51
|
Lieb A, Ortner N, Striessnig J. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels. Biophys J 2014; 106:1467-75. [PMID: 24703308 PMCID: PMC3976517 DOI: 10.1016/j.bpj.2014.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/11/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022] Open
Abstract
Activity of voltage-gated Cav1.3 L-type Ca2+ channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages without affecting QON-V.
Collapse
Affiliation(s)
- Andreas Lieb
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | - Nadine Ortner
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
52
|
Calcineurin determines toxic versus beneficial responses to α-synuclein. Proc Natl Acad Sci U S A 2014; 111:E3544-52. [PMID: 25122673 DOI: 10.1073/pnas.1413201111] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcineurin (CN) is a highly conserved Ca(2+)-calmodulin (CaM)-dependent phosphatase that senses Ca(2+) concentrations and transduces that information into cellular responses. Ca(2+) homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca(2+), thereby activating a CaM-CN cascade that engages substrates that result in toxicity. Surprisingly, complete inhibition of CN also results in toxicity. Limiting the availability of CaM shifts CN's spectrum of substrates toward protective pathways. Modulating CN or CN's substrates with highly selective genetic and pharmacological tools (FK506) does the same. FK506 crosses the blood brain barrier, is well tolerated in humans, and is active in neurons and glia. Thus, a tunable response to CN, which has been conserved for a billion years, can be targeted to rebalance the phosphatase's activities from toxic toward beneficial substrates. These findings have immediate therapeutic implications for synucleinopathies.
Collapse
|
53
|
Yin G, Hassan F, Haroun AR, Murphy LL, Crotti L, Schwartz PJ, George AL, Satin J. Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms. J Am Heart Assoc 2014; 3:e000996. [PMID: 24958779 PMCID: PMC4309107 DOI: 10.1161/jaha.114.000996] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Calmodulin (CaM) mutations have been identified recently in subjects with congenital long QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), but the mechanisms responsible for these divergent arrhythmia‐susceptibility syndromes in this context are unknown. We tested the hypothesis that LQTS‐associated CaM mutants disrupt Ca2+ homeostasis in developing cardiomyocytes possibly by affecting either late Na current or Ca2+‐dependent inactivation of L‐type Ca2+ current. Methods and Results We coexpressed CaM mutants with the human cardiac Na channel (NaV1.5) in tsA201 cells, and we used mammalian fetal ventricular cardiomyocytes to investigate LQTS‐ and CPVT‐associated CaM mutations (LQTS‐ and CPVT‐CaM). LQTS‐CaM mutants do not consistently affect L‐type Na current in heterologous cells or native cardiomyocytes, suggesting that the Na channel does not contribute to LQTS pathogenesis in the context of CaM mutations. LQTS‐CaM mutants (D96V, D130G, F142L) impaired Ca2+‐dependent inactivation, whereas the CPVT‐CaM mutant N54I had no effect on Ca2+‐dependent inactivation. LQTS‐CaM mutants led to loss of Ca2+‐transient entrainment with the rank order from greatest to least effect: CaM‐D130G~CaM‐D96V>>CaM‐F142L. This rank order follows measured Ca2+‐CaM affinities for wild‐type and mutant CaM. Acute isoproterenol restored entrainment for CaM‐130G and CaM‐D96V but caused irreversible cytosolic Ca2+ overload for cells expressing a CPVT‐CaM mutant. Conclusions CaM mutations associated with LQTS may not affect L‐type Na+ current but may evoke defective Ca2+‐dependent inactivation of L‐type Ca2+ current.
Collapse
Affiliation(s)
- Guo Yin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY (G.Y., F.H., A.R.H., J.S.)
| | - Faisal Hassan
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY (G.Y., F.H., A.R.H., J.S.)
| | - Ayman R Haroun
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY (G.Y., F.H., A.R.H., J.S.)
| | - Lisa L Murphy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (L.L.M., A.L.G.)
| | - Lia Crotti
- Section of Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.) Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.) IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.)
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.)
| | - Alfred L George
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (L.L.M., A.L.G.) Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (A.L.G.) Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (A.L.G.)
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY (G.Y., F.H., A.R.H., J.S.)
| |
Collapse
|
54
|
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82:24-45. [PMID: 24698266 DOI: 10.1016/j.neuron.2014.03.016] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Voltage-gated calcium channels are the primary mediators of depolarization-induced calcium entry into neurons. There is great diversity of calcium channel subtypes due to multiple genes that encode calcium channel α1 subunits, coassembly with a variety of ancillary calcium channel subunits, and alternative splicing. This allows these channels to fulfill highly specialized roles in specific neuronal subtypes and at particular subcellular loci. While calcium channels are of critical importance to brain function, their inappropriate expression or dysfunction gives rise to a variety of neurological disorders, including, pain, epilepsy, migraine, and ataxia. This Review discusses salient aspects of voltage-gated calcium channel function, physiology, and pathophysiology.
Collapse
Affiliation(s)
- Brett A Simms
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
55
|
Limpitikul WB, Dick IE, Joshi-Mukherjee R, Overgaard MT, George AL, Yue DT. Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca(2+) currents and promote proarrhythmic behavior in ventricular myocytes. J Mol Cell Cardiol 2014; 74:115-24. [PMID: 24816216 DOI: 10.1016/j.yjmcc.2014.04.022] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 01/13/2023]
Abstract
Recent work has identified missense mutations in calmodulin (CaM) that are associated with severe early-onset long-QT syndrome (LQTS), leading to the proposition that altered CaM function may contribute to the molecular etiology of this subset of LQTS. To date, however, no experimental evidence has established these mutations as directly causative of LQTS substrates, nor have the molecular targets of CaM mutants been identified. Here, therefore, we test whether expression of CaM mutants in adult guinea-pig ventricular myocytes (aGPVM) induces action-potential prolongation, and whether affiliated alterations in the Ca(2+) regulation of L-type Ca(2+) channels (LTCC) might contribute to such prolongation. In particular, we first overexpressed CaM mutants in aGPVMs, and observed both increased action potential duration (APD) and heightened Ca(2+) transients. Next, we demonstrated that all LQTS CaM mutants have the potential to strongly suppress Ca(2+)/CaM-dependent inactivation (CDI) of LTCCs, whether channels were heterologously expressed in HEK293 cells, or present in native form within myocytes. This attenuation of CDI is predicted to promote action-potential prolongation and boost Ca(2+) influx. Finally, we demonstrated how a small fraction of LQTS CaM mutants (as in heterozygous patients) would nonetheless suffice to substantially diminish CDI, and derange electrical and Ca(2+) profiles. In all, these results highlight LTCCs as a molecular locus for understanding and treating CaM-related LQTS in this group of patients.
Collapse
Affiliation(s)
- Worawan B Limpitikul
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ivy E Dick
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rosy Joshi-Mukherjee
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael T Overgaard
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Denmark
| | - Alfred L George
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - David T Yue
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205.
| |
Collapse
|
56
|
Abstract
Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast.
Collapse
|
57
|
Allostery in Ca²⁺ channel modulation by calcium-binding proteins. Nat Chem Biol 2014; 10:231-8. [PMID: 24441587 DOI: 10.1038/nchembio.1436] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022]
Abstract
Distinguishing between allostery and competition among modulating ligands is challenging for large target molecules. Out of practical necessity, inferences are often drawn from in vitro assays on target fragments, but such inferences may belie actual mechanisms. One key example of such ambiguity concerns calcium-binding proteins (CaBPs) that tune signaling molecules regulated by calmodulin (CaM). As CaBPs resemble CaM, CaBPs are believed to competitively replace CaM on targets. Yet, brain CaM expression far surpasses that of CaBPs, raising questions as to whether CaBPs can exert appreciable biological actions. Here, we devise a live-cell, holomolecule approach that reveals an allosteric mechanism for calcium channels whose CaM-mediated inactivation is eliminated by CaBP4. Our strategy is to covalently link CaM and/or CaBP to holochannels, enabling live-cell fluorescence resonance energy transfer assays to resolve a cyclical allosteric binding scheme for CaM and CaBP4 to channels, thus explaining how trace CaBPs prevail. This approach may apply generally for discerning allostery in live cells.
Collapse
|
58
|
Bazzazi H, Ben Johny M, Adams PJ, Soong TW, Yue DT. Continuously tunable Ca(2+) regulation of RNA-edited CaV1.3 channels. Cell Rep 2013; 5:367-77. [PMID: 24120865 DOI: 10.1016/j.celrep.2013.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/02/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
CaV1.3 ion channels are dominant Ca(2+) portals into pacemaking neurons, residing at the epicenter of brain rhythmicity and neurodegeneration. Negative Ca(2+) feedback regulation of CaV1.3 channels (CDI) is therefore critical for Ca(2+) homeostasis. Intriguingly, nearly half the CaV1.3 transcripts in the brain are RNA edited to reduce CDI and influence oscillatory activity. It is then mechanistically remarkable that this editing occurs precisely within an IQ domain, whose interaction with Ca(2+)-bound calmodulin (Ca(2+)/CaM) is believed to induce CDI. Here, we sought the mechanism underlying the altered CDI of edited channels. Unexpectedly, editing failed to attenuate Ca(2+)/CaM binding. Instead, editing weakened the prebinding of Ca(2+)-free CaM (apoCaM) to channels, which proves essential for CDI. Thus, editing might render CDI continuously tunable by fluctuations in ambient CaM, a prominent effect we substantiate in substantia nigral neurons. This adjustability of Ca(2+) regulation by CaM now looms as a key element of CNS Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
59
|
Huang H, Yu D, Soong TW. C-Terminal Alternative Splicing of CaV1.3 Channels Distinctively Modulates Their Dihydropyridine Sensitivity. Mol Pharmacol 2013; 84:643-53. [DOI: 10.1124/mol.113.087155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
60
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
61
|
Ben Johny M, Yang PS, Bazzazi H, Yue DT. Dynamic switching of calmodulin interactions underlies Ca2+ regulation of CaV1.3 channels. Nat Commun 2013; 4:1717. [PMID: 23591884 PMCID: PMC3856249 DOI: 10.1038/ncomms2727] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/08/2013] [Indexed: 11/30/2022] Open
Abstract
Calmodulin regulation of CaV channels is a prominent Ca(2+) feedback mechanism orchestrating vital adjustments of Ca(2+) entry. The long-held structural correlation of this regulation has been Ca(2+)-bound calmodulin, complexed alone with an IQ domain on the channel carboxy terminus. Here, however, systematic alanine mutagenesis of the entire carboxyl tail of an L-type CaV1.3 channel casts doubt on this paradigm. To identify the actual molecular states underlying channel regulation, we develop a structure-function approach relating the strength of regulation to the affinity of underlying calmodulin/channel interactions, by a Langmuir relation (individually transformed Langmuir analysis). Accordingly, we uncover frank exchange of Ca(2+)-calmodulin to interfaces beyond the IQ domain, initiating substantial rearrangements of the calmodulin/channel complex. The N-lobe of Ca(2+)-calmodulin binds an N-terminal spatial Ca(2+) transforming element module on the channel amino terminus, whereas the C-lobe binds an EF-hand region upstream of the IQ domain. This system of structural plasticity furnishes a next-generation blueprint for CaV channel modulation.
Collapse
Affiliation(s)
- Manu Ben Johny
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| | - Philemon S. Yang
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| | - Hojjat Bazzazi
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| | - David T. Yue
- Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, voice: (410) 955-0078, fax: (410) 614-8269,
| |
Collapse
|
62
|
Zhang Y, Cao X, Xu Y, Liu Q, Zhang Y, Luo J, Liu X, Bai J. Tomographic imaging of ratiometric fluorescence resonance energy transfer in scattering media. APPLIED OPTICS 2012; 51:5044-5050. [PMID: 22858943 DOI: 10.1364/ao.51.005044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/04/2012] [Indexed: 06/01/2023]
Abstract
A method to visualize and quantify fluorescence resonance energy transfer (FRET) in scattering media is proposed. It combines the ratiometric FRET method with fluorescence molecular tomography (FMT) in continuous wave (CW) mode. To evaluate the performance of the proposed method, experiments on a tissue-mimicking phantom are carried out. The results demonstrate that the proposed approach is capable of visualizing and quantifying the FRET distribution in scattering media, which implies the further application of the ratiometric assay in in vivo studies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Huang H, Tan BZ, Shen Y, Tao J, Jiang F, Sung YY, Ng CK, Raida M, Köhr G, Higuchi M, Fatemi-Shariatpanahi H, Harden B, Yue DT, Soong TW. RNA editing of the IQ domain in Ca(v)1.3 channels modulates their Ca²⁺-dependent inactivation. Neuron 2012; 73:304-16. [PMID: 22284185 DOI: 10.1016/j.neuron.2011.11.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2011] [Indexed: 11/29/2022]
Abstract
Adenosine-to-inosine RNA editing is crucial for generating molecular diversity, and serves to regulate protein function through recoding of genomic information. Here, we discover editing within Ca(v)1.3 Ca²⁺ channels, renown for low-voltage Ca²⁺-influx and neuronal pacemaking. Significantly, editing occurs within the channel's IQ domain, a calmodulin-binding site mediating inhibitory Ca²⁺-feedback (CDI) on channels. The editing turns out to require RNA adenosine deaminase ADAR2, whose variable activity could underlie a spatially diverse pattern of Ca(v)1.3 editing seen across the brain. Edited Ca(v)1.3 protein is detected both in brain tissue and within the surface membrane of primary neurons. Functionally, edited Ca(v)1.3 channels exhibit strong reduction of CDI; in particular, neurons within the suprachiasmatic nucleus show diminished CDI, with higher frequencies of repetitive action-potential and calcium-spike activity, in wild-type versus ADAR2 knockout mice. Our study reveals a mechanism for fine-tuning Ca(v)1.3 channel properties in CNS, which likely impacts a broad spectrum of neurobiological functions.
Collapse
Affiliation(s)
- Hua Huang
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, 117597 Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wang C, Chung BC, Yan H, Lee SY, Pitt GS. Crystal structure of the ternary complex of a NaV C-terminal domain, a fibroblast growth factor homologous factor, and calmodulin. Structure 2012; 20:1167-76. [PMID: 22705208 PMCID: PMC3610540 DOI: 10.1016/j.str.2012.05.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 01/07/2023]
Abstract
Voltage-gated Na⁺ (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na⁺ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human Na(V) CTD, an FHF, and Ca²⁺-free CaM at 2.2 Å. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in Na(V) channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual Na(V) CTD isoforms for distinctive FHFs.
Collapse
Affiliation(s)
- Chaojian Wang
- Division of Cardiology, Department of Medicine, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA,Ion Channel Research Unit, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA
| | - Ben C. Chung
- Department of Biochemistry, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA,Ion Channel Research Unit, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA
| | - Haidun Yan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA,Ion Channel Research Unit, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA,Ion Channel Research Unit, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA
| | - Geoffrey S. Pitt
- Division of Cardiology, Department of Medicine, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA,Ion Channel Research Unit, Duke University Medical Center, 2 Genome Ct, Durham, North Carolina, 27710, USA
| |
Collapse
|
65
|
Kamp MA, Shakeri B, Tevoufouet EE, Krieger A, Henry M, Behnke K, Herzig S, Hescheler J, Radhakrishnan K, Parent L, Schneider T. The C-terminus of human Ca(v)2.3 voltage-gated calcium channel interacts with alternatively spliced calmodulin-2 expressed in two human cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1045-57. [PMID: 22633975 DOI: 10.1016/j.bbapap.2012.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 01/20/2023]
Abstract
Ca(v)2.3 containing voltage-activated Ca(2+) channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca(2+) which can both, facilitate and inhibit the influx of Ca(2+) ions through Ca(v)2.3. The facilitated Ca(2+) influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca(2+) mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Ca(v)2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Ca(v)2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.
Collapse
Affiliation(s)
- Marcel A Kamp
- Institute for Neurophysiology, University of Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lieb A, Scharinger A, Sartori S, Sinnegger-Brauns MJ, Striessnig J. Structural determinants of CaV1.3 L-type calcium channel gating. Channels (Austin) 2012; 6:197-205. [PMID: 22760075 PMCID: PMC3431584 DOI: 10.4161/chan.21002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A C-terminal modulatory domain (CTM) tightly regulates the biophysical properties of Ca(v)1.3 L-type Ca(2+) channels, in particular the voltage dependence of activation (V(0.5)) and Ca(2+) dependent inactivation (CDI). A functional CTM is present in the long C-terminus of human and mouse Ca(v)1.3 (Ca(v)1.3(L)), but not in a rat long cDNA clone isolated from superior cervical ganglia neurons (rCa(v)1.3(scg)). We therefore addressed the question if this represents a species-difference and compared the biophysical properties of rCa(v)1.3(scg) with a rat cDNA isolated from rat pancreas (rCa(v)1.3(L)). When expressed in tsA-201 cells under identical experimental conditions rCa(v)1.3(L) exhibited Ca(2+) current properties indistinguishable from human and mouse Ca(v)1.3(L), compatible with the presence of a functional CTM. In contrast, rCa(v)1.3(scg) showed gating properties similar to human short splice variants lacking a CTM. rCa(v)1.3(scg) differs from rCa(v)1.3(L) at three single amino acid (aa) positions, one alternative spliced exon (exon31), and a N-terminal polymethionine stretch with two additional lysines. Two aa (S244, A2075) in rCa(v)1.3(scg) explained most of the functional differences to rCa(v)1.3(L). Their mutation to the corresponding residues in rCa(v)1.3(L) (G244, V2075) revealed that both contributed to the more negative V 0.5, but caused opposite effects on CDI. A2075 (located within a region forming the CTM) additionally permitted higher channel open probability. The cooperative action in the double-mutant restored gating properties similar to rCa(v)1.3(L). We found no evidence for transcripts containing one of the single rCa(v)1.3(scg) mutations in rat superior cervical ganglion preparations. However, the rCa(v)1.3(scg) variant provided interesting insight into the structural machinery involved in Ca(v)1.3 gating.
Collapse
Affiliation(s)
- Andreas Lieb
- Institute of Pharmacy and Center for Molecular Biosciences, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
67
|
Tuckwell HC. Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 2012; 96:1-31. [DOI: 10.1016/j.pneurobio.2011.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
|
68
|
Tan GMY, Yu D, Wang J, Soong TW. Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density. J Biol Chem 2011; 287:832-47. [PMID: 22069316 DOI: 10.1074/jbc.m111.268722] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Ca(V)1.4 voltage-gated calcium channel is predominantly expressed in the retina, and mutations to this channel have been associated with human congenital stationary night blindness type-2. The L-type Ca(V)1.4 channel displays distinct properties such as absence of calcium-dependent inactivation (CDI) and slow voltage-dependent inactivation (VDI) due to the presence of an autoinhibitory domain (inhibitor of CDI) in the distal C terminus. We hypothesized that native Ca(V)1.4 is subjected to extensive alternative splicing, much like the other voltage-gated calcium channels, and employed the transcript scanning method to identify alternatively spliced exons within the Ca(V)1.4 transcripts isolated from the human retina. In total, we identified 19 alternative splice variations, of which 16 variations have not been previously reported. Characterization of the C terminus alternatively spliced exons using whole-cell patch clamp electrophysiology revealed a splice variant that exhibits robust CDI. This splice variant arose from the splicing of a novel alternate exon (43*) that can be found in 13.6% of the full-length transcripts screened. Inclusion of exon 43* inserts a stop codon that truncates half the C terminus. The Ca(V)1.4 43* channel exhibited robust CDI, a larger current density, a hyperpolarized shift in activation potential by ∼10 mV, and a slower VDI. Through deletional experiments, we showed that the inhibitor of CDI was responsible for modulating channel activation and VDI, in addition to CDI. Calcium currents in the photoreceptors were observed to exhibit CDI and are more negatively activated as compared with currents elicited from heterologously expressed full-length Ca(V)1.4. Naturally occurring alternative splice variants may in part contribute to the properties of the native Ca(V)1.4 channels.
Collapse
Affiliation(s)
- Gregory Ming Yeong Tan
- Ion Channel and Transporter Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | | | | | | |
Collapse
|
69
|
Tan BZ, Jiang F, Tan MY, Yu D, Huang H, Shen Y, Soong TW. Functional characterization of alternative splicing in the C terminus of L-type CaV1.3 channels. J Biol Chem 2011; 286:42725-42735. [PMID: 21998309 DOI: 10.1074/jbc.m111.265207] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ca(V)1.3 channels are unique among the high voltage-activated Ca(2+) channel family because they activate at the most negative potentials and display very rapid calcium-dependent inactivation. Both properties are of crucial importance in neurons of the suprachiasmatic nucleus and substantia nigra, where the influx of Ca(2+) ions at subthreshold membrane voltages supports pacemaking function. Previously, alternative splicing in the Ca(V)1.3 C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), resulting in a pronounced activation at more negative voltages and faster inactivation in the latter. It was further shown that the C-terminal modulator in the Ca(V)1.3(42) isoforms modulates calmodulin binding to the IQ domain. Using splice variant-specific antibodies, we determined that protein localization of both splice variants in different brain regions were similar. Using the transcript-scanning method, we further identified alternative splicing at four loci in the C terminus of Ca(V)1.3 channels. Alternative splicing of exon 41 removes the IQ motif, resulting in a truncated Ca(V)1.3 protein with diminished inactivation. Splicing of exon 43 causes a frameshift and exhibits a robust inactivation of similar intensity to Ca(V)1.3(42A). Alternative splicing of exons 44 and 48 are in-frame, altering interaction of the distal modulator with the IQ domain and tapering inactivation slightly. Thus, alternative splicing in the C terminus of Ca(V)1.3 channels modulates its electrophysiological properties, which could in turn alter neuronal firing properties and functions.
Collapse
Affiliation(s)
- Bao Zhen Tan
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore 117597; NUS Graduate School for Integrative Engineering and Science, National University of Singapore, Singapore 117597
| | - Fengli Jiang
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore 117597
| | - Ming Yeong Tan
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore 117597
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore 117597
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore 117597; NUS Graduate School for Integrative Engineering and Science, National University of Singapore, Singapore 117597
| | - Yiru Shen
- National Neuroscience Institute, Singapore 308433
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore 117597; NUS Graduate School for Integrative Engineering and Science, National University of Singapore, Singapore 117597; National Neuroscience Institute, Singapore 308433.
| |
Collapse
|
70
|
Turner RW, Anderson D, Zamponi GW. Signaling complexes of voltage-gated calcium channels. Channels (Austin) 2011; 5:440-8. [PMID: 21832880 DOI: 10.4161/chan.5.5.16473] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead forms signaling complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily.
Collapse
Affiliation(s)
- Ray W Turner
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | | | | |
Collapse
|
71
|
Nejatbakhsh N, Feng ZP. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases. Acta Pharmacol Sin 2011; 32:741-8. [PMID: 21642945 DOI: 10.1038/aps.2011.64] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.
Collapse
|
72
|
Minor DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 2011; 4:459-74. [PMID: 21139419 DOI: 10.4161/chan.4.6.12867] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, CA, USA.
| | | |
Collapse
|
73
|
Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend RR, Fagan AM. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease. PLoS One 2011; 6:e16032. [PMID: 21264269 PMCID: PMC3020224 DOI: 10.1371/journal.pone.0016032] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/03/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome. METHODS AND FINDINGS CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively. CONCLUSIONS Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions.
Collapse
Affiliation(s)
- Richard J Perrin
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mehta S, Zhang J. Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu Rev Biochem 2011; 80:375-401. [PMID: 21495849 PMCID: PMC4384825 DOI: 10.1146/annurev-biochem-060409-093259] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real-time visualization of a wide range of biochemical processes in living systems is being made possible through the development and application of genetically encoded fluorescent reporters. These versatile biosensors have proven themselves tailor-made to the study of signal transduction, and in this review, we discuss some of the unique insights that they continue to provide regarding the spatial organization and dynamic regulation of intracellular signaling networks. In addition, we explore the more recent push to expand the scope of biological phenomena that can be monitored using these reporters, while also considering the potential to integrate this highly adaptable technology with a number of emerging techniques that may significantly broaden our view of how networks of biochemical processes shape larger biological phenomena.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience and Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
75
|
Abstract
CaV1.3 L-type channels control inner hair cell (IHC) sensory and sinoatrial node (SAN) function, and excitability in central neurons by means of their low-voltage activation and inactivation properties. In SAN cells CaV1.3 inward calcium current (ICa) inactivates rapidly whereas in IHCs inactivation is slow. A candidate suggested in slowing CaV1.3 channel inactivation is the presynaptically located ribbon-synapse protein RIM that is expressed in immature IHCs in presynaptic compartments also expressing CaV1.3 channels. CaV1.3 channel gating is also modulated by an intramolecular C-terminal mechanism. This mechanism was elicited during analysis of human C-terminal splice variants that differ in the length of their C-terminus and that modulates the channel's negative activation range and slows calcium-dependent inactivation.
Collapse
Affiliation(s)
- Alexandra Koschak
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
76
|
Pang ZP, Xu W, Cao P, Südhof TC. Calmodulin suppresses synaptotagmin-2 transcription in cortical neurons. J Biol Chem 2010; 285:33930-9. [PMID: 20729199 DOI: 10.1074/jbc.m110.150151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) sensor protein that plays a pivotal role in regulating innumerable neuronal functions, including synaptic transmission. In cortical neurons, most neurotransmitter release is triggered by Ca(2+) binding to synaptotagmin-1; however, a second delayed phase of release, referred to as asynchronous release, is triggered by Ca(2+) binding to an unidentified secondary Ca(2+) sensor. To test whether CaM could be the enigmatic Ca(2+) sensor for asynchronous release, we now use in cultured neurons short hairpin RNAs that suppress expression of ∼70% of all neuronal CaM isoforms. Surprisingly, we found that in synaptotagmin-1 knock-out neurons, the CaM knockdown caused a paradoxical rescue of synchronous release, instead of a block of asynchronous release. Gene and protein expression studies revealed that both in wild-type and in synaptotagmin-1 knock-out neurons, the CaM knockdown altered expression of >200 genes, including that encoding synaptotagmin-2. Synaptotagmin-2 expression was increased several-fold by the CaM knockdown, which accounted for the paradoxical rescue of synchronous release in synaptotagmin-1 knock-out neurons by the CaM knockdown. Interestingly, the CaM knockdown primarily activated genes that are preferentially expressed in caudal brain regions, whereas it repressed genes in rostral brain regions. Consistent with this correlation, quantifications of protein levels in adult mice uncovered an inverse relationship of CaM and synaptotagmin-2 levels in mouse forebrain, brain stem, and spinal cord. Finally, we employed molecular replacement experiments using a knockdown rescue approach to show that Ca(2+) binding to the C-lobe but not the N-lobe of CaM is required for suppression of synaptotagmin-2 expression in cortical neurons. Our data describe a previously unknown, Ca(2+)/CaM-dependent regulatory pathway that controls the expression of synaptic proteins in the rostral-caudal neuraxis.
Collapse
Affiliation(s)
- Zhiping P Pang
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304-5543, USA
| | | | | | | |
Collapse
|
77
|
Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci U S A 2010; 107:14950-7. [PMID: 20668236 DOI: 10.1073/pnas.1005940107] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Local Ca(2+) signaling occurring within nanometers of voltage-gated Ca(2+) (Cav) channels is crucial for CNS function, yet the molecular composition of Cav channel nano-environments is largely unresolved. Here, we used a proteomic strategy combining knockout-controlled multiepitope affinity purifications with high-resolution quantitative MS for comprehensive analysis of the molecular nano-environments of the Cav2 channel family in the whole rodent brain. The analysis shows that Cav2 channels, composed of pore-forming alpha1 and auxiliary beta subunits, are embedded into protein networks that may be assembled from a pool of approximately 200 proteins with distinct abundance, stability of assembly, and preference for the three Cav2 subtypes. The majority of these proteins have not previously been linked to Cav channels; about two-thirds are dedicated to the control of intracellular Ca(2+) concentration, including G protein-coupled receptor-mediated signaling, to activity-dependent cytoskeleton remodeling or Ca(2+)-dependent effector systems that comprise a high portion of the priming and release machinery of synaptic vesicles. The identified protein networks reflect the cellular processes that can be initiated by Cav2 channel activity and define the molecular framework for organization and operation of local Ca(2+) signaling by Cav2 channels in the brain.
Collapse
|
78
|
McCue HV, Haynes LP, Burgoyne RD. The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2010; 2:a004085. [PMID: 20668007 DOI: 10.1101/cshperspect.a004085] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca(2+) signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca(2+) plays a key role as the trigger for fast neurotransmitter release. The ubiquitous Ca(2+) sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca(2+) concentration in neurons can bring about such diverse responses has, however, become a topic of widespread interest that has recently focused on the roles of specialized neuronal Ca(2+) sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neuronal roles of calmodulin, and the functional significance of the NCS and the CaBP/calneuron protein families of neuronal Ca(2+) sensors.
Collapse
Affiliation(s)
- Hannah V McCue
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | |
Collapse
|
79
|
Striessnig J, Bolz HJ, Koschak A. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch 2010; 460:361-74. [PMID: 20213496 PMCID: PMC2883925 DOI: 10.1007/s00424-010-0800-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 12/24/2022]
Abstract
Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming alpha1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 alpha1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 alpha1), and Timothy syndrome (Cav1.2 alpha1; reviewed separately in this issue). Cav1.3 alpha1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function.
Collapse
Affiliation(s)
- Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, Peter-Mayr-Strasse 1, 6020, Innsbruck, Austria.
| | | | | |
Collapse
|