, Hematology Unit, Sant'Andrea Hospital, and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
65
|
Schirrmann T, Steinwand M, Wezler X, Ten Haaf A, Tur MK, Barth S. CD30 as a therapeutic target for lymphoma. BioDrugs 2015; 28:181-209. [PMID: 24043362 DOI: 10.1007/s40259-013-0068-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hodgkin's lymphoma (HL) and ALK(+) anaplastic large-cell lymphoma (ALCL) have become highly curable due to the success of modern regimens of chemotherapy and radiotherapy. However, up to one-third of the patients experience relapse or do not respond to first-line therapy, and half of them relapse again after secondary therapy with limited options for further treatment. In the last 15 years, monoclonal antibodies (mAbs) directed to surface receptors became a new and valuable therapeutic option in many hematologic malignancies. Due to its restricted expression on normal activated lymphocytes and its high expression on malignant cells, CD30 represents an attractive target molecule for HL and ALCL therapy. However, unconjugated CD30 mAbs have demonstrated a lack of objective clinical responses in patients with recurrent HL. CD30 exhibits complex signaling pathways, and binding of its natural ligand or anti-CD30 mAbs can induce apoptosis but may also promote proliferation and activation depending on the cellular context. Moreover, CD30 rapidly internalizes after crosslinking, which counteracts efficient recruitment of immunologic effectors but also provides the opportunity to transfer cytotoxic payloads coupled to CD30-specific mAbs into the tumor cells. Several tumor targeting approaches have been studied, including radio-immunoconjugates, immunotoxins, immunoRNases, immunokinases, and antibody drug conjugates (ADCs). In 2011, the ADC brentuximab-vedotin, consisting of the CD30-specific chimeric mAb cAC10 and the potent tubulin toxin monomethyl auristatin E, gained regulatory approval as a well tolerated and highly active drug in patients with refractory and relapsed HL and ALCL. SGN-35 is on the way to being incorporated in the standard management of CD30(+) lymphoma with significant therapeutic impact. This review gives a critical overview about anti-CD30 therapies with unconjugated, engineered, and conjugated mAbs and the therapeutic challenges of treatment of CD30(+) lymphoma.
Collapse
Affiliation(s)
- Thomas Schirrmann
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany,
| | | | | | | | | | | |
Collapse
|
66
|
A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015; 125:4024-31. [PMID: 25887777 DOI: 10.1182/blood-2014-12-614636] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/07/2015] [Indexed: 01/08/2023] Open
Abstract
AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin-refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571.
Collapse
|
67
|
Macalalad AR, McAuliffe M, Yang H, Kageleiry A, Zhong Y, Wu EQ, Shonukan O, Bonthapally V. The epidemiology and targeted therapies for relapsed and refractory CD30+ lymphomas. Curr Med Res Opin 2015; 31:537-45. [PMID: 25598441 DOI: 10.1185/03007995.2015.1008131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hodgkin lymphoma (HL) and systemic anaplastic large cell lymphoma (sALCL) both have consistent expression of CD30, a cytokine receptor that is expressed by activated T and B cells but is largely absent from normal tissue. METHODS A literature search was conducted via PubMed, Google Scholar, and UpToDate to identify relevant peer-reviewed original research or review articles on HL, sALCL, and CD30 targeted therapies. RESULTS These lymphomas are both more common among males, young adults and the elderly. Although many patients with HL and sALCL can achieve long-term remission after standard first-line therapy, up to a third of these patients are refractory to or relapse after initial therapy. Among these relapsed/refractory patients, many experience disease progression and/or death despite subsequent treatment, and treatment-related adverse events and mortality are not uncommon. To address the need for safer and more effective therapies for these relapsed/refractory patients, researchers have developed therapies that specifically target CD30-expressing cells. Brentuximab vedotin, an antibody-drug conjugate that selectively delivers a toxic microtubule-disrupting agent to malignant cells with CD30 expression, is the first such therapy to be approved in the US and Europe. In clinical trials, brentuximab vedotin has demonstrated efficacy and safety in patients with HL after failure of autologous stem cell transplantation (ASCT), or after failure of at least two prior multi-agent chemotherapy regimens in patients who are not ASCT candidates, and in patients with sALCL after failure of at least one prior multi-agent chemotherapy regimen. CONCLUSION HL and sALCL are both CD30+ lymphomas, and therapies like brentuximab vedotin that target cells expressing CD30 hold promise for the treatment of these diseases.
Collapse
|
68
|
Lameris R, de Bruin RCG, Schneiders FL, van Bergen en Henegouwen PMP, Verheul HMW, de Gruijl TD, van der Vliet HJ. Bispecific antibody platforms for cancer immunotherapy. Crit Rev Oncol Hematol 2014; 92:153-65. [PMID: 25195094 DOI: 10.1016/j.critrevonc.2014.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/11/2014] [Accepted: 08/08/2014] [Indexed: 01/10/2023] Open
Abstract
Over the past decades advances in bioengineering and expanded insight in tumor immunology have resulted in the emergence of novel bispecific antibody (bsAb) constructs that are capable of redirecting immune effector cells to the tumor microenvironment. (Pre-) clinical studies of various bsAb constructs have shown impressive results in terms of immune effector cell retargeting, target dependent activation and the induction of anti-tumor responses. This review summarizes recent advances in the field of bsAb-therapy and limitations that were encountered. Furthermore, we will discuss potential future developments that can be expected to take the bsAb approach successfully forward.
Collapse
Affiliation(s)
- Roeland Lameris
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Famke L Schneiders
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paul M P van Bergen en Henegouwen
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
69
|
Romano A, Vetro C, Caocci G, Greco M, Parrinello NL, Di Raimondo F, La Nasa G. Immunological deregulation in classic hodgkin lymphoma. Mediterr J Hematol Infect Dis 2014; 6:e2014039. [PMID: 24959336 PMCID: PMC4063611 DOI: 10.4084/mjhid.2014.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 01/19/2023] Open
Abstract
Classic Hodgkin Lymphoma (cHL) has a unique histology since only a few neoplastic cells are surrounded by inflammatory accessory cells that in the last years have emerged as crucial players in sustaining the course of disease. In addition, recent studies suggest that the abnormal activity of these inflammatory cells (such as deregulation in regulatory T cells signaling, expansion of myeloid derived suppressor cells, HLA-G signaling and natural killer cells dysfunction) may have prognostic significance. This review is focused on summarizing recent advanced in immunological defects in cHL with translational implications.
Collapse
Affiliation(s)
- Alessandra Romano
- Division of Haematology, Azienda Ospedaliera “Policlinico-Vittorio Emanuele”, University of Catania. Via Citelli 6, 95124 Catania, Italy
| | - Calogero Vetro
- Division of Haematology, Azienda Ospedaliera “Policlinico-Vittorio Emanuele”, University of Catania. Via Citelli 6, 95124 Catania, Italy
| | - Giovanni Caocci
- Hematology Unit, Department of Medical Sciences “Mario Aresu,” University of Cagliari, Italy
| | - Marianna Greco
- Hematology Unit, Department of Medical Sciences “Mario Aresu,” University of Cagliari, Italy
| | - Nunziatina Laura Parrinello
- Division of Haematology, Azienda Ospedaliera “Policlinico-Vittorio Emanuele”, University of Catania. Via Citelli 6, 95124 Catania, Italy
| | - Francesco Di Raimondo
- Division of Haematology, Azienda Ospedaliera “Policlinico-Vittorio Emanuele”, University of Catania. Via Citelli 6, 95124 Catania, Italy
| | - Giorgio La Nasa
- Hematology Unit, Department of Medical Sciences “Mario Aresu,” University of Cagliari, Italy
| |
Collapse
|
70
|
Binici J, Koch J. BAG-6, a jack of all trades in health and disease. Cell Mol Life Sci 2014; 71:1829-37. [PMID: 24305946 PMCID: PMC11114047 DOI: 10.1007/s00018-013-1522-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/27/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023]
Abstract
BCL2-associated athanogene 6 (BAG-6) (also Bat-3/Scythe) was discovered as a gene product of the major histocompatibility complex class III locus. The Xenopus ortholog Scythe was first identified to act as an anti-apoptotic protein. Subsequent studies unraveled that the large BAG-6 protein contributes to a number of cellular processes, including apoptosis, gene regulation, protein synthesis, protein quality control, and protein degradation. In this context, BAG-6 acts as a multifunctional chaperone, which interacts with its target proteins for shuttling to distinct destinations. Nonetheless, as anticipated from its genomic localization, BAG-6 is involved in a variety of immunological pathways such as macrophage function and TH1 response. Most recently, BAG-6 was identified on the plasma membrane of dendritic cells and malignantly transformed cells where it serves as cellular ligand for the activating natural killer (NK) cell receptor NKp30 triggering NK cell cytotoxicity. Moreover, target cells were found to secrete soluble variants of BAG-6 and release BAG-6 on the surface of exosomes, which inhibit or activate NK cell cytotoxicity, respectively. These data suggest that the BAG-6 antigen is an important target to shape a directed immune response or to overcome tumor-immune escape strategies established by soluble BAG-6. This review summarizes the currently known functions of BAG-6, a fascinating multicompetent protein, in health and disease.
Collapse
Affiliation(s)
- Janina Binici
- NK Cell Biology, Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42–44, 60596 Frankfurt am Main, Germany
| | - Joachim Koch
- NK Cell Biology, Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42–44, 60596 Frankfurt am Main, Germany
| |
Collapse
|
71
|
Reusch U, Burkhardt C, Fucek I, Le Gall F, Le Gall M, Hoffmann K, Knackmuss SHJ, Kiprijanov S, Little M, Zhukovsky EA. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs 2014; 6:728-39. [PMID: 24670809 PMCID: PMC4011917 DOI: 10.4161/mabs.28591] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To improve recruitment and activation of natural killer (NK) cells to lyse tumor cells, we isolated a human anti-CD16A antibody with similar affinity for the CD16A 158F/V allotypes, but no binding to the CD16B isoform. Using CD16A-targeting Fv domains, we constructed a tetravalent bispecific CD30/CD16A tandem diabody (TandAb®) consisting solely of Fv domains. This TandAb has two binding sites for CD16A and two for CD30, the antigen identifying Hodgkin lymphoma cells. The binding and cytotoxicity of the TandAb were compared with antibodies with identical anti-CD30 domains: (1) a native IgG, (2) an IgG optimized for binding to Fc receptors, and (3) a bivalent bispecific CD30/CD16A diabody. Due to its CD16A-bivalency and reduced koff, the TandAb was retained longer on the surface of NK cells than the IgGs or the diabody. This contributed to the higher potency and efficacy of the TandAb relative to those of the other anti-CD30 antibodies. TandAb cytotoxicity was independent of the CD16A allotype, whereas the anti-CD30 IgGs were substantially less cytotoxic when NK cells with low affinity CD16A allotype were employed. TandAb activation of NK cells was strictly dependent on the presence of CD30+ target cells. Therefore, the CD30/CD16A TandAb may represent a promising therapeutic for the treatment of Hodgkin’s lymphoma; further, anti-CD16A TandAbs may function as potent immunotherapeutics that specifically recruit NK cells to destroy cancer cells.
Collapse
Affiliation(s)
- Uwe Reusch
- Affimed Therapeutics AG; Heidelberg, Germany
| | | | - Ivica Fucek
- Affimed Therapeutics AG; Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
72
|
CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 2014; 123:3016-26. [PMID: 24652987 DOI: 10.1182/blood-2013-10-533398] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are stem cell disorders that can progress to acute myeloid leukemia. Although hematopoietic cell transplantation can be curative, additional therapies are needed for a disease that disproportionally afflicts the elderly. We tested the ability of a CD16xCD33 BiKE to induce natural killer (NK) cell function in 67 MDS patients. Compared with age-matched normal controls, CD7(+) lymphocytes, NK cells, and CD16 expression were markedly decreased in MDS patients. Despite this, reverse antibody-dependent cell-mediated cytotoxicity assays showed potent degranulation and cytokine production when resting MDS-NK cells were triggered with an agonistic CD16 monoclonal antibody. Blood and marrow MDS-NK cells treated with bispecific killer cell engager (BiKE) significantly enhanced degranulation and tumor necrosis factor-α and interferon-γ production against HL-60 and endogenous CD33(+) MDS targets. MDS patients had a significantly increased proportion of immunosuppressive CD33(+) myeloid-derived suppressor cells (MDSCs) that negatively correlated with MDS lymphocyte populations and CD16 loss on NK cells. Treatment with the CD16xCD33 BiKE successfully reversed MDSC immunosuppression of NK cells and induced MDSC target cell lysis. Lastly, the BiKE induced optimal MDS-NK cell function irrespective of disease stage. Our data suggest that the CD16xCD33 BiKE functions against both CD33(+) MDS and MDSC targets and may be therapeutically beneficial for MDS patients.
Collapse
|
73
|
Hess C, Venetz D, Neri D. Emerging classes of armed antibody therapeutics against cancer. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00360d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
74
|
Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay E, Janji B. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol 2013; 4:490. [PMID: 24400010 PMCID: PMC3872331 DOI: 10.3389/fimmu.2013.00490] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/13/2013] [Indexed: 12/27/2022] Open
Abstract
Considerable evidence has been gathered over the last 10 years showing that the tumor microenvironment (TME) is not simply a passive recipient of immune cells, but an active participant in the establishment of immunosuppressive conditions. It is now well documented that hypoxia, within the TME, affects the functions of immune effectors including natural killer (NK) cells by multiple overlapping mechanisms. Indeed, each cell in the TME, irrespective of its transformation status, has the capacity to adapt to the hostile TME and produce immune modulatory signals or mediators affecting the function of immune cells either directly or through the stimulation of other cells present in the tumor site. This observation has led to intense research efforts focused mainly on tumor-derived factors. Notably, it has become increasingly clear that tumor cells secrete a number of environmental factors such as cytokines, growth factors, exosomes, and microRNAs impacting the immune cell response. Moreover, tumor cells in hostile microenvironments may activate their own intrinsic resistance mechanisms, such as autophagy, to escape the effective immune response. Such adaptive mechanisms may also include the ability of tumor cells to modify their metabolism and release several metabolites to impair the function of immune cells. In this review, we summarize the different mechanisms involved in the TME that affect the anti-tumor immune function of NK cells.
Collapse
Affiliation(s)
- Joanna Baginska
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Elodie Viry
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Jérôme Paggetti
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Sandrine Medves
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Guy Berchem
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Etienne Moussay
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| | - Bassam Janji
- Laboratory of Experimental Hemato-Oncology, Department of Oncology, Public Research Center for Health (CRP-Santé) , Luxembourg City , Luxembourg
| |
Collapse
|
75
|
The histone deacetylase inhibitor LBH589 (panobinostat) modulates the crosstalk of lymphocytes with Hodgkin lymphoma cell lines. PLoS One 2013; 8:e79502. [PMID: 24278143 PMCID: PMC3836980 DOI: 10.1371/journal.pone.0079502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Epigenetic changes have been implicated in the malignant phenotype of Hodgkin Reed Sternberg (HRS) cells in Hodgkin lymphoma (HL), where HRS survival and proliferation depends on the microenvironment. The histone-deacetylase (HDAC) inhibitor LBH589 (panobinostat) showed clinical efficacy but its impact on the HRS microenvironment is unclear. Hence, we analysed the effects of LBH589 on lymphocytes and also potential combination therapies. In lymphocyte-target cell killing assays, LBH589-treatment triggered an enhanced lymphocyte-dependent lysis of HL cells despite of mild lymphocytopenic effects. In co-culture experiments of lymphocytes with HL cells, LBH589 suppressed the IFNgamma-release but increased the TNFalpha secretion. Recombinant TNFalpha boosted the lymphocyte-dependent lysis of HL target cells. In HL cell lines, LBH589 induced cell death, autophagy, and an increase of MICA/B that are ligands to natural killer cell receptors. The combination of LBH589 with Brentuximab Vedotin was inefficient due to down-regulation of CD30 as a target. Combination with gemcitabine revealed highly significant effects, suggesting a potential combination for future therapy. Based on these data we suggest that LBH589 favourably modulates the cytokine network and lymphocyte activity in the HL microenvironment.
Collapse
|
76
|
Vyas M, Koehl U, Hallek M, von Strandmann EP. Natural ligands and antibody-based fusion proteins: harnessing the immune system against cancer. Trends Mol Med 2013; 20:72-82. [PMID: 24268686 DOI: 10.1016/j.molmed.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/26/2022]
Abstract
The insight that the immune system is able to eradicate tumor cells inspired the development of targeted immunotherapies. These novel approaches aim to trigger immune molecules and receptors, including CD3 on T cells and NKG2D and NKp30 on natural killer (NK) cells, to harness the immune system against cancer. In cancer patients, overcoming immune suppression induced by malignant cells or by the tumor microenvironment remains the major challenge to the clinical efficacy of immunotherapies. Recombinant constructs have been developed in various formats either utilizing natural ligands (immunoligands) or antibody-derived components (immunoconstructs) to circumvent mechanisms that counteract an effective antitumor immune response.
Collapse
Affiliation(s)
- Maulik Vyas
- University of Cologne, Clinic 1 for Internal Medicine, 50924 Cologne, Germany
| | - Ulrike Koehl
- Hannover Medical School, Institute of Cellular Therapeutics, 30625 Hannover, Germany
| | - Michael Hallek
- University of Cologne, Clinic 1 for Internal Medicine, 50924 Cologne, Germany
| | | |
Collapse
|
77
|
Braciak TA, Wildenhain S, Roskopf CC, Schubert IA, Fey GH, Jacob U, Hopfner KP, Oduncu FS. NK cells from an AML patient have recovered in remission and reached comparable cytolytic activity to that of a healthy monozygotic twin mediated by the single-chain triplebody SPM-2. J Transl Med 2013; 11:289. [PMID: 24237598 PMCID: PMC3842817 DOI: 10.1186/1479-5876-11-289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/14/2013] [Indexed: 12/26/2022] Open
Abstract
Background The capacity of patient’s Natural Killer cells (NKs) to be activated for cytolysis is an important prerequisite for the success of antibody-derived agents such as single-chain triplebodies (triplebodies) in cancer therapy. NKs recovered from AML patients at diagnosis are often found to be reduced in peripheral blood titers and cytolytic activity. Here, we had the unique opportunity to compare blood titers and cytolytic function of NKs from an AML patient with those of a healthy monozygotic twin. The sibling’s NKs were compared with the patient’s drawn either at diagnosis or in remission after chemotherapy. The cytolytic activities of NKs from these different sources for the patient’s autologous AML blasts and other leukemic target cells in conjunction with triplebody SPM-2, targeting the surface antigens CD33 and CD123 on the AML cells, were compared. Methods Patient NKs drawn at diagnosis were compared to NKs drawn in remission after chemotherapy and a sibling’s NKs, all prepared from PBMCs by immunomagnetic beads (MACS). Redirected lysis (RDL) assays using SPM-2 and antibody-dependent cellular cytotoxicity (ADCC) assays using the therapeutic antibody RituximabTM were performed with the enriched NKs. In addition, MACS-sorted NKs were analyzed for NK cell activating receptors (NCRs) by flow cytometry, and the release of TNF-alpha and IFN-gamma from blood samples of both siblings after the addition of the triplebody were measured in ELISA-assays. Results Patient NKs isolated from peripheral blood drawn in remission produced comparable lysis as NKs from the healthy twin against the patient’s autologous bone marrow (BM) blasts, mediated by SPM-2. The NCR receptor expression profiles on NKs from patient and twin were similar, but NK cell titers in peripheral blood were lower for samples drawn at diagnosis than in remission. Conclusions Peripheral blood NK titers and ex vivo cytolytic activities mediated by triplebody SPM-2 were comparable for cells drawn from an AML patient in remission and a healthy twin. If these results can be generalized, then NKs from AML patients in remission are sufficient in numbers and cytolytic activity to make triplebodies promising new agents for the treatment of AML.
Collapse
Affiliation(s)
- Todd A Braciak
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Sheng Sow H, Mattarollo SR. Combining low-dose or metronomic chemotherapy with anticancer vaccines: A therapeutic opportunity for lymphomas. Oncoimmunology 2013; 2:e27058. [PMID: 24498564 PMCID: PMC3902116 DOI: 10.4161/onci.27058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 01/06/2023] Open
Abstract
Therapeutic vaccination is regarded as a promising strategy against multiple hematological malignancies including lymphoma. However, this approach alone possesses limited potential for the treatment of established tumors. As several anticancer regimens relies on the combination of multiple drugs, it is reasonable to predict that also cancer vaccination will be most effective in the context of multimodal approaches. In particular, low-dose or metronomic chemotherapy could be coupled to anticancer vaccines to improve the efficacy of this immunotherapeutic interventions. This review summarizes recent findings in support of the use of anticancer vaccines combined with low-dose or metronomic chemotherapy for the treatment and management of lymphoid malignancies.
Collapse
Affiliation(s)
- Heng Sheng Sow
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute; Brisbane, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute; Brisbane, Australia
| |
Collapse
|
79
|
A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol 2013; 31:621-32. [PMID: 24094861 PMCID: PMC7114091 DOI: 10.1016/j.tibtech.2013.08.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022]
Abstract
Recombinant DNA technologies are leading the rapid expansion of bispecific antibody formats. The therapeutic potential of bispecific antibodies is being realized through creative design. Bispecific antibodies are potentially underutilized reagents for diagnostics.
Artificial manipulation of antibody genes has facilitated the production of several unique recombinant antibody formats, which have highly important therapeutic and biotechnological applications. Although bispecific antibodies (bsAbs) are not new, they are coming to the forefront as our knowledge of the potential efficacy of antibody-based therapeutics expands. The next generation of bsAbs is developing due to significant improvements in recombinant antibody technologies. This review focuses on recent advances with a particular focus on improvements in format and design that are contributing to the resurgence of bsAbs, and in particular, on innovative structures applicable to next generation point-of-care (POC) devices with applicability to low resource environments.
Collapse
|
80
|
|
81
|
Li Q, Mei Q, Huyan T, Xie L, Che S, Yang H, Zhang M, Huang Q. Effects of simulated microgravity on primary human NK cells. ASTROBIOLOGY 2013; 13:703-14. [PMID: 23919749 PMCID: PMC3746215 DOI: 10.1089/ast.2013.0981] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The deleterious effects of microgravity on lymphocytes have been demonstrated in previous studies. However, research on the effects of microgravity on human natural killer (NK) cells remains exceedingly limited. In this study, we demonstrated that NK cell cytotoxicity was significantly decreased under simulated microgravity (SMG) conditions (p<0.05). Several processes, including apoptosis, receptor expression, and cytokine secretion, were investigated in human NK cells under SMG. We observed decreased cytotoxicity, concurrent with increased apoptosis and necrosis, in NK cells after exposure to SMG (p<0.05). Additionally, interferon (IFN)-γ and perforin expression decreased significantly, and the expression of granzyme-B was only slightly reduced. Meanwhile, SMG selectively inhibited the expression of certain surface receptors on NK cells. Specifically, the expression of NKG2A and NKG2D were significantly downregulated under SMG, but the expression of NKp30 and NKp44 was not affected. We also found that interleukin (IL)-15 alone or in combination with IL-12 could counteract the inhibition of NK cell cytotoxicity under SMG. Our findings indicate that human NK cells were sensitive to SMG, as reflected by their decreased cytotoxicity. Factors such as increased early apoptosis and late apoptosis/necrosis and the decreased expression of INF-γ, cytolytic proteins, and cell surface receptors may be responsible for the loss of cytotoxicity in human NK cells under SMG. A combination of IL-12 and IL-15 may be useful as a therapeutic strategy for overcoming the effects of microgravity on human NK cells during long space missions.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Qibing Mei
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Ting Huyan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Su Che
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| | - Mingjie Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaan Xi Province, P.R. China
| |
Collapse
|
82
|
Chaigne-Delalande B, Li FY, O'Connor GM, Lukacs MJ, Jiang P, Zheng L, Shatzer A, Biancalana M, Pittaluga S, Matthews HF, Jancel TJ, Bleesing JJ, Marsh RA, Kuijpers TW, Nichols KE, Lucas CL, Nagpal S, Mehmet H, Su HC, Cohen JI, Uzel G, Lenardo MJ. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 2013; 341:186-91. [PMID: 23846901 DOI: 10.1126/science.1240094] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The magnesium transporter 1 (MAGT1) is a critical regulator of basal intracellular free magnesium (Mg(2+)) concentrations. Individuals with genetic deficiencies in MAGT1 have high levels of Epstein-Barr virus (EBV) and a predisposition to lymphoma. We show that decreased intracellular free Mg(2+) causes defective expression of the natural killer activating receptor NKG2D in natural killer (NK) and CD8(+) T cells and impairs cytolytic responses against EBV. Notably, magnesium supplementation in MAGT1-deficient patients restores intracellular free Mg(2+) and NKG2D while concurrently reducing EBV-infected cells in vivo, demonstrating a link between NKG2D cytolytic activity and EBV antiviral immunity in humans. Moreover, these findings reveal a specific molecular function of free basal intracellular Mg(2+) in eukaryotic cells.
Collapse
Affiliation(s)
- Benjamin Chaigne-Delalande
- Molecular Development of the Immune System Section, Lymphocyte Molecular Genetics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 2013; 121:3658-65. [PMID: 23509156 DOI: 10.1182/blood-2013-01-476606] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cells are a major component of the anti-tumor immune response. NK cell dysfunctions have been reported in various hematologic malignancies, including chronic lymphocytic leukemia (CLL). Here we investigated the role of tumor cell-released soluble and exosomal ligands for NK cell receptors that modulate NK cell activity. Soluble CLL plasma factors suppressed NK cell cytotoxicity and down-regulated the surface receptors CD16 and CD56 on NK cells of healthy donors. The inhibition of NK cell cytotoxicity was attributed to the soluble ligand BAG6/BAT3 that engages the activating receptor NKp30 expressed on NK cells. Soluble BAG6 was detectable in the plasma of CLL patients, with the highest levels at the advanced disease stages. In contrast, NK cells were activated when BAG6 was presented on the surface of exosomes. The latter form was induced in non-CLL cells by cellular stress via an nSmase2-dependent pathway. Such cells were eliminated by lymphocytes in a xenograft tumor model in vivo. Here, exosomal BAG6 was essential for tumor cell killing because BAG6-deficient cells evaded immune detection. Taken together, the findings show that the dysregulated balance of exosomal vs soluble BAG6 expression may cause immune evasion of CLL cells.
Collapse
|