51
|
The integration of cloning by nuclear transfer in the conservation of animal genetic resources. ACTA ACUST UNITED AC 2018. [DOI: 10.1017/s0263967x0004204x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractCloning mammals from somatic cells by nuclear transfer has the potential to assist with the preservation of genetic diversity. An increasing number of species have been successfully cloned by this approach; however, present methods are inefficient with few cloned embryos resulting in healthy offspring. In those livestock species that have already been cloned, it is clearly feasible to use cloning to preserve endangered breeds (e.g. the last surviving Enderby Island cow). The opportunity exists to recover oocytes from these cloned heifers and use frozen Enderby Island sperm from deceased bulls for in vitro fertilisation and thus, expand the genetic diversity of this breed. Where there exists an adequate understanding of the reproductive biology and embryology of the species concerned and adequate sources of females to supply both recipient oocytes and surrogates to gestate the pregnancies, intra-specific nuclear transfer and embryo transfer can be utilised. However, when these requirements cannot be met, as is common for most endangered species, cloning technology invariably involves the use of inter-species nuclear transfer and embryo transfer. Even in intra-specific cloning the source of oocyte for nuclear transfer is an important consideration. Typically, cloned animals are only genomic copies of the founder if they possess mitochondrial DNA which differs from the original animal. Different maternal lineages of oocytes both within and between breeds significantly affect cloning efficiency and livestock production characteristics. Cloning should not distract conservation efforts from encouraging the use of indigenous livestock breeds with traits of adaptation to local environments, the preservation of wildlife habitats or the use of other forms of assisted reproduction. Whilst it is often difficult to justify cloning in animal conservation at present, the appropriate cryo-preservation of tissues and cells from a wide selection of biodiversity is of paramount importance. This provides an insurance against further losses of genetic variation from dwindling populations, disease epidemics or even possible extinction. It would also complement the gene banking of gametes or embryos and can be performed more easily and cheaply. Future cloning from preserved somatic cells can reintroduce lost genes back into the breeding pool. With greater appreciation of the heritable attributes of traditional livestock breeds there is the desire to identify superior animals within these local populations and the genetic loci involved. Through clonal family performance testing, nuclear transfer can aid the selection of desirable genotypes and then the production of larger numbers of embryos or animals for natural breeding to more widely disseminate the desirable traits. With the identification of alleles conferring desirable attributes, transgenesis could be utilised to both improve traditional and industrial livestock breeds. This further emphasizes the importance of preserving global farm animal genetic resources.
Collapse
|
52
|
Garreta E, Sanchez S, Lajara J, Montserrat N, Belmonte JCI. Roadblocks in the Path of iPSC to the Clinic. CURRENT TRANSPLANTATION REPORTS 2018; 5:14-18. [PMID: 29564204 PMCID: PMC5843691 DOI: 10.1007/s40472-018-0177-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of Review The goal of this paper is to highlight the major challenges in the translation of human pluripotent stem cells into a clinical setting. Recent Findings Innate features from human induced pluripotent stem cells (hiPSCs) positioned these patient-specific cells as an unprecedented cell source for regenerative medicine applications. Immunogenicity of differentiated iPSCs requires more research towards the definition of common criteria for the evaluation of innate and host immune responses as well as in the generation of standardized protocols for iPSC generation and differentiation. The coming years will resolve ongoing clinical trials using both human embryonic stem cells (hESCs) and hiPSCs providing exciting information for the optimization of potential clinical applications of stem cell therapies. Summary Rapid advances in the field of iPSCs generated high expectations in the field of regenerative medicine. Understanding therapeutic applications of iPSCs certainly needs further investigation on autologous/allogenic iPSC transplantation.
Collapse
Affiliation(s)
- Elena Garreta
- Pluripotent stem cells and activation of endogenous tissue programs for organ regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Sonia Sanchez
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain
| | - Jeronimo Lajara
- Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, 135 Guadalupe, 30107 Murcia, Spain
| | - Nuria Montserrat
- Pluripotent stem cells and activation of endogenous tissue programs for organ regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
53
|
Dalamagkas K, Tsintou M, Seifalian AM. Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 2018; 13:35-42. [PMID: 29451202 PMCID: PMC5840986 DOI: 10.4103/1673-5374.224360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Spinal cord injury (SCI) is a highly debilitating neurological disease, which still lacks effective treatment strategies, causing significant financial burden and distress to the affected families. Nevertheless, nanotechnology and regenerative medicine strategies holding promise for the development of novel therapies that would reach from bench to bedside to serve the SCI patients. There has already been significant progress in the field of cell-based therapies, with the clinical application for SCI, currently in phase II of the clinical trial. Stem cells (e.g., induced pluripotent stem cells, fetal stem cells, human embryonic stem cells, and olfactory ensheathing cells) are certainly not to be considered the panacea for neural repair but, especially when combined with rehabilitation or other combinatorial approaches using the help of nanotechnology, they seem to be the source of some of the most promising and clinical translatable cell-based therapies that could help solving impactful problems on neural repair.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA; Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Magdalini Tsintou
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA; Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (Ltd.), The London BioScience Innovation Centre, London, UK
| |
Collapse
|
54
|
Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proc Natl Acad Sci U S A 2017; 114:E11111-E11120. [PMID: 29203658 DOI: 10.1073/pnas.1708991114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.
Collapse
|
55
|
Vats A, Tolley NS, Bishop AE, Polak JM. Embryonic Stem Cells and Tissue Engineering: Delivering Stem Cells to the Clinic. J R Soc Med 2017; 98:346-50. [PMID: 16055897 PMCID: PMC1181832 DOI: 10.1177/014107680509800804] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- A Vats
- Tissue Engineering and Regenerative Medicine Centre, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | | | | | | |
Collapse
|
56
|
Huang X, Song L, Zhan Z, Gu H, Feng H, Li Y. Factors Affecting Mouse Somatic Cell Nuclear Reprogramming by Rabbit Ooplasms. Cell Reprogram 2017; 19:344-353. [PMID: 29135280 DOI: 10.1089/cell.2017.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos depends on compatibilities between ooplasmic and nuclear components. However, the mechanisms by which the compatibilities are regulated are still unknown. In this study, using mouse Oct4-green fluorescent protein (GFP) cells as donors and rabbit oocytes as recipients, we show that Oct4 and other pluripotency related genes were reactivated in some of mouse-rabbit iSCNT embryos, which could also activate Oct4 promoter-driven GFP reporter gene expression. Series nuclear transfer improved the efficiency of Oct4 reactivation. DNA demethylation of Oct4 promoter was detected in GFP positive iSCNT blastocysts, whereas GFP negative iSCNT embryos showed a low efficiency. Our results demonstrate that Oct4-GFP can well label the embryos with epigenetic remodeling and reactivation of pluripotent gene expression. Abundant rabbit mitochondria specific DNAs were identified in reconstructed mouse-rabbit embryos throughout preimplantation stages. Our data demonstrate that epigenetic remodeling and the complete mitochondrial match are not necessary for successful iSCNT embryo development before implantation.
Collapse
Affiliation(s)
- Xia Huang
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Lili Song
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Zhiyan Zhan
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Haihui Gu
- 2 Department of Transfusion Medicine, Shanghai Changhai Hospital , Shanghai, China
| | - Haizhong Feng
- 3 State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yanxin Li
- 1 Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
57
|
Cordova A, King WA, Mastromonaco GF. Choosing a culture medium for SCNT and iSCNT reconstructed embryos: from domestic to wildlife species. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:24. [PMID: 29152322 PMCID: PMC5680814 DOI: 10.1186/s40781-017-0149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Over the past decades, in vitro culture media have been developed to successfully support IVF embryo growth in a variety of species. Advanced reproductive technologies, such as somatic cell nuclear transfer (SCNT), challenge us with a new type of embryo, with special nutritional requirements and altered physiology under in vitro conditions. Numerous studies have successfully reconstructed cloned embryos of domestic animals for biomedical research and livestock production. However, studies evaluating suitable culture conditions for SCNT embryos in wildlife species are scarce (for both intra- and interspecies SCNT). Most of the existing studies derive from previous IVF work done in conventional domestic species. Extrapolation to non-domestic species presents significant challenges since we lack information on reproductive processes and embryo development in most wildlife species. Given the challenges in adapting culture media and conditions from IVF to SCNT embryos, developmental competence of SCNT embryos remains low. This review summarizes research efforts to tailor culture media to SCNT embryos and explore the different outcomes in diverse species. It will also consider how these culture media protocols have been extrapolated to wildlife species, most particularly using SCNT as a cutting-edge technical resource to assist in the preservation of endangered species.
Collapse
Affiliation(s)
- A Cordova
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - G F Mastromonaco
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| |
Collapse
|
58
|
Eun K, Hwang SU, Jeong YW, Seo S, Lee SY, Hwang WS, Hyun SH, Kim H. SV40 Large T Antigen Disrupts Embryogenesis of Canine and Porcine Somatic Cell Nuclear Transfer Embryo. Biol Proced Online 2017; 19:13. [PMID: 29075153 PMCID: PMC5648454 DOI: 10.1186/s12575-017-0061-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/01/2017] [Indexed: 01/17/2023] Open
Abstract
Background Somatic cell nuclear transfer (SCNT) is a useful biotechnological tool for transgenic animal production using genetically modified somatic cells (GMSCs). However, there are several limitations preventing successful transgenic animal generation by SCNT, such as obtaining proper somatic donor cells with a sufficiently long life span and proliferative capacity for generating GMSCs. Here, we established simian virus 40 large T antigen (SV40LT)-mediated lifespan-extended canine fibroblast cells (SV40LT-K9 cells) and evaluated their potential as nuclei donors for SCNT, based on cellular integrity and SCNT embryo development. Results SV40LT did not cause canine cell transformation, based on cell morphology and proliferation rate. No anchorage-independent growth in vitro and tumorigenicity in vivo were observed. After SCNT with SV40LT-K9 cells, embryos were transferred into surrogate dogs. All dogs failed to become pregnant. Most embryos did not proceed past the 8-cell stage and only one surrogate showed an implantation trace in its oviduct, indicating that the cells rarely developed into blastocysts. Because of the absence of an in vitro maturation method for canine embryos, we performed identical experiments using porcine fibroblast cells. Similarly, SV40LT did not transform porcine fibroblast cells (SV40LT-Pig cells). During in vitro development of SV40LT-Pig cell-driven SCNT embryos, their blastocyst formation rate was clearly lower than those of normal cells. Karyotyping analysis revealed that both SV40LT-K9 and SV40LT-Pig cells had aberrant chromosomal statuses. Conclusions Although lifespan-extended canine and porcine cells via SV40LT exhibit no apparent transforming changes, they are inappropriate for use as nuclei donors for SCNT because of their aneuploidy.
Collapse
Affiliation(s)
- Kiyoung Eun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 52 Naesudong-ro, Seowon-gu, Cheongju, 28644 Republic of Korea
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, San 43-41 Oryu-dong, Guro-gu, Seoul, Republic of Korea
| | - Sunyoung Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, San 43-41 Oryu-dong, Guro-gu, Seoul, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 52 Naesudong-ro, Seowon-gu, Cheongju, 28644 Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea.,Department of Medical Engineering, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
59
|
Li Y, Li L, Chen ZN, Gao G, Yao R, Sun W. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication 2017; 9:032001. [DOI: 10.1088/1758-5090/aa7e9a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Kawarasaki T, Enya S, Otake M, Shibata M, Mikawa S. Reproductive performance and expression of imprinted genes in somatic cell cloned boars. Anim Sci J 2017; 88:1801-1810. [PMID: 28568977 DOI: 10.1111/asj.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/03/2017] [Indexed: 01/05/2023]
Abstract
To assess the performance of boars derived by somatic cell cloning, we analyzed various aspects of their reproductive characteristics and the expression of two imprinted genes. Cloned boars (cloned Duroc × Jinhua) were analyzed for birth weight, growth rate, age at first ejaculation, semen characteristics and fertility, in comparison with naturally bred control boars of the same strain. The expression of imprinted genes was analyzed using the microsatellite marker SWC9 for the paternally expressed gene insulin-like growth factor -2 (IGF2) and with single nucleotide polymorphisms (SNPs) for the gene maternally expressed 3 (MEG3). The cloned boars had high production of semen and were nearly equal in level of fertility to conventional pigs; they showed similar characteristics as naturally bred boars of the same strains. The expression of IGF2 was partially disturbed, but this disturbed expression was not linked to a change in developmental fate or reproductive performance. These results indicate that use of cloned boars could be highly effective for proliferation of pigs with desirable characteristics, preservation of genetic resources and risk reduction against epidemic diseases, such as foot-and-mouth disease, through storage of somatic cells as a precautionary measure for use in regenerating pig populations after a future pandemic.
Collapse
Affiliation(s)
- Tatsuo Kawarasaki
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan.,School of Agriculture, Tokai University, Kumamoto, Japan
| | - Satoko Enya
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan
| | - Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan
| | - Masatoshi Shibata
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Kikugawa, Shizuoka, Japan
| | - Satoshi Mikawa
- Animal Genome Unit, Division of Animal Breeding and Reproduction, Institute of Livestock and Glassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
61
|
Shimohira T, Kurogi K, Hashiguchi T, Liu MC, Suiko M, Sakakibara Y. Regioselective production of sulfated polyphenols using human cytosolic sulfotransferase-expressing Escherichia coli cells. J Biosci Bioeng 2017; 124:84-90. [PMID: 28286122 DOI: 10.1016/j.jbiosc.2017.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
Abstract
Dietary polyphenols present in fruits and vegetables have been reported to manifest beneficial health effects on humans. Polyphenol metabolites including their sulfated derivatives have been shown to be biologically active. Primarily due to the difficulty in preparing regiospecific sulfated polyphenols for detailed investigations, the exact functions of sulfated polyphenols, however, remain unclear. The current study aimed to develop a procedure for the regioselective production of sulfated polyphenols using Escherichia coli cells expressing human cytosolic sulfotransferases (SULTs). Two regioisomers of sulfated genistein were produced by E. coli cells expressing human SULT1A3, SULT1C4, or SULT1E1, and purified using Diaion HP20 resin, followed by high pressure liquid chromatography (HPLC). Structural analysis using mass spectrometry (MS) and nuclear magnetic resonance (NMR) revealed that E. coli cells expressing SULT1A3 preferentially produced genistein 4'-sulfate, whereas E. coli cells expressing SULT1C4 preferentially produced genistein 7-sulfate. To improve the bioproductivity, the effects of several factors including the concentrations of glucose and SO42-, and growth temperature were investigated. The bioproduction procedure established in this study will be valuable for the production of regioselective sulfated polyphenols for use in future studies on their biological functions.
Collapse
Affiliation(s)
- Takehiko Shimohira
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Takuyu Hashiguchi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan; Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan.
| |
Collapse
|
62
|
Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Krishnan Binsila B, Arangasamy A, Ravindra JP. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 2017; 7:42392. [PMID: 28276431 PMCID: PMC5343582 DOI: 10.1038/srep42392] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Mammalian spermatozoa deliver various classes of RNAs to the oocyte during fertilization, and many of them may regulate fertility. The objective of the present study was to determine the composition and abundance of spermatozoal transcripts in fresh bull semen. The entire transcriptome of the spermatozoa from bulls (n = 3) was sequenced using two different platforms (Ion Proton and Illumina) to identify the maximum number of genes present in the spermatozoa. The bovine spermatozoa contained transcripts for 13,833 genes (transcripts per million, TPM > 10). Both intact and fragmented transcripts were found. These spermatozoal transcripts were associated with various stages of spermatogenesis, spermatozoal function, fertilization, and embryo development. The presence of intact transcripts of pregnancy-associated glycoproteins (PAGs) in the spermatozoa suggest a possible influence of sperm transcripts beyond early embryonic development. The specific regions (exon, intron, and exon-intron) of the particular spermatozoal transcripts might help regulate fertilization. This study demonstrates that the use of two different RNA-seq platforms provides a comprehensive profile of bovine spermatozoal RNA. Spermatozoal RNA profiling may be useful as a non-invasive method to delineate possible causes of male infertility and to predict fertility in a manner that is more effective than the conventional methods.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Lakshminarayana Somashekar
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - B Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Janivara Parameshwaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| |
Collapse
|
63
|
Tani T, Kato Y. Mitogen-Activated Protein Kinase Activity Is Not Essential for the First Step of Nuclear Reprogramming in Bovine Somatic Cell Nuclear Transfer. Cell Reprogram 2017; 19:95-106. [PMID: 28266868 DOI: 10.1089/cell.2016.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
For reprogramming a somatic nucleus during mammalian cloning, metaphase of the second meiotic division (MII) oocytes has been widely used as recipient cytoplasm. High activity of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) is believed to accelerate the remodeling and/or reprogramming of a somatic nucleus introduced into the ooplasm by somatic cell nuclear transfer. We demonstrated previously that the first step in nuclear reprogramming is not directly regulated by MPF and MAPK because activated oocytes in which MPF activity is diminished and MAPK activity is maintained can develop to the blastocyst stage after receiving an M phase somatic nucleus in bovine cloning. In this study, our aim was to test whether MAPK activity is necessary for the first step in nuclear reprogramming and/or chromatin remodeling (phosphorylation of histone H3 at Ser3, trimethylation of histone H3 at Lys 9, and acetylation of histone H3 at Lys14) in bovine somatic cloning. We found that it was not necessary, and neither was MPF activity.
Collapse
Affiliation(s)
- Tetsuya Tani
- Laboratory of Animal Reproduction, Department of Advanced Bioscience, Faculty of Agriculture, Kindai University , Nara, Japan
| | - Yoko Kato
- Laboratory of Animal Reproduction, Department of Advanced Bioscience, Faculty of Agriculture, Kindai University , Nara, Japan
| |
Collapse
|
64
|
Qiu X, You H, Xiao X, Li N, Li Y. Effects of Trichostatin A and PXD101 on the In Vitro Development of Mouse Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2017; 19:1-9. [DOI: 10.1089/cell.2016.0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Xiaoyan Qiu
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Haihong You
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Xiong Xiao
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Nan Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| | - Yuemin Li
- Embryo Engineering Laboratory, School of Animal Science and Technology, Southwest University, Chong Qing, P.R. China
| |
Collapse
|
65
|
Cao Z, Hong R, Ding B, Zuo X, Li H, Ding J, Li Y, Huang W, Zhang Y. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos. PLoS One 2017; 12:e0169092. [PMID: 28114389 PMCID: PMC5256949 DOI: 10.1371/journal.pone.0169092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P < 0.05), while further improvement was not observed under combined treatment condition. Furthermore, co-treatment or TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Renyun Hong
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Biao Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hui Li
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- * E-mail:
| |
Collapse
|
66
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
67
|
O'Doherty AM, O'Shea LC, Sandra O, Lonergan P, Fair T, Forde N. Imprinted and DNA methyltransferase gene expression in the endometrium during the pre- and peri-implantation period in cattle. Reprod Fertil Dev 2017; 29:1729-1738. [DOI: 10.1071/rd16238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The endometrium plays a key role in providing an optimal environment for attachment of the preimplantation embryo during the early stages of pregnancy. Investigations over the past 2 decades have demonstrated that vital epigenetic processes occur in the embryo during the preimplantation stages of development. However, few studies have investigated the potential role of imprinted genes and their associated modulators, the DNA methyltransferases (DNMTs), in the bovine endometrium during the pre- and peri-implantation period. Therefore, in the present study we examined the expression profiles of the DNMT genes (3A, 3A2 and 3B) and a panel of the most comprehensively studied imprinted genes in the endometrium of cyclic and pregnant animals. Intercaruncular (Days 5, 7, 13, 16 and 20) and caruncular (Days 16 and 20) regions were analysed for gene expression changes, with protein analysis also performed for DNMT3A, DNMT3A2 and DNMT3B on Days 16 and 20. An overall effect of day was observed for expression of several of the imprinted genes. Tissue-dependent gene expression was detected for all genes at Day 20. Differences in DNMT protein abundance were mostly observed in the intercaruncular regions of pregnant heifers at Day 16 when DNMT3A, DNMT3A2 and DNMT3B were all lower when compared with cyclic controls. At Day 20, DNMT3A2 expression was lower in the pregnant caruncular samples compared with cyclic animals. This study provides evidence that epigenetic mechanisms in the endometrium may be involved with implantation of the embryo during the early stages of pregnancy in cattle.
Collapse
|
68
|
Rutigliano HM, Wilhelm A, Hall J, Shi B, Meng Q, Stott R, Bunch TD, White KL, Davies CJ, Polejaeva IA. Cytokine gene expression at the maternal–fetal interface after somatic cell nuclear transfer pregnancies in small ruminants. Reprod Fertil Dev 2017; 29:646-657. [DOI: 10.1071/rd15103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/16/2015] [Indexed: 12/27/2022] Open
Abstract
The present retrospective study investigated pregnancy rates, the incidence of pregnancy loss and large offspring syndrome (LOS) and immune-related gene expression of sheep and goat somatic cell nuclear transfer (SCNT) pregnancies. We hypothesised that significantly higher pregnancy losses observed in sheep compared with goat SCNT pregnancies are due to the increased amounts of T-helper 1 cytokines and proinflammatory mediators at the maternal–fetal interface. Sheep and goat SCNT pregnancies were generated using the same procedure. Control pregnancies were established by natural breeding. Although SCNT pregnancy rates at 45 days were similar in both species, pregnancy losses between 45 and 60 days of gestation and the incidence of LOS were significantly greater in sheep than in goats. At term, the expression of proinflammatory genes in sheep SCNT placentas was increased, whereas that in goats was similar to that in control animals. Genes with altered expression in sheep SCNT placentas included cytotoxic T-lymphocyte-associated protein 4 (CTLA4), interleukin 2 receptor alpha (IL2RA), cluster of differentiation 28 (CD28), interferon gamma (IFNG), interleukin 6 (IL6), interleukin 10 (IL10), transforming growth factor beta 1 (TGFB1), tumor necrosis factor alpha (TNF-α), interleukin 1 alpha (IL1A) and chemokine (C-X-C motif) ligand 8 (CXCL8). Major histocompatibility complex-I protein expression was greater in sheep and goat SCNT placentas at term than in control pregnancies. An unfavourable immune environment is present at the maternal–fetal interface in sheep SCNT pregnancies.
Collapse
|
69
|
Guo Y, Li H, Wang Y, Yan X, Sheng X, Chang D, Qi X, Wang X, Liu Y, Li J, Ni H. Screening somatic cell nuclear transfer parameters for generation of transgenic cloned cattle with intragenomic integration of additional gene copies that encode bovine adipocyte-type fatty acid-binding protein (A-FABP). Mol Biol Rep 2016; 44:159-168. [PMID: 27975165 DOI: 10.1007/s11033-016-4094-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/03/2016] [Indexed: 11/24/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is frequently used to produce transgenic cloned livestock, but it is still associated with low success rates. To our knowledge, we are the first to report successful production of transgenic cattle that overexpress bovine adipocyte-type fatty acid binding proteins (A-FABPs) with the aid of SCNT. Intragenomic integration of additional A-FABP gene copies has been found to be positively correlated with the intramuscular fat content in different farm livestock species. First, we optimized the cloning parameters to produce bovine embryos integrated with A-FABP by SCNT, such as applied voltage field strength and pulse duration for electrofusion, morphology and size of donor cells, and number of donor cells passages. Then, bovine fibroblast cells from Qinchuan cattle were transfected with A-FABP and used as donor cells for SCNT. Hybrids of Simmental and Luxi local cattle were selected as the recipient females for A-FABP transgenic SCNT-derived embryos. The results showed that a field strength of 2.5 kV/cm with two 10-μs duration electrical pulses was ideal for electrofusion, and 4-6th generation circular smooth type donor cells with diameters of 15-25 μm were optimal for producing transgenic bovine embryos by SCNT, and resulted in higher fusion (80%), cleavage (73%), and blastocyst (27%) rates. In addition, we obtained two transgenic cloned calves that expressed additional bovine A-FABP gene copies, as detected by PCR-amplified cDNA sequencing. We proposed a set of optimal protocols to produce transgenic SCNT-derived cattle with intragenomic integration of ectopic A-FABP-inherited exon sequences.
Collapse
Affiliation(s)
- Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Hejuan Li
- College of Landscape Design and Forestry, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Wang
- Jiahe Hospital of Reproduction Health and Sterility, Qingdao, 266071, China
| | - Xingrong Yan
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xihui Sheng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Di Chang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yunhai Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hemin Ni
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
70
|
Song H, Li H, Huang M, Xu D, Wang Z, Wang F. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells. Cell Reprogram 2016; 18:37-47. [PMID: 26836033 DOI: 10.1089/cell.2015.0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.
Collapse
Affiliation(s)
- Hui Song
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China .,2 Department of Medical Genetic and Cell Biology, Ningxia Medical University , Yinchuan, 750004, China
| | - Hui Li
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China .,2 Department of Medical Genetic and Cell Biology, Ningxia Medical University , Yinchuan, 750004, China
| | - Mingrui Huang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| | - Dan Xu
- 3 Stanford University School of Medicine , Stanford, CA, 94305
| | - Ziyu Wang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| | - Feng Wang
- 1 Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University , Nanjing, 210095, P.R. China
| |
Collapse
|
71
|
Nie JY, Zhu XX, Xie BK, Nong SQ, Ma QY, Xu HY, Yang XG, Lu YQ, Lu KH, Liao YY, Lu SS. Successful cloning of an adult breeding boar from the novel Chinese Guike No. 1 swine specialized strain. 3 Biotech 2016; 6:218. [PMID: 28330290 PMCID: PMC5055876 DOI: 10.1007/s13205-016-0525-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/15/2016] [Indexed: 11/26/2022] Open
Abstract
Somatic cloning, also known as somatic cell nuclear transfer (SCNT), is a promising technology which has been expected to rapidly extend the population of elaborately selected breeding boars with superior production performance. Chinese Guike No. 1 pig breed is a novel swine specialized strain incorporated with the pedigree background of Duroc and Chinese Luchuan pig breeds, thus inherits an excellent production performance. The present study was conducted to establish somatic cloning procedures of adult breeding boars from the Chinese Guike No. 1 specialized strain. Ear skin fibroblasts were first isolated from a three-year-old Chinese Guike No. 1 breeding boar, and following that, used as donor cell to produce nuclear transfer embryos. Such cloned embryos showed full in vitro development and with the blastocyst formation rate of 18.4 % (37/201, three independent replicates). Finally, after transferring of 1187 nuclear transfer derived embryos to four surrogate recipients, six live piglets with normal health and development were produced. The overall cloning efficiency was 0.5 % and the clonal provenance of such SCNT derived piglets was confirmed by DNA microsatellite analysis. All of the cloned piglets were clinically healthy and had a normal weight at 1 month of age. Collectively, the first successful cloning of an adult Chinese Guike No. 1 breeding boar may lay the foundation for future improving the pig production industry.
Collapse
Affiliation(s)
- Jun-Yu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiang-Xing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Bing-Kun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Su-Qun Nong
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Qing-Yan Ma
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Hui-Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yu-Ying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China.
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
72
|
Tamashiro KLK, Wakayama T, Yamazaki Y, Akutsu H, Woods SC, Kondo S, Yanagimachi R, Sakai RR. Phenotype of Cloned Mice: Development, Behavior, and Physiology. Exp Biol Med (Maywood) 2016; 228:1193-200. [PMID: 14610260 DOI: 10.1177/153537020322801015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cloning technology has potential to be a valuable tool in basic research, clinical medicine, and agriculture. However, it is critical to determine the consequences of this technique in resulting offspring before widespread use of the technology. Mammalian cloning using somatic cells was first demonstrated in sheep in 1997 and since then has been extended to a number of other species. We examined development, behavior, physiology, and longevity in B6C3F1 female mice cloned from adult cumulus cells. Control mice were naturally fertilized embryos subjected to the same in vitro manipulation and culture conditions as clone embryos. Clones attained developmental milestones similar to controls. Activity level, motor ability and coordination, and learning and memory skills of cloned mice were comparable with controls. Interestingly, clones gained more body weight than controls during adulthood. Increased body weight was attributable to higher body fat and was associated with hyperleptinemia and hyperinsulinemia indicating that cloned mice are obese. Cloned mice were not hyperphagic as adults and had hypersensitive leptin and melanocortin signaling systems. Longevity of cloned mice was comparable with that reported by the National Institute on Aging and the causes of death were typical for this strain of mouse. These studies represent the first comprehensive set of data to characterize cloned mice and provide critical information about the long-term effects of somatic cell cloning.
Collapse
Affiliation(s)
- Kellie L K Tamashiro
- Department of Psychiatry and Neuroscience Program, University of Cincinnati, Cincinnati, Ohio 45267-0559, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Czernik M, Iuso D, Toschi P, Khochbin S, Loi P. Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer. Nat Protoc 2016; 11:2170-2188. [PMID: 27711052 DOI: 10.1038/nprot.2016.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This protocol describes how to convert the chromatin structure of sheep and mouse somatic cells into spermatid-like nuclei through the heterologous expression of the protamine 1 gene (Prm1). Furthermore, we also provide step-by-step instructions for somatic cell nuclear transfer (SCNT) of Prm1-remodeled somatic nuclei in sheep oocytes. There is evidence that changing the organization of a somatic cell nucleus with that which mirrors the spermatozoon nucleus leads to better nuclear reprogramming. The protocol may have further potential application in determining the protamine and histone footprints of the whole genome; obtaining 'gametes' from somatic cells; and furthering understanding of the molecular mechanisms regulating the maintenance of DNA methylation in imprinted control regions during male gametogenesis. The protocol is straightforward, and it requires 4 weeks from the establishment of the cell lines to their transfection and the production of cloned blastocysts. It is necessary for researchers to have experience in cell biology and embryology, with basic skills in molecular biology, to carry out the protocol.
Collapse
Affiliation(s)
- Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Domenico Iuso
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Saadi Khochbin
- INSERM, U823, Institut Albert Bonniot, Université Grenoble Alpes, Grenoble, France
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
74
|
Moon SY, Eun HJ, Baek SK, Jin SJ, Kim TS, Kim SW, Seong HH, Choi IC, Lee JH. Activation-Induced Cytidine Deaminase Induces DNA Demethylation of Pluripotency Genes in Bovine Differentiated Cells. Cell Reprogram 2016; 18:298-308. [DOI: 10.1089/cell.2015.0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Song-Yi Moon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye-Ju Eun
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Jin Jin
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Republic of Korea
| | - Sung-Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - Hwan-Hoo Seong
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - In-Chul Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Republic of Korea
| |
Collapse
|
75
|
Wolf DP, Morey R, Kang E, Ma H, Hayama T, Laurent LC, Mitalipov S. Concise Review: Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer: A Horse in the Race? Stem Cells 2016; 35:26-34. [DOI: 10.1002/stem.2496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Don P. Wolf
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University; Portland Oregon USA
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center, Oregon Health & Science University; Beaverton Oregon USA
| | - Robert Morey
- Department of Reproductive Medicine; Sanford Consortium for Regenerative Medicine, University of California; San Diego, La Jolla California USA
| | - Eunju Kang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University; Portland Oregon USA
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center, Oregon Health & Science University; Beaverton Oregon USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University; Portland Oregon USA
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center, Oregon Health & Science University; Beaverton Oregon USA
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University; Portland Oregon USA
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center, Oregon Health & Science University; Beaverton Oregon USA
| | - Louise C. Laurent
- Department of Reproductive Medicine; Sanford Consortium for Regenerative Medicine, University of California; San Diego, La Jolla California USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University; Portland Oregon USA
- Division of Reproductive & Developmental Sciences; Oregon National Primate Research Center, Oregon Health & Science University; Beaverton Oregon USA
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland Oregon USA
- Departments of Obstetrics and Gynecology, Molecular and Medical Genetics, and Biomedical Engineering; Oregon Health & Science University; Portland Oregon USA
| |
Collapse
|
76
|
Abstract
Embryonic pluripotency can be recapitulated in vitro by a spectrum of pluripotent stem cell states stabilized with different culture conditions. Their distinct spatiotemporal characteristics provide an unprecedented tool for the study of early human development. The newly unveiled ability of some stem cell types for crossing xeno-barriers will facilitate the generation of interspecies chimeric embryos from distant species, including humans. When combined with efficient zygote genome editing technologies, xenogeneic human pluripotent stem cells may also open new frontiers for regenerative medicine applications, including the possibility of generating human organs in animals via interspecies chimeric complementation.
Collapse
|
77
|
Sato M, Maeda K, Koriyama M, Inada E, Saitoh I, Miura H, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S, Miyoshi K. The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs. Int J Mol Sci 2016; 17:E1424. [PMID: 27589724 PMCID: PMC5037703 DOI: 10.3390/ijms17091424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
The introduction of multigene constructs into single cells is important for improving the performance of domestic animals, as well as understanding basic biological processes. In particular, multigene constructs allow the engineering and integration of multiple genes related to xenotransplantation into the porcine genome. The piggyBac (PB) transposon system allows multiple genes to be stably integrated into target genomes through a single transfection event. However, to our knowledge, no attempt to introduce multiple genes into a porcine genome has been made using this system. In this study, we simultaneously introduced seven transposons into a single porcine embryonic fibroblast (PEF). PEFs were transfected with seven transposons containing genes for five drug resistance proteins and two (red and green) fluorescent proteins, together with a PB transposase expression vector, pTrans (experimental group). The above seven transposons (without pTrans) were transfected concomitantly (control group). Selection of these transfected cells in the presence of multiple selection drugs resulted in the survival of several clones derived from the experimental group, but not from the control. PCR analysis demonstrated that approximately 90% (12/13 tested) of the surviving clones possessed all of the introduced transposons. Splinkerette PCR demonstrated that the transposons were inserted through the TTAA target sites of PB. Somatic cell nuclear transfer (SCNT) using a PEF clone with multigene constructs demonstrated successful production of cloned blastocysts expressing both red and green fluorescence. These results indicate the feasibility of this PB-mediated method for simultaneous transfer of multigene constructs into the porcine cell genome, which is useful for production of cloned transgenic pigs expressing multiple transgenes.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Kosuke Maeda
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Miyu Koriyama
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| | - Issei Saitoh
- Division of Pediatric Dentistry, Department of Oral Health Sciences, Course for Oral Life Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| | - Hiromi Miura
- Department of Regenerative Medicine, Basic Medical Science, School of Medicine, Tokai University, Kanagawa 259-1193, Japan.
| | - Masato Ohtsuka
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Kanagawa 259-1193, Japan.
- The Institute of Medical Sciences, Tokai University, Kanagawa 259-1193, Japan.
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan.
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Graduate school of Medicine, Shinshu University, Nagano 390-8621, Japan.
| | - Satoshi Watanabe
- Animal Genome Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan.
| | - Kazuchika Miyoshi
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
78
|
Shapiro B. Pathways to de‐extinction: how close can we get to resurrection of an extinct species? Funct Ecol 2016. [DOI: 10.1111/1365-2435.12705] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beth Shapiro
- Department of Ecology and Evolutionary Biology and UCSC Genomics Institute University of California Santa Cruz 1156 High Street Santa Cruz CA95064 USA
| |
Collapse
|
79
|
Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Curr Opin Genet Dev 2016; 38:1-7. [PMID: 26953561 DOI: 10.1016/j.gde.2016.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
Abstract
Beyond their canonical role in efficient ATP production through oxidative metabolism, mitochondria are increasingly recognized as critical in defining stem cell function and fate. Implicating a fundamental interplay within the epigenetics of eukaryotic cell systems, the integrity of mitochondria is found vital across the developmental/differentiation spectrum from securing pluripotency maintenance to informing organotypic decisions. This overview will discuss recent progress on examining the plasticity of mitochondria in enabling the execution of programming and reprogramming regimens, as well as the application of nuclear reprogramming and somatic cell nuclear transfer as rescue techniques to generate genetically and functionally corrected pluripotent stem cells from patients with mitochondrial DNA-based disease.
Collapse
|
80
|
Fu B, Liu D, Ma H, Guo ZH, Wang L, Li ZQ, Peng FG, Bai J. Development of porcine tetraploid somatic cell nuclear transfer embryos is influenced by oocyte nuclei. Cell Biol Int 2015; 40:214-22. [PMID: 26503330 DOI: 10.1002/cbin.10554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022]
Abstract
Cloning efficiency in mammalian systems remains low because reprogramming of donor cells is frequently incomplete. Nuclear factors in the oocyte are removed by enucleation, and this removal may adversely affect reprogramming efficiency. Here, we investigated the role of porcine oocyte nuclear factors during reprogramming. We introduced somatic cell nuclei into intact MII oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. We then examined the influence of the oocyte nucleus on tetraploid SCNT embryo development by assessing characteristics including pronucleus formation, cleavage rate, and blastocyst formation. Overall, tetraploid SCNT embryos have a higher developmental competence than do standard diploid SCNT embryos. Therefore, we have established an embryonic model in which a fetal fibroblast nucleus and an oocyte metaphase II plate coexist. Tetraploid SCNT represents a new research platform that is potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Di Liu
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.,College of Animal Science, Northeast Agriculture University, Harbin, 150030, China
| | - Hong Ma
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhen-Hua Guo
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Liang Wang
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhong-Qiu Li
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Fu-Gang Peng
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jing Bai
- Modern Education Technology and Information Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
81
|
Ectopic liver and gallbladder in a cloned dog: Possible nonheritable anomaly. Theriogenology 2015; 84:995-1002. [PMID: 26159091 DOI: 10.1016/j.theriogenology.2015.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 01/21/2023]
Abstract
Ectopic liver and gallbladder are rare anomalies usually not accompanied by any symptoms and are found during surgical exploration or autopsy. We aimed to find a cause of this anomaly using somatic cell nuclear transfer (SCNT) technology, which can produce genetically identical organisms. A cloned beagle having ectopic organs was produced and died on the day of birth. Major and ectopic organs were fixed and underwent histologic analysis. SCNT was performed using cells derived from the dead puppy to produce reclones. Normality of internal organs in the original donor dog and recloned dogs was evaluated by computed tomography. While a liver without the gallbladder was located in the abdominal cavity of the cloned dog, a well-defined, reddish brown mass with a small sac was also positioned outside of the thoracic cavity. Histologically, they presented as normal liver and gallbladder. Five reclones were produced, and computed tomography results revealed that the original donor dog and reclones had normal liver and gallbladder structure and location. This is the first report of both ectopic liver and gallbladder in an organism and investigation on the etiology of these abnormalities. Normal organ structure and position in the original donor dog and reclones suggests that the ectopic liver and gallbladder is a possible nonheritable anomaly.
Collapse
|
82
|
Paramio MT, Izquierdo D. Current status of in vitro embryo production in sheep and goats. Reprod Domest Anim 2015; 49 Suppl 4:37-48. [PMID: 25277431 DOI: 10.1111/rda.12334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/17/2014] [Indexed: 11/26/2022]
Abstract
Sheep and goat production is an important economic activity in Spain with an increasing interest in milk production. Multiovulation and Embryo Transfer (MOET) and In vitro Embryo Production (IVEP) are assisted reproductive technologies aimed at increasing the genetic diffusion of females. In vitro embryo production is a multi-step methodology comprising the following procedures: (i) In vitro Maturation (IVM) of oocytes recovered directly from the follicles, (ii) In vitro Fertilization (IVF) or co-incubation of capacitated spermatozoa with in vitro matured oocytes and (iii) In vitro culture (IVC) of zygotes up to the blastocyst stage. In vitro embryo production from oocytes recovered from prepubertal females is called JIVET (Juvenile in vitro Embryo Transfer) and allows shortened generation intervals and increased genetic gain. Embryo production together with embryo cryoconservation would allow large-scale embryo marketing, a pathogen-free genetic movement and easier and cheaper germplasm commercial transactions. Commercial Embryo activity in small ruminants is low compared to cows in the European Union (data from the European Embryo Transfer Association) and in the world (data from the International Embryo Transfer Association). There is less IVEP research in small ruminants compared to other livestock species. The aim of this review was to provide an overview of the current status of IVEP of small ruminant with an emphasis on (i) description of the main methodologies currently used for IVM, IVF and IVC of embryos (ii) comparing procedures and outputs from JIVET and IVEP of adult females and (iii) the future research perspectives of this technology.
Collapse
Affiliation(s)
- M-T Paramio
- Department of Animal and Food Sciences, University Autonomous of Barcelona, Barcelona, Spain
| | | |
Collapse
|
83
|
Chen H, Zhang L, Guo Z, Wang Y, He R, Qin Y, Quan F, Zhang Y. Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C. Mol Reprod Dev 2015. [PMID: 26212732 DOI: 10.1002/mrd.22531] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vitamin C (Vc) has been widely studied in cell and embryo culture, and has recently been demonstrated to promote cellular reprogramming. The objective of this study was to identify a suitable Vc concentration that, when used to treat adult bovine fibroblasts serving as donor cells for nuclear transfer, improved donor-cell physiology and the developmental potential of the cloned embryos that the donor nuclei were used to create. A Vc concentration of 0.15 mM promoted cell proliferation and increased donor-cell 5-hydroxy methyl cytosine levels 2.73-fold (P < 0.05). The blastocyst rate was also significantly improved after nuclear transfer (39.6% treated vs. 26.0% control, P < 0.05); the average number of apoptotic cells in cloned blastocysts was significantly reduced (2.2 vs. 4.4, P < 0.05); and the inner cell mass-to-trophectoderm ratio (38.25% vs. 30.75%, P < 0.05) and expression of SOX2 (3.71-fold, P < 0.05) and POU5F1 (3.15-fold, P < 0.05) were significantly increased. These results suggested that Vc promotes cell proliferation, decreases DNA methylation levels in donor cells, and improves the developmental competence of bovine somatic-cell nuclear transfer embryos.
Collapse
Affiliation(s)
- Huanhuan Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Rongjun He
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yumin Qin
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, China
| |
Collapse
|
84
|
Iwamoto D, Yamagata K, Kishi M, Hayashi-Takanaka Y, Kimura H, Wakayama T, Saeki K. Early development of cloned bovine embryos produced from oocytes enucleated by fluorescence metaphase II imaging using a conventional halogen-lamp microscope. Cell Reprogram 2015; 17:106-14. [PMID: 25826723 DOI: 10.1089/cell.2014.0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enucleation of a recipient oocyte is one of the key processes in the procedure of somatic cell nuclear transfer (SCNT). However, especially in bovine species, lipid droplets spreading in the ooplasm hamper identification and enucleation of metaphase II (MII) chromosomes, and thereby the success rate of the cloning remains low. In this study we used a new experimental system that enables fluorescent observation of chromosomes in living oocytes without any damage. We succeeded in visualizing and removing the MII chromosome in matured bovine oocytes. This experimental system consists of injecting fluorescence-labeled antibody conjugates that bind to chromosomes and fluorescent observation using a conventional halogen-lamp microscope. The cleavage rates and blastocyst rates of bovine embryos following in vitro fertilization (IVF) decreased as the concentration of the antibody increased (p<0.05). The enucleation rate of the conventional method (blind enucleation) was 86%, whereas all oocytes injected with the antibody conjugates were enucleated successfully. Fusion rates and developmental rates of SCNT embryos produced with the enucleated oocytes were the same as those of the blind enucleation group (p>0.05). For the production of SCNT embryos, the new system can be used as a reliable predictor of the location of metaphase plates in opaque oocytes, such as those in ruminant animals.
Collapse
Affiliation(s)
- Daisaku Iwamoto
- 1 Department of Genetic Engineering, Kinki University , Kinokawa, Wakayama, 649-6493, Japan
| | | | | | | | | | | | | |
Collapse
|
85
|
Lee JH, Lee WJ, Jeon RH, Lee YM, Jang SJ, Lee SL, Jeon BG, Ock SA, King WA, Rho GJ. Development and gene expression of porcine cloned embryos derived from bone marrow stem cells with overexpressing Oct4 and Sox2. Cell Reprogram 2015; 16:428-38. [PMID: 25437870 DOI: 10.1089/cell.2014.0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study compared the potential of porcine bone marrow mesenchymal stem cells (pBMSCs) at different passages as nuclear transfer (NT) donors and the developmental efficiency of NT embryos from donor cells transfected with/without Oct4 and Sox2. Early-passage pBMSCs showed higher proliferation and expression of Oct4 and Sox2 and differentiation potential into mesenchymal lineages than middle- and late-passage pBMSCs. Cleavage rate did not differ among pBMSCs at different passages, but NT embryos with early-passage pBMSCs and middle-passage pBMSCs transfected with Oct4 (Oct4-pBMSCs) had significantly (p<0.05) higher blastocyst development than those with middle-passage pBMSCs. The incidence of apoptotic bodies in NT blastocysts from late-passage pBMSCs and Sox2-transfected middle-passage pBMSCs (Sox2-pBMSCs) was significantly (p<0.05) higher than others. The transcriptional levels of Oct4, Sox2, Nanog, Cdx2, Dnmt3a, and Igf2r genes were significantly (p<0.05) higher in Oct4- and Sox2-pBMSCs NT embryos. Middle-passage pBMSCs NT embryos revealed lower transcriptional levels of Bcl2 than others, except Sox2-pBMSCs NT embryos. The transcriptional level of Bax increased gradually in NT embryos derived from pBMSCs following extended passages and was significantly (p<0.05) higher in Sox2-pBMSCs NT embryos. Our results demonstrated that early-passage pBMSCs are more potent in expressing transcription factors and displayed higher differentiation ability, and middle-passage pBMSCs transfected with Oct4 improved the developmental efficiency of NT embryos, suggesting that high Oct4 expression cells are more efficient as NT donors.
Collapse
Affiliation(s)
- Jeong-Hyeon Lee
- 1 Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University , Jinju, 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
|
87
|
López-Iglesias P, Alcaina Y, Tapia N, Sabour D, Arauzo-Bravo MJ, Sainz de la Maza D, Berra E, O'Mara AN, Nistal M, Ortega S, Donovan PJ, Schöler HR, De Miguel MP. Hypoxia induces pluripotency in primordial germ cells by HIF1α stabilization and Oct4 deregulation. Antioxid Redox Signal 2015; 22:205-23. [PMID: 25226357 DOI: 10.1089/ars.2014.5871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To study the mechanisms of pluripotency induction, we compared gene expression in pluripotent embryonic germ cells (EGCs) and unipotent primordial germ cells (PGCs). RESULTS We found 11 genes ≥1.5-fold overexpressed in EGCs. None of the genes identified was the Yamanaka genes but instead related to glycolytic metabolism. The prospect of pluripotency induction by cell metabolism manipulation was investigated by hypoxic culturing. Hypoxia induced a glycolytic program in PGCs in detriment of mitochondrial oxidative phosphorylation. We demonstrate that hypoxia alone induces reprogramming in PGCs, giving rise to hypoxia-induced EGC-like cells (hiEGLs), which differentiate into cells of the three germ layers in vitro and contribute to the internal cell mass of the blastocyst in vivo, demonstrating pluripotency. The mechanism of hypoxia induction involves HIF1α stabilization and Oct4 deregulation. However, hiEGL cannot be passaged long term. Self-renewal capacity is not achieved by hypoxia likely due to the lack of upregulation of c-Myc and Klf4. Gene expression analysis of hypoxia signaling suggests that hiEGLs have not reached the stabilization phase of cell reprogramming. INNOVATION AND CONCLUSION Our data suggest that the two main properties of stemness, pluripotency and self-renewal, are differentially regulated in PGC reprogramming induced by hypoxia.
Collapse
Affiliation(s)
- Pilar López-Iglesias
- 1 Cell Engineering Laboratory, IdiPaz, La Paz Hospital Research Institute , Madrid Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Kwon S, Jeong S, Jeong YS, Park JS, Cui XS, Kim NH, Kang YK. Assessment of difference in gene expression profile between embryos of different derivations. Cell Reprogram 2014; 17:49-58. [PMID: 25549061 DOI: 10.1089/cell.2014.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Researchers have exerted sustained efforts to improve the viability of somatic cell nuclear transfer (SCNT) embryos, testing their experimental designs and probing the resultant embryos. However, the lack of a reliable method to estimate the efficacy of these experimental attempts is a chief hindrance to tackling the low-viability problem in SCNT. Here, we introduce a procedure that assesses the degree of difference in gene expression profiles (GEPs) of blastocysts from each other as a representative control of good quality. We first adapted a multiplex reverse transcription-polymerase chain reaction strategy to obtain GEPs for 15 reprogramming-related genes from single mouse blastocysts. GEPs of individual blastocysts displayed a broad range of variations, the extent of which was calculated using a weighted root mean square deviation (wRMSD). wRMSD-based quantitation of GEP difference (qGEP) found that GEP difference between in vivo-derived blastocysts (in vivo) and SCNT blastocysts was greater than the difference between in vivo blastocysts and in vitro-produced (IVP) blastocysts, demonstrating that the SCNT group was more distantly related to the in vivo group than the IVP group. Our qGEP approach for grading individual blastocysts would be useful for selecting a better protocol to derive embryos of better quality prior to field applications.
Collapse
Affiliation(s)
- Sujin Kwon
- 1 Epigenetics Research Center , KRIBB, Daejeon, 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
89
|
Heo YT, Quan X, Xu YN, Baek S, Choi H, Kim NH, Kim J. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev 2014; 24:393-402. [PMID: 25209165 DOI: 10.1089/scd.2014.0278] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.
Collapse
Affiliation(s)
- Young Tae Heo
- 1 Department of Animal Sciences, Center for the Animal Bioreactor and Xenotransplantation, Chungbuk National University , Cheongju, South Korea
| | | | | | | | | | | | | |
Collapse
|
90
|
Li G, Jia Q, Zhao J, Li X, Yu M, Samuel MS, Zhao S, Prather RS, Li C. Dysregulation of genome-wide gene expression and DNA methylation in abnormal cloned piglets. BMC Genomics 2014; 15:811. [PMID: 25253444 PMCID: PMC4189204 DOI: 10.1186/1471-2164-15-811] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 09/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Epigenetic modifications (especially altered DNA methylation) resulting in altered gene expression may be one reason for development failure or abnormalities in cloned animals, but the underlying mechanism of the abnormal phenotype in cloned piglets remains unknown. Some cloned piglets in our study showed abnormal phenotypes such as large tongue (longer and thicker), weak muscles, and exomphalos. Here we conducted DNA methylation (DNAm) immunoprecipitation and high throughput sequencing (MeDIP-seq) and RNA sequencing (RNA-seq) of muscle tissues of cloned piglets to investigate the relationship of abnormal DNAm with gene dysregulation and the unusual phenotypes in cloned piglets. Results Analysis of the methylomes revealed that abnormal cloned piglets suffered more hypomethylation than hypermethylation compared to the normal cloned piglets, although the DNAm level in the CpG Island was higher in the abnormal cloned piglets. Some repetitive elements, such as SINE/tRNA-Glu Satellite/centr also showed differences. We detected 1,711 differentially expressed genes (DEGs) between the two groups, of which 243 genes also changed methylation level in the abnormal cloned piglets. The altered DNA methylation mainly affected the low and silently expressed genes. There were differences in both pathways and genes, such as the MAPK signalling pathway, the hypertrophic cardiomyopathy pathway, and the imprinted gene PLAGL1; all of which may play important roles in development of the abnormal phenotype. Conclusions The abnormal cloned piglets showed substantial changes both in the DNAm and the gene expression. Our data may provide new insights into understanding the molecular mechanisms of the reprogramming of genetic information in cloned animals. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-811) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
91
|
|
92
|
Zhang X, Wang D, Han Y, Duan F, Lv Q, Li Z. Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas. J Assist Reprod Genet 2014; 31:1511-7. [PMID: 25172095 DOI: 10.1007/s10815-014-0320-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To determine the expression patterns of imprinted genes and their methylation status in aborted cloned porcine fetuses and placentas. METHODS RNA and DNA were prepared from fetuses and placentas that were produced by SCNT and controls from artificial insemination. The expression of 18 imprinted genes was determined by quantitative real-time PCR (q-PCR). Bisulfite sequencing PCR (BSP) was conducted to determine the methylation status of PRE-1 short interspersed repetitive element (SINE), satellite DNA and H19 differentially methylated region 3 (DMR3). RESULTS The weight, imprinted gene expression and genome-wide DNA methylation patterns were compared between the mid-gestation aborted and normal control samples. The results showed hypermethylation of PRE-1 and satellite sequences, the aberrant expression of imprinted genes, and the hypomethylation of H19 DMR3 occurred in mid-gestation aborted fetuses and placentas. CONCLUSIONS Cloned pigs generated by somatic cell nuclear transfer (SCNT) showed a greater ratio of early abortion during mid-gestation than did normal controls because of the incomplete epigenetic reprogramming of the donor cells. Altered expression of imprinted genes and the hypermethylation profile of the repetitive regions (PRE-1 and satellite DNA) may be associated with defective development and early abortion of cloned pigs, emphasizing the importance of epigenetics during pregnancy and implications thereof for patient-specific embryonic stem cells for human therapeutic cloning and improvement of human assisted reproduction.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, China,
| | | | | | | | | | | |
Collapse
|
93
|
Bakhtari A, Ross PJ. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos. Epigenetics 2014; 9:1271-9. [PMID: 25147917 DOI: 10.4161/epi.32087] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dppa3 has been described in mice as an important maternal factor contributed by the oocyte that participates in protecting the maternal genome from oxidation of methylated cytosines (5mC) to hydroxymethylated cytosines (5hmC). Dppa3 is also required for normal mouse preimplantation development. This gene is poorly conserved across mammalian species, with less than 32% of protein sequence shared between mouse, cow and human. RNA-seq analysis of bovine oocytes and preimplantation embryos revealed that DPPA3 transcripts are some of the most highly abundant mRNAs in the oocyte, and their levels gradually decrease toward the time of embryonic genome activation (EGA). Knockdown of DPPA3 by injection of siRNA in germinal vesicle (GV) stage oocytes was used to assess its role in epigenetic remodeling and embryo development. DPPA3 knockdown resulted in increased intensity of 5hmC staining in the maternal pronucleus (PN), demonstrating a role for this factor in the asymmetric remodeling of the maternal and paternal PN in bovine zygotes. Also, DPPA3 knockdown decreased the developmental competence of parthenogenetic and in vitro fertilized embryos. Finally, DPPA3 knockdown embryos that reached the blastocyst stage had significantly fewer ICM cells as compared with control embryos. We conclude that DPPA3 is a maternal factor important for correct epigenetic remodeling and normal embryonic development in cattle, indicating that the role of DPPA3 during early development is conserved between species.
Collapse
Affiliation(s)
- Azizollah Bakhtari
- Department of Animal Science; University of California; Davis, CA USA; Department of Animal Science; Isfahan University of Technology; Isfahan, Iran
| | - Pablo J Ross
- Department of Animal Science; University of California; Davis, CA USA
| |
Collapse
|
94
|
Clulow J, Trudeau VL, Kouba AJ. Amphibian Declines in the Twenty-First Century: Why We Need Assisted Reproductive Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:275-316. [DOI: 10.1007/978-1-4939-0820-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
95
|
Sangalli JR, Chiaratti MR, De Bem THC, de Araújo RR, Bressan FF, Sampaio RV, Perecin F, Smith LC, King WA, Meirelles FV. Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One 2014; 9:e101022. [PMID: 24959750 PMCID: PMC4069182 DOI: 10.1371/journal.pone.0101022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
Cloning of mammals by somatic cell nuclear transfer (SCNT) is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis), have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA) in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post-implantation development of cloned cattle.
Collapse
Affiliation(s)
- Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
- * E-mail:
| | - Marcos Roberto Chiaratti
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Tiago Henrique Camara De Bem
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Reno Roldi de Araújo
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fabiana Fernandes Bressan
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Felipe Perecin
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence Charles Smith
- Centre de recherche em reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Willian Allan King
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
96
|
Urine as a source of stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 129:19-32. [PMID: 23038280 DOI: 10.1007/10_2012_157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditionally, clinicians and researchers have relied on a skin biopsy or blood extraction as relatively accessible supplies for in vitro cell expansion and biological studies. Perhaps surprisingly, limited attention has been given to a totally noninvasive source, urine, which eliminates the discomfort associated with other procedures. This may arise from the perception that urine is merely a body waste. Yet, the analysis of urine is a longstanding fundamental test for diagnostic purposes and nowadays there is growing interest in using urine for detecting biomarkers. In addition, recent work including ours reinforces the idea that urine contains a variety of viable cell types with relevant applications. In this review, we describe those cell types and their potential uses.
Collapse
|
97
|
Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics 2014; 9:803-15. [PMID: 24709985 DOI: 10.4161/epi.28711] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders.
Collapse
Affiliation(s)
- Rodrigo Urrego
- Grupo CENTAURO; Universidad de Antioquia; Medellín, Colombia; Facultad de Medicina Veterinaria y Zootecnia; Grupo INCA-CES; Universidad CES; Medellín, Colombia
| | | | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Mariensee, Germany
| |
Collapse
|
98
|
Ma H, Ma Q, Lu Y, Wang J, Hu W, Gong Z, Cai L, Huang Y, Huang SZ, Zeng F. PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol 2014; 33:484-91. [PMID: 24754538 DOI: 10.1089/dna.2013.2124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Streptomyces phage φC31 integrase induces efficient site-specific recombination capable of integrating exogenous genes at pseudo attP sites in human, mouse, rat, rabbit, sheep, Drosophila, and bovine genomes. However, the φC31-mediated recombination between attB and the corresponding pseudo attP sites has not been investigated in Capra hircus. Here, we identified eight pseudo attP sites located in the intron or intergenic regions of the C. hircus genome, and demonstrated different levels of foreign gene expression after φC31 integrase-mediated integration. These pseudo attP sites share similar sequences with each other and with pseudo attP sites in other mammalian genomes, and these are associated with a neighboring consensus motif found in other genomes. The application of the φC31 integrase system in C. hircus provides a new option for genetic engineering of this economically important goat species.
Collapse
Affiliation(s)
- Haiyan Ma
- 1 Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Meng L, Jia RX, Sun YY, Wang ZY, Wan YJ, Zhang YL, Zhong BS, Wang F. Growth regulation, imprinting, and epigenetic transcription-related gene expression differs in lung of deceased transgenic cloned and normal goats. Theriogenology 2014; 81:459-66. [DOI: 10.1016/j.theriogenology.2013.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
|
100
|
Benevento M, Munoz J. Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced pluripotent stem cells. Expert Rev Proteomics 2014; 9:379-99. [DOI: 10.1586/epr.12.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|