51
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
52
|
Su X, Li Y, Ren Y, Cao M, Yang G, Luo J, Hu Z, Deng H, Deng M, Liu B, Yao Z. A new strategy for overcoming drug resistance in liver cancer: Epigenetic regulation. Biomed Pharmacother 2024; 176:116902. [PMID: 38870626 DOI: 10.1016/j.biopha.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.
Collapse
Affiliation(s)
- Xiaorui Su
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ziyi Hu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
53
|
Yuan T, Wankhede D, Edelmann D, Kather JN, Tagscherer KE, Roth W, Bewerunge-Hudler M, Brobeil A, Kloor M, Bläker H, Brenner H, Hoffmeister M. Large-scale external validation and meta-analysis of gene methylation biomarkers in tumor tissue for colorectal cancer prognosis. EBioMedicine 2024; 105:105223. [PMID: 38917511 PMCID: PMC11255517 DOI: 10.1016/j.ebiom.2024.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND DNA methylation biomarkers in colorectal cancer (CRC) tissue hold potential as prognostic indicators. However, individual studies have yielded heterogeneous results, and external validation is largely absent. We conducted a comprehensive external validation and meta-analysis of previously suggested gene methylation biomarkers for CRC prognosis. METHODS We performed a systematic search to identify relevant studies investigating gene methylation biomarkers for CRC prognosis until March 2024. Our external validation cohort with long-term follow-up included 2303 patients with CRC from 22 hospitals in southwest Germany. We used Cox regression analyses to assess associations between previously suggested gene methylation biomarkers and prognosis, adjusting for clinical variables. We calculated pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) using random-effects models. FINDINGS Of 151 single gene and 29 multiple gene methylation biomarkers identified from 121 studies, 37 single gene and seven multiple gene biomarkers were significantly associated with CRC prognosis after adjustment for clinical variables. Moreover, the directions of these associations with prognosis remained consistent between the original studies and our validation analyses. Seven single biomarkers and two multi-biomarker signatures were significantly associated with CRC prognosis in the meta-analysis, with a relatively strong level of evidence for CDKN2A, WNT5A, MLH1, and EVL. INTERPRETATION In a comprehensive evaluation of the so far identified gene methylation biomarkers for CRC prognosis, we identified candidates with potential clinical relevance for further investigation. FUNDING The German Research Council, the Interdisciplinary Research Program of the National Center for Tumor Diseases (NCT), Germany, the German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | | | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Alexander Brobeil
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Kloor
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
54
|
Wakim JG, Spakowitz AJ. Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins. Proc Natl Acad Sci U S A 2024; 121:e2317911121. [PMID: 38900792 PMCID: PMC11214050 DOI: 10.1073/pnas.2317911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024] Open
Abstract
Euchromatin is an accessible phase of genetic material containing genes that encode proteins with increased expression levels. The structure of euchromatin in vitro has been described as a 30-nm fiber formed from ordered nucleosome arrays. However, recent advances in microscopy have revealed an in vivo euchromatin architecture that is much more disordered, characterized by variable-length linker DNA and sporadic nucleosome clusters. In this work, we develop a theoretical model to elucidate factors contributing to the disordered in vivo architecture of euchromatin. We begin by developing a 1D model of nucleosome positioning that captures the interactions between bound epigenetic reader proteins to predict the distribution of DNA linker lengths between adjacent nucleosomes. We then use the predicted linker lengths to construct 3D chromatin configurations consistent with the physical properties of DNA within the nucleosome array, and we evaluate the distribution of nucleosome cluster sizes in those configurations. Our model reproduces experimental cluster-size distributions, which are dramatically influenced by the local pattern of epigenetic marks and the concentration of reader proteins. Based on our model, we attribute the disordered arrangement of euchromatin to the heterogeneous binding of reader proteins and subsequent short-range interactions between bound reader proteins on adjacent nucleosomes. By replicating experimental results with our physics-based model, we propose a mechanism for euchromatin organization in the nucleus that impacts gene regulation and the maintenance of epigenetic marks.
Collapse
Affiliation(s)
- Joseph G. Wakim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
| |
Collapse
|
55
|
Jeong H, Mendizabal I, Yi SV. Human Brain Aging is Associated with Dysregulation of Cell-Type Epigenetic Identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596981. [PMID: 38895434 PMCID: PMC11185522 DOI: 10.1101/2024.06.01.596981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging. A key missing piece of information, however, is the molecular mechanisms underlying these processes, and how they are related, if any. Addressing the limitations of previous research due to the limited number of investigated CpGs and the heterogeneous nature of tissue samples, here we have examined DNA methylation of over 20 million CpGs across a broad age span in neurons and non-neuronal cells, primarily oligodendrocytes. We show that aging is a primary predictor of DNA methylation variation, surpassing the influence of factors such as sex and schizophrenia diagnosis, among others. On the genome-wide scale, epigenetic drift manifests as significant yet subtle trends that are influenced by the methylation level of individual CpGs. We reveal that CpGs that are highly differentiated between cell types are especially prone to age-associated DNA methylation alterations, leading to the divergence of epigenetic cell type identities as individuals age. On the other hand, CpGs that are included in commonly used epigenetic clocks tend to be those sites that are not highly cell type differentiated. Therefore, dysregulation of epigenetic cell-type identities and current DNA epigenetic clocks represent distinct features of age-associated DNA methylation alterations.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Current Address: Altos Labs, San Diego, CA, USA
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Translational prostate cancer Research lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Ecology, Evolution, and Marine Biology, Department of Molecular, Cellular, and Cell Biology, Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
56
|
Atmaca HN, Gun S, Onal M, Tural S. Promoter methylation status of RASSF1A and RASSF2A tumor suppressor genes in endometrial endometrioid carcinomas. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1369-1381. [PMID: 38830238 DOI: 10.1080/15257770.2024.2356744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/04/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
We aimed to investigate the promoter methylation status of RASSF1A and RASSF2A tumor suppressor genes in endometrial endometrioid carcinomas with p53 wild type and mismatch repair proficient. Genomic DNAs were isolated from 50 specimens (15 formalin-fixed paraffin embedded tumor tissues, 15 paired blood samples and 20 normal endometrial tissues). Bisulfide modification and methylation-specific polymerase chain reaction were performed. As a result of the study, while no significance was found for RASSF1A gene (p = 0.08), a statistically significance was found for RASSF2A gene (p < 0.001), RASSF2A gene methylation status was also found higher in high grade tumors, advanced age (≥50) and nonsmokers groups. Our results indicate that RASSF2A gene may play a role in the carcinogenesis of endometrioid and it could be potential biomarker for early detection for endometrioid carcinoma. Further and larger investigations are needed to confirm our results.
Collapse
Affiliation(s)
- Habibe Nur Atmaca
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| | - Seda Gun
- Department of Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| | - Mesut Onal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| | - Sengul Tural
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
57
|
Bica C, Jurj A, Harangus A, Ciocan C, Moldovan A, Zanoaga O, Burz C, Ferracin M, Raduly L, Berindan-Neagoe I. miRNA patterns in male LUSC patients - the 3-way mirror: Tissue, plasma and exosomes. Transl Oncol 2024; 44:101951. [PMID: 38564933 PMCID: PMC11002298 DOI: 10.1016/j.tranon.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related deaths worldwide. It is classified into two main histological groups: non-small cell lung cancer (NSCLC) and small cell lung cancer. Improving the outcome of cancer patients could be possible by enhancing the early diagnosis. In the current study, we evaluated the levels of three microRNAs - miR-21-5p, miR-155-5p, and miR-181a-5p in tumor (TT) vs adjacent normal tissue (NT), as well as their expression levels in plasma and extracellular vesicles (EVs) from plasma in lung squamous cell carcinoma (LUSC) male patients vs healthy individuals as means to identify a panel of miRNAs that could serve as novel biomarkers for the diagnosis of LUSC in male patients. Matched paired tissue samples from male LUSC (n=40) patients were used for miRNA expression analysis. MiR-21-5p and miR-155-5p in tumor tissue were overexpressed, while underexpression of miR-181a-5p was observed in LUSC TT vs NT. These results were further validated in the TCGA LUSC dataset, considering 279 male samples. These alterations of miR-21-5p, miR-181a-5p, and miR-155-5p in tumor tissue are also present in plasma and plasma extracellular vesicles in LUSC male patients. In addition, ROC curves were performed to assess the sensitivity and specificity of different combinations of these miRNAs, confirming a high diagnostic accuracy for LUSC of up to 88 % in male subjects. The expression levels in tissue samples and the abundance in plasma and plasma EVs of the three miRNAs combined - miR-21-5p, miR-155-5p and miR-181a-5p - could be considered for further studies on biomarkers for the early detection of LUSC in male subjects.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania; Research Center for Advanced Medicine-MedFUTURE, Department of Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | | | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Alin Moldovan
- Leon Daniello Pulmonology Hospital, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Claudia Burz
- Department of Immunology and Allergology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", 400015 Cluj-Napoca, Romania
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| |
Collapse
|
58
|
Climent M, García-Giménez JL. Special Issue "The Role of Non-Coding RNAs Involved in Cardiovascular Diseases and Cellular Communication". Int J Mol Sci 2024; 25:6034. [PMID: 38892220 PMCID: PMC11172417 DOI: 10.3390/ijms25116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the great progress in diagnosis, prevention, and treatment, cardiovascular diseases (CVDs) are still the most prominent cause of death worldwide [...].
Collapse
Affiliation(s)
- Montserrat Climent
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| |
Collapse
|
59
|
Di Martino P, Marcozzi V, Bibbò S, Ghinassi B, Di Baldassarre A, Gaggi G, Di Credico A. Unraveling the Epigenetic Landscape: Insights into Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Brain Sci 2024; 14:553. [PMID: 38928553 PMCID: PMC11202179 DOI: 10.3390/brainsci14060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pierpaolo Di Martino
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Valentina Marcozzi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Sandra Bibbò
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
60
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
61
|
Wang J, Zhao E, Geng B, Zhang W, Li Z, Liu Q, Liu W, Zhang W, Hou W, Zhang N, Liu Z, You B, Wu P, Li X. Downregulation of UBB potentiates SP1/VEGFA-dependent angiogenesis in clear cell renal cell carcinoma. Oncogene 2024; 43:1386-1396. [PMID: 38467852 PMCID: PMC11065696 DOI: 10.1038/s41388-024-03003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) presents a unique profile characterized by high levels of angiogenesis and robust vascularization. Understanding the underlying mechanisms driving this heterogeneity is essential for developing effective therapeutic strategies. This study revealed that ubiquitin B (UBB) is downregulated in ccRCC, which adversely affects the survival of ccRCC patients. UBB exerts regulatory control over vascular endothelial growth factor A (VEGFA) by directly interacting with specificity protein 1 (SP1), consequently exerting significant influence on angiogenic processes. Subsequently, we validated that DNA methyltransferase 3 alpha (DNMT3A) is located in the promoter of UBB to epigenetically inhibit UBB transcription. Additionally, we found that an unharmonious UBB/VEGFA ratio mediates pazopanib resistance in ccRCC. These findings underscore the critical involvement of UBB in antiangiogenic therapy and unveil a novel therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Bo Geng
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhuolun Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Qing Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Department of Radiation Oncology, Urology, and Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Weiyang Liu
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenfu Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhiming Liu
- Department of Urology, Shanghai Fengxian District Central Hospital, Shanghai, 200233, China
| | - Bosen You
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui, 230001, China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, China.
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China.
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
62
|
Wang H, Xiong X, Zhang J, Wu M, Gu Y, Chen Y, Gu Y, Wang P. Near-Infrared Light-Driven Nanoparticles for Cancer Photoimmunotherapy by Synergizing Immune Cell Death and Epigenetic Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309202. [PMID: 38100237 DOI: 10.1002/smll.202309202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Indexed: 05/25/2024]
Abstract
Histone deacetylases (HDACs) are a class of epigenetic enzymes that are closely related to tumorigenesis and suppress the expression of tumor suppressor genes. Whereas the HDACs inhibitors can release DNA into the cytoplasm and trigger innate immunity. However, the high density of chromatin limits DNA damage and release. In this study, suitable nanosized CycNHOH NPs (150 nm) and CypNHOH NPs (85 nm) efficiently accumulate at the tumor site due to the enhanced permeability and retention (EPR) effect. In addition, robust single-linear oxygen generation and good photothermal conversion efficiency under NIR laser irradiation accelerated the DNA damage process. By effectively initiating immune cell death, CypNHOH NPs activated both innate and adaptive immunity by maturing dendritic cells, infiltrating tumors with natural killer cells, and activating cytotoxic T lymphocytes, which offer a fresh perspective for the development of photo-immunotherapy.
Collapse
Affiliation(s)
- Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohui Xiong
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Meicen Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Yinhui Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanli Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - YueQing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
63
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
64
|
Targa G, Mottarlini F, Rizzi B, Taddini S, Parolaro S, Fumagalli F, Caffino L. Anorexia-Induced Hypoleptinemia Drives Adaptations in the JAK2/STAT3 Pathway in the Ventral and Dorsal Hippocampus of Female Rats. Nutrients 2024; 16:1171. [PMID: 38674862 PMCID: PMC11054075 DOI: 10.3390/nu16081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Leptin is an appetite-regulating adipokine that is reduced in patients with anorexia nervosa (AN), a psychiatric disorder characterized by self-imposed starvation, and has been linked to hyperactivity, a hallmark of AN. However, it remains unknown how leptin receptor (LepR) and its JAK2-STAT3 downstream pathway in extrahypothalamic brain areas, such as the dorsal (dHip) and ventral (vHip) hippocampus, crucial for spatial memory and emotion regulation, may contribute to the maintenance of AN behaviors. Taking advantage of the activity-based anorexia (ABA) model (i.e., the combination of food restriction and physical activity), we observed reduced leptin plasma levels in adolescent female ABA rats at the acute phase of the disorder [post-natal day (PND) 42], while the levels increased over control levels following a 7-day recovery period (PND49). The analysis of the intracellular leptin pathway revealed that ABA rats showed an overall decrease of the LepR/JAK2/STAT3 signaling in dHip at both time points, while in vHip we observed a transition from hypo- (PND42) to hyperactivation (PND49) of the pathway. These changes might add knowledge on starvation-induced fluctuations in leptin levels and in hippocampal leptin signaling as initial drivers of the transition from adaptative mechanisms to starvation toward the maintenance of aberrant behaviors typical of AN patients, such as perpetuating restraint over eating.
Collapse
Affiliation(s)
- Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
- Center for Neuroscience, University of Camerino, 62032 Camerino, Italy
| | - Sofia Taddini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Susanna Parolaro
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (G.T.); (F.M.); (B.R.); (S.T.); (S.P.); (F.F.)
| |
Collapse
|
65
|
Du P, Chen Y, Li Q, Gai Z, Bai H, Zhang L, Liu Y, Cao Y, Zhai Y, Jin W. CancerMHL: the database of integrating key DNA methylation, histone modifications and lncRNAs in cancer. Database (Oxford) 2024; 2024:baae029. [PMID: 38613826 PMCID: PMC11015892 DOI: 10.1093/database/baae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
The discovery of key epigenetic modifications in cancer is of great significance for the study of disease biomarkers. Through the mining of epigenetic modification data relevant to cancer, some researches on epigenetic modifications are accumulating. In order to make it easier to integrate the effects of key epigenetic modifications on the related cancers, we established CancerMHL (http://www.positionprediction.cn/), which provide key DNA methylation, histone modifications and lncRNAs as well as the effect of these key epigenetic modifications on gene expression in several cancers. To facilitate data retrieval, CancerMHL offers flexible query options and filters, allowing users to access specific key epigenetic modifications according to their own needs. In addition, based on the epigenetic modification data, three online prediction tools had been offered in CancerMHL for users. CancerMHL will be a useful resource platform for further exploring novel and potential biomarkers and therapeutic targets in cancer. Database URL: http://www.positionprediction.cn/.
Collapse
Affiliation(s)
- Pengyu Du
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yingli Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Zhimin Gai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Hui Bai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Luqiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yuxian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yanni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Yuanyuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| | - Wen Jin
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue Road, Hohhot 010021, China
| |
Collapse
|
66
|
Montjean D, Beaumont M, Natiq A, Louanjli N, Hazout A, Miron P, Liehr T, Cabry R, Ratbi I, Benkhalifa M. Genome and Epigenome Disorders and Male Infertility: Feedback from 15 Years of Clinical and Research Experience. Genes (Basel) 2024; 15:377. [PMID: 38540436 PMCID: PMC10970370 DOI: 10.3390/genes15030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Infertility affects around 20% of couples of reproductive age; however, in some societies, as many as one-third of couples are unable to conceive. Different factors contribute to the decline of male fertility, such us environmental and professional exposure to endocrine disruptors, oxidative stress, and life habits with the risk of de novo epigenetics dysregulation. Since the fantastic development of new "omes and omics" technologies, the contribution of inherited or de novo genomes and epigenome disorders to male infertility have been further elucidated. Many other techniques have become available to andrology laboratories for the investigation of genome and epigenome integrity and the maturation and the competency of spermatozoa. All these new methods of assessment are highlighting the importance of genetics and epigenetics investigation for assisted reproduction pathology and for supporting professionals in counselling patients and proposing different management strategies for male infertility. This aims to improve clinical outcomes while minimizing the risk of genetics or health problems at birth.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Centers Laval and Brossard, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada; (D.M.)
| | - Marion Beaumont
- Genetics Department, Eylau/Unilabs Laboratory, 92110 Clichy, France;
| | - Abdelhafid Natiq
- Center for Genomics of Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco (I.R.)
- National Laboratory Mohammed VI, Mohammed VI Foundation of Casablanca, Casablanca, Morocco
| | | | - Andre Hazout
- Andro-Genetics Unit, Labomac, Casablanca, Morocco (A.H.)
| | - Pierre Miron
- Fertilys Fertility Centers Laval and Brossard, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada; (D.M.)
| | - Thomas Liehr
- Institute für Humangenetik, Universitätsklinikum Jena, Friedrich Schiller Universität, 07743 Jena, Germany
| | - Rosalie Cabry
- Reproductive Medicine, Reproductive Biology & Genetics, CECOS Picardie, University Hospital & School of Medicine, Picardie University Jules Verne, 80000 Amiens, France
- PeriTox Laboratory, Perinatality & Toxic Risks, UMR-I 01 INERIS, Picardie University Jules Verne, 80000 Amiens, France
| | - Ilham Ratbi
- Center for Genomics of Human Pathologies (GENOPATH), Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco (I.R.)
- Medical Genetics Unit, Ibn Sina University Hospital Center, Rabat, Morocco
| | - Moncef Benkhalifa
- Fertilys Fertility Centers Laval and Brossard, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada; (D.M.)
- Reproductive Medicine, Reproductive Biology & Genetics, CECOS Picardie, University Hospital & School of Medicine, Picardie University Jules Verne, 80000 Amiens, France
- PeriTox Laboratory, Perinatality & Toxic Risks, UMR-I 01 INERIS, Picardie University Jules Verne, 80000 Amiens, France
| |
Collapse
|
67
|
Wei S, Zhang J, Zhao R, Shi R, An L, Yu Z, Zhang Q, Zhang J, Yao Y, Li H, Wang H. Histone lactylation promotes malignant progression by facilitating USP39 expression to target PI3K/AKT/HIF-1α signal pathway in endometrial carcinoma. Cell Death Discov 2024; 10:121. [PMID: 38459014 PMCID: PMC10923933 DOI: 10.1038/s41420-024-01898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Histone lactylation has been reported to involve in tumorigenesis and development. However, its biological regulatory mechanism in endometrial carcinoma (EC) is yet to be reported in detail. In the present study, we evaluated the modification levels of global lactylation in EC tissues by immunohistochemistry and western blot, and it was elevated. The non-metabolizable glucose analog 2-deoxy-d-glucose (2-DG) and oxamate treatment could decrease the level of lactylation so as to inhibit the proliferation and migration ability, induce apoptosis significantly, and arrest the cell cycle of EC cells. Mechanically, histone lactylation stimulated USP39 expression to promote tumor progression. Moreover, USP39 activated PI3K/AKT/HIF-1α signaling pathway via interacting with and stabilizing PGK1 to stimulate glycolysis. The results of present study suggest that histone lactylation plays an important role in the progression of EC by promoting the malignant biological behavior of EC cells, thus providing insights into potential therapeutic strategies for endometrial cancer.
Collapse
Affiliation(s)
- Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiarui Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yuwei Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
68
|
Lin Z, Yang L. Identification of a CpG-based signature coupled with gene expression as prognostic indicators for melanoma: a preliminary study. Sci Rep 2024; 14:5302. [PMID: 38438381 PMCID: PMC10912562 DOI: 10.1038/s41598-023-50614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024] Open
Abstract
DNA methylation is an important part of the genomic biology, which recently allowed the identification of key biomarkers for a variety of cancers, including cutaneous melanoma. Despite the current knowledge in cutaneous melanoma, there is a clear need for new efficient biomarkers in clinical application of detection. We use The Cancer Genome Atlas data as a training set and a multi-stage screening strategy to identify prognostic characteristics of melanoma based on DNA methylation. Three DNA methylation CpG sites were identified to be related to the overall survival in the skin cutaneous melanoma cohort. This signature was validated in two independent datasets from Gene Expression Omnibus. The stratified analysis by clinical stage, age, gender, and grade retained the statistical significance. The methylation signature was significantly correlated with immune cells and anti-tumor immune response. Moreover, gene expression corresponding to the candidate CpG locus was also significantly correlated with the survival rate of the patient. About 49% of the prognostic effects of methylation are mediated by affecting the expression of the corresponding genes. The prognostic characteristics of DNA methylation combined with clinical information provide a better prediction value tool for melanoma patients than the clinical information alone. However, more experiments are required to validate these findings. Overall, this signature presents a prospect of novel and wide-ranging applications for appropriate clinical adjuvant trails.
Collapse
Affiliation(s)
- Zhen Lin
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
69
|
Zhang S, Xie S, Zheng Y, Chen Z, Xu C. Current advances in rodent drug-resistant temporal lobe epilepsy models: Hints from laboratory studies. Neurochem Int 2024; 174:105699. [PMID: 38382810 DOI: 10.1016/j.neuint.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Anti-seizure drugs (ASDs) are the first choice for the treatment of epilepsy, but there is still one-third of patients with epilepsy (PWEs) who are resistant to two or more appropriately chosen ASDs, named drug-resistant epilepsy (DRE). Temporal lobe epilepsy (TLE), a common type of epilepsy usually associated with hippocampal sclerosis (HS), shares the highest proportion of drug resistance (approximately 70%). In view of the key role of the temporal lobe in memory, emotion, and other physiological functions, patients with drug-resistant temporal lobe epilepsy (DR-TLE) are often accompanied by serious complications, and surgical procedures also yield extra considerations. The exact mechanisms for the genesis of DR-TLE remain unillustrated, which makes it hard to manage patients with DR-TLE in clinical practice. Animal models of DR-TLE play an irreplaceable role in both understanding the mechanism and searching for new therapeutic strategies or drugs. In this review article, we systematically summarized different types of current DR-TLE models, and then recent advances in mechanism investigations obtained in these models were presented, especially with the development of advanced experimental techniques and tools. We are deeply encouraged that novel strategies show great therapeutic potential in those DR-TLE models. Based on the big steps reached from the bench, a new light has been shed on the precise management of DR-TLE.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyang Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
70
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
71
|
Klimczak S, Śliwińska A. Epigenetic regulation of inflammation in insulin resistance. Semin Cell Dev Biol 2024; 154:185-192. [PMID: 36109307 DOI: 10.1016/j.semcdb.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
Abstract
Epigenetics focuses on the study of changes in gene expression based on modifications that do not interfere with the DNA sequence, such as DNA methylation, post-translational histone modification, and non-coding RNA. Epigenetic changes regulate the expression of many genes, including inflammatory ones. Chronic inflammation is often accompanied by insulin resistance (IR), which is characteristic of inter alia type 2 diabetes. Recently, it has been reported that altered epigenetic signature in the promoter regions of inflammatory genes may contribute to the development of IR. Therefore, the aim of this review is to present the current state of knowledge regarding the epigenetic regulation of inflammation in IR. It includes original papers published from 2014 to 2022. It appears that hypomethylation of the SOCS3 gene increases the risk of IR, while the alteration of H3K4me in the NF-kB promoter promotes changes in inflammatory phenotype. Finally, in hyperglycemic states associated with IR, altered levels of H3K4/K9m3 and H3K9/K14ac result in increased expression of the inflammatory cytokine IL-6. In addition, numerous miRNAs have been identified that may become a target in the fight against diseases related to inflammation and IR. Future studies should examine the epigenetic modifications of IR inflammatory markers associated with environmental factors.
Collapse
Affiliation(s)
- S Klimczak
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; AllerGen, Center of Personalized Medicine, 97-300 Piotrkow Trybunalski, Poland.
| | - A Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
72
|
Yu Y, Fu W, Xie Y, Jiang X, Wang H, Yang X. A review on recent advances in assays for DNMT1: a promising diagnostic biomarker for multiple human cancers. Analyst 2024; 149:1002-1021. [PMID: 38204433 DOI: 10.1039/d3an01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.
Collapse
Affiliation(s)
- Yang Yu
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Fu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yaxing Xie
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Wang
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
73
|
Yu Z, Xu Z, Li S, Tian Z, Feng Y, Zhao H, Xue G, Cui J, Yan C, Yuan J. Prophylactic vitamin C supplementation regulates DNA demethylation to protect against cisplatin-induced acute kidney injury in mice. Biochem Biophys Res Commun 2024; 695:149463. [PMID: 38176172 DOI: 10.1016/j.bbrc.2023.149463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Cisplatin-induced acute kidney injury (AKI) restricts the use of cisplatin as a first-line chemotherapeutic agent. Our previous study showed that prophylactic vitamin C supplementation may act as an epigenetic modulator in alleviating cisplatin-induced AKI in mice. However, the targets of vitamin C and the mechanisms underlying the epigenetics changes remain largely unknown. Herein, whole-genome bisulfite sequencing and bulk RNA sequencing were performed on the kidney tissues of mice treated with cisplatin with prophylactic vitamin C supplementation (treatment mice) or phosphate-buffered saline (control mice) at 24 h after cisplatin treatment. Ascorbyl phosphate magnesium (APM), an oxidation-resistant vitamin C derivative, was found that led to global hypomethylation in the kidney tissue and regulated different functional genes in the promoter region and gene body region. Integrated evidence suggested that APM enhanced renal ion transport and metabolism, and reduced apoptosis and inflammation in the kidney tissues. Strikingly, Mapk15, Slc22a6, Cxcl5, and Cd44 were the potential targets of APM that conferred protection against cisplatin-induced AKI. Moreover, APM was found to be difficult to rescue cell proliferation and apoptosis caused by cisplatin in the Slc22a6 knockdown cell line. These results elucidate the mechanism by which vitamin C as an epigenetic regulator to protects against cisplatin-induced AKI and provides a new perspective and evidence support for controlling the disease process through regulating DNA methylation.
Collapse
Affiliation(s)
- Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Fuxing Road 8th, Haidian District, Beijing, 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Fuxing Road 8th, Haidian District, Beijing, 100853, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
74
|
Kim C, Harrall KK, Glueck DH, Hockett C, Dabelea D. Epigenetic age acceleration is associated with speed of pubertal growth but not age of pubertal onset. Sci Rep 2024; 14:2981. [PMID: 38316849 PMCID: PMC10844280 DOI: 10.1038/s41598-024-53508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Using data from a longitudinal cohort of children, we examined whether epigenetic age acceleration (EAA) was associated with pubertal growth and whether these associations were mediated by adiposity. We examined associations between EAA at approximately 10 years of age with pubertal growth metrics, including age at peak height velocity (PHV), PHV, and sex steroid levels and whether these associations were mediated by measures of adiposity including body mass index (BMI) and MRI-assessed visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Children (n = 135) with accelerated EAA had higher PHV (β 0.018, p = 0.0008) although the effect size was small. The association between EAA and age at PHV was not significant (β - 0.0022, p = 0.067). Although EAA was associated with higher BMI (β 0.16, p = 0.0041), VAT (β 0.50, p = 0.037), and SAT (β 3.47, p = 0.0076), BMI and VAT did not mediate associations between EAA and PHV, while SAT explained 8.4% of the association. Boys with higher EAA had lower total testosterone (β - 12.03, p = 0.0014), but associations between EAA and other sex steroids were not significant, and EAA was not associated with sex steroid levels in girls. We conclude that EAA did not have strong associations with either age at onset of puberty or pubertal growth speed, although associations with growth speed were statistically significant. Studies with larger sample sizes are needed to confirm this pattern of associations.
Collapse
Affiliation(s)
- Catherine Kim
- Departments of Medicine, Obstetrics & Gynecology, and Epidemiology, University of Michigan, 2800 Plymouth Road, Building 16, Room 405E, Ann Arbor, MI, 48109, USA.
| | - Kylie K Harrall
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christine Hockett
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver, Aurora, CO, USA
- Avera Research Institute, Sioux Falls, SD, USA
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Epidemiology, University of Colorado, Aurora, CO, USA
| |
Collapse
|
75
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
76
|
Zhuang S, Hu T, Zhou X, Zhou H, He S, Li J, Qiu L, Zhang Y, Xu Y, Pei H, Gu D, Wang J. meHOLMES: A CRISPR-cas12a-based method for rapid detection of DNA methylation in a sequence-independent manner. Heliyon 2024; 10:e24574. [PMID: 38312601 PMCID: PMC10834821 DOI: 10.1016/j.heliyon.2024.e24574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Aberrant DNA methylation is closely associated with various diseases, particularly cancer, and its precise detection plays an essential role in disease diagnosis and monitoring. In this study, we present a novel DNA methylation detection method (namely meHOLMES), which integrates both the TET2/APOBEC-mediated cytosine deamination step and the CRISPR-Cas12a-based signal readout step. TET2/APOBEC efficiently converts unmethylated cytosine to uracil, which is subsequently changed to thymine after PCR amplification. Utilizing a rationally designed crRNA, Cas12a specifically identifies unconverted methylated cytosines and generates detectable signals using either fluorescent reporters or lateral flow test strips. meHOLMES quantitatively detects methylated CpG sites with or without Protospacer Adjacent Motif (PAM) sequences in both artificial and real biological samples. In addition, meHOLMES can complete the whole detection process within 6 h, which is much faster than traditional bisulfite-based sample pre-treatment method. Above all, meHOLMES provides a simpler, faster, more accurate, and cost-effective approach for quantitation of DNA methylation levels in a sequence-independent manner.
Collapse
Affiliation(s)
- Songkuan Zhuang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Tianshuai Hu
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518060, China
| | - Xike Zhou
- The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu 214007, China
| | - Hongzhong Zhou
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518060, China
| | - Shiping He
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518060, China
| | - Jie Li
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518060, China
| | - Long Qiu
- Tolo Biotechnology Co., Ltd, Wuxi, Jiangsu 214174, China
| | - Yuehui Zhang
- Shenzhen Bao An Peoples Hospital, Shenzhen 518060, China
| | - Yong Xu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen 518112, China
| | - Hao Pei
- The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu 214007, China
| | - Dayong Gu
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518060, China
| | - Jin Wang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518060, China
- Tolo Biotechnology Co., Ltd, Wuxi, Jiangsu 214174, China
| |
Collapse
|
77
|
Martini A, Cozza A, Di Pasquale Fiasca VM. The Inheritance of Hearing Loss and Deafness: A Historical Perspective. Audiol Res 2024; 14:116-128. [PMID: 38391767 PMCID: PMC10886121 DOI: 10.3390/audiolres14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
If the term "genetics" is a relatively recent proposition, introduced in 1905 by English biologist William Bateson, who rediscovered and spread in the scientific community Mendel's principles of inheritance, since the dawn of human civilization the influence of heredity has been recognized, especially in agricultural crops and animal breeding. And, later, in familial dynasties. In this concise review, we outline the evolution of the idea of hereditary hearing loss, up to the current knowledge of molecular genetics and epigenetics.
Collapse
Affiliation(s)
- Alessandro Martini
- Padova University Research Center "International Auditory Processing Project in Venice (I-APPROVE)", Department of Neurosciences, University of Padua, 35128 Padua, Italy
| | - Andrea Cozza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | | |
Collapse
|
78
|
sanei M, Amirheidari B, Satarzadeh N. Mutuality of epigenetic and nanoparticles: two sides of a coin. Heliyon 2024; 10:e23679. [PMID: 38187314 PMCID: PMC10767507 DOI: 10.1016/j.heliyon.2023.e23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Nowadays nanoparticles (NPs) due to their multidimensional applications in enormous different fields, has become an exciting research topic. In particular, they could attract a noticeable interest as drug deliver with increased bioavailability, therapeutic efficacy and drug specificity. Epigenetic can be considered as a complex network of molecular mechanism which are engaged in gene expression and have a vital role in regulation of environmental effects on ethology of different disorders like neurological disorders, cancers and cardiovascular diseases. For many of them epigenetic therapy was proposed although its application accompanied with limitations, due to drug toxicity. In this review we evaluate two aspects to epigenetic in the field of NPs: firstly, the role of epigenetic in regulation of nanotoxicity and secondly application of NPs as potential carriers for epidrugs.
Collapse
Affiliation(s)
- Maryam sanei
- Islamic Azad University, Faculty of Medicine, Mashhad branch, Mashhad, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Naghmeh Satarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
79
|
Mahalanobish S, Ghosh S, Sil PC. Genetic Underpinnings of Pulmonary Fibrosis: An Overview. Cardiovasc Hematol Agents Med Chem 2024; 22:367-374. [PMID: 38284708 DOI: 10.2174/0118715257261006231207113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder, in which genetic and environmental factors are involved in disease onset. Although, by definition, the disease is considered idiopathic in nature, evidence-based studies have indicated familial cases of pulmonary fibrosis, in which genetic factors contribute to IPF pathogenesis. METHODS Both common as well as rare genetic variants are associated with sporadic as well as familial forms of IPF. Although clinical inferences of the genetic association have still not been explored properly, observation-based studies have found a genotypic influence on disease development and outcome. RESULTS Based on genetic studies, individuals with a risk of IPF can be easily identified and can be classified more precisely. Identification of genetic variants also helps to develop more effective therapeutic approaches. CONCLUSION Further comprehensive research is needed to get a blueprint of IPF pathogenesis. The rapidly evolving field of genetic engineering and molecular biology, along with the bioinformatics approach, will possibly explore a new horizon very soon to achieve this goal.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| |
Collapse
|
80
|
Kumar V, Dhanjal JK, Sari AN, Khurana M, Kaul SC, Wadhwa R, Sundar D. Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy. Curr Top Med Chem 2024; 24:379-391. [PMID: 37496252 DOI: 10.2174/1568026623666230726105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. OBJECTIVE In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. METHODS We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. RESULTS Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. CONCLUSION The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.
Collapse
Affiliation(s)
- Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110020, India
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Anissa Nofita Sari
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Mallika Khurana
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Sunil C Kaul
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Renu Wadhwa
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
81
|
Yuan T, Edelmann D, Kather JN, Fan Z, Tagscherer KE, Roth W, Bewerunge-Hudler M, Brobeil A, Kloor M, Bläker H, Burwinkel B, Brenner H, Hoffmeister M. CpG-biomarkers in tumor tissue and prediction models for the survival of colorectal cancer: A systematic review and external validation study. Crit Rev Oncol Hematol 2024; 193:104199. [PMID: 37952858 DOI: 10.1016/j.critrevonc.2023.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The research aimed to identify previously published CpG-methylation-based prognostic biomarkers and prediction models for colorectal cancer (CRC) prognosis and validate them in a large external cohort. A systematic search was conducted, analyzing 298 unique CpGs and 12 CpG-based prognostic models from 28 studies. After adjustment for clinical variables, 48 CpGs and five prognostic models were confirmed to be associated with survival. However, the discrimination ability of the models was insufficient, with area under the receiver operating characteristic curves ranging from 0.53 to 0.62. Calibration accuracy was mostly poor, and no significant added prognostic value beyond traditional clinical variables was observed. All prognostic models were rated at high risk of bias. While a fraction of CpGs showed potential clinical utility and generalizability, the CpG-based prognostic models performed poorly and lacked clinical relevance.
Collapse
Affiliation(s)
- Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Ziwen Fan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin E Tagscherer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Alexander Brobeil
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
82
|
Akram F, Tanveer R, Andleeb S, Shah FI, Ahmad T, Shehzadi S, Akhtar AM, Syed G. Deciphering the Epigenetic Symphony of Cancer: Insights and Epigenetic Therapies Implications. Technol Cancer Res Treat 2024; 23:15330338241250317. [PMID: 38780251 PMCID: PMC11119348 DOI: 10.1177/15330338241250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rida Tanveer
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fatima Iftikhar Shah
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Tayyab Ahmad
- Department of Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Somia Shehzadi
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | | | - Ghania Syed
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
83
|
Pandey C, Tiwari P. Differential microRNAs Expression during Cancer Development, and Chemoprevention by Natural Compounds: A Comprehensive Review. J Environ Pathol Toxicol Oncol 2024; 43:65-80. [PMID: 39016142 DOI: 10.1615/jenvironpatholtoxicoloncol.2024050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
MicroRNAs are short non-coding RNAs that inhibit gene expression at the post-transcriptional level. Abnormal microRNA expression has been associated with different human diseases, including cancer. Epigenetic changes, mutation, transcriptional deregulation, DNA copy number abnormalities, and defects in the biogenesis machinery play an important role in abnormal microRNA expression. Modulation of microRNAs by natural agents has emerged to enhance the efficacy of conventional chemotherapy through combinatorial therapeutic approach. This review summarizes the current understanding of abnormal microRNA expression in cancer, the different cellular mechanisms of microRNA, and their prevention by natural compounds. Understanding microRNA expression patterns during cancer development may help to identify stage-specific molecular markers. Natural compounds that exert regulatory effects by modulating microRNAs can be used in better cancer chemopreventive strategies by directly targeting microRNAs or as a way to increase sensitivity to existing chemotherapy regimens.
Collapse
Affiliation(s)
- Chhaya Pandey
- School of Environmental Biology, Awadhesh Pratap Singh University, Rewa-486001, Madhya Pradesh, India
| | | |
Collapse
|
84
|
Stols-Gonçalves D, Mak AL, Madsen MS, van der Vossen EWJ, Bruinstroop E, Henneman P, Mol F, Scheithauer TPM, Smits L, Witjes J, Meijnikman AS, Verheij J, Nieuwdorp M, Holleboom AG, Levin E. Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease: a multi-omics approach. Gut Microbes 2023; 15:2223330. [PMID: 37317027 DOI: 10.1080/19490976.2023.2223330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Individuals with nonalcoholic fatty liver disease (NAFLD) have an altered gut microbiota composition. Moreover, hepatic DNA methylation may be altered in the state of NAFLD. Using a fecal microbiota transplantation (FMT) intervention, we aimed to investigate whether a change in gut microbiota composition relates to altered liver DNA methylation in NAFLD. Moreover, we assessed whether plasma metabolite profiles altered by FMT relate to changes in liver DNA methylation. Twenty-one individuals with NAFLD underwent three 8-weekly vegan allogenic donor (n = 10) or autologous (n = 11) FMTs. We obtained hepatic DNA methylation profiles from paired liver biopsies of study participants before and after FMTs. We applied a multi-omics machine learning approach to identify changes in the gut microbiome, peripheral blood metabolome and liver DNA methylome, and analyzed cross-omics correlations. Vegan allogenic donor FMT compared to autologous FMT induced distinct differential changes in I) gut microbiota profiles, including increased abundance of Eubacterium siraeum and potential probiotic Blautia wexlerae; II) plasma metabolites, including altered levels of phenylacetylcarnitine (PAC) and phenylacetylglutamine (PAG) both from gut-derived phenylacetic acid, and of several choline-derived long-chain acylcholines; and III) hepatic DNA methylation profiles, most importantly in Threonyl-TRNA Synthetase 1 (TARS) and Zinc finger protein 57 (ZFP57). Multi-omics analysis showed that Gemmiger formicillis and Firmicutes bacterium_CAG_170 positively correlated with both PAC and PAG. E siraeum negatively correlated with DNA methylation of cg16885113 in ZFP57. Alterations in gut microbiota composition by FMT caused widespread changes in plasma metabolites (e.g. PAC, PAG, and choline-derived metabolites) and liver DNA methylation profiles in individuals with NAFLD. These results indicate that FMTs might induce metaorganismal pathway changes, from the gut bacteria to the liver.
Collapse
Affiliation(s)
- Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mette S Madsen
- Gubra, Hørsholm, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Eveline Bruinstroop
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Femke Mol
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Torsten P M Scheithauer
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam University Medical Centre (UMC), Vrije Universiteit (VU) University Medical Centre, Amsterdam, Netherlands
| | - Loek Smits
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Julia Witjes
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Abraham Stijn Meijnikman
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Horaizon BV, Delft, The Netherlands
| |
Collapse
|
85
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
86
|
Jankowski K, Jagana V, Bisserier M, Hadri L. Switch-Independent 3A: An Epigenetic Regulator in Cancer with New Implications for Pulmonary Arterial Hypertension. Biomedicines 2023; 12:10. [PMID: 38275371 PMCID: PMC10813728 DOI: 10.3390/biomedicines12010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNA, play a crucial role in the regulation of gene expression and are pivotal in biological processes like apoptosis, cell proliferation, and differentiation. SIN3a serves as a scaffold protein and facilitates interactions with transcriptional epigenetic partners and specific DNA-binding transcription factors to modulate gene expression by adding or removing epigenetic marks. However, the activation or repression of gene expression depends on the factors that interact with SIN3a, as it can recruit both transcriptional activators and repressors. The role of SIN3a has been extensively investigated in the context of cancer, including melanoma, lung, and breast cancer. Our group is interested in defining the roles of SIN3a and its partners in pulmonary vascular disease. Pulmonary arterial hypertension (PAH) is a multifactorial disease often described as a cancer-like disease and characterized by disrupted cellular metabolism, sustained vascular cell proliferation, and resistance to apoptosis. Molecularly, PAH shares many common signaling pathways with cancer cells, offering the opportunity to further consider therapeutic strategies used for cancer. As a result, many signaling pathways observed in cancer were studied in PAH and have encouraged new research studying SIN3a's role in PAH due to its impact on cancer growth. This comparison offers new therapeutic options. In this review, we delineate the SIN3a-associated epigenetic mechanisms in cancer and PAH cells and highlight their impact on cell survival and proliferation. Furthermore, we explore in detail the role of SIN3a in cancer to provide new insights into its emerging role in PAH pathogenesis.
Collapse
Affiliation(s)
- Katherine Jankowski
- Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vineeta Jagana
- Department of Cell Biology and Anatomy & Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY 10595, USA; (V.J.); (M.B.)
| | - Malik Bisserier
- Department of Cell Biology and Anatomy & Physiology, New York Medical College, 15 Dana Road, BSB 131A, Valhalla, NY 10595, USA; (V.J.); (M.B.)
| | - Lahouaria Hadri
- Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
87
|
Huang S, Peng J, Gan Y, Chen L, Zhu Z, Tian F, Ji L, Fan Y, Zhou C, Bao J. Jieduquyuziyin prescription enhances CD11a and CD70 DNA methylation of CD4 + T cells via miR-29b-sp1/DNMT1 pathway in MRL/lpr mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116776. [PMID: 37343653 DOI: 10.1016/j.jep.2023.116776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieduquyuziyin prescription (JP) is a traditional Chinese medicine utilized to treat systemic lupus erythematosus (SLE). Its efficacy has been confirmed through clinical trials and empirical evidence, leading to its authorized use in Chinese hospitals. The development of JP exemplifies the integration of traditional wisdom and scientific approaches, demonstrating the interdisciplinary essence of ethnopharmacology. These results emphasize the potential value of traditional medicine in addressing autoimmune disorders. AIM OF THE STUDY This study aims to address the effect of JP in MRL/lpr mice and elucidate the pharmacological mechanism by which JP targets CD11a and CD70 DNA methylation via the miR-29b-sp1/DNMT1 pathway. MATERIALS AND METHODS MRL/lpr mice were divided into three groups: the model group (received distilled water), the positive group (administered AAV/miR-29b-3p inhibitor), and the JP group (treated with JP decoction). C57BL/6 mice were constituted as a control group. Through ELISA assay, serum and urine samples were assessed for anti-dsDNA, TNF-α, TGF-β, IL-2, and UP. HE and Masson staining were conducted to reveal renal pathology. Genome DNA was extracted from CD4+ T cells of mice spleens to evaluate methylation level. The methylation of CD11a, CD70, and CD40L promoter regions was analyzed by targeted bisulfate sequencing. Their expression at the mRNA and protein levels was examined using quantitative real-time PCR, western blot analysis, immunohistochemistry, and immunofluorescence staining of kidney tissues. Furthermore, the molecular mechanisms underlying the regulation of the miR-29b-sp1/DNMT1 pathway by JP were explored with Jurkat cells transfected with miR-inhibitors or miR-mimics. RESULTS Mice treated with JP exhibited a significant decrease in anti-dsDNA, TNF-α, TGF-β, and UP, accompanied by a significant increase in IL-2. HE staining revealed JP effectively mitigated renal inflammatory response, while Masson staining indicated a reduction in collagen fiber content. In addition, JP exhibited a significant impact on the global hypomethylation of SLE, as evidenced by the induction of high methylation levels of CD11a and CD70 promoter regions, mediated through the miR-29b-sp1/DNMT1 pathway. CONCLUSION Our findings demonstrate JP exerts a protective effect against spontaneous SLE development, attenuates renal pathological changes, and functions as a miRNA inhibitor to enhance CD11a and CD70 DNA methylation through the modulation of the miR-29b-sp1/DNMT1 pathway.
Collapse
Affiliation(s)
- Shuo Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Jiaqi Peng
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yihong Gan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Leiming Chen
- Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China.
| | - Zhengyang Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.
| | - Fengyuan Tian
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Lina Ji
- Department of Rheumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yongsheng Fan
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Chuanlong Zhou
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Jie Bao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
88
|
Lai J, Liang J, Zhang Y, Zhang B, Wei J, Fan J, Chen L, Chen Z, Li Q, Guo D, Lin J, Chen Q. A drug-delivery depot for epigenetic modulation and enhanced cancer immunotherapy. Biomed Pharmacother 2023; 168:115687. [PMID: 37837882 DOI: 10.1016/j.biopha.2023.115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) have found widespread application in the management of cancer. Zebularine (Zeb), functioning as a demethylating agent, has exhibited notable advantages and enhanced therapeutic efficacy in the realm of tumour immunotherapy. Nevertheless, due to its lack of targeted functionality, standalone Zeb therapy necessitates the administration of a substantially higher dosage. In this investigation, we have devised an innovative nanodrug formulation, comprising the DNA methyltransferase inhibitor Zeb and pH-responsive chitosan (CS), hereinafter referred to as CS-Zeb nanoparticles (NPs). Our findings have unveiled that CS-Zeb NPs manifest heightened drug release within an acidic milieu (pH 5.5) in comparison to a neutral environment (pH 7.4). Furthermore, in vivo studies have conclusively affirmed that, in contrast to equivalent quantities of Zeb in isolation, the nanocomplex significantly curtailed tumour burden and protracted the survival duration of the B16F10 tumour-bearing murine model. Additionally, CS-Zeb NPs elicited an augmentation of CD8+ T cells within the peripheral circulation of mice and tumour-infiltrating lymphocytes (TILs). Notably, the dosage of CS-Zeb NPs was reduced by a remarkable 70-fold when juxtaposed with Zeb administered in isolation. To summarise, our study underscores the potential of CS-Zeb NPs as an alternative chemotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Bingchen Zhang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523058, PR China
| | - Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, PR China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, PR China.
| |
Collapse
|
89
|
Maguolo A, Gabbianelli R, Maffeis C. Micronutrients in early life and offspring metabolic health programming: a promising target for preventing non-communicable diseases. Eur J Clin Nutr 2023; 77:1105-1112. [PMID: 37604969 DOI: 10.1038/s41430-023-01333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Chronic non-communicable diseases are the leading cause of morbidity and mortality worldwide. Developing and implementing effective preventive strategies is the best way to ensure the overall metabolic health status of the population and to counter the global burden of non-communicable diseases. Predisposition to obesity and other non-communicable diseases is due to a combination of genetic and environmental factors throughout life, but the early environment, particularly the environment during the fetal period and the early years of life, is crucial in determining metabolic health, hence the concept of 'fetal programming'. The origins of this causal link between environmental factors and disease lie in epigenetic mechanisms. Among the environmental factors, diet plays a crucial role in this process. Substantial evidence documented the key role of macronutrients in the programming of metabolic diseases early in life. Recently, the effect of maternal micronutrient intake on offspring metabolic health in later life emerged. The purpose of this narrative review is to bring to light available evidence in the literature on the effect of maternal micronutrient status on offspring metabolic health and underlying epigenetic mechanisms that drive this link to highlight its potential role in the prevention of non-communicable diseases.
Collapse
Affiliation(s)
- Alice Maguolo
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy.
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders, Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| |
Collapse
|
90
|
Chen L, Zheng X, Liu W, Sun Y, Zhao S, Tian L, Tian W, Xue F, Kang C, Wang Y. Compound AC1Q3QWB upregulates CDKN1A and SOX17 by interrupting the HOTAIR-EZH2 interaction and enhances the efficacy of tazemetostat in endometrial cancer. Cancer Lett 2023; 578:216445. [PMID: 37866545 DOI: 10.1016/j.canlet.2023.216445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Endometrial cancer (EC) is a common malignancy of the female reproductive system, with an escalating incidence. Recurrent/metastatic EC presents a poor prognosis. The interaction between the long non-coding RNA (lncRNA) HOTAIR and the polycomb repressive complex 2 (PRC2) induces abnormal silencing of tumor suppressor genes, exerting a pivotal role in tumorigenesis. We have previously discovered AC1Q3QWB (AQB), a small-molecule compound targeting HOTAIR-EZH2 interaction. In the present study, we unveil that AQB selectively hampers the interaction between HOTAIR and EZH2 within EC cells, thus reversing the epigenetic suppression of tumor suppressor genes. Furthermore, our findings demonstrate AQB's synergistic effect with tazemetostat (TAZ), an EZH2 inhibitor, significantly boosting the expression of CDKN1A and SOX17. This, in turn, induces cell cycle arrest and impedes EC cell proliferation, migration, and invasion. In vivo experiments further validate AQB's potential by enhancing TAZ's anti-tumor efficacy at lower doses. Our results advocate AQB, a recently discovered small-molecule inhibitor, as a promising agent against EC cells. When combined with TAZ, it offers a novel therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Lingli Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenlu Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yiqing Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lina Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
91
|
Rowley MJ, Prout-Holm RA, Liu RW, Hendrickson-Rebizant T, Ige OO, Lakowski TM, Frankel A. Protein arginine N-methyltransferase 2 plays a noncatalytic role in the histone methylation activity of PRMT1. J Biol Chem 2023; 299:105360. [PMID: 37863263 PMCID: PMC10692916 DOI: 10.1016/j.jbc.2023.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Protein arginine N-methyltransferases are a family of epigenetic enzymes responsible for monomethylation or dimethylation of arginine residues on histones. Dysregulation of protein arginine N-methyltransferase activity can lead to aberrant gene expression and cancer. Recent studies have shown that PRMT2 expression and histone H3 methylation at arginine 8 are correlated with disease severity in glioblastoma multiforme, hepatocellular carcinoma, and renal cell carcinoma. In this study, we explore a noncatalytic mechanistic role for PRMT2 in histone methylation by investigating interactions between PRMT2, histone peptides and proteins, and other PRMTs using analytical and enzymatic approaches. We quantify interactions between PRMT2, peptide ligands, and PRMT1 in a cofactor- and domain-dependent manner using differential scanning fluorimetry. We found that PRMT2 modulates the substrate specificity of PRMT1. Using calf thymus histones as substrates, we saw that a 10-fold excess of PRMT2 promotes PRMT1 methylation of both histone H4 and histone H2A. We found equimolar or a 10-fold excess of PRMT2 to PRMT1 can improve the catalytic efficiency of PRMT1 towards individual histone substrates H2A, H3, and H4. We further evaluated the effects of PRMT2 towards PRMT1 on unmodified histone octamers and mononucleosomes and found marginal PRMT1 activity improvements in histone octamers but significantly greater methylation of mononucleosomes in the presence of 10-fold excess of PRMT2. This work reveals the ability of PRMT2 to serve a noncatalytic role through its SH3 domain in driving site-specific histone methylation marks.
Collapse
Affiliation(s)
- Michael J Rowley
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley A Prout-Holm
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Wen Liu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Olufola O Ige
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
92
|
Carreras-Gallo N, Dwaraka VB, Cáceres A, Smith R, Mendez TL, Went H, Gonzalez JR. Impact of tobacco, alcohol, and marijuana on genome-wide DNA methylation and its relationship with hypertension. Epigenetics 2023; 18:2214392. [PMID: 37216580 DOI: 10.1080/15592294.2023.2214392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Tobacco, alcohol, and marijuana consumption is an important public health problem because of their high use worldwide and their association with the risk of mortality and many health conditions, such as hypertension, which is the commonest risk factor for death throughout the world. A likely pathway of action of substance consumption leading to persistent hypertension is DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of the top CpG sites in the association between substance consumption and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol drinking and 528 by tobacco smoking. We did not find significant associations with marijuana consumption after correcting for multiple comparisons. We found 61 genes overlapping between alcohol and tobacco that were enriched in biological processes involved in the nervous and cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to SLC7A11 strongly mediated 70.5% of the effect of alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methylation should be considered for new targets in hypertension prevention and management, particularly concerning alcohol consumption. Our data also encourage further research into the use of methylation in blood to study the neurological and cardiovascular effects of substance consumption.
Collapse
Affiliation(s)
| | | | - Alejandro Cáceres
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | | | | | - Juan R Gonzalez
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
93
|
Liu X, Liu Z, Liu Y, Wang N. ATG9A modulated by miR-195-5p can boost the malignant progression of cervical cancer cells. Epigenetics 2023; 18:2257538. [PMID: 37782756 PMCID: PMC10547073 DOI: 10.1080/15592294.2023.2257538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Cervical cancer (CC) is a major public health problem, and its molecular mechanism requires further investigation. The goal of this study was to determine the role of miR-195-5p and the autophagy-related protein ATG9A in tumour metastasis, epithelial - mesenchymal transition (EMT), apoptosis, and autophagy of CC cells. Using bioinformatics analysis, we predicted ATG9A as a downstream target gene of miR-195-5p, an integral membrane protein required for autophagosome formation and involved in tumorigenesis. Next, western blotting and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that upregulation of miR-195-5p decreased protein and mRNA expression of ATG9A, and downregulation of miR-195-5p promoted ATG9A protein and mRNA expression. In addition, detection of the dual luciferase reporter gene further indicated ATG9A is a direct downstream target gene of miR-195-5p. Finally, the effects of miR-195-5p and ATG9A on CC cell proliferation, migration, invasion, EMT, autophagy, and apoptosis were evaluated in vitro. Our results showed that upregulation of miR-195-5p not only inhibits proliferation, migration, and the EMT of CC cells, but also induces apoptosis and autophagy. Conversely, downregulation of miR-195-5p increased malignant metastasis and the EMT of CC cells, and inhibited apoptosis as well as autophagy. In addition, miR-195-5p targeted and negatively regulated ATG9A, and rescue experiments suggested that overexpression of ATG9A could partially abolish miR-195-5p-mediated suppression of CC cells. Our findings improve our understanding of the mechanism of action of miR-195-5p in the malignant behaviour of CC. miR-195-5p is likely to be a promising cancer suppressor gene, which provides clinical evidence for targeted therapy of CC.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Zhen Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Yonggang Liu
- Department of Gynecology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Ning Wang
- Department of Gynecology, The Second Hospital of Dalian Medical University, DaLian, China
| |
Collapse
|
94
|
Yang C, Xiao Y, Wang X, Wei X, Wang J, Gao Y, Jiang Q, Ju Z, Zhang Y, Liu W, Huang N, Li Y, Gao Y, Wang L, Huang J. Coordinated alternation of DNA methylation and alternative splicing of PBRM1 affect bovine sperm structure and motility. Epigenetics 2023; 18:2183339. [PMID: 36866611 PMCID: PMC9988346 DOI: 10.1080/15592294.2023.2183339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
DNA methylation and gene alternative splicing drive spermatogenesis. In screening DNA methylation markers and transcripts related to sperm motility, semen from three pairs of full-sibling Holstein bulls with high and low motility was subjected to reduced representation bisulphite sequencing. A total of 948 DMRs were found in 874 genes (gDMRs). Approximately 89% of gDMR-related genes harboured alternative splicing events, including SMAD2, KIF17, and PBRM1. One DMR in exon 29 of PBRM1 with the highest 5mC ratio was found, and hypermethylation in this region was related to bull sperm motility. Furthermore, alternative splicing events at exon 29 of PBRM1 were found in bull testis, including PBRM1-complete, PBRM1-SV1 (exon 28 deletion), and PBRM1-SV2 (exons 28-29 deletion). PBRM1-SV2 exhibited significantly higher expression in adult bull testes than in newborn bull testes. In addition, PBRM1 was localized to the redundant nuclear membrane of bull sperm, which might be related to sperm motility caused by sperm tail breakage. Therefore, the hypermethylation of exon 29 may be associated with the production of PBRM1-SV2 in spermatogenesis. These findings indicated that DNA methylation alteration at specific loci could regulate gene splicing and expression and synergistically alter sperm structure and motility.
Collapse
Affiliation(s)
- Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China.,College of Life Sciences, Shandong Normal University, Jinan, P. R. China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Ning Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yanqin Li
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Lingling Wang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, P.R.China.,College of Life Sciences, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
95
|
Niazi SK. A Critical Analysis of the FDA's Omics-Driven Pharmacodynamic Biomarkers to Establish Biosimilarity. Pharmaceuticals (Basel) 2023; 16:1556. [PMID: 38004421 PMCID: PMC10675618 DOI: 10.3390/ph16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
Demonstrating biosimilarity entails comprehensive analytical assessment, clinical pharmacology profiling, and efficacy testing in patients for at least one medical indication, as required by the U.S. Biologics Price Competition and Innovation Act (BPCIA). The efficacy testing can be waived if the drug has known pharmacodynamic (PD) markers, leaving most therapeutic proteins out of this concession. To overcome this, the FDA suggests that biosimilar developers discover PD biomarkers using omics technologies such as proteomics, glycomics, transcriptomics, genomics, epigenomics, and metabolomics. This approach is redundant since the mode-action-action biomarkers of approved therapeutic proteins are already available, as compiled in this paper for the first time. Other potential biomarkers are receptor binding and pharmacokinetic profiling, which can be made more relevant to ensure biosimilarity without requiring biosimilar developers to conduct extensive research, for which they are rarely qualified.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
96
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
97
|
Zhang RN, Jing ZQ, Zhang L, Sun ZJ. Epigenetic regulation of pyroptosis in cancer: Molecular pathogenesis and targeting strategies. Cancer Lett 2023; 575:216413. [PMID: 37769798 DOI: 10.1016/j.canlet.2023.216413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Immune checkpoint blockade therapy has revolutionized the field of cancer treatment, leading to durable responses in patients with advanced and metastatic cancers where conventional therapies were insufficient. However, factors like immunosuppressive cells and immune checkpoint molecules within the tumor microenvironment (TME) can suppress the immune system and thus negatively affect the efficiency of immune checkpoint inhibitors. Pyroptosis, a gasdermin-induced programmed cell death, could transform "cold tumors" to "hot tumors" to improve the milieu of TME, thus enhancing the immune response and preventing tumor growth. Recently, evidence showed that epigenetics could regulate pyroptosis, which further affects tumorigenesis, suggesting that epigenetics-based tumor cells pyroptosis could be a promising therapeutic strategy. Hence, this review focuses on the pyroptotic mechanism and summarizes three common types of epigenetics, DNA methylation, histone modification, and non-coding RNA, all of which have a role in regulating the expression of transcription factors and proteins involved in pyroptosis in cancer. Especially, we discuss targeting strategies on epigenetic-regulated pyroptosis and provide insights on the future trend of cancer research which may fuel cancer therapies into a new step.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China
| | - Zhi-Qian Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
98
|
Nemoto T, Morita Y, Kakinuma Y. Stress response abnormalities transgenerationally inherited via miR-23 downregulation are restored by a methyl modulator during the lactation period. J Dev Orig Health Dis 2023; 14:678-686. [PMID: 38017666 DOI: 10.1017/s2040174423000363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Low birthweight rats due to fetal undernutrition sustain higher corticosterone levels when exposed to stress. This is due to the upregulated expression of the pituitary-specific Gas5, a long noncoding RNA (lncRNA) that acts as a glucocorticoid receptor decoy and then competitively inhibiting the binding of glucocorticoids to DNA. However, the mechanism of Gas5 lncRNA upregulation remains unclear. Therefore, using the fetal undernourished model, we identified the factors that regulated Gas5 lncRNA expression and examined their effect on subsequent generations. We found that the expression levels of miR-23 was significantly lower in low birth-weight rats compared with controls. The expression of miR-23 was significantly lower and the expression levels of Gas5 lncRNA were significantly higher in the pituitary gland of low birth-weight offspring of the F2 and F3 generations compared with controls. The methyl modulator intervention in lactating F0 maternal rats restored miR-23 and Gas5 lncRNA expressions not only in F1, F2 and F3 offspring. Moreover, the intervention reduced circulating corticosterone levels and gene expressions in the pituitary gland after restraint stress exposure. In conclusion, miR-23-mediated alterations of the stress response are inherited and restored by methyl modulator intervention during lactation.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo, Japan
| | - Yuki Morita
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo, Japan
| |
Collapse
|
99
|
Zu G, Sun Z, Chen Y, Geng J, Lv J, You Z, Jiang C, Sheng Q, Nie Z. The acetyltransferase BmCBP changes the acetylation modification of BmSP3 and affects its protein expression in silkworm, Bombyx mori. Mol Biol Rep 2023; 50:8509-8521. [PMID: 37642757 DOI: 10.1007/s11033-023-08699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Protein acetylation is an important post-translational modification (PTM) that widely exists in organisms. As a reversible PTM, acetylation modification can regulate the function of proteins with high efficiency. In the previous study, the acetylation sites of silkworm proteins were identified on a large scale by nano-HPLC/MS/MS (nanoscale high performance liquid chromatography-tandem secondary mass spectrometry), and a total of 11 acetylation sites were discovered on Bombyx mori nutrient-storage protein SP3 (BmSP3). The purpose of this study was to investigate the effect of acetylation level on BmSP3. METHODS AND RESULTS In this study, the acetylation of BmSP3 was further verified by immunoprecipitation (IP) and Western blotting. Then, it was confirmed that acetylation could up-regulate the expression of BmSP3 by improving its protein stability in BmN cells. Co-IP and RNAi experiments showed acetyltransferase BmCBP could bind to BmSP3 and catalyze its acetylation modification, then regulate the expression of BmSP3. Furthermore, the knock-down of BmCBP could improve the ubiquitination level of BmSP3. Both acetylation and ubiquitination occur on the side chain of lysine residues, therefore, we speculated that the acetylation of BmSP3 catalyzed by BmCBP could competitively inhibit its ubiquitination modification and improve its protein stability by inhibiting ubiquitin-mediated proteasome degradation pathway, and thereby increase the expression and intracellular accumulation. CONCLUSIONS BmCBP catalyzes the acetylation of BmSP3 and may improve the stability of BmSP3 by competitive ubiquitination. This conclusion provides a new functional basis for the extensive involvement of acetylation in the regulation of nutrient storage and utilization in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Guowei Zu
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yanmei Chen
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiasheng Geng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
100
|
Gupta MK, Peng H, Li Y, Xu CJ. The role of DNA methylation in personalized medicine for immune-related diseases. Pharmacol Ther 2023; 250:108508. [PMID: 37567513 DOI: 10.1016/j.pharmthera.2023.108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Epigenetics functions as a bridge between host genetic & environmental factors, aiding in human health and diseases. Many immune-related diseases, including infectious and allergic diseases, have been linked to epigenetic mechanisms, particularly DNA methylation. In this review, we summarized an updated overview of DNA methylation and its importance in personalized medicine, and demonstrated that DNA methylation has excellent potential for disease prevention, diagnosis, and treatment in a personalized manner. The future implications and limitations of the DNA methylation study have also been well-discussed.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - He Peng
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Institute for Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|