51
|
Raghavan R, Coppola U, Wu Y, Ihewulezi C, Negrón-Piñeiro LJ, Maguire JE, Hong J, Cunningham M, Kim HJ, Albert TJ, Ali AM, Saint-Jeannet JP, Ristoratore F, Dahia CL, Di Gregorio A. Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum. BMC Ecol Evol 2023; 23:63. [PMID: 37891482 PMCID: PMC10605842 DOI: 10.1186/s12862-023-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 10/29/2023] Open
Abstract
The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.
Collapse
Affiliation(s)
- Rahul Raghavan
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Ugo Coppola
- Stazione Zoologica 'A. Dohrn', Villa Comunale 1, 80121, Naples, Italy
- Present Address: Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chibuike Ihewulezi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Julie E Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Justin Hong
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Matthew Cunningham
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Han Jo Kim
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd J Albert
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | | | - Chitra L Dahia
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY, 10065, USA.
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
52
|
Gordon T, Hendin N, Wurtzel O. Methods for cell isolation and analysis of the highly regenerative tunicate Polycarpa mytiligera. Front Cell Dev Biol 2023; 11:1274826. [PMID: 37886396 PMCID: PMC10598751 DOI: 10.3389/fcell.2023.1274826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Background: Polycarpa mytiligera is the only molecularly characterized solitary ascidian capable of regenerating all organs and tissue types. The cellular basis for regeneration in P. mytiligera is largely unknown, and methods for isolating live cells from this species for functional analyses are unavailable. Results: Here, we developed a method for isolating live cells from P. mytiligera, overcoming major experimental challenges, including the dissociation of its thick body wall and native cellular autofluorescence. We demonstrated the applicability of our approach for tissue dissociation and cell analysis using three flow cytometry platforms, and by using broadly used non-species-specific cell labeling reagents. In addition to live cell isolation, proof-of-concept experiments showed that this approach was compatible with gene expression analysis of RNA extracted from the isolated cells, and with ex vivo analysis of phagocytosis. Conclusion: We presented efficient methods for cell purification from a highly regenerative ascidian, which could be transferable to diversity of non-model marine organisms. The ability to purify live cells will promote future studies of cell function in P. mytiligera regeneration.
Collapse
Affiliation(s)
- Tal Gordon
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noam Hendin
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omri Wurtzel
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
53
|
Beyer J, Song Y, Lillicrap A, Rodríguez-Satizábal S, Chatzigeorgiou M. Ciona spp. and ascidians as bioindicator organisms for evaluating effects of endocrine disrupting chemicals: A discussion paper. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106170. [PMID: 37708617 DOI: 10.1016/j.marenvres.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
In context of testing, screening and monitoring of endocrine-disrupting (ED) type of environmental pollutants, tunicates could possibly represent a particularly interesting group of bioindicator organisms. These primitive chordates are already important model organisms within developmental and genomics research due to their central position in evolution and close relationship to vertebrates. The solitary ascidians, such as the genus Ciona spp. (vase tunicates), could possibly be extra feasible as ED bioindicators. They have a free-swimming, tadpole-like larval stage that develops extremely quickly (<20 h under favorable conditions), has a short life cycle (typically 2-3 months), are relatively easy to maintain in laboratory culture, have fully sequenced genomes, and transgenic embryos with 3D course data of the embryo ontogeny are available. In this article, we discuss possible roles of Ciona spp. (and other solitary ascidians) as ecotoxicological bioindicator organisms in general but perhaps especially for effect studies of contaminants with presumed endocrine disrupting modes of action.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | - Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579, Oslo, Norway
| | | | | |
Collapse
|
54
|
Sumner JT, Andrasz CL, Johnson CA, Wax S, Anderson P, Keeling EL, Davidson JM. De novo genome assembly and comparative genomics for the colonial ascidian Botrylloides violaceus. G3 (BETHESDA, MD.) 2023; 13:jkad181. [PMID: 37555394 PMCID: PMC10542563 DOI: 10.1093/g3journal/jkad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/25/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Ascidians have the potential to reveal fundamental biological insights related to coloniality, regeneration, immune function, and the evolution of these traits. This study implements a hybrid assembly technique to produce a genome assembly and annotation for the botryllid ascidian, Botrylloides violaceus. A hybrid genome assembly was produced using Illumina, Inc. short and Oxford Nanopore Technologies long-read sequencing technologies. The resulting assembly is comprised of 831 contigs, has a total length of 121 Mbp, N50 of 1 Mbp, and a BUSCO score of 96.1%. Genome annotation identified 13 K protein-coding genes. Comparative genomic analysis with other tunicates reveals patterns of conservation and divergence within orthologous gene families even among closely related species. Characterization of the Wnt gene family, encoding signaling ligands involved in development and regeneration, reveals conserved patterns of subfamily presence and gene copy number among botryllids. This supports the use of genomic data from nonmodel organisms in the investigation of biological phenomena.
Collapse
Affiliation(s)
- Jack T Sumner
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Cassidy L Andrasz
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Christine A Johnson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sarah Wax
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Paul Anderson
- Department of Computer Science and Software Engineering, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Elena L Keeling
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jean M Davidson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
55
|
Tolstenkov O, Mikhaleva Y, Glover JC. A miniaturized nigrostriatal-like circuit regulating locomotor performance in a protochordate. Curr Biol 2023; 33:3872-3883.e6. [PMID: 37643617 DOI: 10.1016/j.cub.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
To gain insight into the evolution of motor control systems at the origin of vertebrates, we have investigated higher-order motor circuitry in the protochordate Oikopleura dioica. We have identified a highly miniaturized circuit in Oikopleura with a projection from a single pair of dopaminergic neurons to a small set of synaptically coupled GABAergic neurons, which in turn exert a disinhibitory descending projection onto the locomotor central pattern generator. The circuit is reminiscent of the nigrostriatopallidal system in the vertebrate basal ganglia, in which disinhibitory circuits release specific movements under the modulatory control of dopamine. We demonstrate further that dopamine is required to optimize locomotor performance in Oikopleura, mirroring its role in vertebrates. A dopamine-regulated disinhibitory locomotor control circuit reminiscent of the vertebrate nigrostriatopallidal system was thus already present at the origin of ancestral chordates and has been maintained in the face of extreme nervous system miniaturization in the urochordate lineage.
Collapse
Affiliation(s)
- Oleg Tolstenkov
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway
| | - Yana Mikhaleva
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway
| | - Joel C Glover
- Sars International Centre for Marine Molecular Biology, University of Bergen; Thormøhlensgate 55, 5008 Bergen, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| |
Collapse
|
56
|
Schuster KJ, Christiaen L. The Chordate Origins of Heart Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558507. [PMID: 37781597 PMCID: PMC10541106 DOI: 10.1101/2023.09.19.558507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The human heart is infamous for not healing after infarction in adults, prompting biomedical interest in species that can regenerate damaged hearts. In such animals as zebrafish and neonatal mice, cardiac repair relies on remaining heart tissue supporting cardiomyocyte proliferation. Natural de novo cardiogenesis in post-embryonic stages thus remains elusive. Here we show that the tunicate Ciona, an ascidian among the closest living relatives to the vertebrates, can survive complete chemogenetic ablation of the heart and loss of cardiac function, and recover both cardiac tissue and contractility. As in vertebrates, Ciona heart regeneration relies on Bone Morphogenetic Protein (BMP) signaling-dependent proliferation of cardiomyocytes, providing insights into the evolutionary origins of regenerative cardiogenesis in chordates. Remarkably, prospective lineage tracing by photoconversion of the fluorescent protein Kaede suggested that new cardiomyocytes can emerge from endodermal lineages in post-metamorphic animals, providing an unprecedented case of regenerative de novo cardiogenesis. Finally, while embryos cannot compensate for early losses of the cardiogenic lineage, forming heartless juveniles, developing animals gain their regenerative ability during metamorphosis, uncovering a fundamental transition between deterministic embryogenesis and regulative post-embryonic development.
Collapse
Affiliation(s)
- Keaton J Schuster
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Michael Sars Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
57
|
D'Aniello S, Bertrand S, Escriva H. Amphioxus as a model to study the evolution of development in chordates. eLife 2023; 12:e87028. [PMID: 37721204 PMCID: PMC10506793 DOI: 10.7554/elife.87028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Cephalochordates and tunicates represent the only two groups of invertebrate chordates, and extant cephalochordates - commonly known as amphioxus or lancelets - are considered the best proxy for the chordate ancestor, from which they split around 520 million years ago. Amphioxus has been an important organism in the fields of zoology and embryology since the 18th century, and the morphological and genomic simplicity of cephalochordates (compared to vertebrates) makes amphioxus an attractive model for studying chordate biology at the cellular and molecular levels. Here we describe the life cycle of amphioxus, and discuss the natural histories and habitats of the different species of amphioxus. We also describe their use as laboratory animal models, and discuss the techniques that have been developed to study different aspects of amphioxus.
Collapse
Affiliation(s)
- Salvatore D'Aniello
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton DohrnNapoliItaly
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| |
Collapse
|
58
|
Dumas F, Mauro M, Vazzana M, Arizza V, Vizzini A. Ciona robusta macrophage migration inhibitory factor (Mif1 and Mif2) genes are differentially regulated in the lipopolysaccharide-challenged pharynx. JOURNAL OF FISH BIOLOGY 2023; 103:727-730. [PMID: 37148434 DOI: 10.1111/jfb.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
The effects of lipopolysaccharide (LPS) on Mif (macrophage migration inhibitory factor) gene expression in the pharynx (haemapoetic tissue) of Ciona robusta were investigated using quantitative reverse-transcription PCR (qRT-PCR) and in situ hybridisation (ISH). To verify the induction of an inflammatory response in the pharynx, a qRT-PCR analysis was performed to evaluate the change in the expression of proinflammatory marker genes such as Mbl, Ptx-like, Tnf-α and Nf-kb, which were shown to be upregulated 1 h post LPS challenge. The change in the expression of the two Mif paralogs in the pharynx was assessed before and after stimulation, and qRT-PCR and ISH results showed that, although Mif2 and Mif2 were expressed in clusters of haemocytes in pharynx vessels, only Mif1 expression increased after LPS stimulation. This indicates that the Mif genes are differently regulated and respond to different ambient inputs that need further analysis.
Collapse
Affiliation(s)
- Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Palermo, Italy
| |
Collapse
|
59
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. Curr Biol 2023; 33:3360-3370.e4. [PMID: 37490920 PMCID: PMC10528541 DOI: 10.1016/j.cub.2023.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae are cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons. The anatomical location, gene expression, and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, even in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae, the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low-level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Juan Medina
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tao Laurent
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
60
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Ali HS, Sundaram SM, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in the hindbrain of a non-vertebrate chordate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545305. [PMID: 37645866 PMCID: PMC10461979 DOI: 10.1101/2023.06.16.545305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are largely replaced by adult-specific ones. Yet the regulatory mechanisms underlying this neural replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the "Neck", a compartment of cells set aside in the larva to give rise to cranial motor neuron-like neurons in the adult. Using bulk and single-cell RNAseq analyses, we also characterize the transcriptome of the Neck downstream of Pax2/5/8. Surprisingly, we find that Neck-derived adult ciliomotor neurons begin to differentiate in the larva, contrary to the long-held assumption that the adult nervous system is formed only after settlement and the death of larval neurons during metamorphosis. Finally, we show that manipulating FGF signaling during the larval phase alters the patterning of the Neck and its derivatives. Suppression of FGF converts Neck cells into larval neurons that fail to survive metamorphosis, while prolonged FGF signaling promotes an adult neural stem cell-like fate instead.
Collapse
Affiliation(s)
- Eduardo D Gigante
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Alexandra Gurgis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106; USA
| | - Leslie Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Hussan S Ali
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| |
Collapse
|
61
|
Szánthó LL, Lartillot N, Szöllősi GJ, Schrempf D. Compositionally Constrained Sites Drive Long-Branch Attraction. Syst Biol 2023; 72:767-780. [PMID: 36946562 PMCID: PMC10405358 DOI: 10.1093/sysbio/syad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous topologies that are strongly supported. Unfortunately, models that adequately account for across-site compositional heterogeneity remain computationally challenging or intractable for an increasing fraction of contemporary datasets. Here, we introduce "compositional constraint analysis," a method to investigate the effect of site-specific constraints on amino acid composition on phylogenetic inference. We show that more constrained sites with lower diversity and less constrained sites with higher diversity exhibit ostensibly conflicting signals under models ignoring across-site compositional heterogeneity that lead to long-branch attraction artifacts and demonstrate that more complex models accounting for across-site compositional heterogeneity can ameliorate this bias. We present CAT-posterior mean site frequencies (PMSF), a pipeline for diagnosing and resolving phylogenetic bias resulting from inadequate modeling of across-site compositional heterogeneity based on the CAT model. CAT-PMSF is robust against long-branch attraction in all alignments we have examined. We suggest using CAT-PMSF when convergence of the CAT model cannot be assured. We find evidence that compositionally constrained sites are driving long-branch attraction in two metazoan datasets and recover evidence for Porifera as the sister group to all other animals. [Animal phylogeny; cross-site heterogeneity; long-branch attraction; phylogenomics.].
Collapse
Affiliation(s)
- Lénárd L Szánthó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université de Lyon, Villeurbanne, France
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös University, Budapest, Hungary
- ELTE-MTA “Lendület” Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| |
Collapse
|
62
|
Ma X, Shi X, Wang Q, Zhao M, Zhang Z, Zhong B. A Reinvestigation of Multiple Independent Evolution and Triassic-Jurassic Origins of Multicellular Volvocine Algae. Genome Biol Evol 2023; 15:evad142. [PMID: 37498572 PMCID: PMC10410301 DOI: 10.1093/gbe/evad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/09/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
The evolution of multicellular organisms is considered to be a major evolutionary transition, profoundly affecting the ecology and evolution of nearly all life on earth. The volvocine algae, a unique clade of chlorophytes with diverse cell morphology, provide an appealing model for investigating the evolution of multicellularity and development. However, the phylogenetic relationship and timescale of the volvocine algae are not fully resolved. Here, we use extensive taxon and gene sampling to reconstruct the phylogeny of the volvocine algae. Our results support that the colonial volvocine algae are not monophyletic group and multicellularity independently evolve at least twice in the volvocine algae, once in Tetrabaenaceae and another in the Goniaceae + Volvocaceae. The simulation analyses suggest that incomplete lineage sorting is a major factor for the tree topology discrepancy, which imply that the multispecies coalescent model better fits the data used in this study. The coalescent-based species tree supports that the Goniaceae is monophyletic and Crucicarteria is the earliest diverging lineage, followed by Hafniomonas and Radicarteria within the Volvocales. By considering the multiple uncertainties in divergence time estimation, the dating analyses indicate that the volvocine algae occurred during the Cryogenian to Ediacaran (696.6-551.1 Ma) and multicellularity in the volvocine algae originated from the Triassic to Jurassic. Our phylogeny and timeline provide an evolutionary framework for studying the evolution of key traits and the origin of multicellularity in the volvocine algae.
Collapse
Affiliation(s)
- Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiuping Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengru Zhao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
63
|
Li KL, Nakashima K, Hisata K, Satoh N. Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis. EvoDevo 2023; 14:11. [PMID: 37434168 DOI: 10.1186/s13227-023-00215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group. RESULTS Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis. CONCLUSIONS This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.
Collapse
Affiliation(s)
- Kun-Lung Li
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, 115, Taiwan.
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
64
|
Nanglu K, Lerosey-Aubril R, Weaver JC, Ortega-Hernández J. A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan. Nat Commun 2023; 14:3832. [PMID: 37414759 PMCID: PMC10325964 DOI: 10.1038/s41467-023-39012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
Tunicates are an evolutionarily significant subphylum of marine chordates, with their phylogenetic position as the sister-group to Vertebrata making them key to unraveling our own deep time origin. Tunicates greatly vary with regards to morphology, ecology, and life cycle, but little is known about the early evolution of the group, e.g. whether their last common ancestor lived freely in the water column or attached to the seafloor. Additionally, tunicates have a poor fossil record, which includes only one taxon with preserved soft-tissues. Here we describe Megasiphon thylakos nov., a 500-million-year-old tunicate from the Marjum Formation of Utah, which features a barrel-shaped body with two long siphons and prominent longitudinal muscles. The ascidiacean-like body of this new species suggests two alternative hypotheses for early tunicate evolution. The most likely scenario posits M. thylakos belongs to stem-group Tunicata, suggesting that a biphasic life cycle, with a planktonic larva and a sessile epibenthic adult, is ancestral for this entire subphylum. Alternatively, a position within the crown-group indicates that the divergence between appendicularians and all other tunicates occurred 50 million years earlier than currently estimated based on molecular clocks. Ultimately, M. thylakos demonstrates that fundamental components of the modern tunicate body plan were already established shortly after the Cambrian Explosion.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
65
|
Zemann B, Le MLV, Sherlock RE, Baum D, Katija K, Stach T. Evolutionary traces of miniaturization in a giant-Comparative anatomy of brain and brain nerves in Bathochordaeus stygius (Tunicata, Appendicularia). J Morphol 2023; 284:e21598. [PMID: 37313762 DOI: 10.1002/jmor.21598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023]
Abstract
Appendicularia comprises 70 marine, invertebrate, chordate species. Appendicularians play important ecological and evolutionary roles, yet their morphological disparity remains understudied. Most appendicularians are small, develop rapidly, and with a stereotyped cell lineage, leading to the hypothesis that Appendicularia derived progenetically from an ascidian-like ancestor. Here, we describe the detailed anatomy of the central nervous system of Bathochordaeus stygius, a giant appendicularian from the mesopelagic. We show that the brain consists of a forebrain with on average smaller and more uniform cells and a hindbrain, in which cell shapes and sizes vary to a greater extent. Cell count for the brain was 102. We demonstrate the presence of three paired brain nerves. Brain nerve 1 traces into the epidermis of the upper lip region and consists of several fibers with some supportive bulb cells in its course. Brain nerve 2 innervates oral sensory organs and brain nerve 3 innervates the ciliary ring of the gill slits and lateral epidermis. Brain nerve 3 is asymmetric, with the right nerve consisting of two neurites originating posterior to the left one that contains three neurites. Similarities and differences to the anatomy of the brain of the model species Oikopleura dioica are discussed. We interpret the small number of cells in the brain of B. stygius as an evolutionary trace of miniaturization and conclude that giant appendicularians evolved from a small, progenetic ancestor that secondarily increased in size within Appendicularia.
Collapse
Affiliation(s)
| | - Mai-Lee Van Le
- Humboldt-Universität zu Berlin, Vergleichende Elektronenmikroskopie, Berlin, Germany
| | - Rob E Sherlock
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA
| | | | - Kakani Katija
- Monterey Bay Aquarium Research Institute, Moss Landing, California, USA
| | - Thomas Stach
- Humboldt-Universität zu Berlin, Vergleichende Elektronenmikroskopie, Berlin, Germany
| |
Collapse
|
66
|
Jeffery WR, Li B, Ng M, Li L, Gorički Š, Ma L. Differentially expressed chaperone genes reveal a stress response required for unidirectional regeneration in the basal chordate Ciona. BMC Biol 2023; 21:148. [PMID: 37365564 PMCID: PMC10294541 DOI: 10.1186/s12915-023-01633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Unidirectional regeneration in the basal chordate Ciona intestinalis involves the proliferation of adult stem cells residing in the branchial sac vasculature and the migration of progenitor cells to the site of distal injury. However, after the Ciona body is bisected, regeneration occurs in the proximal but not in the distal fragments, even if the latter include a part of the branchial sac with stem cells. A transcriptome was sequenced and assembled from the isolated branchial sacs of regenerating animals, and the information was used to provide insights into the absence of regeneration in distal body fragments. RESULTS We identified 1149 differentially expressed genes, which were separated into two major modules by weighted gene correlation network analysis, one consisting of mostly upregulated genes correlated with regeneration and the other consisting of only downregulated genes associated with metabolism and homeostatic processes. The hsp70, dnaJb4, and bag3 genes were among the highest upregulated genes and were predicted to interact in an HSP70 chaperone system. The upregulation of HSP70 chaperone genes was verified and their expression confirmed in BS vasculature cells previously identified as stem and progenitor cells. siRNA-mediated gene knockdown showed that hsp70 and dnaJb4, but not bag3, are required for progenitor cell targeting and distal regeneration. However, neither hsp70 nor dnaJb4 were strongly expressed in the branchial sac vasculature of distal fragments, implying the absence of a stress response. Heat shock treatment of distal body fragments activated hsp70 and dnaJb4 expression indicative of a stress response, induced cell proliferation in branchial sac vasculature cells, and promoted distal regeneration. CONCLUSIONS The chaperone system genes hsp70, dnaJb4, and bag3 are significantly upregulated in the branchial sac vasculature following distal injury, defining a stress response that is essential for regeneration. The stress response is absent from distal fragments, but can be induced by a heat shock, which activates cell division in the branchial sac vasculature and promotes distal regeneration. This study demonstrates the importance of a stress response for stem cell activation and regeneration in a basal chordate, which may have implications for understanding the limited regenerative activities in other animals, including vertebrates.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Station Biologique, 29680, Roscoff, France.
| | - Bo Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mandy Ng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Lianwei Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Špela Gorički
- Station Biologique, 29680, Roscoff, France
- Scriptorium Biologorum, 9000, Murska Sobota, Slovenia
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
67
|
Chung J, Newman-Smith E, Kourakis MJ, Miao Y, Borba C, Medina J, Laurent T, Gallean B, Faure E, Smith WC. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538092. [PMID: 37162881 PMCID: PMC10168268 DOI: 10.1101/2023.04.24.538092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ciona larvae display a number of behaviors, including negative phototaxis. In negative phototaxis, the larvae first perform short spontaneous rhythmic casting swims. As larvae cast in a light field, their photoreceptors are directionally shaded by an associated pigment cell, providing a phototactic cue. This then evokes an extended negative taxis swim. We report here that the larval forebrain of Ciona has a previously uncharacterized single slow-oscillating inhibitory neuron (neuron cor-assBVIN78 ) that projects to the midbrain, where it targets key interneurons of the phototaxis circuit known as the photoreceptor relay neurons . The anatomical location, gene expression and oscillation of cor-assBVIN78 suggest homology to oscillating neurons of the vertebrate hypothalamus. Ablation of cor-assBVIN78 results in larvae showing extended phototaxis-like swims, but which occur in the absence of phototactic cues. These results indicate that cor-assBVIN78 has a gating activity on phototaxis by projecting temporally-oscillating inhibition to the photoreceptor relay neurons. However, in intact larvae the frequency of cor-assBVIN78 oscillation does not match that of the rhythmic spontaneous swims, indicating that the troughs in oscillations do not themselves initiate swims, but rather that cor-assBVIN78 may modulate the phototaxis circuit by filtering out low level inputs while restricting them temporally to the troughs in inhibition.
Collapse
Affiliation(s)
- Janeva Chung
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Matthew J. Kourakis
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Yishen Miao
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Cezar Borba
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
| | - Juan Medina
- College of Creative Studies, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| | - Tao Laurent
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - Benjamin Gallean
- Centre de Recherche de Biologie cellulaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, Université de Montpellier,CNRS, Montpellier, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 93106
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA 93106
| |
Collapse
|
68
|
Vitrinel B, Vogel C, Christiaen L. Ring Finger 149-Related Is an FGF/MAPK-Independent Regulator of Pharyngeal Muscle Fate Specification. Int J Mol Sci 2023; 24:8865. [PMID: 37240211 PMCID: PMC10219245 DOI: 10.3390/ijms24108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, cell-fate specification gives rise to dedicated lineages that underlie tissue formation. In olfactores, which comprise tunicates and vertebrates, the cardiopharyngeal field is formed by multipotent progenitors of both cardiac and branchiomeric muscles. The ascidian Ciona is a powerful model to study cardiopharyngeal fate specification with cellular resolution, as only two bilateral pairs of multipotent cardiopharyngeal progenitors give rise to the heart and to the pharyngeal muscles (also known as atrial siphon muscles, ASM). These progenitors are multilineage primed, in as much as they express a combination of early ASM- and heart-specific transcripts that become restricted to their corresponding precursors, following oriented and asymmetric divisions. Here, we identify the primed gene ring finger 149 related (Rnf149-r), which later becomes restricted to the heart progenitors, but appears to regulate pharyngeal muscle fate specification in the cardiopharyngeal lineage. CRISPR/Cas9-mediated loss of Rnf149-r function impairs atrial siphon muscle morphogenesis, and downregulates Tbx1/10 and Ebf, two key determinants of pharyngeal muscle fate, while upregulating heart-specific gene expression. These phenotypes are reminiscent of the loss of FGF/MAPK signaling in the cardiopharyngeal lineage, and an integrated analysis of lineage-specific bulk RNA-seq profiling of loss-of-function perturbations has identified a significant overlap between candidate FGF/MAPK and Rnf149-r target genes. However, functional interaction assays suggest that Rnf149-r does not directly modulate the activity of the FGF/MAPK/Ets1/2 pathway. Instead, we propose that Rnf149-r acts both in parallel to the FGF/MAPK signaling on shared targets, as well as on FGF/MAPK-independent targets through (a) separate pathway(s).
Collapse
Affiliation(s)
- Burcu Vitrinel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
- Michael Sars Centre, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| |
Collapse
|
69
|
Chen S, Fu X, Wang R, Li M, Yan X, Yue Z, Chen SW, Dong M, Xu A, Huang S. SUMO and PIAS repress NF-κB activation in a basal chordate. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108754. [PMID: 37088348 DOI: 10.1016/j.fsi.2023.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Small ubiquitin-like modifier (SUMO) regulates various biological processes, including the MyD88/TICAMs-IRAKs-TRAF6-NF-κB pathway, one of the core immune pathways. However, its functions are inconsistent between invertebrates and vertebrates and have rarely been investigated in lower chordates, including amphioxus and fishes. Here, we investigated the SUMOylation gene system in the amphioxus, a living basal chordate. We found that amphioxus has a SUMOylation system that has a complete set of genes and preserves several ancestral traits. We proceeded to study their molecular functions using the mammal cell lines. Both amphioxus SUMO1 and SUMO2 were shown to be able to attach to NF-κB Rel and to inhibit NF-κB activation by 50-75% in a dose-dependent fashion. The inhibition by SUMO2 could be further enhanced by the addition of the SUMO E2 ligase UBC9. In comparison, while human SUMO2 inhibited RelA, human SUMO1 slightly activated RelA. We also showed that, similar to human PIAS1-4, amphioxus PIAS could serve as a SUMO E3 ligase and promote its self-SUMOylation. This suggests that amphioxus PIAS is functionally compatible in human cells. Moreover, we showed that amphioxus PIAS is not only able to inhibit NF-κB activation induced by MyD88, TICAM-like, TRAF6 and IRAK4 but also able to suppress NF-κB Rel completely in the presence of SUMO1/2 in a dose-insensitive manner. This suggests that PIAS could effectively block Rel by promoting Rel SUMOylation. In comparison, in humans, only PIAS3, but not PIAS1/2/4, has been reported to promote NF-κB SUMOylation. Taken together, the findings from amphioxus, together with those from mammals and other species, not only offer insights into the functional volatility of the animal SUMO system, but also shed light on its evolutionary transitions from amphioxus to fish, and ultimately to humans.
Collapse
Affiliation(s)
- Shenghui Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xianan Fu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ruihua Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510632, China
| | - Mingshi Li
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinyu Yan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Zirui Yue
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shang-Wu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Meiling Dong
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Beijing University of Chinese Medicine, Dong San Huang Road, Chao-yang District, Beijing, 100029, China
| | - Shengfeng Huang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangdong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
70
|
Liu B, Ren X, Satou Y. BMP signaling is required to form the anterior neural plate border in ascidian embryos. Dev Genes Evol 2023:10.1007/s00427-023-00702-0. [PMID: 37079132 DOI: 10.1007/s00427-023-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
Cranial neurogenic placodes have been considered vertebrate innovations. However, anterior neural plate border (ANB) cells of ascidian embryos share many properties with vertebrate neurogenic placodes; therefore, it is now believed that the last common ancestor of vertebrates and ascidians had embryonic structures similar to neurogenic placodes of vertebrate embryos. Because BMP signaling is important for specifying the placode region in vertebrate embryos, we examined whether BMP signaling is also involved in gene expression in the ANB region of ascidian embryos. Our data indicated that Admp, a divergent BMP family member, is mainly responsible for BMP signaling in the ANB region, and that two BMP-antagonists, Noggin and Chordin, restrict the domain, in which BMP signaling is activated, to the ANB region, and prevent it from expanding to the neural plate. BMP signaling is required for expression of Foxg and Six1/2 at the late gastrula stage, and also for expression of Zf220, which encodes a zinc finger transcription factor in late neurula embryos. Because Zf220 negatively regulates Foxg, when we downregulated Zf220 by inhibiting BMP signaling, Foxg was upregulated, resulting in one large palp instead of three palps (adhesive organs derived from ANB cells). Functions of BMP signaling in specification of the ANB region give further support to the hypothesis that ascidian ANB cells share an evolutionary origin with vertebrate cranial placodes.
Collapse
Affiliation(s)
- Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ximan Ren
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
71
|
Marlétaz F, Timoshevskaya N, Timoshevskiy V, Simakov O, Parey E, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith J, Rokhsar DS. The hagfish genome and the evolution of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537254. [PMID: 37131617 PMCID: PMC10153176 DOI: 10.1101/2023.04.17.537254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Present address: UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
- Deceased
| | - Jeramiah Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
72
|
Mercurio S, Bozzo M, Pennati A, Candiani S, Pennati R. Serotonin Receptors and Their Involvement in Melanization of Sensory Cells in Ciona intestinalis. Cells 2023; 12:cells12081150. [PMID: 37190059 DOI: 10.3390/cells12081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serotonin (5-hydroxytryptamine (5-HT)) is a biogenic monoamine with pleiotropic functions. It exerts its roles by binding to specific 5-HT receptors (5HTRs) classified into different families and subtypes. Homologs of 5HTRs are widely present in invertebrates, but their expression and pharmacological characterization have been scarcely investigated. In particular, 5-HT has been localized in many tunicate species but only a few studies have investigated its physiological functions. Tunicates, including ascidians, are the sister group of vertebrates, and data about the role of 5-HTRs in these organisms are thus important for understanding 5-HT evolution among animals. In the present study, we identified and described 5HTRs in the ascidian Ciona intestinalis. During development, they showed broad expression patterns that appeared consistent with those reported in other species. Then, we investigated 5-HT roles in ascidian embryogenesis exposing C. intestinalis embryos to WAY-100635, an antagonist of the 5HT1A receptor, and explored the affected pathways in neural development and melanogenesis. Our results contribute to unraveling the multifaceted functions of 5-HT, revealing its involvement in sensory cell differentiation in ascidians.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo Bozzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | | | - Simona Candiani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
73
|
Du Q, Peng F, Xiong Q, Xu K, Yang KY, Wang M, Wu Z, Li S, Cheng X, Rao X, Wang Y, Tsui SKW, Zeng X. Genomic Analysis of Amphioxus Reveals a Wide Range of Fragments Homologous to Viral Sequences. Viruses 2023; 15:v15040909. [PMID: 37112889 PMCID: PMC10145014 DOI: 10.3390/v15040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/11/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Amphioxus species are considered living fossils and are important in the evolutionary study of chordates and vertebrates. To explore viral homologous sequences, a high-quality annotated genome of the Beihai amphioxus (Branchiostoma belcheri beihai) was examined using virus sequence queries. In this study, 347 homologous fragments (HFs) of viruses were identified in the genome of B. belcheri beihai, of which most were observed on 21 genome assembly scaffolds. HFs were preferentially located within protein-coding genes, particularly in their CDS regions and promoters. A range of amphioxus genes with a high frequency of HFs is proposed, including histone-related genes that are homologous to the Histone H4 or Histone H2B domains of viruses. Together, this comprehensive analysis of viral HFs provides insights into the neglected role of viral integration in the evolution of amphioxus.
Collapse
Affiliation(s)
- Qiao Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Peng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Kejin Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingqiang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhitian Wu
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanying Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaorui Cheng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinjie Rao
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyouye Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
74
|
Schock EN, York JR, LaBonne C. The developmental and evolutionary origins of cellular pluripotency in the vertebrate neural crest. Semin Cell Dev Biol 2023; 138:36-44. [PMID: 35534333 PMCID: PMC11513157 DOI: 10.1016/j.semcdb.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
Abstract
Neural crest cells are central to vertebrate development and evolution, endowing vertebrates with a "new head" that resulted in morphological, physiological, and behavioral features that allowed vertebrates to become active predators. One remarkable feature of neural crest cells is their multi-germ layer potential that allows for the formation of both ectodermal (pigmentation, peripheral glia, sensory neurons) and mesenchymal (connective tissue, cartilage/bone, dermis) cell types. Understanding the cellular and evolutionary origins of this broad cellular potential in the neural crest has been a long-standing focus for developmental biologists. Here, we review recent work that has demonstrated that neural crest cells share key features with pluripotent blastula stem cells, including expression of the Yamanaka stem cell factors (Oct3/4, Klf4, Sox2, c-Myc). These shared features suggest that pluripotency is either retained in the neural crest from blastula stages or subsequently reactivated as the neural crest forms. We highlight the cellular and molecular parallels between blastula stem cells and neural crest cells and discuss the work that has led to current models for the cellular origins of broad potential in the crest. Finally, we explore how these themes can provide new insights into how and when neural crest cells and pluripotency evolved in vertebrates and the evolutionary relationship between these populations.
Collapse
Affiliation(s)
| | | | - Carole LaBonne
- Dept. of Molecular Biosciences; NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
75
|
Satake H. Kobayashi Award 2021: Neuropeptides, receptors, and follicle development in the ascidian, Ciona intestinalis Type A: New clues to the evolution of chordate neuropeptidergic systems from biological niches. Gen Comp Endocrinol 2023; 337:114262. [PMID: 36925021 DOI: 10.1016/j.ygcen.2023.114262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
76
|
New Data on the Rhamnose-Binding Lectin from the Colonial Ascidian Botryllus schlosseri: Subcellular Distribution, Secretion Mode and Effects on the Cyclical Generation Change. Mar Drugs 2023; 21:md21030171. [PMID: 36976220 PMCID: PMC10053368 DOI: 10.3390/md21030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Botryllus schlosseri in a cosmopolitan ascidian, considered a reliable model organism for studies on the evolution of the immune system. B. schlosseri rhamnose-binding lectin (BsRBL) is synthesised by circulating phagocytes and behaves as an opsonin by interacting with foreign cells or particles and acting as a molecular bridge between them and the phagocyte surface. Although described in previous works, many aspects and roles of this lectin in Botryllus biology remain unknown. Here, we studied the subcellular distribution of BsRBL during immune responses using light and electron microscopy. In addition, following the hints from extant data, suggesting a possible role of BsRBL in the process of cyclical generation change or takeover, we investigated the effects of interfering with this protein, by injecting a specific antibody in the colonial circulation, starting one day before the generation change. Results confirm the requirement of the lectin for a correct generation change and open new queries on the roles of this lectin in Botryllus biology.
Collapse
|
77
|
Song BP, Ragsac MF, Tellez K, Jindal GA, Grudzien JL, Le SH, Farley EK. Diverse logics and grammar encode notochord enhancers. Cell Rep 2023; 42:112052. [PMID: 36729834 PMCID: PMC10387507 DOI: 10.1016/j.celrep.2023.112052] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
The notochord is a defining feature of all chordates. The transcription factors Zic and ETS regulate enhancer activity within the notochord. We conduct high-throughput screens of genomic elements within developing Ciona embryos to understand how Zic and ETS sites encode notochord activity. Our screen discovers an enhancer located near Lama, a gene critical for notochord development. Reversing the orientation of an ETS site within this enhancer abolishes expression, indicating that enhancer grammar is critical for notochord activity. Similarly organized clusters of Zic and ETS sites occur within mouse and human Lama1 introns. Within a Brachyury (Bra) enhancer, FoxA and Bra, in combination with Zic and ETS binding sites, are necessary and sufficient for notochord expression. This binding site logic also occurs within other Ciona and vertebrate Bra enhancers. Collectively, this study uncovers the importance of grammar within notochord enhancers and discovers signatures of enhancer logic and grammar conserved across chordates.
Collapse
Affiliation(s)
- Benjamin P Song
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Krissie Tellez
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Granton A Jindal
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
78
|
Use of invertebrates to model chemically induced parkinsonism-symptoms. Biochem Soc Trans 2023; 51:435-445. [PMID: 36645005 PMCID: PMC9987996 DOI: 10.1042/bst20221172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of neurological diseases is currently growing due to the combination of several factor, including poor lifestyle and environmental imbalance which enhance the contribution of genetic factors. Parkinson's disease (PD), a chronic and progressive neurological condition, is one of the most prevalent neurodegenerative human diseases. Development of models may help to understand its pathophysiology. This review focuses on studies using invertebrate models to investigate certain chemicals that generate parkinsonian-like symptoms models. Additionally, we report some preliminary results of our own research on a crustacean (the crab Ucides cordatus) and a solitary ascidian (Styela plicata), used after induction of parkinsonism with 6-hydroxydopamine and the pesticide rotenone, respectively. We also discuss the advantages, limits, and drawbacks of using invertebrate models to study PD. We suggest prospects and directions for future investigations of PD, based on invertebrate models.
Collapse
|
79
|
La Paglia L, Vazzana M, Mauro M, Dumas F, Fiannaca A, Urso A, Arizza V, Vizzini A. Transcriptomic and Bioinformatic Analyses Identifying a Central Mif-Cop9-Nf-kB Signaling Network in Innate Immunity Response of Ciona robusta. Int J Mol Sci 2023; 24:ijms24044112. [PMID: 36835523 PMCID: PMC9960688 DOI: 10.3390/ijms24044112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The Ascidian C. robusta is a powerful model for studying innate immunity. LPS induction activates inflammatory-like reactions in the pharynx and the expression of several innate immune genes in granulocyte hemocytes such as cytokines, for instance, macrophage migration inhibitory factors (CrMifs). This leads to intracellular signaling involving the Nf-kB signaling cascade that triggers downstream pro-inflammatory gene expression. In mammals, the COP9 (Constitutive photomorphogenesis 9) signalosome (CSN) complex also results in the activation of the NF-kB pathway. It is a highly conserved complex in vertebrates, mainly engaged in proteasome degradation which is essential for maintaining processes such as cell cycle, DNA repair, and differentiation. In the present study, we used bioinformatics and in-silico analyses combined with an in-vivo LPS exposure strategy, next-generation sequencing (NGS), and qRT-PCR to elucidate molecules and the temporal dynamics of Mif cytokines, Csn signaling components, and the Nf-κB signaling pathway in C. robusta. A qRT-PCR analysis of immune genes selected from transcriptome data revealed a biphasic activation of the inflammatory response. A phylogenetic and STRING analysis indicated an evolutionarily conserved functional link between the Mif-Csn-Nf-kB axis in ascidian C. robusta during LPS-mediated inflammation response, finely regulated by non-coding molecules such as microRNAs (miRNAs).
Collapse
Affiliation(s)
- Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Francesca Dumas
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Antonino Fiannaca
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-Università di Palermo, Via Archirafi 18, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
80
|
Transcriptional Analysis of the Endostyle Reveals Pharyngeal Organ Functions in Ascidian. BIOLOGY 2023; 12:biology12020245. [PMID: 36829522 PMCID: PMC9953650 DOI: 10.3390/biology12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
The endostyle is a pharyngeal organ with an opening groove and cilia in invertebrate chordates (amphioxus and ascidian) and cyclostomate (lamprey), serving as a filter-feeding tract and thyroid-secreting location. Emerging evidence implies its complex cellular composition and potentially versatile functions. Multiple cell types in the endostyle have been thought to be progenitors of complex organs in advanced vertebrates. To describe the expression profile and the potential functions, bulk RNA sequencing on the endostyle in ascidian Styela clava was conducted and distinct markers were selected by multileveled comparative analysis. Transcriptional data assay and qRT-PCR-verified results showed the regional expression patterns of Hox genes in the longitudinal axis. Organ-specific markers of the endostyle was proposed by comparing expression with the main organs of the ascidian. A cross-species transcriptional profile projection between the endostyle and organs from Danio rerio and Homo sapiens indicates a robust homogenous relationship to the thyroid and digestive system of the endostyle. The high similarity between the endostyle and the head kidney in zebrafish/the bone marrow in human implies uniquely profound functions of the pharyngeal organ in proto-vertebrates. Our result revealed that the transcriptional profile of the human parathyroid gland was similar to the ascidian endostyle, indicating the evolutionary origin of vertebrate hormone secretion organs.
Collapse
|
81
|
Ouyang X, Wang Z, Wu B, Yang X, Dong B. The Conserved Transcriptional Activation Activity Identified in Dual-Specificity Tyrosine-(Y)-Phosphorylation-Regulated Kinase 1. Biomolecules 2023; 13:biom13020283. [PMID: 36830653 PMCID: PMC9953678 DOI: 10.3390/biom13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 (DYRK1) encodes a conserved protein kinase that is indispensable to neuron development. However, whether DYRK1 possesses additional functions apart from kinase function remains poorly understood. In this study, we firstly demonstrated that the C-terminal of ascidian Ciona robusta DYRK1 (CrDYRK1) showed transcriptional activation activity independent of its kinase function. The transcriptional activation activity of CrDYRK1 could be autoinhibited by a repression domain in the N-terminal. More excitingly, both activation and repression domains were retained in HsDYRK1A in humans. The genes, activated by the activation domain of HsDYRK1A, are mainly involved in ion transport and neuroactive ligand-receptor interaction. We further found that numerous mutation sites relevant to the DYRK1A-related intellectual disability syndrome locate in the C-terminal of HsDYRK1A. Then, we identified several specific DNA motifs in the transcriptional regulation region of those activated genes. Taken together, we identified a conserved transcription activation domain in DYRK1 in urochordates and vertebrates. The activation is independent of the kinase activity of DYRK1 and can be repressed by its own N-terminal. Transcriptome and mutation data indicate that the transcriptional activation ability of HsDYRK1A is potentially involved in synaptic transmission and neuronal function related to the intellectual disability syndrome.
Collapse
Affiliation(s)
- Xiuke Ouyang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhuqing Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bingtong Wu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiuxia Yang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Correspondence:
| |
Collapse
|
82
|
Holland ND, Mansfield JH. In Amphioxus Embryos, Some Neural Tube Cells Resemble Differentiating Coronet Cells of Fishes and Tunicates. THE BIOLOGICAL BULLETIN 2023; 244:1-8. [PMID: 37167617 DOI: 10.1086/724581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AbstractFor neurula embryos of amphioxus (chordate subphylum Cephalochordata), the anterior region of the neural tube was studied with transmission electron microscopy. This survey demonstrated previously unreported cells, each characterized by a cilium bearing on its shaft a protruding lateral bubble packed with vesicles. Such cilia resemble those known from immature coronet cells in other chordates-namely, fishes in the Vertebrata and ascidians and appendicularians in the Tunicata. This wide occurrence of coronet-like cells raises questions about their possible homologies within the phylum Chordata. When considered at the level of the whole cell, such homology is not well supported. For example, the fish cells are generally thought to be glia, while the tunicate cells are considered to be neurons; moreover, cytoplasmic smooth endoplasmic reticulum, which is predominant in the former, is undetectable in the latter. In contrast, a more convincing case for homology can be made by limiting comparisons to the cell apices with their modified cilia. In addition to the fine-structural similarities between fishes and tunicates already mentioned, nonvisual opsins have been found associated with the vesicles in the modified cilia of both groups. Such opsins are thought to link photoreception to endocrine output controlling behavior. Further work would be needed to test the idea that the amphioxus diencephalic cells with lateral bubble cilia might similarly be opsin rich and could provide insights into the evolutionary history of the coronet cells within the phylum Chordata.
Collapse
|
83
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
84
|
Botryllin, a Novel Antimicrobial Peptide from the Colonial Ascidian Botryllus schlosseri. Mar Drugs 2023; 21:md21020074. [PMID: 36827115 PMCID: PMC9966394 DOI: 10.3390/md21020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
By mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript for a novel styelin-like antimicrobial peptide, which we named botryllin. The gene is constitutively transcribed by circulating cytotoxic morula cells (MCs) as a pre-propeptide that is then cleaved to mature peptide. The synthetic peptide, obtained from in silico translation of the transcript, shows robust killing activity of bacterial and unicellular yeast cells, causing breakages of both the plasma membrane and the cell wall. Specific monoclonal antibodies were raised against the epitopes of the putative amino acid sequence of the propeptide and the mature peptide; in both cases, they label the MC granular content. Upon MC degranulation induced by the presence of nonself, the antibodies recognise the extracellular nets with entrapped bacteria nearby MC remains. The obtained results suggest that the botryllin gene carries the information for the synthesis of an AMP involved in the protection of B. schlosseri from invading foreign cells.
Collapse
|
85
|
Opazo JC, Vandewege MW, Hoffmann FG, Zavala K, Meléndez C, Luchsinger C, Cavieres VA, Vargas-Chacoff L, Morera FJ, Burgos PV, Tapia-Rojas C, Mardones GA. How Many Sirtuin Genes Are Out There? Evolution of Sirtuin Genes in Vertebrates With a Description of a New Family Member. Mol Biol Evol 2023; 40:6993039. [PMID: 36656997 PMCID: PMC9897032 DOI: 10.1093/molbev/msad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.
Collapse
Affiliation(s)
| | - Michael W Vandewege
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Catalina Meléndez
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Luis Vargas-Chacoff
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile,Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Morera
- Integrative Biology Group, Universidad Austral de Chile, Valdivia, Chile,Applied Biochemistry Laboratory, Facultad de Ciencias Veterinarias, Instituto de Farmacología y Morfofisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | | |
Collapse
|
86
|
Sun X, Cheng J. Conflicts in Mitochondrial Phylogenomics of Branchiopoda, with the First Complete Mitogenome of Laevicaudata (Crustacea: Branchiopoda). Curr Issues Mol Biol 2023; 45:820-837. [PMID: 36825999 PMCID: PMC9955068 DOI: 10.3390/cimb45020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Conflicting phylogenetic signals are pervasive across genomes. The potential impact of such systematic biases may be reduced by phylogenetic approaches accommodating for heterogeneity or by the exclusive use of homoplastic sites in the datasets. Here, we present the complete mitogenome of Lynceus grossipedia as the first representative of the suborder Laevicaudata. We employed a phylogenomic approach on the mitogenomic datasets representing all major branchiopod groups to identify the presence of conflicts and concordance across the phylogeny. We found pervasive phylogenetic conflicts at the base of Diplostraca. The homogeneity of the substitution pattern tests and posterior predictive tests revealed a high degree of compositional heterogeneity among branchiopod mitogenomes at both the nucleotide and amino acid levels, which biased the phylogenetic inference. Our results suggest that Laevicaudata as the basal clade of Phyllopoda was most likely an artifact caused by compositional heterogeneity and conflicting phylogenetic signal. We demonstrated that the exclusive use of homoplastic site methods combining the application of site-heterogeneous models produced correct phylogenetic estimates of the higher-level relationships among branchiopods.
Collapse
Affiliation(s)
| | - Jinhui Cheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 Beijing Eastroad, Nanjing 210008, China
| |
Collapse
|
87
|
Moreira F, Arenas M, Videira A, Pereira F. Evolution of TOP1 and TOP1MT Topoisomerases in Chordata. J Mol Evol 2023; 91:192-203. [PMID: 36651963 PMCID: PMC10081982 DOI: 10.1007/s00239-022-10091-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
Type IB topoisomerases relax the torsional stress associated with DNA metabolism in the nucleus and mitochondria and constitute important molecular targets of anticancer drugs. Vertebrates stand out among eukaryotes by having two Type IB topoisomerases acting specifically in the nucleus (TOP1) and mitochondria (TOP1MT). Despite their major importance, the origin and evolution of these paralogues remain unknown. Here, we examine the molecular evolutionary processes acting on both TOP1 and TOP1MT in Chordata, taking advantage of the increasing number of available genome sequences. We found that both TOP1 and TOP1MT evolved under strong purifying selection, as expected considering their essential biological functions. Critical active sites, including those associated with resistance to anticancer agents, were found particularly conserved. However, TOP1MT presented a higher rate of molecular evolution than TOP1, possibly related with its specialized activity on the mitochondrial genome and a less critical role in cells. We could place the duplication event that originated the TOP1 and TOP1MT paralogues early in the radiation of vertebrates, most likely associated with the first round of vertebrate tetraploidization (1R). Moreover, our data suggest that cyclostomes present a specialized mitochondrial Type IB topoisomerase. Interestingly, we identified two missense mutations replacing amino acids in the Linker region of TOP1MT in Neanderthals, which appears as a rare event when comparing the genome of both species. In conclusion, TOP1 and TOP1MT differ in their rates of evolution, and their evolutionary histories allowed us to better understand the evolution of chordates.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
88
|
Li J, Han S, Zhu Y, Dong B. Halorotetin A: A Novel Terpenoid Compound Isolated from Ascidian Halocynthia rotetzi Exhibits the Inhibition Activity on Tumor Cell Proliferation. Mar Drugs 2023; 21:51. [PMID: 36662224 PMCID: PMC9860651 DOI: 10.3390/md21010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Halocynthia roretzi, the edible ascidian, has been demonstrated to be an important source of bioactive natural metabolites. Here, we reported a novel terpenoid compound named Halorotetin A that was isolated from tunic ethanol extract of H. roretzi by silica gel column chromatography, preparative layer chromatography (PLC), and semipreparative-HPLC. 1H and 13C NMRs, 1H-1H COSY, HSQC, HMBC, NOESY, and HRESIMS profiles revealed that Halorotetin A was a novel terpenoid compound with antitumor potentials. We therefore treated the culture cells with Halorotetin A and found that it significantly inhibited the proliferation of a series of tumor cells by exerting cytotoxicity, especially for the liver carcinoma cell line (HepG-2 cells). Further studies revealed that Halorotetin A affected the expression of several genes associated with the development of hepatocellular carcinoma (HCC), including oncogenes (c-myc and c-met) and HCC suppressor genes (TP53 and KEAP1). In addition, we compared the cytotoxicities of Halorotetin A and doxorubicin on HepG-2 cells. To our surprise, the cytotoxicities of Halorotetin A and doxorubicin on HepG-2 cells were similar at the same concentration and Halorotetin A did not significantly reduce the viability of the normal cells. Thus, our study identified a novel compound that significantly inhibited the proliferation of tumor cells, which provided the basis for the discovery of leading compounds for antitumor drugs.
Collapse
Affiliation(s)
- Jianhui Li
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shanhao Han
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuting Zhu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
89
|
Johanson Z. Vertebrate cranial evolution: Contributions and conflict from the fossil record. Evol Dev 2023; 25:119-133. [PMID: 36308394 DOI: 10.1111/ede.12422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 01/14/2023]
Abstract
In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.
Collapse
|
90
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
91
|
Mallatt J. Vertebrate origins are informed by larval lampreys (ammocoetes): a response to Miyashita et al., 2021. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
This paper addresses a recent claim by Miyashita and co-authors that the filter-feeding larval lamprey is a new evolutionary addition to the lamprey life-cycle and does not provide information about early vertebrates, in contrast to the traditional view that this ammocoete stage resembles the first vertebrates. The evidence behind this revolutionary claim comes from fossil lampreys from 360–306 Mya that include young stages – even yolk-sac hatchlings – with adult (predacious) feeding structures. However, the traditional view is not so easily dismissed. The phylogeny on which the non-ammocoete theory is based was not tested in a statistically meaningful way. Additionally, the target article did not consider the known evidence for the traditional view, namely that the complex filter-feeding structures are highly similar in ammocoetes and the invertebrate chordates, amphioxus and tunicates. In further support of the traditional view, I show that ammocoetes are helpful for reconstructing the first vertebrates and the jawless, fossil stem gnathostomes called ostracoderms – their pharynx, oral cavity, mouth opening, lips and filter-feeding mode (but, ironically, not their mandibular/jaw region). From these considerations, I offer a scenario for the evolution of vertebrate life-cycles that fits the traditional, ammocoete-informed theory and puts filter feeding at centre stage.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho , Moscow, Idaho 83843 , USA
| |
Collapse
|
92
|
Stäubert C, Wozniak M, Dupuis N, Laschet C, Pillaiyar T, Hanson J. Superconserved receptors expressed in the brain: Expression, function, motifs and evolution of an orphan receptor family. Pharmacol Ther 2022; 240:108217. [PMID: 35644261 DOI: 10.1016/j.pharmthera.2022.108217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
GPR27, GPR85 and GPR173 constitute a small family of G protein-coupled receptors (GPCR) that share the distinctive characteristics of being highly conserved throughout vertebrate evolution and predominantly expressed in the brain. Accordingly, they have been coined as "Superconserved Receptors Expressed in the Brain" (SREB), although their expression profile is more complex than what was originally thought. SREBs have no known validated endogenous ligands and are thus labeled as "orphan" receptors. The investigation of this particular category of uncharacterized receptors holds great promise both in terms of physiology and drug development. In the largest GPCR family, the Rhodopsin-like or Class A, around 100 receptors are considered orphans. Because GPCRs are the most successful source of drug targets, the discovery of a novel function or ligand most likely will lead to significant breakthroughs for the discovery of innovative therapies. The high level of conservation is one of the characteristic features of the SREBs. We propose herein a detailed analysis of the putative evolutionary origin of this family. We highlight the properties that distinguish SREBs from other rhodopsin-like GPCRs. We present the current evidence for these receptors downstream signaling pathways and functions. We discuss the pharmacological challenge for the identification of natural or synthetic ligands of orphan receptors like SREBs. The different SREB-related scientific questions are presented with a highlight on what should be addressed in the near future, including the confirmation of published evidence and their validation as drug targets. In particular, we discuss in which pathological conditions these receptors may be of great relevance to solve unmet medical needs.
Collapse
Affiliation(s)
- Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium.
| |
Collapse
|
93
|
Thompson SH, Anselmi C, Ishizuka KJ, Palmeri KJ, Voskoboynik A. Contributions from both the brain and the vascular network guide behavior in the colonial tunicate Botryllus schlosseri. J Exp Biol 2022; 225:279340. [PMID: 36314197 PMCID: PMC9720745 DOI: 10.1242/jeb.244491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
We studied the function, development and aging of the adult nervous system in the colonial tunicate Botryllus schlosseri. Adults, termed zooids, are filter-feeding individuals. Sister zooids group together to form modules, and modules, in turn, are linked by a shared vascular network to form a well-integrated colony. Zooids undergo a weekly cycle of regression and renewal during which mature zooids are replaced by developing buds. The zooid brain matures and degenerates on this 7-day cycle. We used focal extracellular recording and video imaging to explore brain activity in the context of development and degeneration and to examine the contributions of the nervous system and vascular network to behavior. Recordings from the brain revealed complex firing patterns arising both spontaneously and in response to stimulation. Neural activity increases as the brain matures and declines thereafter. Motor behavior follows the identical time course. The behavior of each zooid is guided predominantly by its individual brain, but sister zooids can also exhibit synchronous motor behavior. The vascular network also generates action potentials that are largely independent of neural activity. In addition, the entire vascular network undergoes slow rhythmic contractions that appear to arise from processes endogenous to vascular epithelial cells. We found that neurons in the brain and cells of the vascular network both express multiple genes for voltage-gated Na+ and Ca2+ ion channels homologous (based on sequence) to mammalian ion channel genes.
Collapse
Affiliation(s)
- Stuart H. Thompson
- Department of Biology and Hopkins Marine Station, Stanford University, Stanford, CA 93950, USA,Author for correspondence ()
| | - Chiara Anselmi
- Department of Biology and Hopkins Marine Station, Stanford University, Stanford, CA 93950, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine J. Ishizuka
- Department of Biology and Hopkins Marine Station, Stanford University, Stanford, CA 93950, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karla J. Palmeri
- Department of Biology and Hopkins Marine Station, Stanford University, Stanford, CA 93950, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ayelet Voskoboynik
- Department of Biology and Hopkins Marine Station, Stanford University, Stanford, CA 93950, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
94
|
Nakano M, Imamura R, Sugi T, Nishimura M. Human FAM3C restores memory-based thermotaxis of Caenorhabditis elegans famp-1/m70.4 loss-of-function mutants. PNAS NEXUS 2022; 1:pgac242. [PMID: 36712359 PMCID: PMC9802357 DOI: 10.1093/pnasnexus/pgac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
The family with sequence similarity 3 (FAM3) superfamily represents a distinct class of signaling molecules that share a characteristic structural feature. Mammalian FAM3 member C (FAM3C) is abundantly expressed in neuronal cells and released from the synaptic vesicle to the extracellular milieu in an activity-dependent manner. However, the neural function of FAM3C has yet to be fully clarified. We found that the protein sequence of human FAM3C is similar to that of the N-terminal tandem domains of Caenorhabditis elegans FAMP-1 (formerly named M70.4), which has been recognized as a tentative ortholog of mammalian FAM3 members or protein-O-mannose β-1,2-N-acetylglucosaminyltransferase 1 (POMGnT1). Missense mutations in the N-terminal domain, named Fam3L2, caused defects in memory-based thermotaxis but not in chemotaxis behaviors; these defects could be restored by AFD neuron-specific exogenous expression of a polypeptide corresponding to the Fam3L2 domain but not that corresponding to the Fam3L1. Moreover, human FAM3C could also rescue defective thermotaxis behavior in famp-1 mutant worms. An in vitro assay revealed that the Fam3L2 and FAM3C can bind with carbohydrates, similar to the stem domain of POMGnT1. The athermotactic mutations in the Fam3L2 domain caused a partial loss-of-function of FAMP-1, whereas the C-terminal truncation mutations led to more severe neural dysfunction that reduced locomotor activity. Overall, we show that the Fam3L2 domain-dependent function of FAMP-1 in AFD neurons is required for the thermotaxis migration of C. elegans and that human FAM3C can act as a substitute for the Fam3L2 domain in thermotaxis behaviors.
Collapse
Affiliation(s)
- Masaki Nakano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Ryuki Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | | | | |
Collapse
|
95
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
96
|
Henriet S, Aasjord A, Chourrout D. Laboratory study of Fritillaria lifecycle reveals key morphogenetic events leading to genus-specific anatomy. Front Zool 2022; 19:26. [PMID: 36307829 PMCID: PMC9617304 DOI: 10.1186/s12983-022-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A fascinating variety of adult body plans can be found in the Tunicates, the closest existing relatives of vertebrates. A distinctive feature of the larvacean class of pelagic tunicates is the presence of a highly specialized surface epithelium that produces a cellulose test, the “larvacean house”. While substantial differences exist between the anatomy of larvacean families, most of the ontogeny is derived from the observations of a single genus, Oikopleura. We present the first study of Fritillaria development based on the observation of individuals reproduced in the laboratory. Like the other small epipelagic species Oikopleura dioica, the larvae of Fritillaria borealis grow rapidly in the laboratory, and they acquire the adult form within a day. We could show that major morphological differences exhibited by Fritillaria and Oikopleura adults originate from a key developmental stage during larval organogenesis. Here, the surface epithelium progressively retracts from the posterior digestive organs of Fritillaria larvae, and it establishes house-producing territories around the pharynx. Our results show that the divergence between larvacean genera was associated with a profound rearrangement of the mechanisms controlling the differentiation of the larval ectoderm.
Collapse
|
97
|
Li J, Liu S, Zhang Y, Huang Q, Zhang H, OuYang J, Mao F, Fan H, Yi W, Dong M, Xu A, Huang S. Two novel mollusk short-form ApeC-containing proteins act as pattern recognition proteins for peptidoglycan. Front Immunol 2022; 13:971883. [PMID: 36275759 PMCID: PMC9585378 DOI: 10.3389/fimmu.2022.971883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The Apextrin C-terminal (ApeC) domain is a new protein domain largely specific to aquatic invertebrates. In amphioxus, a short-form ApeC-containing protein (ACP) family is capable of binding peptidoglycan (PGN) and agglutinating bacteria via its ApeC domain. However, the functions of ApeC in other phyla remain unknown. Here we examined 130 ACPs from gastropods and bivalves, the first and second biggest mollusk classes. They were classified into nine groups based on their phylogenetics and architectures, including three groups of short-form ACPs, one group of apextrins and two groups of ACPs of complex architectures. No groups have orthologs in other phyla and only four groups have members in both gastropods and bivalves, suggesting that mollusk ACPs are highly diversified. We selected one bivalve ACP (CgACP1; from the oyster Crossostrea gigas) and one gastropod ACP (BgACP1; from the snail Biomphalaria glabrata) for functional experiments. Both are highly-expressed, secreted short-form ACPs and hence comparable to the amphioxus ACPs previously reported. We found that recombinant CgACP1 and BgACP1 bound with yeasts and several bacteria with different affinities. They also agglutinated these microbes, but showed no inhibiting or killing effects. Further analyses show that both ACPs had high affinities to the Lys-type PGN from S. aureus but weak or no affinities to the DAP-type PGN from Bacillus subtilis. Both recombinant ACPs displayed weak or no affinities to other microbial cell wall components, including lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan A, chitin, chitosan and cellulose, as well as to several PGN moieties, including muramyl dipeptide (MDP), N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). Besides, CgACP1 had the highest expression in the gill and could be greatly up-regulated quickly after bacterial challenge. This is reminiscent of the amphioxus ACP1/2 which serve as essential mucus lectins in the gill. Taken together, the current findings from mollusk and amphioxus ACPs suggest several basic common traits for the ApeC domains, including the high affinity to Lys-type PGN, the bacterial binding and agglutinating capacity, and the role as mucus proteins to protect the mucosal surface.
Collapse
Affiliation(s)
- Jin Li
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shumin Liu
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yang Zhang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuyun Huang
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Zhang
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jihua OuYang
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fan Mao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Huiping Fan
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenjie Yi
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Meiling Dong
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Anlong Xu, ; Shengfeng Huang,
| | - Shengfeng Huang
- Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Anlong Xu, ; Shengfeng Huang,
| |
Collapse
|
98
|
Kim K, Orvis J, Stolfi A. Pax3/7 regulates neural tube closure and patterning in a non-vertebrate chordate. Front Cell Dev Biol 2022; 10:999511. [PMID: 36172287 PMCID: PMC9511217 DOI: 10.3389/fcell.2022.999511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Pax3/7 factors play numerous roles in the development of the dorsal nervous system of vertebrates. From specifying neural crest at the neural plate borders, to regulating neural tube closure and patterning of the resulting neural tube. However, it is unclear which of these roles are conserved in non-vertebrate chordates. Here we investigate the expression and function of Pax3/7 in the model tunicate Ciona. Pax3/7 is expressed in neural plate border cells during neurulation, and in central nervous system progenitors shortly after neural tube closure. We find that separate cis-regulatory elements control the expression in these two distinct lineages. Using CRISPR/Cas9-mediated mutagenesis, we knocked out Pax3/7 in F0 embryos specifically in these two separate territories. Pax3/7 knockout in the neural plate borders resulted in neural tube closure defects, suggesting an ancient role for Pax3/7 in this chordate-specific process. Furthermore, knocking out Pax3/7 in the neural impaired Motor Ganglion neuron specification, confirming a conserved role for this gene in patterning the neural tube as well. Taken together, these results suggests that key functions of Pax3/7 in neural tube development are evolutionarily ancient, dating back at least to the last common ancestor of vertebrates and tunicates.
Collapse
|
99
|
Central nervous system regeneration in ascidians: cell migration and differentiation. Cell Tissue Res 2022; 390:335-354. [PMID: 36066636 DOI: 10.1007/s00441-022-03677-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Adult ascidians have the capacity to regenerate the central nervous system (CNS) and are therefore excellent models for studies on neuroregeneration. The possibility that undifferentiated blood cells are involved in adult neuroregeneration merits investigation. We analyzed the migration, circulation, and role of hemocytes of the ascidian Styela plicata in neuroregeneration. Hemocytes were removed and incubated with superparamagnetic iron oxide nanoparticles (SPION), and these SPION-labeled hemocytes were injected back into the animals (autologous transplant), followed by neurodegeneration with the neurotoxin 3-acetylpyridine (3AP). Magnetic resonance imaging showed that 1, 5, and 10 days after injury, hemocytes migrated to the intestinal region, siphons, and CNS. Immunohistochemistry revealed that the hemocytes that migrated to the CNS were putative stem cells (P-element-induced wimpy testis + or PIWI + cells). In the cortex of the neural ganglion, migrated hemocytes started to lose their PIWI labeling 5 days after injury, and 10 days later started to show β-III tubulin labeling. In the neural gland, however, the hemocytes remained undifferentiated during the entire experimental period. Transmission electron microscopy revealed regions in the neural gland with characteristics of neurogenic niches, not previously reported in ascidians. These results showed that migration of hemocytes to the hematopoietic tissue and to the 3AP-neurodegenerated region is central to the complex mechanism of neuroregeneration.
Collapse
|
100
|
Sakamoto A, Hozumi A, Shiraishi A, Satake H, Horie T, Sasakura Y. The
TRP
channel
PKD2
is involved in sensing the mechanical stimulus of adhesion for initiating metamorphosis in the chordate
Ciona. Dev Growth Differ 2022; 64:395-408. [DOI: 10.1111/dgd.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Aya Sakamoto
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akiko Hozumi
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences Kyoto Japan
| | - Takeo Horie
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center University of Tsukuba, Shimoda Shizuoka Japan
| |
Collapse
|