51
|
Kalmbach A, Schröder C, Klein-Hitpass L, Nordström K, Ulz P, Heitzer E, Speicher MR, Rahmann S, Wieczorek D, Horsthemke B, Bramswig NC. Genome-Wide Analysis of the Nucleosome Landscape in Individuals with Coffin-Siris Syndrome. Cytogenet Genome Res 2019; 159:1-11. [PMID: 31658463 DOI: 10.1159/000503266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 01/15/2023] Open
Abstract
The switch/sucrose non-fermenting (SWI/SNF) complex is an ATP-dependent chromatin remodeller that regulates the spacing of nucleosomes and thereby controls gene expression. Heterozygous mutations in genes encoding subunits of the SWI/SNF complex have been reported in individuals with Coffin-Siris syndrome (CSS), with the majority of the mutations in ARID1B. CSS is a rare congenital disorder characterized by facial dysmorphisms, digital anomalies, and variable intellectual disability. We hypothesized that mutations in genes encoding subunits of the ubiquitously expressed SWI/SNF complex may lead to alterations of the nucleosome profiles in different cell types. We performed the first study on CSS-patient samples and investigated the nucleosome landscapes of cell-free DNA (cfDNA) isolated from blood plasma by whole-genome sequencing. In addition, we studied the nucleosome landscapes of CD14+ monocytes from CSS-affected individuals by nucleosome occupancy and methylome-sequencing (NOMe-seq) as well as their expression profiles. In cfDNA of CSS-affected individuals with heterozygous ARID1B mutations, we did not observe major changes in the nucleosome profile around transcription start sites. In CD14+ monocytes, we found few genomic regions with different nucleosome occupancy when compared to controls. RNA-seq analysis of CD14+ monocytes of these individuals detected only few differentially expressed genes, which were not in proximity to any of the identified differential nucleosome-depleted regions. In conclusion, we show that heterozygous mutations in the human SWI/SNF subunit ARID1B do not have a major impact on the nucleosome landscape or gene expression in blood cells. This might be due to functional redundancy, cell-type specificity, or alternative functions of ARID1B.
Collapse
|
52
|
Zimta AA, Tomuleasa C, Sahnoune I, Calin GA, Berindan-Neagoe I. Long Non-coding RNAs in Myeloid Malignancies. Front Oncol 2019; 9:1048. [PMID: 31681586 PMCID: PMC6813191 DOI: 10.3389/fonc.2019.01048] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) represents 80% of adult leukemias and 15-20% of childhood leukemias. AML are characterized by the presence of 20% blasts or more in the bone marrow, or defining cytogenetic abnormalities. Laboratory diagnoses of myelodysplastic syndromes (MDS) depend on morphological changes based on dysplasia in peripheral blood and bone marrow, including peripheral blood smears, bone marrow aspirate smears, and bone marrow biopsies. As leukemic cells are not functional, the patient develops anemia, neutropenia, and thrombocytopenia, leading to fatigue, recurrent infections, and hemorrhage. The genetic background and associated mutations in AML blasts determine the clinical course of the disease. Over the last decade, non-coding RNAs transcripts that do not codify for proteins but play a role in regulation of functions have been shown to have multiple applications in the diagnosis, prognosis and therapeutic approach of various types of cancers, including myeloid malignancies. After a comprehensive review of current literature, we found reports of multiple long non-coding RNAs (lncRNAs) that can differentiate between AML types and how their exogenous modulation can dramatically change the behavior of AML cells. These lncRNAs include: H19, LINC00877, RP11-84C10, CRINDE, RP11848P1.3, ZNF667-AS1, AC111000.4-202, SFMBT2, LINC02082-201, MEG3, AC009495.2, PVT1, HOTTIP, SNHG5, and CCAT1. In addition, by performing an analysis on available AML data in The Cancer Genome Atlas (TCGA), we found 10 lncRNAs with significantly differential expression between patients in favorable, intermediate/normal, or poor cytogenetic risk categories. These are: DANCR, PRDM16-DT, SNHG6, OIP5-AS1, SNHG16, JPX, FTX, KCNQ1OT1, TP73-AS1, and GAS5. The identification of a molecular signature based on lncRNAs has the potential for have deep clinical significance, as it could potentially help better define the evolution from low-grade MDS to high-grade MDS to AML, changing the course of therapy. This would allow clinicians to provide a more personalized, patient-tailored therapeutic approach, moving from transfusion-based therapy, as is the case for low-grade MDS, to the introduction of azacytidine-based chemotherapy or allogeneic stem cell transplantation, which is the current treatment for high-grade MDS.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Iman Sahnoune
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| |
Collapse
|
53
|
The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019; 706:201-210. [DOI: 10.1016/j.gene.2019.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|
54
|
Molineros JE, Singh B, Terao C, Okada Y, Kaplan J, McDaniel B, Akizuki S, Sun C, Webb CF, Looger LL, Nath SK. Mechanistic Characterization of RASGRP1 Variants Identifies an hnRNP-K-Regulated Transcriptional Enhancer Contributing to SLE Susceptibility. Front Immunol 2019; 10:1066. [PMID: 31164884 PMCID: PMC6536009 DOI: 10.3389/fimmu.2019.01066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component. We recently identified a novel SLE susceptibility locus near RASGRP1, which governs the ERK/MAPK kinase cascade and B-/T-cell differentiation and development. However, precise causal RASGRP1 functional variant(s) and their mechanisms of action in SLE pathogenesis remain undefined. Our goal was to fine-map this locus, prioritize genetic variants likely to be functional, experimentally validate their biochemical mechanisms, and determine the contribution of these SNPs to SLE risk. We performed a meta-analysis across six Asian and European cohorts (9,529 cases; 22,462 controls), followed by in silico bioinformatic and epigenetic analyses to prioritize potentially functional SNPs. We experimentally validated the functional significance and mechanism of action of three SNPs in cultured T-cells. Meta-analysis identified 18 genome-wide significant (p < 5 × 10−8) SNPs, mostly concentrated in two haplotype blocks, one intronic and the other intergenic. Epigenetic fine-mapping, allelic, eQTL, and imbalance analyses predicted three transcriptional regulatory regions with four SNPs (rs7170151, rs11631591-rs7173565, and rs9920715) prioritized for functional validation. Luciferase reporter assays indicated significant allele-specific enhancer activity for intronic rs7170151 and rs11631591-rs7173565 in T-lymphoid (Jurkat) cells, but not in HEK293 cells. Following up with EMSA, mass spectrometry, and ChIP-qPCR, we detected allele-dependent interactions between heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and rs11631591. Furthermore, inhibition of hnRNP-K in Jurkat and primary T-cells downregulated RASGRP1 and ERK/MAPK signaling. Comprehensive association, bioinformatics, and epigenetic analyses yielded putative functional variants of RASGRP1, which were experimentally validated. Notably, intronic variant (rs11631591) is located in a cell type-specific enhancer sequence, where its risk allele binds to the hnRNP-K protein and modulates RASGRP1 expression in Jurkat and primary T-cells. As risk allele dosage of rs11631591 correlates with increased RASGRP1 expression and ERK activity, we suggest that this SNP may underlie SLE risk at this locus.
Collapse
Affiliation(s)
- Julio E Molineros
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Bhupinder Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jakub Kaplan
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Barbara McDaniel
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Carol F Webb
- Departments of Medicine, Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, United States
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
55
|
Esposito M, Sherr GL. Epigenetic Modifications in Alzheimer's Neuropathology and Therapeutics. Front Neurosci 2019; 13:476. [PMID: 31133796 PMCID: PMC6524410 DOI: 10.3389/fnins.2019.00476] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023] Open
Abstract
Transcriptional activation is a highly synchronized process in eukaryotes that requires a series of cis- and trans-acting elements at promoter regions. Epigenetic modifications, such as chromatin remodeling, histone acetylation/deacetylation, and methylation, have frequently been studied with regard to transcriptional regulation/dysregulation. Recently however, it has been determined that implications in epigenetic modification seem to expand into various neurodegenerative disease mechanisms. Impaired learning and memory deterioration are cognitive dysfunctions often associated with a plethora of neurodegenerative diseases, including Alzheimer's disease. Through better understanding of the epigenetic mechanisms underlying these dysfunctions, new epigenomic therapeutic targets, such as histone deacetylases, are being explored. Here we review the intricate packaging of DNA in eukaryotic cells, and the various modifications in epigenetic mechanisms that are now linked to the neuropathology and the progression of Alzheimer's disease (AD), as well as potential therapeutic interventions.
Collapse
Affiliation(s)
- Michelle Esposito
- Department of Biology, Georgian Court University, Lakewood, NJ, United States
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Goldie Libby Sherr
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- Department of Biological Sciences, Bronx Community College, City University of New York, New York, NY, United States
| |
Collapse
|
56
|
Singh RK, Fan J, Gioacchini N, Watanabe S, Bilsel O, Peterson CL. Transient Kinetic Analysis of SWR1C-Catalyzed H2A.Z Deposition Unravels the Impact of Nucleosome Dynamics and the Asymmetry of Histone Exchange. Cell Rep 2019; 27:374-386.e4. [PMID: 30970243 PMCID: PMC6545893 DOI: 10.1016/j.celrep.2019.03.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/20/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
The SWR1C chromatin remodeling enzyme catalyzes ATP-dependent replacement of nucleosomal H2A with the H2A.Z variant, regulating key DNA-mediated processes such as transcription and DNA repair. Here, we investigate the transient kinetic mechanism of the histone exchange reaction, employing ensemble FRET, fluorescence correlation spectroscopy (FCS), and the steady-state kinetics of ATP hydrolysis. Our studies indicate that SWR1C modulates nucleosome dynamics on both the millisecond and microsecond timescales, poising the nucleosome for the dimer exchange reaction. The transient kinetic analysis of the remodeling reaction performed under single turnover conditions unraveled a striking asymmetry in the ATP-dependent replacement of nucleosomal dimers, promoted by localized DNA unwrapping. Taken together, our transient kinetic studies identify intermediates and provide crucial insights into the SWR1C-catalyzed dimer exchange reaction and shed light on how the mechanics of H2A.Z deposition might contribute to transcriptional regulation in vivo.
Collapse
Affiliation(s)
- Raushan K Singh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiayl Fan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nathan Gioacchini
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
57
|
Emerging Principles of Gene Expression Programs and Their Regulation. Mol Cell 2019; 71:389-397. [PMID: 30075140 DOI: 10.1016/j.molcel.2018.07.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
Abstract
Many mechanisms contribute to regulation of gene expression to ensure coordinated cellular behaviors and fate decisions. Transcriptional responses to external signals can consist of many hundreds of genes that can be parsed into different categories based on kinetics of induction, cell-type and signal specificity, and duration of the response. Here we discuss the structure of transcription programs and suggest a basic framework to categorize gene expression programs based on characteristics related to their control mechanisms. We also discuss possible evolutionary implications of this framework.
Collapse
|
58
|
Kallimasioti-Pazi EM, Thelakkad Chathoth K, Taylor GC, Meynert A, Ballinger T, Kelder MJE, Lalevée S, Sanli I, Feil R, Wood AJ. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biol 2018; 16:e2005595. [PMID: 30540740 PMCID: PMC6306241 DOI: 10.1371/journal.pbio.2005595] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 12/26/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
Genome editing occurs in the context of chromatin, which is heterogeneous in structure and function across the genome. Chromatin heterogeneity is thought to affect genome editing efficiency, but this has been challenging to quantify due to the presence of confounding variables. Here, we develop a method that exploits the allele-specific chromatin status of imprinted genes in order to address this problem in cycling mouse embryonic stem cells (mESCs). Because maternal and paternal alleles of imprinted genes have identical DNA sequence and are situated in the same nucleus, allele-specific differences in the frequency and spectrum of mutations induced by CRISPR-Cas9 can be unequivocally attributed to epigenetic mechanisms. We found that heterochromatin can impede mutagenesis, but to a degree that depends on other key experimental parameters. Mutagenesis was impeded by up to 7-fold when Cas9 exposure was brief and when intracellular Cas9 expression was low. In contrast, the outcome of mutagenic DNA repair was unaffected by chromatin state, with similar efficiencies of homology-directed repair (HDR) and deletion spectra on maternal and paternal chromosomes. Combined, our data show that heterochromatin imposes a permeable barrier that influences the kinetics, but not the endpoint, of CRISPR-Cas9 genome editing and suggest that therapeutic applications involving low-level Cas9 exposure will be particularly affected by chromatin status.
Collapse
Affiliation(s)
- Eirini M. Kallimasioti-Pazi
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Keerthi Thelakkad Chathoth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian C. Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Meynert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tracy Ballinger
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Martijn J. E. Kelder
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sébastien Lalevée
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and University of Montpellier, Montpellier, France
| | - Ildem Sanli
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and University of Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and University of Montpellier, Montpellier, France
| | - Andrew J. Wood
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
59
|
Urban EA, Johnston RJ. Buffering and Amplifying Transcriptional Noise During Cell Fate Specification. Front Genet 2018; 9:591. [PMID: 30555516 PMCID: PMC6282114 DOI: 10.3389/fgene.2018.00591] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
The molecular processes that drive gene transcription are inherently noisy. This noise often manifests in the form of transcriptional bursts, producing fluctuations in gene activity over time. During cell fate specification, this noise is often buffered to ensure reproducible developmental outcomes. However, sometimes noise is utilized as a “bet-hedging” mechanism to diversify functional roles across a population of cells. Studies of bacteria, yeast, and cultured cells have provided insights into the nature and roles of noise in transcription, yet we are only beginning to understand the mechanisms by which noise influences the development of multicellular organisms. Here we discuss the sources of transcriptional noise and the mechanisms that either buffer noise to drive reproducible fate choices or amplify noise to randomly specify fates.
Collapse
Affiliation(s)
- Elizabeth A Urban
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
60
|
Nguyen NH, Cheong JJ. The AtMYB44 promoter is accessible to signals that induce different chromatin modifications for gene transcription. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:14-19. [PMID: 29957571 DOI: 10.1016/j.plaphy.2018.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
AtMYB44 transcripts accumulate non-specifically under diverse stress conditions and with various phytohormone treatments in Arabidopsis thaliana. We investigated the chromatin modifications caused by various signals to uncover the induction mechanism of AtMYB44 transcription. Bisulfite sequencing confirmed a previous database illustrating that the AtMYB44 promoter and gene-body regions are completely DNA methylation-free. Chromatin immunoprecipitation (ChIP) assays revealed that the nucleosome density is remarkably low at the AtMYB44 promoter region. Thus, the promoter region appears to be highly accessible for various trans-acting factors. ChIP assays revealed that osmotic stress (mannitol treatment) lowered the nucleosome density at the gene-body regions, while abscisic acid (ABA) or jasmonic acid (JA) treatment did so at the proximal transcription start site (TSS) region. In response to mannitol treatment, histone H3 lysine 4 trimethylation (H3K4me3) and H3 acetylation (H3ac) levels within the promoter, TSS, and gene-body regions of AtMYB44 were significantly increased. However, occupancy of histone variant H2A.Z was not affected by the mannitol treatment. We previously reported that salt stress triggered a significant decrease in H2A.Z occupation without affecting the H3K4me3 and H3ac levels. In combination, our data suggest that each signal transduced to the highly accessible promoter induces a different chromatin modification for AtMYB44 transcription.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
61
|
Bedi S, Nag Chaudhuri R. Transcription factor
ABI
3 auto‐activates its own expression during dehydration stress response. FEBS Lett 2018; 592:2594-2611. [DOI: 10.1002/1873-3468.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Sonia Bedi
- Department of Biotechnology St. Xavier's College Kolkata India
| | | |
Collapse
|
62
|
Traewachiwiphak S, Yokthongwattana C, Ves-Urai P, Charoensawan V, Yokthongwattana K. Gene expression and promoter characterization of heat-shock protein 90B gene (HSP90B) in the model unicellular green alga Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:107-116. [PMID: 29807581 DOI: 10.1016/j.plantsci.2018.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Molecular chaperones or heat shock proteins are a large protein family with important functions in every cellular organism. Among all types of the heat shock proteins, information on the ER-localized HSP90 protein (HSP90B) and its encoding gene is relatively scarce in the literature, especially in photosynthetic organisms. In this study, expression profiles as well as promoter sequence of the HSP90B gene were investigated in the model green alga Chlamydomonas reinhardtii. We have found that HSP90B is strongly induced by heat and ER stresses, while other short-term exposure to abiotic stresses, such as salinity, dark-to-light transition or light stress does not appear to affect the expression. Promoter truncation analysis as well as chromatin immunoprecipitation using the antibodies recognizing histone H3 and acetylated histone H3, revealed a putative core constitutive promoter sequence between -1 to -253 bp from the transcription start site. Our results also suggested that the nucleotides upstream of the core promoter may contain repressive elements such as putative repressor binding site(s).
Collapse
Affiliation(s)
- Somchoke Traewachiwiphak
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand
| | - Parthompong Ves-Urai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittisak Yokthongwattana
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand.
| |
Collapse
|
63
|
Zhang Y, Tu J, Wang D, Zhu H, Maity SK, Qu X, Bogaert B, Pei H, Zhang H. Programmable and Multifunctional DNA-Based Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703658. [PMID: 29389041 DOI: 10.1002/adma.201703658] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/09/2017] [Indexed: 06/07/2023]
Abstract
DNA encodes the genetic information; recently, it has also become a key player in material science. Given the specific Watson-Crick base-pairing interactions between only four types of nucleotides, well-designed DNA self-assembly can be programmable and predictable. Stem-loops, sticky ends, Holliday junctions, DNA tiles, and lattices are typical motifs for forming DNA-based structures. The oligonucleotides experience thermal annealing in a near-neutral buffer containing a divalent cation (usually Mg2+ ) to produce a variety of DNA nanostructures. These structures not only show beautiful landscape, but can also be endowed with multifaceted functionalities. This Review begins with the fundamental characterization and evolutionary trajectory of DNA-based artificial structures, but concentrates on their biomedical applications. The coverage spans from controlled drug delivery to high therapeutic profile and accurate diagnosis. A variety of DNA-based materials, including aptamers, hydrogels, origamis, and tetrahedrons, are widely utilized in different biomedical fields. In addition, to achieve better performance and functionality, material hybridization is widely witnessed, and DNA nanostructure modification is also discussed. Although there are impressive advances and high expectations, the development of DNA-based structures/technologies is still hindered by several commonly recognized challenges, such as nuclease instability, lack of pharmacokinetics data, and relatively high synthesis cost.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Jing Tu
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | | | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Bram Bogaert
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
- Turku Center for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
64
|
Rawal Y, Chereji RV, Qiu H, Ananthakrishnan S, Govind CK, Clark DJ, Hinnebusch AG. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev 2018; 32:695-710. [PMID: 29785963 PMCID: PMC6004078 DOI: 10.1101/gad.312850.118] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022]
Abstract
The nucleosome remodeling complex RSC functions throughout the yeast genome to set the positions of -1 and +1 nucleosomes and thereby determines the widths of nucleosome-depleted regions (NDRs). The related complex SWI/SNF participates in nucleosome remodeling/eviction and promoter activation at certain yeast genes, including those activated by transcription factor Gcn4, but did not appear to function broadly in establishing NDRs. By analyzing the large cohort of Gcn4-induced genes in mutants lacking the catalytic subunits of SWI/SNF or RSC, we uncovered cooperation between these remodelers in evicting nucleosomes from different locations in the promoter and repositioning the +1 nucleosome downstream to produce wider NDRs-highly depleted of nucleosomes-during transcriptional activation. SWI/SNF also functions on a par with RSC at the most highly transcribed constitutively expressed genes, suggesting general cooperation by these remodelers for maximal transcription. SWI/SNF and RSC occupancies are greatest at the most highly expressed genes, consistent with their cooperative functions in nucleosome remodeling and transcriptional activation. Thus, SWI/SNF acts comparably with RSC in forming wide nucleosome-free NDRs to achieve high-level transcription but only at the most highly expressed genes exhibiting the greatest SWI/SNF occupancies.
Collapse
Affiliation(s)
- Yashpal Rawal
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongfang Qiu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudha Ananthakrishnan
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - Chhabi K Govind
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
65
|
Nguyen NH, Cheong JJ. H2A.Z-containing nucleosomes are evicted to activate AtMYB44 transcription in response to salt stress. Biochem Biophys Res Commun 2018; 499:1039-1043. [DOI: 10.1016/j.bbrc.2018.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 11/17/2022]
|
66
|
Structural rearrangements of the histone octamer translocate DNA. Nat Commun 2018; 9:1330. [PMID: 29626188 PMCID: PMC5889399 DOI: 10.1038/s41467-018-03677-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/05/2018] [Indexed: 01/28/2023] Open
Abstract
Nucleosomes, the basic unit of chromatin, package and regulate expression of eukaryotic genomes. Nucleosomes are highly dynamic and are remodeled with the help of ATP-dependent remodeling factors. Yet, the mechanism of DNA translocation around the histone octamer is poorly understood. In this study, we present several nucleosome structures showing histone proteins and DNA in different organizational states. We observe that the histone octamer undergoes conformational changes that distort the overall nucleosome structure. As such, rearrangements in the histone core α-helices and DNA induce strain that distorts and moves DNA at SHL 2. Distortion of the nucleosome structure detaches histone α-helices from the DNA, leading to their rearrangement and DNA translocation. Biochemical assays show that cross-linked histone octamers are immobilized on DNA, indicating that structural changes in the octamer move DNA. This intrinsic plasticity of the nucleosome is exploited by chromatin remodelers and might be used by other chromatin machineries.
Collapse
|
67
|
Enhanced differentiation of human pluripotent stem cells into cardiomyocytes by bacteria-mediated transcription factors delivery. PLoS One 2018; 13:e0194895. [PMID: 29579079 PMCID: PMC5868831 DOI: 10.1371/journal.pone.0194895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Virus-mediated expression of defined transcription factor (TF) genes can effectively induce cellular reprogramming. However, sustained expression of the TFs often hinders pluripotent stem cell (PSC) differentiation into specific cell types, as each TF exerts its effect on PSCs for a defined period of time during differentiation. Here, we applied a bacterial type III secretion system (T3SS)-based protein delivery tool to directly translocate TFs in the form of protein into human PSCs. This transient protein delivery technique showed high delivery efficiency for hPSCs, and it avoids potential genetic alterations caused by the introduction of transgenes. In an established cardiomyocyte de novo differentiation procedure, five transcriptional factors, namely GATA4, MEF2C, TBX5, ESRRG and MESP1 (abbreviated as GMTEM), were translocated at various time points. By detecting the expression of cardiac marker genes (Nkx2.5 and cTnT), we found that GMTEM proteins delivered on mesoderm stage of the cardiomyocytes lineage differentiation significantly enhanced both the human ESC and iPSC differentiation into cardiomyocytes, while earlier or later delivery diminished the enhancing effect. Furthermore, all of the five factors were required to enhance the cardiac differentiation. This work provides a virus-free strategy of transient transcription factors delivery for directing human stem cell fate without jeopardizing genome integrity, thus safe for biomedical applications.
Collapse
|
68
|
Yolcu S, Li X, Li S, Kim YJ. Beyond the genetic code in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:801-810. [PMID: 29253191 DOI: 10.1093/jxb/erx401] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Leaf senescence is not only genetically programmed but also induced by exogenous stress to ensure completion of the plant life cycle, successful reproduction and environmental adaptability. Genetic reprogramming is a major aspect of leaf senescence, and the senescence signaling that follows is controlled by a complex regulatory network. Recent studies suggest that the activity of transcription factors together with epigenetic mechanisms ensures the robustness of this network, with the latter including chromatin remodeling, DNA modification, and RNA-mediated control of transcription factors and other senescence-associated genes. In this review, we provide an overview of the relevant epigenetic mechanisms and summarize recent findings of epigenetic regulators of plant leaf senescence involved in DNA methylation and histone modification along with the functions of small RNAs in this process.
Collapse
Affiliation(s)
- Seher Yolcu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Xiaojie Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shengben Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| |
Collapse
|
69
|
Epigenetics and MicroRNAs in Cancer. Int J Mol Sci 2018; 19:ijms19020459. [PMID: 29401683 PMCID: PMC5855681 DOI: 10.3390/ijms19020459] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
The ability to reprogram the transcriptional circuitry by remodeling the three-dimensional structure of the genome is exploited by cancer cells to promote tumorigenesis. This reprogramming occurs because of hereditable chromatin chemical modifications and the consequent formation of RNA-protein-DNA complexes that represent the principal actors of the epigenetic phenomena. In this regard, the deregulation of a transcribed non-coding RNA may be both cause and consequence of a cancer-related epigenetic alteration. This review summarizes recent findings that implicate microRNAs in the aberrant epigenetic regulation of cancer cells.
Collapse
|
70
|
Wang RR, Pan R, Zhang W, Fu J, Lin JD, Meng ZX. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control. Protein Cell 2018; 9:207-215. [PMID: 28688083 PMCID: PMC5818368 DOI: 10.1007/s13238-017-0442-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/21/2017] [Indexed: 01/29/2023] Open
Abstract
Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.
Collapse
Affiliation(s)
- Ruo-Ran Wang
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Ran Pan
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Zhang
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Chronic Disease Research Institute of School of Public Health, Zhejiang University, Hangzhou, 310058, China.
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
71
|
The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex. PLoS One 2018; 13:e0191689. [PMID: 29370269 PMCID: PMC5784988 DOI: 10.1371/journal.pone.0191689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023] Open
Abstract
The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear.
Collapse
|
72
|
Soares LM, He PC, Chun Y, Suh H, Kim T, Buratowski S. Determinants of Histone H3K4 Methylation Patterns. Mol Cell 2017; 68:773-785.e6. [PMID: 29129639 DOI: 10.1016/j.molcel.2017.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/23/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
Various factors differentially recognize trimethylated histone H3 lysine 4 (H3K4me3) near promoters, H3K4me2 just downstream, and promoter-distal H3K4me1 to modulate gene expression. This methylation "gradient" is thought to result from preferential binding of the H3K4 methyltransferase Set1/complex associated with Set1 (COMPASS) to promoter-proximal RNA polymerase II. However, other studies have suggested that location-specific cues allosterically activate Set1. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments show that H3K4 methylation patterns on active genes are not universal or fixed and change in response to both transcription elongation rate and frequency as well as reduced COMPASS activity. Fusing Set1 to RNA polymerase II results in H3K4me2 throughout transcribed regions and similarly extended H3K4me3 on highly transcribed genes. Tethered Set1 still requires histone H2B ubiquitylation for activity. These results show that higher-level methylations reflect not only Set1/COMPASS recruitment but also multiple rounds of transcription. This model provides a simple explanation for non-canonical methylation patterns at some loci or in certain COMPASS mutants.
Collapse
Affiliation(s)
- Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - P Cody He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - TaeSoo Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
73
|
Joo YJ, Ficarro SB, Soares LM, Chun Y, Marto JA, Buratowski S. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev 2017; 31:2162-2174. [PMID: 29203645 PMCID: PMC5749164 DOI: 10.1101/gad.306324.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
Abstract
TFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-binding protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-associated factor (TAF) subunits recognize downstream promoter elements, act as coactivators, and interact with nucleosomes. In yeast nuclear extracts, transcription induces stable TAF binding to downstream promoter DNA, promoting subsequent activator-independent transcription reinitiation. In vivo, promoter responses to TAF mutations correlate with the level of downstream, rather than overall, Taf1 cross-linking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations.
Collapse
Affiliation(s)
- Yoo Jin Joo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Blais Proteomics Center, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Blais Proteomics Center, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
74
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
75
|
Klopf E, Schmidt HA, Clauder-Münster S, Steinmetz LM, Schüller C. INO80 represses osmostress induced gene expression by resetting promoter proximal nucleosomes. Nucleic Acids Res 2017; 45:3752-3766. [PMID: 28025392 PMCID: PMC5397147 DOI: 10.1093/nar/gkw1292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
The conserved INO80 chromatin remodeling complex is involved in regulation of DNA damage repair, replication and transcription. It is commonly recruited to the transcription start region and contributes to the establishment of promoter-proximal nucleosomes. We find a substantial influence of INO80 on nucleosome dynamics and gene expression during stress induced transcription. Transcription induced by osmotic stress leads to genome-wide remodeling of promoter proximal nucleosomes. INO80 function is required for timely return of evicted nucleosomes to the 5΄ end of induced genes. Reduced INO80 function in Arp8-deficient cells leads to correlated prolonged transcription and nucleosome eviction. INO80 and the related complex SWR1 regulate incorporation of the H2A.Z isoform at promoter proximal nucleosomes. However, H2A.Z seems not to influence osmotic stress induced gene regulation. Furthermore, we show that high rates of transcription promote INO80 recruitment to promoter regions, suggesting a connection between active transcription and promoter proximal nucleosome remodeling. In addition, we find that absence of INO80 enhances bidirectional promoter activity at highly induced genes and expression of a number of stress induced transcripts. We suggest that INO80 has a direct repressive role via promoter proximal nucleosome remodeling to limit high levels of transcription in yeast.
Collapse
Affiliation(s)
- Eva Klopf
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), UFT-Campus Tulln, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Medical University of Vienna, University of Vienna, Campus Vienna Biocenter 5 (VBC5), 1030 Vienna, Austria
| | - Sandra Clauder-Münster
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), UFT-Campus Tulln, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
76
|
Pass DA, Sornay E, Marchbank A, Crawford MR, Paszkiewicz K, Kent NA, Murray JAH. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. PLoS Genet 2017; 13:e1006988. [PMID: 28902852 PMCID: PMC5597176 DOI: 10.1371/journal.pgen.1006988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
All eukaryotic genomes are packaged as chromatin, with DNA interlaced with both regularly patterned nucleosomes and sub-nucleosomal-sized protein structures such as mobile and labile transcription factors (TF) and initiation complexes, together forming a dynamic chromatin landscape. Whilst details of nucleosome position in Arabidopsis have been previously analysed, there is less understanding of their relationship to more dynamic sub-nucleosomal particles (subNSPs) defined as protected regions shorter than the ~150bp typical of nucleosomes. The genome-wide profile of these subNSPs has not been previously analysed in plants and this study investigates the relationship of dynamic bound particles with transcriptional control. Here we combine differential micrococcal nuclease (MNase) digestion and a modified paired-end sequencing protocol to reveal the chromatin structure landscape of Arabidopsis cells across a wide particle size range. Linking this data to RNAseq expression analysis provides detailed insight into the relationship of identified DNA-bound particles with transcriptional activity. The use of differential digestion reveals sensitive positions, including a labile -1 nucleosome positioned upstream of the transcription start site (TSS) of active genes. We investigated the response of the chromatin landscape to changes in environmental conditions using light and dark growth, given the large transcriptional changes resulting from this simple alteration. The resulting shifts in the suites of expressed and repressed genes show little correspondence to changes in nucleosome positioning, but led to significant alterations in the profile of subNSPs upstream of TSS both globally and locally. We examined previously mapped positions for the TFs PIF3, PIF4 and CCA1, which regulate light responses, and found that changes in subNSPs co-localized with these binding sites. This small particle structure is detected only under low levels of MNase digestion and is lost on more complete digestion of chromatin to nucleosomes. We conclude that wide-spectrum analysis of the Arabidopsis genome by differential MNase digestion allows detection of sensitive features hereto obscured, and the comparisons between genome-wide subNSP profiles reveals dynamic changes in their distribution, particularly at distinct genomic locations (i.e. 5'UTRs). The method here employed allows insight into the complex influence of genetic and extrinsic factors in modifying the sub-nucleosomal landscape in association with transcriptional changes.
Collapse
Affiliation(s)
- Daniel Antony Pass
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Emily Sornay
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Angela Marchbank
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Margaret R. Crawford
- Genome Centre, University of Sussex, Sussex House, Falmer, Brighton, United Kingdom
| | - Konrad Paszkiewicz
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, United Kingdom
| | - Nicholas A. Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
77
|
Jenull S, Tscherner M, Gulati M, Nobile CJ, Chauhan N, Kuchler K. The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals. Sci Rep 2017; 7:8308. [PMID: 28814742 PMCID: PMC5559454 DOI: 10.1038/s41598-017-08239-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023] Open
Abstract
Morphological plasticity such as the yeast-to-hyphae transition is a key virulence factor of the human fungal pathogen Candida albicans. Hyphal formation is controlled by a multilayer regulatory network composed of environmental sensing, signaling, transcriptional modulators as well as chromatin modifications. Here, we demonstrate a novel role for the replication-independent HIR histone chaperone complex in fungal morphogenesis. HIR operates as a crucial modulator of hyphal development, since genetic ablation of the HIR complex subunit Hir1 decreases sensitivity to morphogenetic stimuli. Strikingly, HIR1-deficient cells display altered transcriptional amplitudes upon hyphal initiation, suggesting that Hir1 affects transcription by establishing transcriptional thresholds required for driving morphogenetic cell-fate decisions. Furthermore, ectopic expression of the transcription factor Ume6, which facilitates hyphal maintenance, rescues filamentation defects of hir1Δ/Δ cells, suggesting that Hir1 impacts the early phase of hyphal initiation. Hence, chromatin chaperone-mediated fine-tuning of transcription is crucial for driving morphogenetic conversions in the fungal pathogen C. albicans.
Collapse
Affiliation(s)
- Sabrina Jenull
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Megha Gulati
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Neeraj Chauhan
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Campus Vienna Biocenter, Dr.-Bohr-Gasse 9/2, A-1030, Vienna, Austria.
| |
Collapse
|
78
|
Tan H, Liu T, Zhang J, Zhou T. Random positioning of nucleosomes enhances heritable bistability. MOLECULAR BIOSYSTEMS 2017; 13:132-141. [PMID: 27833942 DOI: 10.1039/c6mb00729e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromosomal regions are often dynamically modified by histones, leading to the uncertainty of nucleosome positions. Experiments have provided evidence for this randomness, but it is unclear how it impacts epigenetic heritability. Here, by analyzing a mechanic model at the molecular level, which considers three representative types of nucleosomes (unmodified, methylated, and acetylated) and dynamic nucleosome modifications, we find that in contrast to the equidistance partition of nucleosomes, random partition can significantly enhance heritable bistability. Moreover, the more "chaotic" the nucleosome positions are, the better the heritable bistability is, in contrast to the previous view. In both cases of nucleosome positioning, heritable bistability occurs only when the total nucleosome number is beyond a threshold, and it depends strongly on the allocation rate that enzymes regulate transitions between different nucleosome types. Thus, we conclude that random positioning of nucleosomes is an unneglectable factor impacting heritable bistability. A point worth mentioning is that our model established on a master equation can easily be extended to include other more complex processes underlying dynamic nucleosome modifications.
Collapse
Affiliation(s)
- Heli Tan
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China. and School of Mathematics and Computational Science, Xiangtan University, XiangTan 411105, P. R. China
| | - Tuoqi Liu
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
79
|
Jiménez A, Cotterell J, Munteanu A, Sharpe J. A spectrum of modularity in multi-functional gene circuits. Mol Syst Biol 2017; 13:925. [PMID: 28455348 PMCID: PMC5408781 DOI: 10.15252/msb.20167347] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A major challenge in systems biology is to understand the relationship between a circuit's structure and its function, but how is this relationship affected if the circuit must perform multiple distinct functions within the same organism? In particular, to what extent do multi‐functional circuits contain modules which reflect the different functions? Here, we computationally survey a range of bi‐functional circuits which show no simple structural modularity: They can switch between two qualitatively distinct functions, while both functions depend on all genes of the circuit. Our analysis reveals two distinct classes: hybrid circuits which overlay two simpler mono‐functional sub‐circuits within their circuitry, and emergent circuits, which do not. In this second class, the bi‐functionality emerges from more complex designs which are not fully decomposable into distinct modules and are consequently less intuitive to predict or understand. These non‐intuitive emergent circuits are just as robust as their hybrid counterparts, and we therefore suggest that the common bias toward studying modular systems may hinder our understanding of real biological circuits.
Collapse
Affiliation(s)
- Alba Jiménez
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - James Cotterell
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andreea Munteanu
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - James Sharpe
- EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
80
|
Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M, Puchałka J, Mertes C, Gagneur J, Ziegenhain C, Enard W, Stray-Pedersen A, Arkwright PD, Abboud MR, Pazhakh V, Lieschke GJ, Krawitz PM, Dahlhoff M, Schneider MR, Wolf E, Horny HP, Schmidt H, Schäffer AA, Klein C. Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet 2017; 49:742-752. [PMID: 28369036 DOI: 10.1038/ng.3833] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/10/2017] [Indexed: 02/06/2023]
Abstract
We identify SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2), also known as BAF60b (BRG1/Brahma-associated factor 60b), as a critical regulator of myeloid differentiation in humans, mice, and zebrafish. Studying patients from three unrelated pedigrees characterized by neutropenia, specific granule deficiency, myelodysplasia with excess of blast cells, and various developmental aberrations, we identified three homozygous loss-of-function mutations in SMARCD2. Using mice and zebrafish as model systems, we showed that SMARCD2 controls early steps in the differentiation of myeloid-erythroid progenitor cells. In vitro, SMARCD2 interacts with the transcription factor CEBPɛ and controls expression of neutrophil proteins stored in specific granules. Defective expression of SMARCD2 leads to transcriptional and chromatin changes in acute myeloid leukemia (AML) human promyelocytic cells. In summary, SMARCD2 is a key factor controlling myelopoiesis and is a potential tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Maximilian Witzel
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yanxin Fan
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ehsan Bahrami
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomas Racek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacek Puchałka
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Mertes
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julien Gagneur
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department of Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Peter D Arkwright
- Department of Paediatric Allergy and Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter M Krawitz
- Medical Genetics and Human Genetic, Charite University Hospital, Berlin, Germany
| | - Maik Dahlhoff
- Molecular Animal Breeding and Biotechnology, Gene Center Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marlon R Schneider
- Molecular Animal Breeding and Biotechnology, Gene Center Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Peter Horny
- Pathology Institute, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Schmidt
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, US National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, USA
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
81
|
Misu S, Takebayashi M, Miyamoto K. Nuclear Actin in Development and Transcriptional Reprogramming. Front Genet 2017; 8:27. [PMID: 28326098 PMCID: PMC5339334 DOI: 10.3389/fgene.2017.00027] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.
Collapse
Affiliation(s)
- Shinji Misu
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University Kinokawa-shi, Japan
| | - Marina Takebayashi
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University Kinokawa-shi, Japan
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University Kinokawa-shi, Japan
| |
Collapse
|
82
|
Ramachandran S, Ahmad K, Henikoff S. Capitalizing on disaster: Establishing chromatin specificity behind the replication fork. Bioessays 2017; 39. [PMID: 28133760 PMCID: PMC5513704 DOI: 10.1002/bies.201600150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes are packaged into nucleosomal chromatin, and genomic activity requires the precise localization of transcription factors, histone modifications and nucleosomes. Classic work described the progressive reassembly and maturation of bulk chromatin behind replication forks. More recent proteomics has detailed the molecular machines that accompany the replicative polymerase to promote rapid histone deposition onto the newly replicated DNA. However, localized chromatin features are transiently obliterated by DNA replication every S phase of the cell cycle. Genomic strategies now observe the rebuilding of locus-specific chromatin features, and reveal surprising delays in transcription factor binding behind replication forks. This implies that transient chromatin disorganization during replication is a central juncture for targeted transcription factor binding within genomes. We propose that transient occlusion of regulatory elements by disorganized nucleosomes during chromatin maturation enforces specificity of factor binding.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
83
|
Murakami A, Wang L, Kalhorn S, Schraml P, Rathmell WK, Tan AC, Nemenoff R, Stenmark K, Jiang BH, Reyland ME, Heasley L, Hu CJ. Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis 2017; 6:e287. [PMID: 28092369 PMCID: PMC5294252 DOI: 10.1038/oncsis.2016.89] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
A subset of clear cell renal cell carcinoma (ccRCC) tumors exhibit a HIF1A gene mutation, yielding two ccRCC tumor types, H1H2 type expressing both HIF1α and HIF2α, and H2 type expressing HIF2α, but not functional HIF1α protein. However, it is unclear how the H1H2 type ccRCC tumors escape HIF1's tumor-suppressive activity. The polybromo-1 (PBRM1) gene coding for the BAF180 protein, a component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, is inactivated in 40% ccRCCs, the function and mechanism of BAF180 mutation is unknown. Our previous study indicates that BAF180-containing SWI/SNF chromatin remodeling complex is a co-activator for transcription factor HIF to induce HIF target genes. Thus, our questions are if BAF180 is involved in HIF-mediated hypoxia response and if PBRM1/BAF180 mutation has any association with the HIF1A retention in H1H2 type ccRCC. We report here that BAF180 is mutated in H1H2 ccRCC cell lines and tumors, and BAF180 re-expression in H1H2 ccRCC cell lines reduced cell proliferation/survival, indicating that BAF180 has tumor-suppressive role in these cells. However, BAF180 is expressed in HIF1-deficient H2 ccRCC cell lines and tumors, and BAF180 knockdown in H2 type ccRCC cell lines reduced cell proliferation/survival, indicating that BAF180 has tumor-promoting activity in these cells. In addition, our data show that BAF180 functions as co-activator for HIF1- and HIF2-mediated transcriptional response, and BAF180's tumor-suppressive and -promoting activity in ccRCC cell lines depends on co-expression of HIF1 and HIF2, respectively. Thus, our studies reveal that BAF180 function in ccRCC is context dependent, and that mutation of PBRM1/BAF180 serves as an alternative strategy for ccRCC tumors to reduce HIF1 tumor-suppressive activity in H1H2 ccRCC tumors. Our studies define distinct functional subgroups of ccRCCs based on expression of BAF180, and suggest that BAF180 inhibition may be a novel therapeutic target for patients with H2, but not H1H2, ccRCC tumors.
Collapse
Affiliation(s)
- A Murakami
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Wang
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Kalhorn
- Doctor of Dental Surgery Program, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - P Schraml
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - W K Rathmell
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A C Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R Nemenoff
- Division of Renal and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - K Stenmark
- Departments of Pediatrics, Medicine, and Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - B-H Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - M E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C-J Hu
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
84
|
Chen KW, Chang YJ, Yeh CM, Lian YL, Chan MWY, Kao CF, Chen L. SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:270-281. [PMID: 28039048 DOI: 10.1016/j.bbagrm.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/29/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
As mesoderm-derived cell lineage commits to myogenesis, a spectrum of signaling molecules, including insulin growth factor (IGF), activate signaling pathways and ultimately instruct chromatin remodeling and the transcription of myogenic genes. MyoD is a key transcription factor during myogenesis. In this study, we have identified and characterized a novel myogenic regulator, SH2B1. Knocking down SH2B1 delays global chromatin condensation and decreases the formation of myotubes. SH2B1 interacts with histone H1 and is required for the removal of histone H1 from active transcription sites, allowing for the expressions of myogenic genes, IGF2 and MYOG. Chromatin immunoprecipitation assays suggest the requirement of SH2B1 for the induction of histone H3 lysine 4 trimethylation as well as the reduction of histone H3 lysine 9 trimethylation at the promoters and/or enhancers of IGF2 and MYOG genes during myogenesis. Furthermore, SH2B1 is required for the transcriptional activity of MyoD and MyoD occupancy at the enhancer/promoter regions of IGF2 and MYOG during myogenesis. Together, this study demonstrates that SH2B1 fine-tunes global-local chromatin states, expressions of myogenic genes and ultimately promotes myogenesis.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Yu-Jung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Chia-Ming Yeh
- Department of Life Science, National Chung Cheng University, Chia-yi, Taiwan, R.O.C
| | - Yen-Ling Lian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Michael W Y Chan
- Department of Life Science, National Chung Cheng University, Chia-yi, Taiwan, R.O.C
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C..
| |
Collapse
|
85
|
de Jonge WJ, O'Duibhir E, Lijnzaad P, van Leenen D, Groot Koerkamp MJ, Kemmeren P, Holstege FC. Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters. EMBO J 2016; 36:274-290. [PMID: 27979920 PMCID: PMC5286361 DOI: 10.15252/embj.201695621] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
An important distinction is frequently made between constitutively expressed housekeeping genes versus regulated genes. Although generally characterized by different DNA elements, chromatin architecture and cofactors, it is not known to what degree promoter classes strictly follow regulatability rules and which molecular mechanisms dictate such differences. We show that SAGA‐dominated/TATA‐box promoters are more responsive to changes in the amount of activator, even compared to TFIID/TATA‐like promoters that depend on the same activator Hsf1. Regulatability is therefore an inherent property of promoter class. Further analyses show that SAGA/TATA‐box promoters are more dynamic because TATA‐binding protein recruitment through SAGA is susceptible to removal by Mot1. In addition, the nucleosome configuration upon activator depletion shifts on SAGA/TATA‐box promoters and seems less amenable to preinitiation complex formation. The results explain the fundamental difference between housekeeping and regulatable genes, revealing an additional facet of combinatorial control: an activator can elicit a different response dependent on core promoter class.
Collapse
Affiliation(s)
- Wim J de Jonge
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eoghan O'Duibhir
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dik van Leenen
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marian Ja Groot Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Patrick Kemmeren
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Frank Cp Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
86
|
Abstract
Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo.
Collapse
|
87
|
Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters. PLoS Comput Biol 2016; 12:e1005144. [PMID: 27716823 PMCID: PMC5055345 DOI: 10.1371/journal.pcbi.1005144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/20/2023] Open
Abstract
The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters' sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters' primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence-induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animals.
Collapse
|
88
|
Toto PC, Puri PL, Albini S. SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis. Cell Mol Life Sci 2016; 73:3887-96. [PMID: 27207468 PMCID: PMC5158306 DOI: 10.1007/s00018-016-2273-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
Abstract
SWI/SNF chromatin-remodeling complexes are key regulators of the epigenetic modifications that determine whether stem cells maintain pluripotency or commit toward specific lineages through development and during postnatal life. Dynamic combinatorial assembly of multiple variants of SWI/SNF subunits is emerging as the major determinant of the functional versatility of SWI/SNF. Here, we summarize the current knowledge on the structural and functional properties of the alternative SWI/SNF complexes that direct stem cell fate toward skeletal muscle lineage and control distinct stages of skeletal myogenesis. In particular, we will refer to recent evidence pointing to the essential role of two SWI/SNF components not expressed in embryonic stem cells-the catalytic subunit BRM and the structural component BAF60C-whose induction in muscle progenitors coincides with the expansion of their transcriptional repertoire.
Collapse
Affiliation(s)
- Paula Coutinho Toto
- Sanford Burnham Prebys Medical Discovery Institute, 10905 Road to the Cure, San Diego, CA, 92121, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, 10905 Road to the Cure, San Diego, CA, 92121, USA.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sonia Albini
- Sanford Burnham Prebys Medical Discovery Institute, 10905 Road to the Cure, San Diego, CA, 92121, USA.
| |
Collapse
|
89
|
Rudnizky S, Bavly A, Malik O, Pnueli L, Melamed P, Kaplan A. H2A.Z controls the stability and mobility of nucleosomes to regulate expression of the LH genes. Nat Commun 2016; 7:12958. [PMID: 27653784 PMCID: PMC5036153 DOI: 10.1038/ncomms12958] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/19/2016] [Indexed: 01/17/2023] Open
Abstract
The structure and dynamics of promoter chromatin have a profound effect on the expression levels of genes. Yet, the contribution of DNA sequence, histone post-translational modifications, histone variant usage and other factors in shaping the architecture of chromatin, and the mechanisms by which this architecture modulates expression of specific genes are not yet completely understood. Here we use optical tweezers to study the roles that DNA sequence and the histone variant H2A.Z have in shaping the chromatin landscape at the promoters of two model genes, Cga and Lhb. Guided by MNase mapping of the promoters of these genes, we reconstitute nucleosomes that mimic those located near the transcriptional start site and immediately downstream (+1), and measure the forces required to disrupt these nucleosomes, and their mobility along the DNA sequence. Our results indicate that these genes are basally regulated by two distinct strategies, making use of H2A.Z to modulate separate phases of transcription, and highlight how DNA sequence, alternative histone variants and remodelling machinery act synergistically to modulate gene expression.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Adaiah Bavly
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Omri Malik
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
90
|
Kim J, Wei S, Lee J, Yue H, Lee TH. Single-Molecule Observation Reveals Spontaneous Protein Dynamics in the Nucleosome. J Phys Chem B 2016; 120:8925-31. [PMID: 27487198 PMCID: PMC5436049 DOI: 10.1021/acs.jpcb.6b06235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural dynamics of a protein molecule is often critical to its function. Single-molecule methods provide efficient ways to investigate protein dynamics, although it is very challenging to achieve a millisecond or higher temporal resolution. Here we report spontaneous structural dynamics of the histone protein core in the nucleosome based on a single-molecule method that can reveal submillisecond dynamics by combining maximum likelihood estimation and fluorescence correlation spectroscopy. The nucleosome, comprising ∼147 bp DNA and an octameric histone protein core consisting of H2A, H2B, H3, and H4, is the fundamental packing unit of the eukaryotic genome. The nucleosome imposes a physical barrier that should be overcome during various DNA-templated processes. Structural fluctuation of the nucleosome in the histone core has been hypothesized to be required for nucleosome disassembly but has yet to be directly probed. Our results indicate that at 100 mM NaCl the histone H2A-H2B dimer dissociates from the histone core transiently once every 3.6 ± 0.6 ms and returns to its position within 2.0 ± 0.3 ms. We also found that the motion is facilitated upon H3K56 acetylation and inhibited upon replacing H2A with H2A.Z. These results provide the first direct examples of how a localized post-translational modification or an epigenetic variation affects the kinetic and thermodynamic stabilities of a macromolecular protein complex, which may directly contribute to its functions.
Collapse
Affiliation(s)
- Jongseong Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Department of Neurology, Dongguk University Ilsan Hospital, Goyang 10326, The Republic of Korea
| | - Sijie Wei
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongjun Yue
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
91
|
Bedi S, Sengupta S, Ray A, Nag Chaudhuri R. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:125-140. [PMID: 27457990 DOI: 10.1016/j.plantsci.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 05/20/2023]
Abstract
ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase.
Collapse
Affiliation(s)
- Sonia Bedi
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Sourabh Sengupta
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Anagh Ray
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
92
|
Corless S, Gilbert N. Effects of DNA supercoiling on chromatin architecture. Biophys Rev 2016; 8:245-258. [PMID: 27738453 PMCID: PMC5039215 DOI: 10.1007/s12551-016-0210-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo.
Collapse
Affiliation(s)
- Samuel Corless
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| |
Collapse
|
93
|
Chutake YK, Lam CC, Costello WN, Anderson MP, Bidichandani SI. Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor. Nucleic Acids Res 2016; 44:5095-104. [PMID: 26896803 PMCID: PMC4914082 DOI: 10.1093/nar/gkw107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022] Open
Abstract
Friedreich ataxia, the most prevalent inherited ataxia, is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene. Repressive chromatin spreads from the expanded GAA triplet-repeat sequence to cause epigenetic silencing of the FXN promoter via altered nucleosomal positioning and reduced chromatin accessibility. Indeed, deficient transcriptional initiation is the predominant cause of transcriptional deficiency in Friedreich ataxia. Treatment with 109, a class I histone deacetylase (HDAC) inhibitor, resulted in increased level of FXN transcript both upstream and downstream of the expanded GAA triplet-repeat sequence, without any change in transcript stability, suggesting that it acts via improvement of transcriptional initiation. Quantitative analysis of transcriptional initiation via metabolic labeling of nascent transcripts in patient-derived cells revealed a >3-fold increase (P < 0.05) in FXN promoter function. A concomitant 3-fold improvement (P < 0.001) in FXN promoter structure and chromatin accessibility was observed via Nucleosome Occupancy and Methylome Sequencing, a high-resolution in vivo footprint assay for detecting nucleosome occupancy in individual chromatin fibers. No such improvement in FXN promoter function or structure was observed upon treatment with a chemically-related inactive compound (966). Thus epigenetic promoter silencing in Friedreich ataxia is reversible, and the results implicate class I HDACs in repeat-mediated promoter silencing.
Collapse
Affiliation(s)
- Yogesh K Chutake
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Christina C Lam
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Whitney N Costello
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Michael P Anderson
- Department of Biochemistry & Molecular Biology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA Department of Biostatistics & Epidemiology, University of Oklahoma College of Public Health, Oklahoma City, OK 73104, USA
| |
Collapse
|
94
|
Scovell WM. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression. World J Biol Chem 2016; 7:206-222. [PMID: 27247709 PMCID: PMC4877529 DOI: 10.4331/wjbc.v7.i2.206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/19/2016] [Accepted: 03/14/2016] [Indexed: 02/05/2023] Open
Abstract
High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome.
Collapse
|
95
|
Ichikawa Y, Morohashi N, Tomita N, Mitchell AP, Kurumizaka H, Shimizu M. Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo. Biochem Biophys Res Commun 2016; 476:57-62. [PMID: 27208777 DOI: 10.1016/j.bbrc.2016.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome-depleted regions (NDRs) (also called nucleosome-free regions or NFRs) are often found in the promoter regions of many yeast genes, and are formed by multiple mechanisms, including the binding of activators and enhancers, the actions of chromatin remodeling complexes, and the specific DNA sequences themselves. However, it remains unclear whether NDR formation per se is essential for transcriptional activation. Here, we examined the relationship between nucleosome organization and gene expression using a defined yeast reporter system, consisting of the CYC1 minimal core promoter and the lacZ gene. We introduced simple repeated sequences that should be either incorporated in nucleosomes or excluded from nucleosomes in the site upstream of the TATA boxes. The (CTG)12, (GAA)12 and (TGTAGG)6 inserts were incorporated into a positioned nucleosome in the core promoter region, and did not affect the reporter gene expression. In contrast, the insertion of (CGG)12, (TTAGGG)6, (A)34 or (CG)8 induced lacZ expression by 10-20 fold. Nucleosome mapping analyses revealed that the inserts that induced the reporter gene expression prevented nucleosome formation, and created an NDR upstream of the TATA boxes. Thus, our results demonstrated that NDR formation dictated by DNA sequences is sufficient for transcriptional activation from the core promoter in vivo.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nobuyuki Morohashi
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Nobuyuki Tomita
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mitsuhiro Shimizu
- Program in Chemistry and Life Science, School of Science and Engineering, Department of Chemistry, Graduate School of Science and Engineering, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan.
| |
Collapse
|
96
|
Abstract
The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.
Collapse
Affiliation(s)
- Tineke L Lenstra
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Joseph Rodriguez
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Huimin Chen
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| |
Collapse
|
97
|
Wenderski W, Maze I. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease. Bioessays 2016; 38:410-9. [PMID: 26990528 DOI: 10.1002/bies.201500171] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease.
Collapse
Affiliation(s)
- Wendy Wenderski
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Ian Maze
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
98
|
Gunes S, Arslan MA, Hekim GNT, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet 2016; 33:553-569. [PMID: 26941097 DOI: 10.1007/s10815-016-0682-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
Infertility is a complex disorder with multiple genetic and environmental causes. Although some specific mutations have been identified, other factors responsible for sperm defects remain largely unknown. Despite considerable efforts to identify the pathophysiology of the disease, we cannot explain the underlying mechanisms of approximately half of infertility cases. This study reviews current data on epigenetic regulation and idiopathic male infertility. Recent data have shown an association between epigenetic modifications and idiopathic infertility. In this regard, epigenetics has emerged as one of the promising research areas in understanding male infertility. Many studies have indicated that epigenetic modifications, including DNA methylation in imprinted and developmental genes, histone tail modifications and short non-coding RNAs in spermatozoa may have a role in idiopathic male infertility.
Collapse
Affiliation(s)
- Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey.
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, 55139, Samsun, Turkey.
| | - Mehmet Alper Arslan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey.
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, 55139, Samsun, Turkey.
| | | | - Ramazan Asci
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, 55139, Samsun, Turkey
- Faculty of Medicine, Department of Urology, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
99
|
Nebendahl C, Görs S, Albrecht E, Krüger R, Martens K, Giller K, Hammon HM, Rimbach G, Metges CC. Early postnatal feed restriction reduces liver connective tissue levels and affects H3K9 acetylation state of regulated genes associated with protein metabolism in low birth weight pigs. J Nutr Biochem 2016; 29:41-55. [DOI: 10.1016/j.jnutbio.2015.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/06/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
|
100
|
Chereji RV, Kan TW, Grudniewska MK, Romashchenko AV, Berezikov E, Zhimulev IF, Guryev V, Morozov AV, Moshkin YM. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster. Nucleic Acids Res 2016; 44:1036-51. [PMID: 26429969 PMCID: PMC4756854 DOI: 10.1093/nar/gkv978] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023] Open
Abstract
Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.
Collapse
Affiliation(s)
- Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tsung-Wai Kan
- Department of Biochemistry, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Magda K Grudniewska
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9713AD, The Netherlands
| | | | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9713AD, The Netherlands
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk 630090, Russia
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9713AD, The Netherlands
| | - Alexandre V Morozov
- Department of Physics and Astronomy and BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuri M Moshkin
- Department of Biochemistry, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk 630090, Russia Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk 630090, Russia
| |
Collapse
|