51
|
D’Andrea MR, Cereda V, Coppola L, Giordano G, Remo A, De Santis E. Propensity for Early Metastatic Spread in Breast Cancer: Role of Tumor Vascularization Features and Tumor Immune Infiltrate. Cancers (Basel) 2021; 13:cancers13235917. [PMID: 34885027 PMCID: PMC8657227 DOI: 10.3390/cancers13235917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is a complex and highly heterogeneous disease consisting of various subtypes. It is classified into human epidermal growth receptor 2 (HER-2)-enriched, luminal A, luminal B and basal-like/triple negative (TNBC) breast cancer, based on histological and molecular features. At present, clinical decision-making in breast cancer is focused only on the assessment of tumor cells; nevertheless, it has been recognized that the tumor microenvironment (TME) plays a critical biologic role in breast cancer. This is constituted by a large group of immune and non-immune cells, but also by non-cellular components, such as several cytokines. TME is deeply involved in angiogenesis, immune-evasion strategies, and propensity for early metastatic spread, impacting on prognosis and prediction of response to specific treatments. In this review, we focused our attention on the early morphological changes of tumor microenvironment (tumor vasculature features, presence of immune and non-immune cells infiltrating the stroma, levels of cytokines) during breast cancer development. At the same time, we correlate these characteristics with early metastatic propensity (defined as synchronous metastasis or early recurrence) with particular attention to breast cancer subtypes.
Collapse
Affiliation(s)
- Mario Rosario D’Andrea
- Clinical Oncology Unit, San Paolo Hospital, Largo Donatori del Sangue 1, Civitavecchia, 00053 Rome, Italy;
| | - Vittore Cereda
- Clinical Oncology Unit, San Paolo Hospital, Largo Donatori del Sangue 1, Civitavecchia, 00053 Rome, Italy;
- Correspondence: ; Tel.: +39-07-6659-1230
| | - Luigi Coppola
- Unit of Anatomy, Pathological Histology and Diagnostic Cytology, Department of Diagnostic and Pharma-Ceutical Services, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy;
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital, ULSS9, Legnago, 37045 Verona, Italy;
| | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
52
|
Macharia LW, Muriithi W, Heming CP, Nyaga DK, Aran V, Mureithi MW, Ferrer VP, Pane A, Filho PN, Moura-Neto V. The genotypic and phenotypic impact of hypoxia microenvironment on glioblastoma cell lines. BMC Cancer 2021; 21:1248. [PMID: 34798868 PMCID: PMC8605580 DOI: 10.1186/s12885-021-08978-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Glioblastoma is a fatal brain tumour with a poor patient survival outcome. Hypoxia has been shown to reprogram cells towards a stem cell phenotype associated with self-renewal and drug resistance properties. Activation of hypoxia-inducible factors (HIFs) helps in cellular adaptation mechanisms under hypoxia. Similarly, miRNAs are known to be dysregulated in GBM have been shown to act as critical mediators of the hypoxic response and to regulate key processes involved in tumorigenesis. METHODS Glioblastoma (GBM) cells were exposed to oxygen deprivation to mimic a tumour microenvironment and different cell aspects were analysed such as morphological changes and gene expression of miRNAs and survival genes known to be associated with tumorigenesis. RESULTS It was observed that miR-128a-3p, miR-34-5p, miR-181a/b/c, were down-regulated in 6 GBM cell lines while miR-17-5p and miR-221-3p were upregulated when compared to a non-GBM control. When the same GBM cell lines were cultured under hypoxic microenvironment, a further 4-10-fold downregulation was observed for miR-34-5p, miR-128a-3p and 181a/b/c while a 3-6-fold upregulation was observed for miR-221-3p and 17-5p for most of the cells. Furthermore, there was an increased expression of SOX2 and Oct4, GLUT-1, VEGF, Bcl-2 and survivin, which are associated with a stem-like state, increased metabolism, altered angiogenesis and apoptotic escape, respectively. CONCLUSION This study shows that by mimicking a tumour microenvironment, miRNAs are dysregulated, stemness factors are induced and alteration of the survival genes necessary for the cells to adapt to the micro-environmental factors occurs. Collectively, these results might contribute to GBM aggressiveness.
Collapse
Affiliation(s)
- Lucy Wanjiku Macharia
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro - (PPGAP-UFRJ), Rio de Janeiro, Brazil
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Wanjiru Muriithi
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Carlos Pilotto Heming
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Dennis Kirii Nyaga
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
- Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Veronica Aran
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | | | - Valeria Pereira Ferrer
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Attilio Pane
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil
| | - Paulo Niemeyer Filho
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil
| | - Vivaldo Moura-Neto
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro - (PPGAP-UFRJ), Rio de Janeiro, Brazil.
- Laboratório de Biomedicina do Cérebro- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brasil. Rua do Rezende, 156 - Centro, Rio de Janeiro, RJ, 20231-092, Brasil.
| |
Collapse
|
53
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
54
|
Haj-Shomaly J, Vorontsova A, Barenholz-Cohen T, Levi-Galibov O, Devarasetty M, Timaner M, Raviv Z, Cooper TJ, Soker S, Hasson P, Weihs D, Scherz-Shouval R, Shaked Y. T cells promote metastasis by regulating extracellular matrix remodeling following chemotherapy. Cancer Res 2021; 82:278-291. [PMID: 34666995 PMCID: PMC7612244 DOI: 10.1158/0008-5472.can-21-1012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is the main cause of cancer-related mortality. Despite intense efforts to understand the mechanisms underlying the metastatic process, treatment of metastatic cancer is still challenging. Here we describe a chemotherapy-induced, host-mediated mechanism that promotes remodeling of the extracellular matrix (ECM), ultimately facilitating cancer cell seeding and metastasis. Paclitaxel (PTX) chemotherapy enhanced rapid ECM remodeling and mechano-structural changes in the lungs of tumor-free mice, and the protein expression and activity of the ECM remodeling enzyme lysyl oxidase (LOX) increased in response to PTX. A chimeric mouse mode harboring genetic LOX depletion revealed chemotherapy-induced ECM remodeling was mediated by CD8+ T cells expressing LOX. Consistently, adoptive transfer of CD8+ T cells, but not CD4+ T cells or B cells, from PTX-treated mice to naïve immuno-deprived mice induced pulmonary ECM remodeling. Lastly, in a clinically relevant metastatic breast carcinoma model, LOX inhibition counteracted the metastasis-promoting, ECM-related effects of PTX. This study highlights the role of immune cells in regulating ECM and metastasis following chemotherapy, suggesting that inhibiting chemotherapy-induced ECM remodeling represents a potential therapeutic strategy for metastatic cancer.
Collapse
Affiliation(s)
- Jozafina Haj-Shomaly
- Department of Cell Biology and Cancer Science, Technion – Israel Institute of Technology
| | - Avital Vorontsova
- Department of Cell Biology and Cancer Science, Technion – Israel Institute of Technology
| | | | | | | | - Michael Timaner
- Department of Cell Biology and Cancer Science, Technion – Israel Institute of Technology
| | - Ziv Raviv
- Department of Cell Biology and Cancer Science, Technion – Israel Institute of Technology
| | - Tim J Cooper
- Faculty of Medicine, Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine,, Technion – Israel Institute of Technology
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, Technion – Israel Institute of Technology
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology
| | | | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Technion – Israel Institute of Technology
| |
Collapse
|
55
|
Jokar MH, Jafaripour S, Abdollahi N, Nazemipour M, Moradzadeh M, Mansournia MA. Serum lysyl oxidase concentration increases in long-standing systemic sclerosis: Can lysyl oxidase change over time? Arch Rheumatol 2021; 37:261-270. [PMID: 36017203 PMCID: PMC9377183 DOI: 10.46497/archrheumatol.2022.8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives
This study aims to investigate the association of serum lysyl oxidase (LOX) levels with systemic sclerosis (SSc), to examine the relationship between LOX and disease onset, and to evaluate the probable effects of hyperlipidemia on the circulating levels of LOX among patients with SSc. Patients and methods
Between May 2017 and November 2018, a total of 39 patients with SSc (2 males, 37 females; mean age: 46.6±12.3 years; range, 18 to 65 years) and 35 healthy controls (4 males, 31 females; mean age: 43.1±14.1 years; range, 18 to 65 years) were included. Serum LOX concentration was measured using the enzyme-linked immunoassay in triplicate. Results
We found higher levels of serum LOX in patients with SSc compared to healthy controls. There was a significant relationship between serum LOX levels and disease onset. Patients with long-standing disease demonstrated increased levels of LOX in the blood compared to the recent-onset group. Hyperlipidemia did not have a significant effect on circulating levels of LOX. There was a significant negative correlation between LOX levels and modified Rodnan Skin Score in the subgroup of patients with skin involvement only and in patients without gastrointestinal involvement. Conclusion
Our study findings show an increased level of LOX protein level in the blood of patients diagnosed with SSc. Hyperlipidemia seems not to affect the concentrations of LOX in the peripheral blood of patients with SSc.
Collapse
Affiliation(s)
- Mohammad Hassan Jokar
- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Simin Jafaripour
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Abdollahi
- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Nazemipour
- Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Moradzadeh
- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Dzhalilova DS, Makarova OV. HIF-Dependent Mechanisms of Relationship between Hypoxia Tolerance and Tumor Development. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1163-1180. [PMID: 34903150 DOI: 10.1134/s0006297921100011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxygen deficiency is one of the key pathogenetic factors determining development and severity of many diseases, including inflammatory, infectious diseases, and cancer. Lack of oxygen activates the signaling pathway of the hypoxia-inducible transcription factor HIF in cells that has three isoforms, HIF-1, HIF-2, HIF-3, regulating expression of several thousand genes. Throughout tumor progression, HIF activation stimulates angiogenesis, promotes changes in cell metabolism, adhesion, invasiveness, and ability to metastasize. HIF isoforms can play opposite roles in the development of inflammatory and neoplastic processes. Humans and laboratory animals differ both in tolerance to hypoxia and in the levels of expression of HIF and HIF-dependent genes, which may lead to predisposition to the development of certain oncological disorders. In particular, the ratio of different histogenetic types of tumors may vary among people living in the mountains and at the sea level. However, despite the key role of hypoxia at almost all stages of tumor development, basal tolerance to oxygen deficiency is not considered as a factor of predisposition to the tumor growth initiation. In literature, there are many works characterizing the level of local hypoxia in various tumors, and suggesting fundamental approaches to its mitigation by HIF inhibition. HIF inhibitors, as a rule, have a systemic effect on the organism, however, basal tolerance of an organism to hypoxia as well as the level of HIF expression are not taken into account in the process of their use. The review summarizes the literature data on different HIF isoforms and their role in tumor progression, with extrapolation to organisms with high and low tolerance to hypoxia, as well as on the prevalence of various types of tumors in the populations living at high altitudes.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Federal State Budgetary Institution "Research Institute of Human Morphology", Moscow, 117418, Russia.
| | - Olga V Makarova
- Federal State Budgetary Institution "Research Institute of Human Morphology", Moscow, 117418, Russia
| |
Collapse
|
57
|
Lama-Sherpa TD, Das S, Hinshaw DC, Kammerud SC, Song PN, Alsheikh HA, Sorace AG, Samant RS, Shevde LA. Quantitative Longitudinal Imaging Reveals that Inhibiting Hedgehog Activity Alleviates the Hypoxic Tumor Landscape. Mol Cancer Res 2021; 20:150-160. [PMID: 34593607 DOI: 10.1158/1541-7786.mcr-21-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Metastases account for the majority of mortalities related to breast cancer. The onset and sustained presence of hypoxia strongly correlates with increased incidence of metastasis and unfavorable prognosis in patients with breast cancer. The Hedgehog (Hh) signaling pathway is dysregulated in breast cancer, and its abnormal activity enables tumor progression and metastasis. In addition to programming tumor cell behavior, Hh activity enables tumor cells to craft a metastasis-conducive microenvironment. Hypoxia is a prominent feature of growing tumors that impacts multiple signaling circuits that converge upon malignant progression. We investigated the role of Hh activity in crafting a hypoxic environment of breast cancer. We used radioactive tracer [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) to image tumor hypoxia. We show that tumors competent for Hh activity are able to establish a hypoxic milieu; pharmacologic inhibition of Hh signaling in a syngeneic mammary tumor model mitigates tumor hypoxia. Furthermore, in hypoxia, Hh activity is robustly activated in tumor cells and institutes increased HIF signaling in a VHL-dependent manner. The findings establish a novel perspective on Hh activity in crafting a hypoxic tumor landscape and molecularly navigating the tumor cells to adapt to hypoxic conditions. IMPLICATIONS: Importantly, we present a translational strategy of utilizing longitudinal hypoxia imaging to measure the efficacy of vismodegib in a preclinical model of triple-negative breast cancer.
Collapse
Affiliation(s)
| | - Shamik Das
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Dominique C Hinshaw
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah C Kammerud
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A Alsheikh
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S Samant
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama
| | - Lalita A Shevde
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
58
|
Farhat A, Ferns GA, Ashrafi K, Arjmand MH. Lysyl Oxidase Mechanisms to Mediate Gastrointestinal Cancer Progression. Gastrointest Tumors 2021; 8:33-40. [PMID: 34568293 DOI: 10.1159/000511244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 02/04/2023] Open
Abstract
Background Malignancy is a complex process resulting from different changes such as extracellular matrix (ECM) remodeling and stiffness. One of the important enzymes that contribute to ECM remodeling is lysyl oxidase (Lox) that is overexpressed in different types of human cancers. Because of the high prevalence and poor survival of gastrointestinal (GI) malignancies in this review, we discuss the association between Lox activity and the progression of GI cancers. Lox proteins are a group of extracellular enzymes that catalyzed the cross-linking of collagen and elastin, so they have important roles in the control of structure and homeostasis of ECM. Abnormal activation and expression of the Lox family of proteins lead to changes in the ECM toward increased rigidity and fibrosis. Stiffness of ECM can contribute to the pathogenesis of cancers. Summary Dysregulation of Lox expression is a factor in both fibrotic diseases and cancer. ECM stiffness by Lox overactivity creates a physical barrier against intratumoral concentration of chemotherapeutic drugs and facilitates cancer inflammation, angiogenesis, and metastasis. Key Message Because of the roles of Lox in GI cancers, development targeting Lox protein isotypes may be an appropriate strategy for treatment of GI cancers and improvement in survival of patients.
Collapse
Affiliation(s)
- Ahmadshah Farhat
- Neonatal Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Korosh Ashrafi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Hassan Arjmand
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
59
|
Todd VM, Vecchi LA, Clements ME, Snow KP, Ontko CD, Himmel L, Pinelli C, Rafat M, Johnson RW. Hypoxia inducible factor signaling in breast tumors controls spontaneous tumor dissemination in a site-specific manner. Commun Biol 2021; 4:1122. [PMID: 34556788 PMCID: PMC8460839 DOI: 10.1038/s42003-021-02648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature in tumors and induces signaling that promotes tumor cell survival, invasion, and metastasis, but the impact of hypoxia inducible factor (HIF) signaling in the primary tumor on dissemination to bone in particular remains unclear. To better understand the contributions of hypoxia inducible factor 1 alpha (HIF1α), HIF2α, and general HIF pathway activation in metastasis, we employ a PyMT-driven spontaneous murine mammary carcinoma model with mammary specific deletion of Hif1α, Hif2α, or von Hippel-Lindau factor (Vhl) using the Cre-lox system. Here we show that Hif1α or Hif2α deletion in the primary tumor decreases metastatic tumor burden in the bone marrow, while Vhl deletion increases bone tumor burden, as hypothesized. Unexpectedly, Hif1α deletion increases metastatic tumor burden in the lung, while deletion of Hif2α or Vhl does not affect pulmonary metastasis. Mice with Hif1α deleted tumors also exhibit reduced bone volume as measured by micro computed tomography, suggesting that disruption of the osteogenic niche may be involved in the preference for lung dissemination observed in this group. Thus, we reveal that HIF signaling in breast tumors controls tumor dissemination in a site-specific manner.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miranda E Clements
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine P Snow
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marjan Rafat
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
60
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
61
|
Kim HY, Jo M, La JA, Choi Y, Cho EC, Kim SH, Jung Y, Kim K, Ryu JH. Detection of Lysyl Oxidase Activity in Tumor Extracellular Matrix Using Peptide-Functionalized Gold Nanoprobes. Cancers (Basel) 2021; 13:cancers13184523. [PMID: 34572752 PMCID: PMC8471099 DOI: 10.3390/cancers13184523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Although various malignant tumors express high levels of lysyl oxidase (LOX) and though its role in tumor progression is well-defined, there is a lack of sensing techniques to target LOX. This study highlights the application of peptide-functionalized gold nanoprobes for sensing the LOX levels in tumor microenvironments. The gold nanoparticles (AuNPs) in these nanoprobes aggregate upon exposure to LOX, resulting in a red shift of the surface plasmon resonance peak, accompanied by a characteristic color change. This colorimetric assay based on peptide-functionalized AuNP sensitively detects LOX secreted from various cancer cells not only in vitro but also in the tissue extract. In this study, the suggested analytical approach demonstrated high specificity to LOX and did not show any color change in the presence of other enzymes. Abstract High LOX levels in the tumor microenvironment causes the cross-linking of extracellular matrix components and increases the stiffness of tumor tissue. Thus, LOX plays an important role in tumorigenesis and in lowering the tumor response to anticancer drugs. Despite comprehensive efforts to identify the roles of LOX in the tumor microenvironment, sensitive and accurate detection methods have not yet been established. Here, we suggest the use of gold nanoparticles functionalized with LOX-sensitive peptides (LS-AuNPs) that aggregate upon exposure to LOX, resulting in a visual color change. LOX-sensitive peptides (LS-peptides) contain lysine residues that are converted to allysine in the presence of LOX, which is highly reactive and binds to adjacent allysine, resulting in the aggregation of the AuNPs. We demonstrated that the synthesized LS-AuNPs are capable of detecting LOX sensitively, specifically both in vitro and in the tissue extract. Moreover, the suggested LS-AuNP-based assay is more sensitive than commonly employed assays or commercially available kits. Therefore, the LS-AuNPs developed in this study can be used to detect LOX levels and can be further used to predict the stiffness or the anticancer drug resistance of the tumor.
Collapse
Affiliation(s)
- Han Young Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Gyeonggi-do, Korea;
| | - Mihee Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
| | - Ju A La
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea; (J.A.L.); (E.C.C.)
| | - Youngjin Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
| | - Eun Chul Cho
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea; (J.A.L.); (E.C.C.)
| | - Su Hee Kim
- R&D Center, Medifab Ltd., Seoul 08584, Korea;
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (M.J.); (Y.C.); (K.K.)
- Correspondence: ; Tel.: +82-2-958-5942
| |
Collapse
|
62
|
Shen J, Rees TW, Ji L, Chao H. Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
63
|
Wan S, Lei Y, Li M, Wu B. A prognostic model for hepatocellular carcinoma patients based on signature ferroptosis-related genes. Hepatol Int 2021; 16:112-124. [PMID: 34449009 DOI: 10.1007/s12072-021-10248-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Considering the increase in the number of HCC patients, it is critical to predict the survival of patients. Although ferroptosis is closely related to HCC progression, predicting the survival of HCC patients through ferroptosis-related genes is challenging. METHODS RNA-seq and clinical data of HCC in the TCGA database were analyzed to establish a prognostic model, and ICGC and GSE14520 data were used for validation. Risk score was constructed with 5 genes identified by univariate and LASSO Cox regression analysis. Risk score, TNM stage and cirrhosis were incorporated to construct a nomogram through univariate and multivariate Cox regression analysis. RESULTS Five genes identified from 70 ferroptosis-related DEGs were used to construct a gene signature that predicts survival of HCC patients in the TCGA cohort. PCA and heatmap showed clear differences between patients in different score groups. Next, risk score, TNM stage and cirrhosis were combined in a nomogram for overall survival prediction. Survival analysis indicated that the overall survival of the low-risk group was significantly higher than that of the high-risk group. The data from the GSE14520 cohort confirmed satisfactory nomogram performance. Furthermore, KEGG and GO functional enrichment analyses indicated that the difference in overall survival between risk groups was closely related to immune-related pathways. Further analyses implied that an immune-suppressive tumor microenvironment might contribute to the difference in the prognosis between risk groups. CONCLUSION The nomogram based on ferroptosis-related genes showed good performance for predicting the prognosis of HCC patients. The model may provide a reference for the evaluation of HCC patients by targeting ferroptosis.
Collapse
Affiliation(s)
- Sizhe Wan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yiming Lei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 600 Tianhe Road, Guangzhou, 510630, China
| | - Mingkai Li
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 600 Tianhe Road, Guangzhou, 510630, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
64
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
65
|
Liu YL, Bager CL, Willumsen N, Ramchandani D, Kornhauser N, Ling L, Cobham M, Andreopoulou E, Cigler T, Moore A, LaPolla D, Fitzpatrick V, Ward M, Warren JD, Fischbach C, Mittal V, Vahdat LT. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer 2021; 7:108. [PMID: 34426581 PMCID: PMC8382701 DOI: 10.1038/s41523-021-00313-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Tetrathiomolybdate (TM) is a novel, copper-depleting compound associated with promising survival in a phase II study of patients with high-risk and triple-negative breast cancer. We sought to elucidate the mechanism of TM by exploring its effects on collagen processing and immune function in the tumor microenvironment (TME). Using an exploratory cohort, we identified markers of collagen processing (LOXL2, PRO-C3, C6M, and C1M) that differed between those with breast cancer versus controls. We measured these collagen biomarkers in TM-treated patients on the phase II study and detected evidence of decreased collagen cross-linking and increased degradation over formation in those without disease compared to those who experienced disease progression. Preclinical studies revealed decreased collagen deposition, lower levels of myeloid-derived suppressor cells, and higher CD4+ T-cell infiltration in TM-treated mice compared with controls. This study reveals novel mechanisms of TM targeting the TME and immune response with potential applications across cancer types.
Collapse
Affiliation(s)
- Ying L Liu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | - Anne Moore
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Linda T Vahdat
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
66
|
Wei F, Kuang S, Rees TW, Liao X, Liu J, Luo D, Wang J, Zhang X, Ji L, Chao H. Ruthenium(II) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia. Biomaterials 2021; 276:121064. [PMID: 34391019 DOI: 10.1016/j.biomaterials.2021.121064] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022]
Abstract
The photodynamic therapy (PDT) of cancer is limited by tumor hypoxia as PDT efficiency depends on O2 concentration. A novel oxygen self-sufficient photosensitizer (Ru-g-C3N4) was therefore designed and synthesized via a facile one-pot method in order to overcome tumor hypoxia-induced PDT resistance. The photosensitizer is based on [Ru(bpy)2]2+ coordinated to g-C3N4 nanosheets by Ru-N bonding. Compared to pure g-C3N4, the resulting nanosheets exhibit increased water solubility, stronger visible light absorption, and enhanced biocompatibility. Once Ru-g-C3N4 is taken up by hypoxic tumor cells and exposed to visible light, the nanosheets not only catalyze the decomposition of H2O2 and H2O to generate O2, but also catalyze H2O2 and O2 concurrently to produce multiple ROS (•OH, •O2-, and 1O2). In addition, Ru-g-C3N4 affords luminescence imaging, while continuously generating O2 to alleviate hypoxia greatly improving PDT efficacy. To the best of our knowledge, this oxygen self-sufficient photosensitizer produced via grafting a metal complex onto g-C3N4 is the first of its type to be reported.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Diqing Luo
- Department of Dermatology, The Eastern Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jinquan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Drug Candidate, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiting Zhang
- Department of Chemistry, University of Hong Kong, Pokfulam Road, S.A.R., Hong Kong, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
67
|
Waza AA, Tarfeen N, Majid S, Hassan Y, Mir R, Rather MY, Shah NUD. Metastatic Breast Cancer, Organotropism and Therapeutics: A Review. Curr Cancer Drug Targets 2021; 21:813-828. [PMID: 34365922 DOI: 10.2174/1568009621666210806094410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The final stage of breast cancer involves spreading breast cancer cells to the vital organs like the brain, liver lungs and bones in the process called metastasis. Once the target organ is overtaken by the metastatic breast cancer cells, its usual function is compromised causing organ dysfunction and death. Despite the significant research on breast cancer metastasis, it's still the main culprit of breast cancer-related deaths. Exploring the complex molecular pathways associated with the initiation and progression of breast cancer metastasis could lead to the discovery of more effective ways of treating the devastating phenomenon. The present review article highlights the recent advances to understand the complexity associated with breast cancer metastases, organotropism and therapeutic advances.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Yasmeena Hassan
- Division of Nursing, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, J & K. India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Kingdom of Saudi Arabia, Tabuk. Saudi Arabia
| | - Mohd Younis Rather
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Naseer Ue Din Shah
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| |
Collapse
|
68
|
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B 2021; 11:2265-2285. [PMID: 34522587 PMCID: PMC8424218 DOI: 10.1016/j.apsb.2021.03.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The administration of nanoparticles (NPs) first faces the challenges of evading renal filtration and clearance of reticuloendothelial system (RES). After that, NPs infiltrate through the expanded endothelial space and penetrated the dense stroma of tumor microenvironment to tumor cells. As long as possible to prolong the time of NPs remaining in tumor tissue, NPs release active agent and induce pharmacological action. This review provides a comprehensive summary of the physical and chemical properties of NPs and the influence of various biological factors in tumor microenvironment, and discusses how to improve the final efficacy through adjusting the characteristics and structure of NPs. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kai Shi
- Corresponding author. Tel./fax: +86 24 43520557.
| |
Collapse
|
69
|
Alkaloid derivative ION-31a inhibits breast cancer metastasis and angiogenesis by targeting HSP90α. Bioorg Chem 2021; 115:105201. [PMID: 34329994 DOI: 10.1016/j.bioorg.2021.105201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer has become the number one killer of women. In our previous study, an active compound, ION-31a, with potential anti-metastasis activity against breast cancer was identified through the synthesis of ionone alkaloid derivatives. In the present study, we aimed to identify the therapeutic target of ION-31a. We used a fluorescence tag labeled probe, molecular docking simulation, and surface plasmon resonance (SPR) analysis to identify the target of ION-31a. The main target of ION-31a was identified as heat shock protein 90 (HSP90). Thus, ION-31a is a novel HSP90 inhibiter that could suppress the metastasis of breast cancer and angiogenesis significantly in vitro and in vivo. ION-31a acts via inhibiting the HSP90/hypoxia inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway and downregulating downstream signal pathways, including protein kinase B (AKT)/mammalian target of rapamycin (mTOR), AKT2/protein kinase C epsilon (PKCζ), extracellular regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and mitogen-activated protein kinase 14 (p38MAPK) pathways. ION-31a affects multiple effectors implicated in tumor metastasis and has the potential to be developed as an anti-metastatic agent to treat patients with breast cancer.
Collapse
|
70
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
71
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
72
|
The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nat Commun 2021; 12:4308. [PMID: 34262028 PMCID: PMC8280233 DOI: 10.1038/s41467-021-24631-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer. Hypoxia plays a critical role in tumor progression including invasion and metastasis. Here, the authors screened several hypoxia inducible genes and identified the oncogenic role of MAFF in breast cancer metastasis and that it activates IL11/STAT3 pathway.
Collapse
|
73
|
Tang Y, Qing C, Wang J, Zeng Z. DNA Methylation-based Diagnostic and Prognostic Biomarkers for Glioblastoma. Cell Transplant 2021; 29:963689720933241. [PMID: 32510239 PMCID: PMC7563836 DOI: 10.1177/0963689720933241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas are the most common primary central nervous system malignancy tumor in adults. Glioblastoma patients have poor prognosis, with an average survival period of approximately 14 mo after diagnosis. To date, there are a limited number of effective treatment methods for glioblastoma, and its molecular mechanisms remain elusive. In this article, we analyzed the key biomarkers and pathways in glioblastoma patients based on gene expression and DNA methylation datasets. The 60 hypomethylated/upregulated genes and 110 hypermethylated/downregulated genes were identified in GSE50923, GSE50161, and GSE116520 microarrays. Functional enrichment analyses indicated that these methylated-differentially expressed genes were primarily involved in collagen fibril organization, chemical synaptic transmission, extracellular matrix-receptor interaction, and GABAergic synapse. The hub genes were screened from a protein–protein interaction network; in selected genes, increased NMB mRNA level was associated with favorable overall survival, while elevated CHI3L1, POSTN, S100A4, LOX, S100A11, IGFBP2, SLC12A5, VSNL1, and RGS4 mRNA levels were associated with poor overall survival in glioblastoma patients. Additionally, CHI3L1, S100A4, LOX, and S100A11 expressions were negatively correlated with their corresponding methylation status. Furthermore, the receiver-operator characteristic curve analysis indicated that CHI3L1, S100A4, LOX, and S100A11 can also serve as highly specific and sensitive diagnostic biomarkers for glioblastoma patients. Collectively, our study revealed the possible methylated-differentially expressed genes and associated pathways in glioblastoma and identified four DNA methylation-based biomarkers of glioblastoma. These results may provide insight on diagnostic and prognostic biomarkers, and therapeutic targets in glioblastoma.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi, China.,Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Cheng Qing
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
74
|
Verdura S, Cuyàs E, Ruiz-Torres V, Micol V, Joven J, Bosch-Barrera J, Menendez JA. Lung Cancer Management with Silibinin: A Historical and Translational Perspective. Pharmaceuticals (Basel) 2021; 14:ph14060559. [PMID: 34208282 PMCID: PMC8230811 DOI: 10.3390/ph14060559] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023] Open
Abstract
The flavonolignan silibinin, the major bioactive component of the silymarin extract of Silybum marianum (milk thistle) seeds, is gaining traction as a novel anti-cancer therapeutic. Here, we review the historical developments that have laid the groundwork for the evaluation of silibinin as a chemopreventive and therapeutic agent in human lung cancer, including translational insights into its mechanism of action to control the aggressive behavior of lung carcinoma subtypes prone to metastasis. First, we summarize the evidence from chemically induced primary lung tumors supporting a role for silibinin in lung cancer prevention. Second, we reassess the preclinical and clinical evidence on the effectiveness of silibinin against drug resistance and brain metastasis traits of lung carcinomas. Third, we revisit the transcription factor STAT3 as a central tumor-cell intrinsic and microenvironmental target of silibinin in primary lung tumors and brain metastasis. Finally, by unraveling the selective vulnerability of silibinin-treated tumor cells to drugs using CRISPR-based chemosensitivity screenings (e.g., the hexosamine biosynthesis pathway inhibitor azaserine), we illustrate how the therapeutic use of silibinin against targetable weaknesses might be capitalized in specific lung cancer subtypes (e.g., KRAS/STK11 co-mutant tumors). Forthcoming studies should take up the challenge of developing silibinin and/or next-generation silibinin derivatives as novel lung cancer-preventive and therapeutic biomolecules.
Collapse
Affiliation(s)
- Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Verónica Ruiz-Torres
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Joaquim Bosch-Barrera
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona (UdG), 17003 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| | - Javier A. Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| |
Collapse
|
75
|
Sato K, Parag-Sharma K, Terajima M, Musicant AM, Murphy RM, Ramsey MR, Hibi H, Yamauchi M, Amelio AL. Lysyl hydroxylase 2-induced collagen cross-link switching promotes metastasis in head and neck squamous cell carcinomas. Neoplasia 2021; 23:594-606. [PMID: 34107376 PMCID: PMC8192727 DOI: 10.1016/j.neo.2021.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and incidence rates are continuing to rise globally. HNSCC patient prognosis is closely related to the occurrence of tumor metastases, and collagen within the tumor microenvironment (TME) plays a key role in this process. Lysyl hydroxylase 2 (LH2), encoded by the Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) gene, catalyzes hydroxylation of telopeptidyl lysine (Lys) residues of fibrillar collagens which then undergo subsequent modifications to form stable intermolecular cross-links that change the biomechanical properties (i.e. quality) of the TME. While LH2-catalyzed collagen modification has been implicated in driving tumor progression and metastasis in diverse cancers, little is known about its role in HNSCC progression. Thus, using gain- and loss-of-function studies, we examined the effects of LH2 expression levels on collagen cross-linking and cell behavior in vitro and in vivo using a tractable bioluminescent imaging-based orthotopic xenograft model. We found that LH2 overexpression dramatically increases HNSCC cell migratory and invasive abilities in vitro and that LH2-driven changes in collagen cross-linking robustly induces metastasis in vivo. Specifically, the amount of LH2-mediated collagen cross-links increased significantly with PLOD2 overexpression, without affecting the total quantity of collagen cross-links. Conversely, LH2 knockdown significantly blunted HNSCC cells invasive capacity in vitro and metastatic potential in vivo. Thus, regardless of the total "quantity" of collagen crosslinks, it is the "quality" of these cross-links that is the key driver of HNSCC tumor metastatic dissemination. These data implicate LH2 as a key regulator of HNSCC tumor invasion and metastasis by modulating collagen cross-link quality and suggest that therapeutic strategies targeting LH2-mediated collagen cross-linking in the TME may be effective in controlling tumor progression and improving disease outcomes.
Collapse
Affiliation(s)
- Kotaro Sato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology & Physiology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Adele M. Musicant
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Ryan M. Murphy
- Graduate Curriculum in Pharmacology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Antonio L. Amelio
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
76
|
Fang W, Su D, Lu W, Wang N, Mao R, Chen Y, Ge K, Shen A, Hu R. Application and Future Prospect of Extracellular Matrix Targeted Nanomaterials in Tumor Theranostics. Curr Drug Targets 2021; 22:913-921. [PMID: 33504304 DOI: 10.2174/1389450122666210127100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Systemic chemotherapy and radiotherapy have been widely used in clinics for several decades, but their disadvantages, such as systemic cytotoxicity and severe side effects, are the biggest obstacle to maximum therapeutic efficacy. In recent years, the impact of extracellular matrix components in tumor progression has gained the attention of researchers, and with the rapid development of nanomaterials, extracellular matrix targeted nanomaterials have become a promising strategy in tumor theranostics. In this review, we will outline the recent and relevant examples of various tumor extracellular matrix targeted nanomaterials applied in tumor therapy and imaging. And we will discuss the challenges and prospects of nanomaterials for future tumor therapy.
Collapse
Affiliation(s)
- Wenyou Fang
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Dan Su
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Nan Wang
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Rong Mao
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yuan Chen
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Kunkun Ge
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rongfeng Hu
- Key Laboratory of Xin' an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula; Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Anhui Province Key Laboratory of R & D of Chinese Medicine; Anhui University of Traditional Chinese Medicine, Hefei, Anhui, 230038, China
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW Breast cancer frequently metastasizes to the bone and lung, but the ability to treat metastatic tumor cells remains a pressing clinical challenge. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) have emerged as promising targets since these enzymes are aberrantly expressed in numerous cancers and regulate the expression of genes that drive tumorigenesis and metastasis. This review focuses on the abnormal expression of histone-modifying enzymes in cancers that have a high tropism for the bone and lung and explores the clinical use of histone deacetylase inhibitors for the treatment and prevention of metastasis to these sites. RECENT FINDINGS Preclinical studies have demonstrated that the role for HDACs is highly dependent on tumor type and stage of disease progression. HDAC inhibitors can induce apoptosis, senescence, cell differentiation, and tumor dormancy genes and inhibit angiogenesis, making these promising therapeutics for the treatment of metastatic disease. HDAC inhibitors are already FDA approved for hematologic malignancies and are in clinical trials with standard-of-care chemotherapies and targeted agents for several solid tumors, including cases of metastatic disease. However, these drugs can negatively impact bone homeostasis. Although HDAC inhibitors are not currently administered for the treatment of bone and lung metastatic disease, preclinical studies have shown that these drugs can reduce distant metastasis by targeting molecular factors and signaling pathways that drive tumor cell dissemination to these sites. Thus, HDAC inhibitors in combination with bone protective therapies may be beneficial in the treatment of bone metastatic cancers.
Collapse
Affiliation(s)
- Courtney M Edwards
- Graduate Program in Cancer Biology, Vanderbilt University, 2215b Garland Ave, 1165C Medical Research Building IV, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, 2215b Garland Ave, 1165C Medical Research Building IV, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
78
|
Dhamecha D, Le D, Chakravarty T, Perera K, Dutta A, Menon JU. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112100. [PMID: 33965110 PMCID: PMC8110948 DOI: 10.1016/j.msec.2021.112100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Complex three-dimensional (3D) cell cultures are being increasingly implemented in biomedical research as they provide important insights into complex cancer biology, and cell-cell and cell-matrix interactions in the tumor microenvironment. However, most methods used today for 3D cell culture are limited by high cost, the need for specialized skills, low throughput and the use of unnatural culture environments. We report the development of a unique biomimetic hydrogel microwell array platform for the generation and stress-free isolation of cancer spheroids. The poly N-isopropylacrylamide-based hydrogel microwell array (PHMA) has thermoresponsive properties allowing for the attachment and growth of cell aggregates/ spheroids at 37 °C, and their easy isolation at room temperature (RT). The reversible phase transition of the microwell arrays at 35 °C was confirmed visually and by differential scanning calorimetry. Swelling/ shrinking studies and EVOS imaging established that the microwell arrays are hydrophilic and swollen at temperatures <35 °C, while they shrink and are hydrophobic at temperatures >35 °C. Spheroid development within the PHMA was optimized for seeding density, incubation time and cell viability. Spheroids of A549, HeLa and MG-63 cancer cell lines, and human lung fibroblast (HLF) cell line generated within the PHMAs had relatively spherical morphology with hypoxic cores. Finally, using MG-63 cell spheroids as representative models, a proof-of-concept drug response study using doxorubicin hydrochloride was conducted. Overall, we demonstrate that the PHMAs are an innovative alternative to currently used 3D cell culture techniques, for the high-throughput generation of cell spheroids for disease modeling and drug screening applications.
Collapse
Affiliation(s)
- Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Duong Le
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tomali Chakravarty
- Department of Cell and Molecular Biology, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Kalindu Perera
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Arnob Dutta
- Department of Cell and Molecular Biology, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
79
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
80
|
Importance of Altered Gene Expression of Metalloproteinases 2, 9, and 16 in Acute Myeloid Leukemia: Preliminary Study. JOURNAL OF ONCOLOGY 2021; 2021:6697975. [PMID: 34035811 PMCID: PMC8121570 DOI: 10.1155/2021/6697975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia is a group of hematological neoplasms characterized by a heterogeneous course and high mortality. The important factor in the neoplastic process is metalloproteinases, proteolytic enzymes capable of degrading various components of the extracellular matrix, which take an active part in modifying the functioning of the cell, including transformation to cancer cell. They interact with numerous signaling pathways responsible for the process of cell growth, proliferation, or apoptosis. In the present study, changes in the expression of MMP2, MMP9, and MMP16 genes between patients with AML and people without cancer were examined. The impact of cytogenetic changes in neoplastic cells on the expression level of MMP2, MMP9, and MMP16 was also assessed, as well as the impact of the altered expression on the effectiveness of the first cycle of remission-inducing therapy. To evaluate the expression of all studied genes MMP2, MMP9, and MMP16, SYBR Green-based real-time PCR method was used; the reference gene was GAPDH. For two investigated genes MMP2 and MMP16, the lower expression level was observed in patients with AML when compared to healthy people. The MMP9 gene expression level did not differ between patients with AML and healthy individuals which may indicate a different regulation of gene expression in acute myeloid leukemia. However, no correlation was observed between the genes' expression of all tested metalloproteinases and the result of cytoreductive treatment or the presence of cytogenetic changes. The obtained results show that the expression of MMP2 and MMP16 genes is reduced while the expression of MMP9 is unchanged in patients with acute myeloid leukemia. This may indicate a different regulation of the expression of these genes, and possible disruptions in gene transcription or posttranscriptional mechanisms in the MMP2 and MMP16 genes, however, do not affect the level of MMP9 expression. Obtained results in AML patients are in contrary to various types of solid tumors where increased expression is usually observed.
Collapse
|
81
|
Hypoxia-inducible factor-dependent ADAM12 expression mediates breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 2021; 118:2020490118. [PMID: 33952697 DOI: 10.1073/pnas.2020490118] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer patients with increased expression of hypoxia-inducible factors (HIFs) in primary tumor biopsies are at increased risk of metastasis, which is the major cause of breast cancer-related mortality. The mechanisms by which intratumoral hypoxia and HIFs regulate metastasis are not fully elucidated. In this paper, we report that exposure of human breast cancer cells to hypoxia activates epidermal growth factor receptor (EGFR) signaling that is mediated by the HIF-dependent expression of a disintegrin and metalloprotease 12 (ADAM12), which mediates increased ectodomain shedding of heparin-binding EGF-like growth factor, an EGFR ligand, leading to EGFR-dependent phosphorylation of focal adhesion kinase. Inhibition of ADAM12 expression or activity decreased hypoxia-induced breast cancer cell migration and invasion in vitro, and dramatically impaired lung metastasis after orthotopic implantation of MDA-MB-231 human breast cancer cells into the mammary fat pad of immunodeficient mice.
Collapse
|
82
|
From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers (Basel) 2021; 13:cancers13092024. [PMID: 33922182 PMCID: PMC8122743 DOI: 10.3390/cancers13092024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Despite the recent advances in human malignancy therapy, metastasis and chemoresistance remain the principal causes of cancer-derived deaths. Given the fatal forms of cutaneous metastatic melanoma, we herein employed primary (WM115) and metastatic (WM266-4) melanoma cells, both obtained from the same patient, to identify novel biomarkers and therapeutic agents. Through state-of-the-art technologies including deep proteome landscaping, immunofluorescence phenotyping, and drug toxicity screening, we were able to describe new molecular programs, oncogenic drivers, and drug regimens, controlling the invasion-metastasis cascade during BRAFV600D-dependent melanomagenesis. It proved that proteomic navigation could foster the development of systemic biomarkering and targeted drugging for successful treatment of advanced disease. Abstract Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.
Collapse
|
83
|
Shen Y, Dong C, Xiang H, Li C, Zhuang F, Chen Y, Lu Q, Chen Y, Huang B. Engineering Oxygen-Irrelevant Radical Nanogenerator for Hypoxia-Independent Magnetothermodynamic Tumor Nanotherapy. SMALL METHODS 2021; 5:e2001087. [PMID: 34927851 DOI: 10.1002/smtd.202001087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 06/14/2023]
Abstract
Tumor hypoxia substantially lowers the treatment efficacy of oxygen-relevant therapeutic modalities because the production of reactive oxygen species in oxygen-relevant anticancer modalities is highly dependent on oxygen level in tumor tissues. Here a distinctive magnetothermodynamic anticancer strategy is developed that takes the advantage of oxygen-irrelevant free radicals produced from magnetothermal decomposable initiators for inducing cancer-cell apoptosis in vitro and tumor suppression in vivo. Free-radical nanogenerator is constructed through in situ engineering of a mesoporous silica coating on the surface of superparamagnetic Mn and Co-doped nanoparticles (MnFe2 O4 @CoFe2 O4 , denoted as Mag) toward multifunctionality, where mesoporous structure provides reservoirs for efficient loading of initiators and the Mag core serves as in situ heat source under alternating magnetic field (AMF) actuation. Upon exposure to an exogenous AMF, the magnetic hyperthermia effect of superparamagnetic core lead to the rapid decomposition of the loaded/delivered initiators (AIPH) to produce oxygen-irrelevant free radicals. Both the magnetothermal effect and generation of toxic free radicals under AMF actuation are synergistically effective in promoting cancer-cell death and tumor suppression in the hypoxic tumor microenvironment. The prominent therapeutic efficacy of this radical nanogenerator represents an intriguing paradigm of oxygen-irrelevant nanoplatform for AMF-initiated synergistic cancer treatment.
Collapse
Affiliation(s)
- Yujia Shen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Cuixian Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Yixin Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Qing Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
| |
Collapse
|
84
|
The essential role of PRAK in tumor metastasis and its therapeutic potential. Nat Commun 2021; 12:1736. [PMID: 33741957 PMCID: PMC7979731 DOI: 10.1038/s41467-021-21993-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/20/2021] [Indexed: 01/29/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death. Despite the recent advancements in cancer treatment, there is currently no approved therapy for metastasis. The present study reveals a potent and selective activity of PRAK in the regulation of tumor metastasis. While showing no apparent effect on the growth of primary breast cancers or subcutaneously inoculated tumor lines, Prak deficiency abrogates lung metastases in PyMT mice or mice receiving intravenous injection of tumor cells. Consistently, PRAK expression is closely associated with metastatic risk in human cancers. Further analysis indicates that loss of function of PRAK leads to a pronounced inhibition of HIF-1α protein synthesis, possibly due to reduced mTORC1 activities. Notably, pharmacological inactivation of PRAK with a clinically relevant inhibitor recapitulates the anti-metastatic effect of Prak depletion, highlighting the therapeutic potential of targeting PRAK in the control of metastasis.
Collapse
|
85
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|
86
|
Altuntaş OM, Süslü N, Güler Tezel YG, Tatlı Doğan H, Yılmaz T. Lysyl Oxidase Like-4 (LOXL4) as a tumor marker and prognosticator in advanced stage laryngeal cancer. Braz J Otorhinolaryngol 2021; 88:968-974. [PMID: 33757755 PMCID: PMC9615536 DOI: 10.1016/j.bjorl.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/06/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Lysyl oxidase-like 4 is an amine oxidase from the lysyl oxidase family that was previously shown to be overexpressed in head and neck cancer and upregulated in response to hypoxia. The possible role of lysyl oxidase-like 4 as a tumor marker in advanced stage larynx cancer was investigated. Objective To investigate the expression of lysyl Oxidase-Like 4 protein in advanced stage laryngeal cancer and elucidate its possible role as a tumor marker, predictor of treatment response and prognosticator. Methods Diagnostic specimens of 72 patients treated for stage III–IV laryngeal squamous cell carcinoma were evaluated for lysyl oxidase-like 4 expression by immunohistochemistry. Results Lysyl oxidase-like 4 expression was correlated with advanced tumor stage (p = 0.041) and better differentiation (p = 0.025) but was independent of tumor diameter (p = 0.456). Response to induction chemotherapy or the need for salvage laryngectomy were not affected by lysyl oxidase-like 4 expression (p = 0.999, p = 0.070 respectively). Increased lysyl oxidase-like 4 expression was associated with better 2 year overall survival in both univariate (p = 0.036) and multivariate analyses (p = 0.014). Conclusion Lysyl oxidase-like 4 expression emerges with advancing stages, is lost with worsening differentiation, and may have tumor suppressive properties in larynx cancer.
Collapse
Affiliation(s)
- Ozan Muzaffer Altuntaş
- Koç University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey.
| | - Nilda Süslü
- Hacettepe University, Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| | | | | | - Taner Yılmaz
- Hacettepe University, Faculty of Medicine, Department of Otorhinolaryngology, Ankara, Turkey
| |
Collapse
|
87
|
Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Sci Rep 2021; 11:5107. [PMID: 33658580 PMCID: PMC7930284 DOI: 10.1038/s41598-021-84492-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
In the field of oncology research, a deeper understanding of tumor biology has shed light on the role of environmental conditions surrounding cancer cells. In this regard, targeting the tumor microenvironment has recently emerged as a new way to access this disease. In this work, a novel extracellular matrix (ECM)-targeting nanotherapeutic was engineered using a lipid-based nanoparticle chemically linked to an inhibitor of the ECM-related enzyme, lysyl oxidase 1 (LOX), that inhibits the crosslinking of elastin and collagen fibers. We demonstrated that, when the conjugated vesicles were loaded with the chemotherapeutic epirubicin, superior inhibition of triple negative breast cancer (TNBC) cell growth was observed both in vitro and in vivo. Moreover, in vivo results displayed prolonged survival, minimal cytotoxicity, and enhanced biocompatibility compared to free epirubicin and epirubicin-loaded nanoparticles. This all-in-one nano-based ECM-targeting chemotherapeutic may provide a key-enabling technology for the treatment of TNBC.
Collapse
|
88
|
Immunohistochemistry analysis reveals lysyl oxidase-like 3 as a novel prognostic marker for primary melanoma. Melanoma Res 2021; 31:173-177. [PMID: 33625099 DOI: 10.1097/cmr.0000000000000720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lysyl oxidase-like 3 (LOXL3) is an extracellular enzyme involved in the synthesis of collagen and elastin, and it has been reported to promote melanoma cell proliferation and invasion in vitro. However, the expression level of LOXL3 at different stages of melanocytic lesions and the role of LOXL3 in melanoma pathogenesis remain unknown. Immunohistochemical staining of LOXL3 in a tissue microarray of 373 biopsies at different melanocytic stages was conducted. The correlation between LOXL3 expression and patient survival was examined using Kaplan-Meier survival analysis. Univariate and multivariate Cox regression analyses were conducted to study the hazard ratios. The tissue microarray study revealed that stronger expression of LOXL3 protein was found at more advanced melanocytic stages (P < 0.0001; χ2 test). Increased LOXL3 expression was associated with enhanced tumor thickness and mitosis. Survival analysis showed significantly worsened prognosis in primary melanoma patients when the LOXL3 expression level was higher (P = 0.043; log-rank test). Multivariate Cox regression analysis further showed that LOXL3 expression is a prognostic factor for primary melanoma patient survival (P = 0.04). LOXL3 expression is positively correlated with tumor progression and invasion, and its overexpression is associated with worse prognosis of primary melanoma patients. LOXL3 can serve as a prognostic marker to help identify primary melanoma patients at higher risks of death.
Collapse
|
89
|
Redmond J, McCarthy H, Buchanan P, Levingstone TJ, Dunne NJ. Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111944. [PMID: 33641930 DOI: 10.1016/j.msec.2021.111944] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Collagen is the most abundant component of the extracellular matrix (ECM), therefore it represents an ideal biomaterial for the culture of a variety of cell types. Recently, collagen-based scaffolds have shown promise as 3D culture platforms for breast cancer-based research. Two-dimensional (2D) in vitro culture models, while useful for gaining preliminary insights, are ultimately flawed as they do not adequately replicate the tumour microenvironment. As a result, they do not facilitate proper 3D cell-cell/cell-matrix interactions and often an exaggerated response to therapeutic agents occurs. The ECM plays a crucial role in the development and spread of cancer. Alterations within the ECM have a significant impact on the pathogenesis of cancer, the initiation of metastasis and ultimate progression of the disease. 3D in vitro culture models that aim to replicate the tumour microenvironment have the potential to offer a new frontier for cancer research with cell growth, morphology and genetic properties that more closely match in vivo cancers. While initial 3D in vitro culture models used in breast cancer research consisted of simple hydrogel platforms, recent advances in biofabrication techniques, including freeze-drying, electrospinning and 3D bioprinting, have enabled the fabrication of biomimetic collagen-based platforms that more closely replicate the breast cancer ECM. This review highlights the current application of collagen-based scaffolds as 3D in vitro culture models for breast cancer research, specifically for adherence-based scaffolds (i.e. matrix-assisted). Finally, the future perspectives of 3D in vitro breast cancer models and their potential to lead to an improved understanding of breast cancer diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - Helen McCarthy
- School of Pharmacy, Queen's University, Belfast BT9 7BL, United Kingdom; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Paul Buchanan
- School of Nursing and Human Science, Dublin City University, Dublin 9, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
90
|
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21:62. [PMID: 33472628 PMCID: PMC7816485 DOI: 10.1186/s12935-020-01719-5] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.
Collapse
Affiliation(s)
- Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine , Arak University of Medical Sciences, Arak, Iran
| | - Alireza Rostami
- Department of Surgery, School of Medicine Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Sistani
- Department of Emergency Medicine, School of Medicine Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery , Arak University of Medical Sciences , Arak, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ahmadlou
- Sciences Medical of University Arak, Hospital Amiralmomenin, Center Development Research Clinical, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, 3848176341, Iran.
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Imam Khomeini Campus, Farhikhtegan Bld., Shahid J'afari St., Kermanshah, 3848176341, Iran.
| |
Collapse
|
91
|
Lv J, Liu Y, Cheng F, Li J, Zhou Y, Zhang T, Zhou N, Li C, Wang Z, Ma L, Liu M, Zhu Q, Liu X, Tang K, Ma J, Zhang H, Xie J, Fang Y, Zhang H, Wang N, Liu Y, Huang B. Cell softness regulates tumorigenicity and stemness of cancer cells. EMBO J 2021; 40:e106123. [PMID: 33274785 PMCID: PMC7809788 DOI: 10.15252/embj.2020106123] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker-based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+ , ALDH+ , or side population CSCs, are able to form a tumor with only 100 cells in NOD-SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Yaoping Liu
- Institute of MicroelectronicsPeking UniversityBeijingChina
| | - Feiran Cheng
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Jiping Li
- Beijing Smartchip Microelectronics Technology Company LimitedBeijingChina
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Tianzhen Zhang
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Nannan Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Cong Li
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Longfei Ma
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Mengyu Liu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Qiang Zhu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Xiaohan Liu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Ke Tang
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Jingwei Ma
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Huafeng Zhang
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Jing Xie
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
| | - Yi Fang
- National Cancer Center/Cancer HospitalCAMSBeijingChina
| | - Haizeng Zhang
- National Cancer Center/Cancer HospitalCAMSBeijingChina
| | - Ning Wang
- Deaprtment of Mechanical Science and TechnologyThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
- Clinical Immunology CenterCAMSBeijingChina
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences (CAMS) & Peking Union Medical CollegeBeijingChina
- Department of Biochemistry & Molecular BiologyTongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
- Clinical Immunology CenterCAMSBeijingChina
| |
Collapse
|
92
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
93
|
Abstract
Tumor cells frequently disseminate to distant organ sites, where they encounter permissive or restrictive environments that enable them to grow and colonize or enter a dormant state. Tumor dormancy is not strictly defined, but generally describes a tumor cell that is non-proliferative or in a state of balanced equilibrium, in which the proliferation rate of the tumor cell or cells is equal to its rate of cell death. The mechanisms that regulate tumor cell entry into and exit from dormancy are poorly understood, but microenvironmental features as well as tumor cell intrinsic factors play an important role in mediating this transition. Upon homing to distant metastatic sites, tumor cells may disseminate into various niches, most frequently the perivascular, hematopoietic stem cell, or endosteal/osteogenic niche. Tumor cells sense the cytokines, growth factors, and chemo-attractants from each of these niches, and tumor cell expression of cognate ligands and receptors can determine whether a tumor cell enters or exits dormancy. In addition to the secreted factors and cell-cell interactions that regulate dormancy, the cellular milieu also impacts upon disseminated tumor cells to promote or restrain their growth in distant metastatic sites. In this chapter we will discuss the role of the osteogenic and perivascular niche on dormant tumor cells, as well as the impact of hypoxia (low oxygen tensions) and the immune system on the restriction and outgrowth of dormant, disseminated tumor cells.
Collapse
|
94
|
Xia W, Shangguan X, Li M, Wang Y, Xi D, Sun W, Fan J, Shao K, Peng X. Ex vivo identification of circulating tumor cells in peripheral blood by fluorometric "turn on" aptamer nanoparticles. Chem Sci 2020; 12:3314-3321. [PMID: 34164101 PMCID: PMC8179407 DOI: 10.1039/d0sc05112h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
The detection of the circulating tumor cells (CTCs) detached from solid tumors has emerged as a burgeoning topic for cancer diagnosis and treatment. The conventional CTC enrichment and identification mainly rely on the specific binding of the antibodies on the capture interface of the magnetic nanoparticles with the corresponding biomarkers on the cell membranes. However, these methods could easily generate false-negative results due to the extremely low concentration of CTCs and the internal heterogeneity of the tumor cells. Herein, with the aim of selectively identifying CTCs and improving the detection accuracy in peripheral blood, we designed the fluorometric "turn on" Au nanoparticles (DHANs) with the modification of a tumor-targeted moiety, dehydroascorbic acid (DHA) and a fluorometric aptamer, which could be "switched-on" by an over-expressed intracellular protein, namely hypoxia-inducible factor-1α (HIF 1α). This novel nanoformulated detection platform demonstrated the great capacity for visualizing various CTCs in peripheral blood with significantly improved detection efficiency and sensitivity. As a result, the nanoplatform has a great potential to be further applied for CTC detection in vitro or in vivo, which holds promise for extensive CTC studies.
Collapse
Affiliation(s)
- Wenxi Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaoyan Shangguan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Miao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
- School of Biological Engineering, Dalian Polytechnic University Ganjingzi District Dalian 116034 PR China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Dongmei Xi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
95
|
Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V. The Epithelial-to-Mesenchymal Transition as a Possible Therapeutic Target in Fibrotic Disorders. Front Cell Dev Biol 2020; 8:607483. [PMID: 33409282 PMCID: PMC7779530 DOI: 10.3389/fcell.2020.607483] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a chronic and progressive disorder characterized by excessive deposition of extracellular matrix, which leads to scarring and loss of function of the affected organ or tissue. Indeed, the fibrotic process affects a variety of organs and tissues, with specific molecular background. However, two common hallmarks are shared: the crucial role of the transforming growth factor-beta (TGF-β) and the involvement of the inflammation process, that is essential for initiating the fibrotic degeneration. TGF-β in particular but also other cytokines regulate the most common molecular mechanism at the basis of fibrosis, the Epithelial-to-Mesenchymal Transition (EMT). EMT has been extensively studied, but not yet fully explored as a possible therapeutic target for fibrosis. A deeper understanding of the crosstalk between fibrosis and EMT may represent an opportunity for the development of a broadly effective anti-fibrotic therapy. Here we report the evidences of the relationship between EMT and multi-organ fibrosis, and the possible therapeutic approaches that may be developed by exploiting this relationship.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Iole Robuffo
- Institute of Molecular Genetics, National Research Council, Section of Chieti, Chieti, Italy
| | - Sonia Spalletta
- Department of Clinical Pathology, E. Profili Hospital, Fabriano, Ancona, Italy
| | - Giulia Giambuzzi
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Vincenzo De Iuliis
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Elena Toniato
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Stefano Martinotti
- Department of Medical and Oral Sciences and Biotechnologies, University “G. d’Annunzio”, Chieti, Italy
| | - Pio Conti
- Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
96
|
Roles of Lysyl Oxidase Family Members in the Tumor Microenvironment and Progression of Liver Cancer. Int J Mol Sci 2020; 21:ijms21249751. [PMID: 33371259 PMCID: PMC7766343 DOI: 10.3390/ijms21249751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
The lysyl oxidase (LOX) family members are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like l-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumors, whereby a corrupt tumor microenvironment (TME) takes shape. Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), ranked as the seventh most common cancer globally, with limited therapeutic options for advanced stages. In recent years, a growing body of evidence has revealed the key roles of LOX family members in the pathogenesis of liver cancer and the shaping of TME, indicating their notable potential as therapeutic targets. We herein review the clinical value and novel biological roles of LOX family members in tumor progression and the TME of liver cancers. In addition, we highlight recent insights into their mechanisms and their potential involvement in the development of target therapy for liver cancer.
Collapse
|
97
|
NOX2-Derived Reactive Oxygen Species in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095902. [PMID: 33312338 PMCID: PMC7721506 DOI: 10.1155/2020/7095902] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.
Collapse
|
98
|
Zhou H, Yan Y, Zhang X, Zhao T, Xu J, Han R. Ginseng polysaccharide inhibits MDA-MB-231 cell proliferation by activating the inflammatory response. Exp Ther Med 2020; 20:229. [PMID: 33149784 PMCID: PMC7604739 DOI: 10.3892/etm.2020.9359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Ginseng polysaccharide (GPS) is known for its efficacy in cancer therapy; however, its regulatory mechanism in breast cancer (BC) remains unclear. To analyze the effect of GPS on BC cell proliferation, cell proliferation rate calculations, western blotting, plasmid transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays were performed. GPS treatment in the culture cell medium inhibited cell proliferation in the BC cell line MDA-MB-231. In addition, the E-cadherin level was enhanced while the vimentin level was suppressed following GPS treatment (both P<0.05). Furthermore, the levels of apoptotic markers, including cleaved-Caspase-3 and p53, and inflammatory response markers, including plasminogen activator inhibitor and TNF-α, were induced by GPS treatment in MDA-MB-231 cells (all P<0.05). These results indicated that GPS supplementation activated the inflammatory response and apoptosis in BC cells. GPS treatment activated the phosphorylation levels of c-Jun N-terminal kinase, Akt and NF-κB. In MDA-MB-231 cells, GPS resulted in the accumulation of the NF-κB components p65, p50 and Ikaros family zing finger protein 1 (IKZF1; all, P<0.05). Chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that p65 bound to the IKZF1 promoter. The overexpression of IKZF1 or p65 inhibited MDA-MB-231 cell proliferation (P<0.05), indicating that GPS treatment may inhibit BC cell proliferation by the activation of IKZF1. Taken together, these results suggested that GPS significantly inhibited BC cell proliferation via the control of the biological processes, including the activation of p65-IKZF1 signaling and apoptosis. The data indicated a novel mechanism for further understanding of cancer cell proliferation.
Collapse
Affiliation(s)
- Haoliang Zhou
- Department of Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuxiang Yan
- Department of Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Xianbo Zhang
- Department of Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Ting Zhao
- Department of Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiangang Xu
- Department of Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Ruokuo Han
- Department of Oncology, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
99
|
Zhang XQ, Li X, Zhou WQ, Liu X, Huang JL, Zhang YY, Lindholm B, Yu C. Serum Lysyl Oxidase Is a Potential Diagnostic Biomarker for Kidney Fibrosis. Am J Nephrol 2020; 51:907-918. [PMID: 33152735 DOI: 10.1159/000509381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney fibrosis is the ultimate consequence of advanced stages of chronic kidney disease (CKD); however, there are currently no reliable biomarkers or noninvasive diagnostic tests available for the detection of kidney fibrosis. Lysyl oxidase (LOX) promotes collagen cross-linking, and serum LOX levels have been shown to be elevated in patients with fibrosis of the heart, lungs, and liver. However, serum LOX levels have not been reported in patients with kidney fibrosis. We explored whether serum LOX levels are associated with kidney fibrosis. METHOD Overall, 202 patients with kidney disease underwent renal biopsy, scoring of kidney fibrosis, and determination of the area of kidney fibrosis. LOX levels were measured in serum and in kidney tissues. We analyzed the association of circulating LOX and tissue LOX levels with the scores and areas of kidney fibrosis. LOX expression was also investigated with in vitro and in vivo kidney fibrosis models. RESULTS Serum LOX levels were higher in patients with kidney fibrosis than in those without kidney fibrosis (p < 0.001) and higher in patients with moderate-severe kidney fibrosis than in patients with mild kidney fibrosis (p < 0.001). Both serum LOX and renal tissue LOX levels correlated with the area of kidney fibrosis (r = 0.748, p < 0.001; r = 0.899, p < 0.001, respectively). Receiver operating characteristic curve analysis of serum LOX levels showed an area under the curve of 0.80 (95% CI: 0.74-0.86). The optimal serum LOX level cutoff point was 253.34 pg/mL for the prediction of kidney fibrosis and 306.56 pg/mL for the prediction of moderate-severe kidney fibrosis. LOX expression levels were significantly upregulated (2.3-2.6 and 6-fold, respectively) in in vitro and in vivo interstitial fibrosis models. CONCLUSIONS Both serum LOX and tissue LOX levels correlated with the presence and degree of kidney fibrosis in patients with CKD. These results suggest that serum LOX levels could potentially serve as a noninvasive diagnostic biomarker for kidney fibrosis and may further potentially serve as a stratified biomarker for the identification of mild and moderate-severe kidney fibrosis.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xin Li
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Wen-Qian Zhou
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xi Liu
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jie-Li Huang
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China
| | - Bengt Lindholm
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University, Shanghai, China,
| |
Collapse
|
100
|
Topkan E, Selek U, Mertsoylu H, Ozdemir Y, Kucuk A, Torun N, Besen AA. Pretreatment Photopenia on 18F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography Scans Predicts Poor Prognosis in Nasopharyngeal Cancer Patients Undergoing Concurrent Chemoradiotherapy. Clin Exp Otorhinolaryngol 2020; 13:407-414. [PMID: 32075362 PMCID: PMC7669310 DOI: 10.21053/ceo.2019.01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/04/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To investigate the influence of pretreatment primary tumor or nodal photopenia (PP) on 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT), an indicator of tumor ischemia, on survival results of nasopharyngeal cancers (NPCs) treated with concurrent chemoradiotherapy (C-CRT). METHODS The pre-C-CRT FDG PET-CT scans of 104 patients with NPC (cT1-4 N0-3 M0) were retrospectively examined to determine the presence of PP (PP+). Our primary endpoint was the influence of PP+ on overall survival (OS), while the progression-free survival (PFS) and locoregional PFS (LRPFS) constituted the secondary endpoints. RESULTS The PP+ was detected in 29 (27.9%): nine (8.7%), seven (6.7%), and 13 (12.5%) in the primary tumor alone, primary tumor plus neck nodes, and neck nodes alone, respectively. Because the PP+ cases were small by count per location, all comparative analyses were performed according to overall PP+/ PP- status instead of per detected site. At a median follow-up of 67.8 months (range, 9 to 130 months), the median survival times were not reached (NR) for the entire population, while 5-year OS, LRPFS, and PFS rates were 73.3%, 68.2%, and 63.4%, respectively. Comparatively the PP+ patients exhibited significantly poorer median OS (49.8 months vs. NR, P<0.001), LRPFS (40.7 months vs. NR, P=0.001), and PFS (31.8 months vs. NR, P=0.002) durations than their PP- counterparts. Furthermore, the PP+ retained its independent prognostic significance in multivariate analysis (P<0.001). CONCLUSION Present results uncovered the pre-C-CRT PP as an independent predictor of poor prognosis for NPC patients, which underscore the requirement for the fortification of the local and systemic treatments in hypoxic NPCs.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hüseyin Mertsoylu
- Department of Medical Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Yurday Ozdemir
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ahmet Kucuk
- Clinics of Radiation Oncology, Mersin City Hospital, Mersin, Turkey
| | - Nese Torun
- Department of Nuclear Medicine, Baskent University Medical Faculty, Adana, Turkey
| | - Ali Ayberk Besen
- Department of Medical Oncology, Baskent University Medical Faculty, Adana, Turkey
| |
Collapse
|