51
|
Sedlack AJH, Varghese DG, Naimian A, Yazdian Anari P, Bodei L, Hallet J, Riechelmann RP, Halfdanarson T, Capdevilla J, Del Rivero J. Update in the management of gastroenteropancreatic neuroendocrine tumors. Cancer 2024; 130:3090-3105. [PMID: 39012928 DOI: 10.1002/cncr.35463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Neuroendocrine neoplasms are a diverse group of neoplasms that can occur in various areas throughout the body. Well-differentiated neuroendocrine tumors (NETs) most often arise in the gastrointestinal tract, termed gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Although GEP-NETs are still uncommon, their incidence and prevalence have been steadily increasing over the past decades. The primary treatment for GEP-NETs is surgery, which offers the best chance for a cure. However, because GEP-NETs are often slow-growing and do not cause symptoms until they have spread widely, curative surgery is not always an option. Significant advances have been made in systemic and locoregional treatment options in recent years, including peptide-receptor radionuclide therapy with α and β emitters, somatostatin analogs, chemotherapy, and targeted molecular therapies.
Collapse
Affiliation(s)
- Andrew J H Sedlack
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Diana Grace Varghese
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Amirkia Naimian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Pouria Yazdian Anari
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julie Hallet
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, East York, Ontario, Canada
| | | | | | | | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
52
|
Xu J, Lou X, Wang F, Zhang W, Xu X, Ye Z, Zhuo Q, Wang Y, Jing D, Fan G, Chen X, Zhang Y, Zhou C, Chen J, Qin Y, Yu X, Ji S. MEN1 Deficiency-Driven Activation of the β-Catenin-MGMT Axis Promotes Pancreatic Neuroendocrine Tumor Growth and Confers Temozolomide Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308417. [PMID: 39041891 PMCID: PMC11425246 DOI: 10.1002/advs.202308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) removes alkyl adducts from the guanine O6 position (O6-MG) and repairs DNA damage. High MGMT expression results in poor response to temozolomide (TMZ). However, the biological importance of MGMT and the mechanism underlying its high expression in pancreatic neuroendocrine tumors (PanNETs) remain elusive. Here, it is found that MGMT expression is highly elevated in PanNET tissues compared with paired normal tissues and negatively associated with progression-free survival (PFS) time in patients with PanNETs. Knocking out MGMT inhibits cancer cell growth in vitro and in vivo. Ectopic MEN1 expression suppresses MGMT transcription in a manner that depends on β-Catenin nuclear export and degradation. The Leucine 267 residue of MEN1 is crucial for regulating β-Catenin-MGMT axis activation and chemosensitivity to TMZ. Interference with β-Catenin re-sensitizes tumor cells to TMZ and significantly reduces the cytotoxic effects of high-dose TMZ treatment, and MGMT overexpression counteracts the effects of β-Catenin deficiency. This study reveals the biological importance of MGMT and a new mechanism by which MEN1 deficiency regulates its expression, thus providing a potential combinational strategy for treating patients with TMZ-resistant PanNETs.
Collapse
|
53
|
De Jesus-Acosta A, Mohindroo C. Genomic Landscape of Pancreatic Neuroendocrine Tumors and Implications for Clinical Practice. JCO Precis Oncol 2024; 8:e2400221. [PMID: 39231376 DOI: 10.1200/po.24.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are the second most prevalent neoplasms of the pancreas with variable prognosis and clinical course. Our knowledge of the genetic alterations in patients with pNETs has expanded in the past decade with the availability of whole-genome sequencing and germline testing. This review will focus on potential clinical applications of the genetic testing in patients with pNETs. For somatic testing, we discuss the commonly prevalent somatic mutations and their impact on prognosis and treatment of patients with pNET. We also highlight the relevant genomic biomarkers that predict response to specific treatments. Previously, germline testing was only recommended for high-risk patients with syndromic features (MEN1, VHL, TSC, and NF1), we review the evolving paradigm of germline testing in pNETs as recent studies have now shown that sporadic-appearing pNETs can also harbor germline variants.
Collapse
Affiliation(s)
- Ana De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirayu Mohindroo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
54
|
Luchini C, Scarpa A. Neoplastic Progression in Neuroendocrine Neoplasms of the Pancreas. Arch Pathol Lab Med 2024; 148:975-979. [PMID: 36881771 DOI: 10.5858/arpa.2022-0417-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 03/09/2023]
Abstract
CONTEXT.— Pancreatic neuroendocrine neoplasms (PanNENs) represent a heterogeneous group of epithelial tumors of the pancreas showing neuroendocrine differentiation. These neoplasms are classified into well-differentiated pancreatic neuroendocrine tumors (PanNETs), which include G1, G2, and G3 tumors, and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs), which are G3 by definition. This classification mirrors clinical, histologic, and behavioral differences and is also supported by robust molecular evidence. OBJECTIVE.— To summarize and discuss the state of the art regarding neoplastic progression of PanNENs. A better comprehension of the mechanisms underpinning neoplastic evolution and progression of these neoplasms may open new horizons for expanding biologic knowledge and ultimately for addressing new therapeutic strategies for patients with PanNENs. DATA SOURCES.— Literature review of published studies and the authors' own work. CONCLUSIONS.— PanNETs can be seen as a unique category, where G1-G2 tumors may progress to G3 tumors mainly driven by DAXX/ATRX mutations and alternative lengthening of telomeres. Conversely, PanNECs display totally different histomolecular features more closely related to pancreatic ductal adenocarcinoma, including TP53 and Rb alterations. They seem to derive from a nonneuroendocrine cell of origin. Even the study of PanNEN precursor lesions corroborates the rationale of considering PanNETs and PanNECs as separate and distinct entities. Improving the knowledge regarding this dichotomous distinction, which guides tumor evolution and progression, will represent a critical basis for PanNEN precision oncology.
Collapse
Affiliation(s)
- Claudio Luchini
- From the Department of Diagnostics and Public Health, Section of Pathology, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- From the Department of Diagnostics and Public Health, Section of Pathology, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
55
|
Wang Y, Ye Z, Lou X, Xu J, Jing D, Zhou C, Qin Y, Chen J, Xu X, Yu X, Ji S. Comparison among different preclinical models derived from the same patient with a non-functional pancreatic neuroendocrine tumor. Hum Cell 2024; 37:1522-1534. [PMID: 39078546 DOI: 10.1007/s13577-024-01107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Pancreatic neuroendocrine tumors are the second most common tumors of the pancreas, and approximately half of patients are diagnosed with liver metastases. Currently, the improvement in the efficacy of relevant treatment methods is still limited. Therefore, there is an urgent need for in-depth research on the molecular biological mechanism of pancreatic neuroendocrine tumors. However, due to their relatively inert biology, preclinical models are extremely scarce. Here, the patient-derived organoid, and patient-derived xenograft were successfully constructed. These two models and the previously constructed cell line named SPNE1 all derived from the same patient with a grade 3 non-functional pancreatic neuroendocrine tumor, providing new tumor modeling platforms, and characterized using immunohistochemistry, whole-exome sequencing, and single-cell transcriptome sequencing. Combined with a tumor formation experiment in immunodeficient mice, we selected the model that most closely recapitulated the parental tumor. Overall, the patient-derived xenograft model most closely resembled human tumor tissue.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Head and Neck and Neuroendocrine Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
56
|
Tanaka A, Ogawa M, Zhou Y, Otani Y, Hendrickson RC, Miele MM, Li Z, Klimstra DS, Wang JY, Roehrl MH. Proteogenomic characterization of pancreatic neuroendocrine tumors uncovers hypoxia and immune signatures in clinically aggressive subtypes. iScience 2024; 27:110544. [PMID: 39206147 PMCID: PMC11350455 DOI: 10.1016/j.isci.2024.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) represent well-differentiated endocrine neoplasms with variable clinical outcomes. Predicting patient outcomes using the current tumor grading system is challenging. In addition, traditional systemic treatment options for PanNETs, such as somatostatin analogs or cytotoxic chemotherapies, are very limited. To address these issues, we characterized PanNETs using integrated proteogenomics and identified four subtypes. Two proteomic subtypes showed high recurrence rates, suggesting clinical aggressiveness that was missed by current classification. Hypoxia and inflammatory pathways were significantly enriched in the clinically aggressive subtypes. Detailed analyses revealed metabolic adaptation via glycolysis upregulation and oxidative phosphorylation downregulation under hypoxic conditions. Inflammatory signature analysis revealed that immunosuppressive molecules were enriched in immune hot tumors and might be immunotherapy targets. In this study, we characterized clinically aggressive proteomic subtypes of well-differentiated PanNETs and identified candidate therapeutic targets.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yihua Zhou
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- ICU Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yusuke Otani
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ronald C. Hendrickson
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M. Miele
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S. Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Michael H. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
57
|
Ramos-Rodríguez M, Subirana-Granés M, Norris R, Sordi V, Fernández Á, Fuentes-Páez G, Pérez-González B, Berenguer Balaguer C, Raurell-Vila H, Chowdhury M, Corripio R, Partelli S, López-Bigas N, Pellegrini S, Montanya E, Nacher M, Falconi M, Layer R, Rovira M, González-Pérez A, Piemonti L, Pasquali L. Implications of noncoding regulatory functions in the development of insulinomas. CELL GENOMICS 2024; 4:100604. [PMID: 38959898 PMCID: PMC11406191 DOI: 10.1016/j.xgen.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
Insulinomas are rare neuroendocrine tumors arising from pancreatic β cells, characterized by aberrant proliferation and altered insulin secretion, leading to glucose homeostasis failure. With the aim of uncovering the role of noncoding regulatory regions and their aberrations in the development of these tumors, we coupled epigenetic and transcriptome profiling with whole-genome sequencing. As a result, we unraveled somatic mutations associated with changes in regulatory functions. Critically, these regions impact insulin secretion, tumor development, and epigenetic modifying genes, including polycomb complex components. Chromatin remodeling is apparent in insulinoma-selective domains shared across patients, containing a specific set of regulatory sequences dominated by the SOX17 binding motif. Moreover, many of these regions are H3K27me3 repressed in β cells, suggesting that tumoral transition involves derepression of polycomb-targeted domains. Our work provides a compendium of aberrant cis-regulatory elements affecting the function and fate of β cells in their progression to insulinomas and a framework to identify coding and noncoding driver mutations.
Collapse
Affiliation(s)
- Mireia Ramos-Rodríguez
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marc Subirana-Granés
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Richard Norris
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Valeria Sordi
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ángel Fernández
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain; Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Barcelona, Spain
| | - Georgina Fuentes-Páez
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Beatriz Pérez-González
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Clara Berenguer Balaguer
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Helena Raurell-Vila
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Murad Chowdhury
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Raquel Corripio
- Paediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Stefano Partelli
- Pancreas Translational & Research Institute, Scientific Institute San Raffaele Hospital and University Vita-Salute, Milan, Italy
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Silvia Pellegrini
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eduard Montanya
- Bellvitge Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Montserrat Nacher
- Bellvitge Hospital-IDIBELL, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Massimo Falconi
- Pancreas Translational & Research Institute, Scientific Institute San Raffaele Hospital and University Vita-Salute, Milan, Italy
| | - Ryan Layer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA; Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, Universitat de Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain; Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorenzo Piemonti
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
58
|
Mormando M, Puliani G, Bianchini M, Lauretta R, Appetecchia M. The Role of Inositols in Endocrine and Neuroendocrine Tumors. Biomolecules 2024; 14:1004. [PMID: 39199391 PMCID: PMC11353224 DOI: 10.3390/biom14081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Inositols have demonstrated a role in cancer prevention and treatment in many kinds of neoplasms. Their molecular mechanisms vary from the regulation of survival and proliferative pathways to the modulation of immunity and oxidative stress. The dysregulation of many pathways and mechanisms regulated by inositols has been demonstrated in endocrine and neuroendocrine tumors but the role of inositol supplementation in this context has not been clarified. The aim of this review is to summarize the molecular basis of the possible role of inositols in endocrine and neuroendocrine tumors, proposing it as an adjuvant therapy.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (M.M.); (G.P.); (M.B.); (R.L.)
| |
Collapse
|
59
|
De Silva MK, Chan DLH, Bernard EJ, Conner AJ, Mascall SL, Bailey DL, Roach PJ, Clarke SJ, Diakos CI, Pavlakis N, Schembri G. Metabolic Tumor Volume on 18-Fluorodeoxyglucose Positron Emission Tomography as a Prognostic Marker of Survival in Patients With Locally Advanced or Metastatic Neuroendocrine Neoplasms Treated With 177Lutetium-DOTA-Octreotate Peptide Receptor Radionuclide Therapy. Pancreas 2024; 53:e560-e565. [PMID: 38986077 DOI: 10.1097/mpa.0000000000002336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVE We investigated metabolic tumor volume (MTV) and total lesion glycolysis (TLG) on pre-treatment FDG-PET as prognostic markers for survival in patients with metastatic neuroendocrine neoplasms (NENs) receiving peptide receptor radionuclide therapy (PRRT). METHODS A retrospective review of patients with metastatic NENs receiving PRRT was undertaken. Pre-treatment FDG-PET images were analyzed and variables collected included MTV and TLG (dichotomized by median into high vs low). Main Outcomes were overall survival (OS) and progression-free survival (PFS) by MTV and TLG (high vs low). RESULTS One hundred five patients were included. Median age was 64 years (50% male). Main primary NEN sites were small bowel (43.8%) and pancreas (40.0%). Median MTV was 3.8 mL and median TLG was 19.9. Dichotomization formed identical cohorts regardless of whether MTV or TLG were used. Median OS was 72 months; OS did not differ based on MTV/TLG high versus low (47.4 months vs not reached; hazard ratio, 0.43; 95% confidence interval [CI], 0.18-1.04; P = 0.0594). Median PFS was 30.4 months; PFS differed based on MTV/TLG high versus low (21.6 months vs 45.7 months; hazard ratio, 0.35; 95% CI, 0.19-0.64; P = 0.007). CONCLUSIONS Low MTV/TLG on pre-treatment FDG-PET was associated with longer PFS in metastatic NEN patients receiving PRRT.
Collapse
Affiliation(s)
- Madhawa K De Silva
- From the Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | | | - Alice J Conner
- From the Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Sophie L Mascall
- From the Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
60
|
Folpe AL, Tetzlaff MT, Billings SD, Torres-Mora J, Borowsky AD, Santiago TC, Ameline B, Baumhoer D. Superficial Neurocristic EWSR1::FLI1 Fusion Tumor: A Distinctive, Clinically Indolent, S100 Protein/SOX10-Positive Neoplasm. Mod Pathol 2024; 37:100537. [PMID: 38866368 DOI: 10.1016/j.modpat.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
It is now understood that identical gene fusions may be shared by different entities. We report a distinctive neoplasm of the skin and subcutis, harboring the Ewing sarcoma-associated EWSR1::FLI1 fusion but differing otherwise from Ewing sarcoma. Slides and blocks for 5 cutaneous neoplasms coded as other than Ewing sarcoma and harboring EWSR1::FLI1 were retrieved. Immunohistochemical and molecular genetic results were abstracted from reports. Methylation profiling was performed. Clinical information was obtained. The tumors occurred in 4 men and 1 woman (median: 25 years of age; range: 19-69 years) and involved the skin/subcutis of the back (2), thigh, buttock, and chest wall (median: 2.4 cm; range: 1-11 cm). Two tumors were present "years" before coming to clinical attention. The lesions were multinodular and circumscribed and consisted of nests of bland, round cells admixed with hyalinized collagenous bands containing spindled cells. Hemorrhage and cystic change were often present; necrosis was absent. All were diffusely S100 protein/SOX10-positive; 4 of 5 were CD99-negative. One tested case was strongly positive for NKX2.2. A variety of other tested markers were either focally positive (glial fibrillary acidic protein, p63) or negative. Molecular genetic results were as follows: EWSR1 exon 7::FLI1 exon 8, EWSR1 exon 11::FLI1 exon 5, EWSR1 exon 11::FLI1 exon 6, EWSR1 exon 7::FLI1 exon 6, and EWSR1 exon 10::FLI1 exon 6. Methylation profiling (3 cases) showed these to form a unique cluster, distinct from Ewing sarcoma. All patients underwent excision with negative margins; one received 1 cycle of chemotherapy. Clinical follow-up showed all patients to be alive without disease (median: 17 months; range: 11-62 months). Despite similar gene fusions, the morphologic, immunohistochemical, epigenetic, and clinical features of these unique EWSR1::FLI1-fused neoplasms of the skin and subcutis differ substantially from Ewing sarcoma. Interestingly, EWSR1 rearrangements involved exons 10 or 11, only rarely seen in Ewing sarcoma, in a majority of cases. Superficial neurocristic EWSR1::FLI1 fusion tumors should be rigorously distinguished from true cutaneous Ewing sarcomas.
Collapse
Affiliation(s)
- Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Michael T Tetzlaff
- Departments of Pathology and Dermatology, University of California-San Francisco, San Francisco, California
| | - Steven D Billings
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Baptiste Ameline
- Bone Tumor Reference Center at the Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Basel, Switzerland; Basel Research Centre for Child Health, Basel, Switzerland
| |
Collapse
|
61
|
Ahn B, Park HJ, Kim HJ, Hong SM. Radiologic tumor border can further stratify prognosis in patients with pancreatic neuroendocrine tumor. Pancreatology 2024; 24:753-763. [PMID: 38796309 DOI: 10.1016/j.pan.2024.05.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic neuroendocrine tumor (PanNET), although rare in incidence, is increasing in recent years. Several clinicopathologic and molecular factors have been suggested for patient stratification due to the extensive heterogeneity of PanNETs. We aimed to discover the prognostic role of assessing the tumor border of PanNETs with pre-operative computed tomography (CT) images and correlate them with other clinicopathologic factors. METHODS The radiologic, macroscopic, and microscopic tumor border of 183 surgically resected PanNET cases was evaluated using preoperative CT images (well defined vs. poorly defined), gross images (expansile vs. infiltrative), and hematoxylin and eosin-stained slides (pushing vs. infiltrative). The clinicopathologic and prognostic significance of the tumor border status was compared with other clinicopathologic factors. RESULTS A poorly defined radiologic tumor border was observed in 65 PanNET cases (35.5 %), and were more frequent in male patients (P = 0.031), and tumor with larger size, infiltrative macroscopic growth pattern, infiltrative microscopic tumor border, higher tumor grade, higher pT category, lymph node metastasis, lymphovascular and perineural invasions (all, P < 0.001). Patients with PanNET with a poorly defined radiologic tumor border had significantly worse overall survival (OS) and recurrence-free survival (RFS; both, P < 0.001). Multivariable analysis revealed that PanNET with a poorly defined radiologic border is an independent poor prognostic factor for both OS (P = 0.049) and RFS (P = 0.027). CONCLUSION Pre-operative CT-based tumor border evaluation can provide additional information regarding survival and recurrence in patients with PanNET.
Collapse
Affiliation(s)
- Bokyung Ahn
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyoung Jung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
62
|
Kellers F, Schulte DM, Jesinghaus M, Konukiewitz B. [Histo- and molecular pathology in gastroenteropancreatic neuroendocrine neoplasms]. Dtsch Med Wochenschr 2024; 149:887-893. [PMID: 39013409 DOI: 10.1055/a-2157-5460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Neuroendocrine neoplasms are classified according to the WHO classification based on morphological criteria into neuroendocrine tumors, neuroendocrine carcinomas, and mixed neuroendocrine-non-neuroendocrine neoplasms. Neuroendocrine tumors are well differentiated neoplasms and show characteristic site-specific histological and molecular features, which is important for their clinical management. In cases dealing with metastasis, pathology often can help to identify the primary tumors using a small immunohistochemical marker panel. Neuroendocrine carcinomas are poorly differentiated neoplasms. They are subdivided into neuroendocrine carcinomas of small cell and large cell type. The molecular profile of neuroendocrine carcinomas and mixed neuroendocrine-non-neuroendocrine neoplasms shows a close relationship to conventional adenocarcinomas with site-specific features. Molecular analysis of neuroendocrine carcinomas and neuroendocrine-non-neuroendocrine neoplasms are not yet fully integrated in daily diagnostics and are mainly performed in the context of precision oncology.
Collapse
|
63
|
Yasunaga Y, Tanaka M, Arita J, Hasegawa K, Ushiku T. Loss of ATRX and DAXX in pancreatic neuroendocrine tumors: Association with recurrence risk, cellular phenotype, and heterogeneity. Hum Pathol 2024; 150:51-57. [PMID: 38909708 DOI: 10.1016/j.humpath.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of neoplasms in terms of biological behavior. This study aims to develop a practical algorithm based on emerging biomarkers, including chromatin-remodeling molecules DAXX/ATRX/H3K36me3, in conjunction with established prognostic factors, such as WHO grade and size. In immunohistochemical analyses, 18 of the 111 (16.2%) primary PanNETs showed DAXX or ATRX loss in a mutually exclusive manner. DAXX/ATRX loss was significantly correlated with higher recurrence risk and better predicted postoperative recurrence than WHO grade. We proposed a novel algorithm for stratifying patients with resectable PanNET into three groups according to recurrence risk: (A) WHO Grade 1 and ≤2 cm (very low-risk); for the others, (B) retained DAXX/ATRX (low-risk) and (C) DAXX/ATRX complete/heterogeneous loss (high-risk). Furthermore, we elucidated the intratumoral heterogeneities of PanNETs. Among cases with DAXX or ATRX loss, nine cases demonstrated heterogeneous loss of expression of DAXX/ATRX/H3K36me3. The majority of cases with DAXX/ATRX loss, either homogeneous or heterogeneous loss, showed uniform α-cell-like phenotype (ARX1+/PDX1-). In cases of metastatic or recurrent tumors, the expression pattern was identical to that observed in at least part of the primary tumor. In some instances, the expression pattern differed among different metastatic or recurrent tumors of the same patient. In summary, we propose a clinically useful and practical algorithm for postoperative recurrence risk stratification in PanNETs, by combining DAXX/ATRX status with WHO grade and size. Moreover, our findings highlighted the frequent spatiotemporal heterogeneity of chromatin-remodeling molecule expression in PanNETs with an α-cell phenotype, offering insights into tumorigenesis.
Collapse
Affiliation(s)
- Yoichi Yasunaga
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Arita
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Kiyoshi Hasegawa
- Hepato-Billiary-Pancreatic Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
64
|
Ghabra S, Ramamoorthy B, Andrews SG, Sadowski SM. Surgical Management and Long-Term Evaluation of Pancreatic Neuroendocrine Tumors. Surg Clin North Am 2024; 104:891-908. [PMID: 38944507 PMCID: PMC11214659 DOI: 10.1016/j.suc.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise from neuroendocrine cells and are a rare class of heterogenous tumors with increasing incidence. The diagnosis, staging, treatment, and prognosis of PNETs depend heavily on identifying the histologic features and biological mechanisms. Here, the authors provide an overview of the diagnostic workup (biomarkers and imaging), grade, and staging of PNETs. The authors also explore associated genetic mutations and molecular pathways and describe updated guidelines on surgical and systemic treatment modalities.
Collapse
Affiliation(s)
- Shadin Ghabra
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. https://twitter.com/ShadinGhabra_MD
| | - Bhavishya Ramamoorthy
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen G Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 CRC, Room 4-5932, Bethesda, MD 20892, USA. https://twitter.com/AndrewsStephenG
| | - Samira M Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 CRC, Room 4-5932, Bethesda, MD 20892, USA.
| |
Collapse
|
65
|
Hong X, Zhang X, Jiang R, Qiao S, Wang W, Zhang H, Wang J, Yin B, Li F, Ling C, Wang X, Zhao Y, Wu K, Wu W. A cross-species transcriptomic analysis reveals a novel 2-dimensional classification system explaining the invasiveness heterogeneity of pancreatic neuroendocrine tumor. Cancer Lett 2024:217131. [PMID: 39048044 DOI: 10.1016/j.canlet.2024.217131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs), the second most common type of primary pancreatic tumors, display notable heterogeneity in invasiveness. Current knowledge regarding genomic alterations, including DAXX/ATRX, MEN1 mutations, and copy number variations (CNVs), provides some insights into tumor invasiveness. However, the underlying reasons for the significant variation in invasiveness between insulinoma and other types of PanNETs remain unclear. To construct a comprehensive model for the stratification of prognosis, we employed analysis of both the well-established Rip1-Tag 2 (RT2) mouse model of PanNETs and human PanNETs with various functional types. Firstly, by applying single-cell and bulk RNA sequencing in PanNETs from different ages and strains of RT2 mice and human PanNETs, we introduced a 2-dimensional (2D) classification system. Based on the 2D classification system, human PanNETs were mainly classified as benign insulinomas or non-insulinomas subclusters. Non-insulinomas subtypes mainly included gastrinomas, glucagonomas, VIPomas, and NF-PanNETs, which all exhibited potential invasiveness. In addition, we discovered an enrichment of specific CNV patterns and mutations in corresponding human PanNET subclusters. Then we denoted somatic DAXX/ATRX as the 'second hit' and confounding factors for invasiveness. Finally, by combining the 2D system, DAXX/ATRX mutation status, and tumor diameter, a group of indolent PanNETs with minimal recurrence risk was identified. In conclusion, our current work constructed a comprehensive model to elucidate the heterogeneity of invasiveness in PanNETs and improve prognostic stratification.
Collapse
Affiliation(s)
- Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xingwu Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Rui Jiang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Sitan Qiao
- BGI-Shenzhen, Shenzhen, 518083, China; The Chinese University of Hong Kong, Shatin, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hao Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jingqiao Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Bohui Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | | | - Chao Ling
- The Laboratory of Clinical Genetics, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
66
|
García-Torralba E, Garcia-Lorenzo E, Doger B, Spada F, Lamarca A. Immunotherapy in Neuroendocrine Neoplasms: A Diamond to Cut. Cancers (Basel) 2024; 16:2530. [PMID: 39061170 PMCID: PMC11275146 DOI: 10.3390/cancers16142530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
A raise in the incidence of NENs is expected. Therefore, the identification of new therapeutic strategies, such as immunotherapy, remains crucial. To date, immune checkpoint inhibitors as monotherapy have shown modest activity in unselected NENs. Although immunotherapy combos (plus another immune agents or chemotherapy, among others) are potentially more active than single agents, this has not been uniformly confirmed, even in high-grade NENs. Other immunotherapeutic strategies under development include bispecific antibodies, targeting specific tumor antigens like DLL3, and cell therapy. Currently, no predictive immune biomarkers are available to guide clinical decisions. A comprehensive tumor molecular profiling approach needs to be developed for the selection of patients with NEN who could potentially benefit from immunotherapy. Ideally, clinical trials should incorporate this tumor molecular profiling to identify predictive biomarkers and improve efficacy. Achieving this goal requires an international collaborative effort.
Collapse
Affiliation(s)
- Esmeralda García-Torralba
- Department of Medical Oncology, Hospital Universitario Morales Meseguer, 30008 Murcia, Spain;
- Department of Medicine, Medical School, University of Murcia, 30001 Murcia, Spain
- IMIB-Arrixaca, 30120 Murcia, Spain
| | - Esther Garcia-Lorenzo
- START Madrid-FJD, Early Phase Clinical Trials Unit, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Bernard Doger
- START Madrid-FJD, Early Phase Clinical Trials Unit, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Francesca Spada
- European Institute of Oncology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy;
| | - Angela Lamarca
- Department of Oncology, OncoHealth Institute, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
67
|
Vaughn H, Major H, Kadera E, Keck K, Dunham T, Qian Q, Brown B, Scott A, Bellizzi AM, Braun T, Breheny P, Quelle DE, Howe JR, Darbro B. Functional Copy-Number Alterations as Diagnostic and Prognostic Biomarkers in Neuroendocrine Tumors. Int J Mol Sci 2024; 25:7532. [PMID: 39062773 PMCID: PMC11277019 DOI: 10.3390/ijms25147532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Functional copy-number alterations (fCNAs) are DNA copy-number changes with concordant differential gene expression. These are less likely to be bystander genetic lesions and could serve as robust and reproducible tumor biomarkers. To identify candidate fCNAs in neuroendocrine tumors (NETs), we integrated chromosomal microarray (CMA) and RNA-seq differential gene-expression data from 31 pancreatic (pNETs) and 33 small-bowel neuroendocrine tumors (sbNETs). Tumors were resected from 47 early-disease-progression (<24 months) and 17 late-disease-progression (>24 months) patients. Candidate fCNAs that accurately differentiated these groups in this discovery cohort were then replicated using fluorescence in situ hybridization (FISH) on formalin-fixed, paraffin-embedded (FFPE) tissues in a larger validation cohort of 60 pNETs and 82 sbNETs (52 early- and 65 late-disease-progression samples). Logistic regression analysis revealed the predictive ability of these biomarkers, as well as the assay-performance metrics of sensitivity, specificity, and area under the curve. Our results indicate that copy-number changes at chromosomal loci 4p16.3, 7q31.2, 9p21.3, 17q12, 18q21.2, and 19q12 may be used as diagnostic and prognostic NET biomarkers. This involves a rapid, cost-effective approach to determine the primary tumor site for patients with metastatic liver NETs and to guide risk-stratified therapeutic decisions.
Collapse
Affiliation(s)
- Hayley Vaughn
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (H.V.); (T.B.)
- Stead Family Department of Pediatrics, University of Iowa Health Care, Iowa City, IA 52242, USA; (H.M.); (E.K.); (T.D.); (Q.Q.)
| | - Heather Major
- Stead Family Department of Pediatrics, University of Iowa Health Care, Iowa City, IA 52242, USA; (H.M.); (E.K.); (T.D.); (Q.Q.)
| | - Evangeline Kadera
- Stead Family Department of Pediatrics, University of Iowa Health Care, Iowa City, IA 52242, USA; (H.M.); (E.K.); (T.D.); (Q.Q.)
| | - Kendall Keck
- Department of Surgery, University of Iowa Health Care, Iowa City, IA 52242, USA; (K.K.); (A.S.); (J.R.H.)
| | - Timothy Dunham
- Stead Family Department of Pediatrics, University of Iowa Health Care, Iowa City, IA 52242, USA; (H.M.); (E.K.); (T.D.); (Q.Q.)
| | - Qining Qian
- Stead Family Department of Pediatrics, University of Iowa Health Care, Iowa City, IA 52242, USA; (H.M.); (E.K.); (T.D.); (Q.Q.)
| | - Bartley Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
| | - Aaron Scott
- Department of Surgery, University of Iowa Health Care, Iowa City, IA 52242, USA; (K.K.); (A.S.); (J.R.H.)
| | | | - Terry Braun
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (H.V.); (T.B.)
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA;
| | - James R. Howe
- Department of Surgery, University of Iowa Health Care, Iowa City, IA 52242, USA; (K.K.); (A.S.); (J.R.H.)
| | - Benjamin Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (H.V.); (T.B.)
- Stead Family Department of Pediatrics, University of Iowa Health Care, Iowa City, IA 52242, USA; (H.M.); (E.K.); (T.D.); (Q.Q.)
| |
Collapse
|
68
|
Mohindroo C, Baydogan S, Agarwal P, Wright RD, Prakash LR, Mork ME, Klein AP, Laheru DA, Maxwell JE, Katz MHG, Dasari A, Kim MP, He J, McAllister F, De Jesus-Acosta A. Germline Testing Identifies Pathogenic/Likely Pathogenic Variants in Patients with Pancreatic Neuroendocrine Tumors. Cancer Prev Res (Phila) 2024; 17:335-342. [PMID: 38662083 DOI: 10.1158/1940-6207.capr-23-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Ten percent of pancreatic neuroendocrine tumors (pNET) are related to inherited syndromes (MEN1, MEN4, VHL, NF1, and TSC). Growing evidence suggests that clinically sporadic pNETs can also harbor germline pathogenic variants. In this study, we report the prevalence of pathologic/likely pathologic (P/LP) germline variants in a high-risk cohort and an unselected cohort. We collected clinical data of patients with pNETs seen at MD Anderson Cancer Center and Johns Hopkins Hospital. The high-risk cohort included (n = 132) patients seen at MD Anderson Cancer Center who underwent germline testing for high-risk criteria (early onset, personal or family history of cancer, and syndromic features) between 2013 and 2019. The unselected cohort included (n = 106) patients seen at Johns Hopkins Hospital who underwent germline testing following their diagnosis of pNETs between 2020 and 2022. In the high-risk cohort (n = 132), 33% (n = 44) had P/LP variants. The majority of the patients had P/LP variants in MEN1 56% (n = 25), followed by DNA repair pathways 18% (n = 8), and 7% (n = 3) in MSH2 (Lynch syndrome). Patients with P/LP were younger (45 vs. 50 years; P = 0.002). In the unselected cohort (n = 106), 21% (n = 22) had P/LP. The majority were noted in DNA repair pathways 40% (n = 9) and MEN1 36% (n = 8). Multifocal tumors correlated with the presence of P/LP (P = 0.0035). MEN1 germline P/LP variants correlated with younger age (40 vs. 56 years; P = 0.0012), presence of multifocal tumors (P < 0.0001), and World Health Organization grade 1 histology (P = 0.0078). P/LP variants are prevalent in patients with clinically sporadic pNET irrespective of high-risk features. The findings support upfront universal germline testing in all patients with pNET. Prevention Relevance: Here, we present germline data from the largest reported cohort of patients with pNET (n = 238), comprising both a high-risk cohort and an unselected cohort. In both cohorts, we identify a high number of P/LPs, including those in the DNA repair pathway. Our findings support universal germline testing in patients with pNET.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Parul Agarwal
- Department of Oncology, Abramson Cancer Center at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robin D Wright
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura R Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen E Mork
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alison P Klein
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica E Maxwell
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jin He
- Department of Surgical Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
69
|
Nakasone ES, Bustillos HC, Gui X, Konnick EQ, Sham JG, Cohen SA. Multidisciplinary Approach for the Management of Metastatic Poorly Differentiated Neuroendocrine Carcinoma of the Pancreas: A Case Report of an Exceptional Responder. Pancreas 2024; 53:e487-e491. [PMID: 38460151 DOI: 10.1097/mpa.0000000000002322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
ABSTRACT Poorly differentiated pancreatic neuroendocrine carcinomas (pNECs) are rare, highly aggressive neoplasms. Frequently metastatic at diagnosis, prognosis is poor with median overall survival estimated to be less than 1 year. Although multidisciplinary management, including systemic medications and locoregional therapies aimed at reducing and preventing symptoms caused by mass effect, is the mainstay of treatment for patients with metastatic well-differentiated pancreatic neuroendocrine tumors, rapid progression, organ dysfunction, and poor performance status often preclude initiation of even single-modality palliative chemotherapy for patients with metastatic pNEC, limiting the use of and recommendation for multidisciplinary management.We describe the case of a 51-year-old male patient diagnosed with pNEC metastatic to liver and lymph nodes presenting with impending cholestatic liver failure for whom we were able to successfully initiate and dose-escalate cytotoxic chemotherapy with excellent radiographic response. After multidisciplinary review of his case, the patient underwent pancreaticoduodenectomy and hepatic wedge biopsies, with pathology demonstrating a pathologic complete response to chemotherapy in both the pancreas and liver. Surveillance scans at 2 years from initial diagnosis and 1 year from surgery remain without evidence of locoregional or distant recurrence, highlighting the importance and utility of multidisciplinary management in select cases.
Collapse
Affiliation(s)
| | - Hannah C Bustillos
- Clinical Pharmacy, University of Washington/Fred Hutchinson Cancer Center
| | - Xianyong Gui
- Departments of Laboratory Medicine and Pathology
| | | | | | | |
Collapse
|
70
|
Zhang M, He D, Zhang Y, Cheng K, Li H, Zhou Y, Long Q, Liu R, Liu J. Chromothripsis is a novel biomarker for prognosis and differentiation diagnosis of pancreatic neuroendocrine neoplasms. MedComm (Beijing) 2024; 5:e623. [PMID: 38988495 PMCID: PMC11234462 DOI: 10.1002/mco2.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
This study aimed to identify the role of chromothripsis as a novel biomarker in the prognosis and differentiation diagnosis of pancreatic neuroendocrine neoplasms (pNENs). We conducted next-generation gene sequencing in a cohort of 30 patients with high-grade (G3) pNENs. As a reference, a similar analysis was also performed on 25 patients with low-grade (G1/G2) pancreatic neuroendocrine tumors (pNETs). Chromothripsis and its relationship with clinicopathological features and prognosis were investigated. The results showed that DNA damage response and repair gene alteration and TP53 mutation were found in 29 and 11 patients, respectively. A total of 14 out of 55 patients had chromothripsis involving different chromosomes. Chromothripsis had a close relationship with TP53 alteration and higher grade. In the entire cohort, chromothripsis was associated with a higher risk of distant metastasis; both chromothripsis and metastasis (ENETS Stage IV) suggested a significantly shorter overall survival (OS). Importantly, in the high-grade pNENs group, chromothripsis was the only independent prognostic indicator significantly associated with a shorter OS, other than TP53 alteration or pathological pancreatic neuroendocrine carcinomas (pNECs) diagnosis. Chromothripsis can guide worse prognosis in pNENs, and help differentiate pNECs from high-grade (G3) pNETs.
Collapse
Affiliation(s)
- Ming‐Yi Zhang
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Du He
- Department of Pathology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yi Zhang
- Center of Life SciencesPeking UniversityBeijingChina
| | - Ke Cheng
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Hong‐Shuai Li
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu‐Wen Zhou
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qiong‐Xian Long
- Department of Pathology, Nan Chong Central Hospitalthe Second Affiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Rui‐Zhi Liu
- School of Medical and Life SciencesChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Ji‐Yan Liu
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
- Sichuan Clinical Research Center of BiotherapyChengduSichuanChina
- Department of OncologyThe First People's Hospital of ZiyangZiyangSichuanChina
| |
Collapse
|
71
|
Angerilli V, Sabella G, Simbolo M, Lagano V, Centonze G, Gentili M, Mangogna A, Coppa J, Munari G, Businello G, Borga C, Schiavi F, Pusceddu S, Leporati R, Oldani S, Fassan M, Milione M. Comprehensive genomic and transcriptomic characterization of high-grade gastro-entero-pancreatic neoplasms. Br J Cancer 2024; 131:159-170. [PMID: 38729995 PMCID: PMC11231306 DOI: 10.1038/s41416-024-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High-grade gastro-entero-pancreatic neoplasms (HG GEP-NENs) can be stratified according to their morphology and Ki-67 values into three prognostic classes: neuroendocrine tumors grade 3 (NETs G3), neuroendocrine carcinomas with Ki-67 < 55% (NECs <55) and NECs with Ki-67 ≥ 55% (NECs ≥55). METHODS We analyzed a cohort of 49 HG GEP-NENs by targeted Next-Generation Sequencing (TrueSight Oncology 500), RNA-seq, and immunohistochemistry for p53, Rb1, SSTR-2A, and PD-L1. RESULTS Frequent genomic alterations affected TP53 (26%), APC (20%), KRAS and MEN1 (both 11%) genes. NET G3 were enriched in MEN1 (p = 0.02) mutations, while both NECs groups were enriched in TP53 (p = 0.001), APC (p = 0.002) and KRAS (p = 0.02) mutations and tumors with TMB ≥ 10 muts/Mb (p = 0.01). No differentially expressed (DE) gene was found between NECs <55% and NECs ≥55%, while 1129 DE genes were identified between NET G3 and NECs. A slight enrichment of CD4+ and CD8+ T cells in NECs and of cancer-associated fibroblasts and macrophages (M2-like) in NET G3. Multivariate analysis identified histologic type and Rb1 loss as independent prognostic factors for overall survival. CONCLUSIONS This study showed that GEP-NET G3 and GEP-NECs exhibit clear genomic and transcriptomic differences, differently from GEP-NECs <55% and GEP-NECs ≥55%, and provided molecular findings with prognostic and potentially predictive value.
Collapse
Affiliation(s)
| | - Giovanna Sabella
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Lagano
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gentili
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute of Pathological Anatomy, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Jorgelina Coppa
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giada Munari
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Chiara Borga
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Sara Pusceddu
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rita Leporati
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Simone Oldani
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Massimo Milione
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
72
|
Ursprung S, Zhang ML, Asmundo L, Hesami M, Najmi Z, Cañamaque LG, Shenoy-Bhangle AS, Pierce TT, Mojtahed A, Blake MA, Cochran R, Nikolau K, Harisinghani MG, Catalano OA. An Illustrated Review of the Recent 2019 World Health Organization Classification of Neuroendocrine Neoplasms: A Radiologic and Pathologic Correlation. J Comput Assist Tomogr 2024; 48:601-613. [PMID: 38438338 DOI: 10.1097/rct.0000000000001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
ABSTRACT Recent advances in molecular pathology and an improved understanding of the etiology of neuroendocrine neoplasms (NENs) have given rise to an updated World Health Organization classification. Since gastroenteropancreatic NENs (GEP-NENs) are the most common forms of NENs and their incidence has been increasing constantly, they will be the focus of our attention. Here, we review the findings at the foundation of the new classification system, discuss how it impacts imaging research and radiological practice, and illustrate typical and atypical imaging and pathological findings. Gastroenteropancreatic NENs have a highly variable clinical course, which existing classification schemes based on proliferation rate were unable to fully capture. While well- and poorly differentiated NENs both express neuroendocrine markers, they are fundamentally different diseases, which may show similar proliferation rates. Genetic alterations specific to well-differentiated neuroendocrine tumors graded 1 to 3 and poorly differentiated neuroendocrine cancers of small cell and large-cell subtype have been identified. The new tumor classification places new demands and creates opportunities for radiologists to continue providing the clinically most relevant report and on researchers to design projects, which continue to be clinically applicable.
Collapse
Affiliation(s)
- Stephan Ursprung
- From the Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - M Lisa Zhang
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | | | - Mina Hesami
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Zahra Najmi
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | | | | | | | - Michael A Blake
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Rory Cochran
- Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Konstantin Nikolau
- From the Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
73
|
Chauhan A, Chan K, Halfdanarson TR, Bellizzi AM, Rindi G, O’Toole D, Ge PS, Jain D, Dasari A, Anaya DA, Bergsland E, Mittra E, Wei AC, Hope TA, Kendi AT, Thomas SM, Flem S, Brierley J, Asare EA, Washington K, Shi C. Critical updates in neuroendocrine tumors: Version 9 American Joint Committee on Cancer staging system for gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin 2024; 74:359-367. [PMID: 38685134 PMCID: PMC11938941 DOI: 10.3322/caac.21840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
The American Joint Committee on Cancer (AJCC) staging system for all cancer sites, including gastroenteropancreatic neuroendocrine tumors (GEP-NETs), is meant to be dynamic, requiring periodic updates to optimize AJCC staging definitions. This entails the collaboration of experts charged with evaluating new evidence that supports changes to each staging system. GEP-NETs are the second most prevalent neoplasm of gastrointestinal origin after colorectal cancer. Since publication of the AJCC eighth edition, the World Health Organization has updated the classification and separates grade 3 GEP-NETs from poorly differentiated neuroendocrine carcinoma. In addition, because of major advancements in diagnostic and therapeutic technologies for GEP-NETs, AJCC version 9 advocates against the use of serum chromogranin A for the diagnosis and monitoring of GEP-NETs. Furthermore, AJCC version 9 recognizes the increasing role of endoscopy and endoscopic resection in the diagnosis and management of NETs, particularly in the stomach, duodenum, and colorectum. Finally, T1NXM0 has been added to stage I in these disease sites as well as in the appendix.
Collapse
Affiliation(s)
- Aman Chauhan
- Department of Medicine, Neuroendocrine Oncology, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA
| | - Kelley Chan
- Department of Surgery, Loyola University Medical Center, Chicago, Illinois, USA
| | | | - Andrew M. Bellizzi
- Department of Pathology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Guido Rindi
- Department of Life Sciences, Section of Anatomic Pathology, Università Cattolica del Sacro Cuore; Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS and Roma-Gemelli ENETS Center of Excellence, Roma, Italy
| | - Dermot O’Toole
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence (St. Vincent’s University Hospital) and St. James Hospital, Trinity College Dublin, Dublin, Ireland
| | - Phillip S. Ge
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel A. Anaya
- Department of Gastrointestinal Oncology-Surgery, Moffitt Cancer Center, Tampa, FL, USA
| | - Emily Bergsland
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Erik Mittra
- Department of Diagnostic Radiology, Molecular Imaging and Therapy, Oregon Health &Science University, Portland, Oregon, USA
| | - Alice C. Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Thomas A. Hope
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ayse T. Kendi
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Samantha M. Thomas
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Sherlonda Flem
- Tumor Registrar, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James Brierley
- Radiation Medicine Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Elliot A. Asare
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chanjuan Shi
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
74
|
Smirne C, Giacomini GM, Berton AM, Pasini B, Mercalli F, Prodam F, Caputo M, Brosens LAA, Mollero ELM, Pitino R, Pirisi M, Aimaretti G, Ghigo E. A novel likely pathogenetic variant p.(Cys235Arg) of the MEN1 gene in multiple endocrine neoplasia type 1 with multifocal glucagonomas. J Endocrinol Invest 2024; 47:1815-1825. [PMID: 38294658 PMCID: PMC11196359 DOI: 10.1007/s40618-023-02287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Multiple endocrine neoplasia type 1 (MEN1) is a hereditary endocrine syndrome caused by pathogenic variants in MEN1 tumor suppressor gene. Diagnosis is commonly based on clinical criteria and confirmed by genetic testing. The objective of the present study was to report on a MEN1 case characterized by multiple pancreatic glucagonomas, with particular concern on the possible predisposing genetic defects. METHODS While conducting an extensive review of the most recent scientific evidence on the unusual glucagonoma familial forms, we analyzed the MEN1 gene in a 35-year-old female with MEN1, as well as her son and daughter, using Sanger and next-generation sequencing (NGS) approaches. We additionally explored the functional and structural consequences of the identified variant using in silico analyses. RESULTS NGS did not show any known pathogenic variant in the tested regions. However, a new non-conservative variant in exon 4 of MEN1 gene was found in heterozygosity in the patient and in her daughter, resulting in an amino acid substitution from hydrophobic cysteine to hydrophilic arginine at c.703T > C, p.(Cys235Arg). This variant is absent from populations databases and was never reported in full papers: its characteristics, together with the high specificity of the patient's clinical phenotype, pointed toward a possible causative role. CONCLUSION Our findings confirm the need for careful genetic analysis of patients with MEN1 and establish a likely pathogenic role for the new p.(Cys235Arg) variant, at least in the rare subset of MEN1 associated with glucagonomas.
Collapse
Affiliation(s)
- C Smirne
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy.
| | - G M Giacomini
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - A M Berton
- Division of Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, 10126, Turin, Italy
| | - B Pasini
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
- Division of Medical Genetics, City of Health and Science University Hospital, 10126, Turin, Italy
| | - F Mercalli
- Division of Pathology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - F Prodam
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - M Caputo
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - L A A Brosens
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - E L M Mollero
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - R Pitino
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - M Pirisi
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Internal Medicine, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - G Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Division of Endocrinology, University Hospital Maggiore della Carità, 28100, Novara, Italy
| | - E Ghigo
- Division of Endocrinology, Diabetes and Metabolism, City of Health and Science University Hospital, 10126, Turin, Italy
- Department of Medical Sciences, University of Turin, 10126, Turin, Italy
| |
Collapse
|
75
|
Zhang XB, Fan YB, Jing R, Getu MA, Chen WY, Zhang W, Dong HX, Dakal TC, Hayat A, Cai HJ, Ashrafizadeh M, Abd El-Aty AM, Hacimuftuoglu A, Liu P, Li TF, Sethi G, Ahn KS, Ertas YN, Chen MJ, Ji JS, Ma L, Gong P. Gastroenteropancreatic neuroendocrine neoplasms: current development, challenges, and clinical perspectives. Mil Med Res 2024; 11:35. [PMID: 38835066 DOI: 10.1186/s40779-024-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secretory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are the most common subtype of NENs. Historically, GEP-NENs have been regarded as infrequent and slow-growing malignancies; however, recent data have demonstrated that the worldwide prevalence and incidence of GEP-NENs have increased exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP-NENs result in a limited life expectancy. These findings suggested that the natural biology of GEP-NENs is more aggressive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis and management of patients with GEP-NENs. In this review, we have summarized the limitations and recent advancements in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, and treatment of GEP-NETs to identify factors contributing to delays in diagnosis and timely treatment of these patients.
Collapse
Affiliation(s)
- Xian-Bin Zhang
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yi-Bao Fan
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Rui Jing
- Department of Radiology, Second Hospital of Shandong University, Jinan, Shandong, 250000, China
| | - Mikiyas Amare Getu
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Wan-Ying Chen
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wei Zhang
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Hong-Xia Dong
- Department of Gastroenterology, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Hua-Jun Cai
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Milad Ashrafizadeh
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Peng Liu
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Tian-Feng Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, 518055, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38280, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Peng Gong
- Department of General SurgeryInstitute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
76
|
Uccella S. Molecular Classification of Gastrointestinal and Pancreatic Neuroendocrine Neoplasms: Are We Ready for That? Endocr Pathol 2024; 35:91-106. [PMID: 38470548 PMCID: PMC11176254 DOI: 10.1007/s12022-024-09807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
In the last two decades, the increasing availability of technologies for molecular analyses has allowed an insight in the genomic alterations of neuroendocrine neoplasms (NEN) of the gastrointestinal tract and pancreas. This knowledge has confirmed, supported, and informed the pathological classification of NEN, clarifying the differences between neuroendocrine carcinomas (NEC) and neuroendocrine tumors (NET) and helping to define the G3 NET category. At the same time, the identification genomic alterations, in terms of gene mutation, structural abnormalities, and epigenetic changes differentially involved in the pathogenesis of NEC and NET has identified potential molecular targets for precision therapy. This review critically recapitulates the available molecular features of digestive NEC and NET, highlighting their correlates with pathological aspects and clinical characteristics of these neoplasms and revising their role as predictive biomarkers for targeted therapy. In this context, the feasibility and applicability of a molecular classification of gastrointestinal and pancreatic NEN will be explored.
Collapse
Affiliation(s)
- Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- Pathology Service IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
77
|
Papadopoulou-Marketou N, Tsoli M, Chatzellis E, Alexandraki KI, Kaltsas G. Hereditary Syndromes Associated with Pancreatic and Lung Neuroendocrine Tumors. Cancers (Basel) 2024; 16:2075. [PMID: 38893191 PMCID: PMC11171219 DOI: 10.3390/cancers16112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) and lung NETs (LNETs) represent a rare but clinically significant subgroup of neoplasms. While the majority is sporadic, approximately 17% of PanNETs and a subset of LNETs develop in the context of monogenic familial tumor syndromes, especially multiple endocrine neoplasia type 1 (MEN1) syndrome. Other inherited syndromes associated with PanNETs include MEN4, von Hippel-Lindau (VHL) syndrome, neurofibromatosis type 1 (NF1), and tuberous sclerosis complex (TSC). These syndromes are highly penetrant and their clinical manifestations may vary even among members of the same family. They are attributed to genetic mutations involving key molecular pathways regulating cell growth, differentiation, and angiogenesis. Pancreatic NETs in hereditary syndromes are often multiple, develop at a younger age compared to sporadic tumors, and are associated with endocrine and nonendocrine tumors derived from multiple organs. Lung NETs are not as common as PanNETs and are mostly encountered in MEN1 syndrome and include typical and atypical lung carcinoids. Early detection of PanNETs and LNETs related to inherited syndromes is crucial, and specific follow-up protocols need to be employed to optimize diagnosis and management. Genetic screening is recommended in childhood, and diagnostic screening starts often in adolescence, even in asymptomatic mutation carriers. Optimal management and therapeutic decisions should be made in the context of a multidisciplinary team in specialized centers, whereas specific biomarkers aiming to identify patients denoted to follow a more aggressive course need to be developed.
Collapse
Affiliation(s)
- Nektaria Papadopoulou-Marketou
- Neuroendocrine Tumor Unit, EURACAN 4 and ENETS Centre of Excellence, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (G.K.)
| | - Marina Tsoli
- Neuroendocrine Tumor Unit, EURACAN 4 and ENETS Centre of Excellence, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (G.K.)
| | | | | | - Gregory Kaltsas
- Neuroendocrine Tumor Unit, EURACAN 4 and ENETS Centre of Excellence, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.T.); (G.K.)
| |
Collapse
|
78
|
Andersen KØ, Detlefsen S, Brusgaard K, Christesen HT. Well-differentiated G1 and G2 pancreatic neuroendocrine tumors: a meta-analysis of published expanded DNA sequencing data. Front Endocrinol (Lausanne) 2024; 15:1351624. [PMID: 38868744 PMCID: PMC11167081 DOI: 10.3389/fendo.2024.1351624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Well-differentiated pancreatic neuroendocrine tumors (PNETs) can be non-functional or functional, e.g. insulinoma and glucagonoma. The majority of PNETs are sporadic, but PNETs also occur in hereditary syndromes, primarily multiple endocrine neoplasia type 1 (MEN1). The Knudson hypothesis stated a second, somatic hit in MEN1 as the cause of PNETs of MEN1 syndrome. In the recent years, reports on genetic somatic events in both sporadic and hereditary PNETs have emerged, providing a basis for a more detailed molecular understanding of the pathophysiology. In this systematic review and meta-analysis, we made a collation and statistical analysis of aggregated frequent genetic alterations and potential driver events in human grade G1/G2 PNETs. Methods A systematic search was performed in concordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) reporting guidelines of 2020. A search in Pubmed for published studies using whole exome, whole genome, or targeted gene panel (+400 genes) sequencing of human G1/G2 PNETs was conducted at the 25th of September 2023. Fourteen datasets from published studies were included with data on 221 patients and 225 G1/G2 PNETs, which were divided into sporadic tumors, and hereditary tumors with pre-disposing germline variants, and tumors with unknown germline status. Further, non-functioning and functioning PNETs were distinguished into two groups for pathway evaluation. The collated genetical analyses were conducted using the 'maftools' R-package. Results Sporadic PNETs accounted 72.0% (162/225), hereditary PNETs 13.3% (30/225), unknown germline status 14.7% (33/225). The most frequently altered gene was MEN1, with somatic variants and copy number variations in overall 42% (95/225); hereditary PNETs (germline variations in MEN1, VHL, CHEK2, BRCA2, PTEN, CDKN1B, and/or MUTYH) 57% (16/30); sporadic PNETs 36% (58/162); unknown germline status 64% (21/33). The MEN1 point mutations/indels were distributed throughout MEN1. Overall, DAXX (16%, 37/225) and ATRX-variants (12%, 27/225) were also abundant with missense mutations clustered in mutational hotspots associated with histone binding, and translocase activity, respectively. DAXX mutations occurred more frequently in PNETs with MEN1 mutations, p<0.05. While functioning PNETs shared few variated genes, non-functioning PNETs had more recurrent variations in genes associated with the Phosphoinositide 3-kinase, Wnt, NOTCH, and Receptor Tyrosine Kinase-Ras signaling onco-pathways. Discussion The somatic genetic alterations in G1/G2 PNETs are diverse, but with distinct differences between sporadic vs. hereditary, and functional vs. non-functional PNETs. Increased understanding of the genetic alterations may lead to identification of more drivers and driver hotspots in the tumorigenesis in well-differentiated PNETs, potentially giving a basis for the identification of new drug targets. (Funded by Novo Nordisk Foundation, grant number NNF19OC0057915).
Collapse
Affiliation(s)
- Kirstine Øster Andersen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Steno Diabetes Center Odense, Odense, Denmark
| |
Collapse
|
79
|
Lin AL, Rudneva VA, Richards AL, Zhang Y, Woo HJ, Cohen M, Tisnado J, Majd N, Wardlaw SL, Page-Wilson G, Sengupta S, Chow F, Goichot B, Ozer BH, Dietrich J, Nachtigall L, Desai A, Alano T, Ogilive S, Solit DB, Bale TA, Rosenblum M, Donoghue MTA, Geer EB, Tabar V. Genome-wide loss of heterozygosity predicts aggressive, treatment-refractory behavior in pituitary neuroendocrine tumors. Acta Neuropathol 2024; 147:85. [PMID: 38758238 PMCID: PMC11101347 DOI: 10.1007/s00401-024-02736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Pituitary neuroendocrine tumors (PitNETs) exhibiting aggressive, treatment-refractory behavior are the rare subset that progress after surgery, conventional medical therapies, and an initial course of radiation and are characterized by unrelenting growth and/or metastatic dissemination. Two groups of patients with PitNETs were sequenced: a prospective group of patients (n = 66) who consented to sequencing prior to surgery and a retrospective group (n = 26) comprised of aggressive/higher risk PitNETs. A higher mutational burden and fraction of loss of heterozygosity (LOH) was found in the aggressive, treatment-refractory PitNETs compared to the benign tumors (p = 1.3 × 10-10 and p = 8.5 × 10-9, respectively). Within the corticotroph lineage, a characteristic pattern of recurrent chromosomal LOH in 12 specific chromosomes was associated with treatment-refractoriness (occurring in 11 of 14 treatment-refractory versus 1 of 14 benign corticotroph PitNETs, p = 1.7 × 10-4). Across the cohort, a higher fraction of LOH was identified in tumors with TP53 mutations (p = 3.3 × 10-8). A machine learning approach identified loss of heterozygosity as the most predictive variable for aggressive, treatment-refractory behavior, outperforming the most common gene-level alteration, TP53, with an accuracy of 0.88 (95% CI: 0.70-0.96). Aggressive, treatment-refractory PitNETs are characterized by significant aneuploidy due to widespread chromosomal LOH, most prominently in the corticotroph tumors. This LOH predicts treatment-refractoriness with high accuracy and represents a novel biomarker for this poorly defined PitNET category.
Collapse
Affiliation(s)
- Andrew L Lin
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vasilisa A Rudneva
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Cohen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie Tisnado
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nazanin Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabrielle Page-Wilson
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Soma Sengupta
- Department of Neurology and Neurosurgery, University of North Carolina, Chapel Hill, NC, USA
| | - Frances Chow
- Department of Neurology, Keck School of Medicine at University of Southern California Medical Center, Los Angeles, CA, USA
| | - Bernard Goichot
- Department of Endocrinology, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Byram H Ozer
- Department of Oncology, Sibley Memorial Hospital/Johns Hopkins, Washington, DC, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa Nachtigall
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Arati Desai
- Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Tina Alano
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shahiba Ogilive
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eliza B Geer
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
80
|
Chen HY, Pan Y, Chen JY, Chen J, Liu LL, Yang YB, Li K, Ma Q, Shi L, Yu RS, Shao GL. Machine Learning Methods Based on CT Features Differentiate G1/G2 From G3 Pancreatic Neuroendocrine Tumors. Acad Radiol 2024; 31:1898-1905. [PMID: 38052672 DOI: 10.1016/j.acra.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
RATIONALE AND OBJECTIVES To identify CT features for distinguishing grade 1 (G1)/grade 2 (G2) from grade 3 (G3) pancreatic neuroendocrine tumors (PNETs) using different machine learning (ML) methods. MATERIALS AND METHODS A total of 147 patients with 155 lesions confirmed by pathology were retrospectively included. Clinical-demographic and radiological CT features was collected. The entire cohort was separated into training and validation groups at a 7:3 ratio. Least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were used to select features. Three ML methods, namely logistic regression (LR), support vector machine (SVM), and K-nearest neighbor (KNN) were used to build a differential model. Receiver operating characteristic (ROC) curves and precision-recall curves for each ML method were generated. The area under the curve (AUC), accuracy rate, sensitivity, and specificity were calculated. RESULTS G3 PNETs were more likely to present with invasive behaviors and lower enhancement than G1/G2 PNETs. The LR classifier yielded the highest AUC of 0.964 (95% confidence interval [CI]: 0.930, 0.972), with 95.4% accuracy rate, 95.7% sensitivity, and 92.9% specificity, followed by SVM (AUC: 0.957) and KNN (AUC: 0.893) in the training group. In the validation group, the SVM classier reached the highest AUC of 0.952 (95% CI: 0.860, 0.981), with 91.5% accuracy rate, 97.3% sensitivity, and 70% specificity, followed by LR (AUC: 0.949) and KNN (AUC: 0.923). CONCLUSIONS The LR and SVM classifiers had the best performance in the training group and validation group, respectively. ML method could be helpful in differentiating between G1/G2 and G3 PNETs.
Collapse
Affiliation(s)
- Hai-Yan Chen
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China (H.-Y.C., J.-Y.C., L.-L.L., Y.-B.Y., K.L., Q.M., L.S.)
| | - Yao Pan
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China (Y.P., R.-S.Y.)
| | - Jie-Yu Chen
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China (H.-Y.C., J.-Y.C., L.-L.L., Y.-B.Y., K.L., Q.M., L.S.)
| | - Jia Chen
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311121, Zhejiang Province, China (J.C.)
| | - Lu-Lu Liu
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China (H.-Y.C., J.-Y.C., L.-L.L., Y.-B.Y., K.L., Q.M., L.S.)
| | - Yong-Bo Yang
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China (H.-Y.C., J.-Y.C., L.-L.L., Y.-B.Y., K.L., Q.M., L.S.)
| | - Kai Li
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China (H.-Y.C., J.-Y.C., L.-L.L., Y.-B.Y., K.L., Q.M., L.S.)
| | - Qian Ma
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China (H.-Y.C., J.-Y.C., L.-L.L., Y.-B.Y., K.L., Q.M., L.S.)
| | - Lei Shi
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China (H.-Y.C., J.-Y.C., L.-L.L., Y.-B.Y., K.L., Q.M., L.S.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China (Y.P., R.-S.Y.)
| | - Guo-Liang Shao
- Department of Interventional Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang Province, China (G.-L.S.); Clinical Research Center of Hepatobiliary and pancreatic diseases of Zhejiang Province, Hangzhou 310006, Zhejiang Province, China (G.-L.S.).
| |
Collapse
|
81
|
Gkountakos A, Singhi AD, Westphalen CB, Scarpa A, Luchini C. Fusion genes in pancreatic tumors. Trends Cancer 2024; 10:430-443. [PMID: 38378317 DOI: 10.1016/j.trecan.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Gene fusions and rearrangements play a crucial role in tumor biology. They are rare events typically detected in KRAS wild-type (WT) pancreatic tumors. Their identification can inform clinical management by enabling precision oncology, as fusions involving BRAF, FGFR2, RET, NTRK, NRG1, and ALK represent actionable targets in KRAS-WT cancers, and serve diagnostic purposes since fusions involving PRKACA/B represent the diagnostic hallmark of intraductal oncocytic papillary neoplasms (IOPNs). Although they are rare, the therapeutic and diagnostic importance of these genomic events should not be underestimated, highlighting the need for quality-ensured molecular diagnostics in the management of cancer. Herein we review the existing literature on the role of fusion genes in pancreatic tumors and their clinical potential as effective biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - C Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich and German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Aldo Scarpa
- ARC-Net Research Center, University of Verona, Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
| | - Claudio Luchini
- ARC-Net Research Center, University of Verona, Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|
82
|
Lavingia V, Gohel S, Sirohi B. Systemic Therapy for Pancreatic Neuroendocrine Tumors. Indian J Surg Oncol 2024; 15:305-314. [PMID: 38817994 PMCID: PMC11133277 DOI: 10.1007/s13193-024-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/23/2024] [Indexed: 06/01/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) account for approximately 2% of all pancreatic malignancies. Several systemic treatment options have been developed over the last four decades, ranging from cytotoxic chemotherapy and octreotide to newer targeted therapies like sunitinib, cabozantinib, and lenvatinib. Although surgery or liver-directed therapy remains cornerstone for management of metastatic PanNETs, however, they remain unfeasible in majority of cases. PanNETs behave differently than SI-NETs (small intestinal NET); the former is more aggressive and less responsive to somatostatin-based therapies. The optimal sequence of the systemic therapies for the advanced PanNETs depends mainly on the tumor burden, Ki-67 index, and the tempo of the disease. In the end, drawing from ENETS (European Neuroendocrine Tumor Society) and ESMO (European Society for Medical Oncology) guidelines, we propose a working algorithm for the management of advanced PanNETs, not amenable to surgery or liver-directed therapies.
Collapse
Affiliation(s)
- Viraj Lavingia
- Dept. of Medical Oncology, HCG Cancer Center, Ahmedabad, India
| | - Shruti Gohel
- Dept. of Medical Oncology, HCG Cancer Center, Ahmedabad, India
| | - Bhawna Sirohi
- Department of Medical Oncology, Vedanta Medical Research Foundation - Balco Medical Centre, Raipur, India
| |
Collapse
|
83
|
Ye Z, Li Q, Hu Y, Hu H, Xu J, Guo M, Zhang W, Lou X, Wang Y, Gao H, Jing D, Fan G, Qin Y, Zhang Y, Chen X, Chen J, Xu X, Yu X, Liu M, Ji S. The stromal microenvironment endows pancreatic neuroendocrine tumors with spatially specific invasive and metastatic phenotypes. Cancer Lett 2024; 588:216769. [PMID: 38438098 DOI: 10.1016/j.canlet.2024.216769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-β expression in nearby tumor cells. Then, TGF-β promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Yuheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Haifeng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Muzi Guo
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
84
|
Fuentes ME, Lu X, Flores NM, Hausmann S, Mazur PK. Combined deletion of MEN1, ATRX and PTEN triggers development of high-grade pancreatic neuroendocrine tumors in mice. Sci Rep 2024; 14:8510. [PMID: 38609433 PMCID: PMC11014914 DOI: 10.1038/s41598-024-58874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of tumors that exhibit an unpredictable and broad spectrum of clinical presentations and biological aggressiveness. Surgical resection is still the only curative therapeutic option for localized PanNET, but the majority of patients are diagnosed at an advanced and metastatic stage with limited therapeutic options. Key factors limiting the development of new therapeutics are the extensive heterogeneity of PanNETs and the lack of appropriate clinically relevant models. In that context, genomic sequencing of human PanNETs revealed recurrent mutations and structural alterations in several tumor suppressors. Here, we demonstrated that combined loss of MEN1, ATRX, and PTEN, tumor suppressors commonly mutated in human PanNETs, triggers the development of high-grade pancreatic neuroendocrine tumors in mice. Histopathological evaluation and gene expression analyses of the developed tumors confirm the presence of PanNET hallmarks and significant overlap in gene expression patterns found in human disease. Thus, we postulate that the presented novel genetically defined mouse model is the first clinically relevant immunocompetent high-grade PanNET mouse model.
Collapse
Affiliation(s)
- Mary Esmeralda Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Xiaoyin Lu
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Natasha M Flores
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Simone Hausmann
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
85
|
Battistella A, Tacelli M, Mapelli P, Schiavo Lena M, Andreasi V, Genova L, Muffatti F, De Cobelli F, Partelli S, Falconi M. Recent developments in the diagnosis of pancreatic neuroendocrine neoplasms. Expert Rev Gastroenterol Hepatol 2024; 18:155-169. [PMID: 38647016 DOI: 10.1080/17474124.2024.2342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Pancreatic Neuroendocrine Neoplasms (PanNENs) are characterized by a highly heterogeneous clinical and biological behavior, making their diagnosis challenging. PanNENs diagnostic work-up mainly relies on biochemical markers, pathological examination, and imaging evaluation. The latter includes radiological imaging (i.e. computed tomography [CT] and magnetic resonance imaging [MRI]), functional imaging (i.e. 68Gallium [68 Ga]Ga-DOTA-peptide PET/CT and Fluorine-18 fluorodeoxyglucose [18F]FDG PET/CT), and endoscopic ultrasound (EUS) with its associated procedures. AREAS COVERED This review provides a comprehensive assessment of the recent advancements in the PanNENs diagnostic field. PubMed and Embase databases were used for the research, performed from inception to October 2023. EXPERT OPINION A deeper understanding of PanNENs biology, recent technological improvements in imaging modalities, as well as progresses achieved in molecular and cytological assays, are fundamental players for the achievement of early diagnosis and enhanced preoperative characterization of PanNENs. A multimodal diagnostic approach is required for a thorough disease assessment.
Collapse
Affiliation(s)
- Anna Battistella
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Tacelli
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreato-biliary Endoscopy and EUS Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Valentina Andreasi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luana Genova
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Muffatti
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy
- Radiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
86
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, García-Vioque V, Agraz-Doblas A, Yubero-Serrano EM, Sánchez-Frías ME, Serrano-Blanch R, Gálvez-Moreno MÁ, Gracia-Navarro F, Gahete MD, Arjona-Sánchez Á, Luque RM, Ibáñez-Costa A, Castaño JP. Altered CELF4 splicing factor enhances pancreatic neuroendocrine tumors aggressiveness influencing mTOR and everolimus response. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102090. [PMID: 38187140 PMCID: PMC10767201 DOI: 10.1016/j.omtn.2023.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio Agraz-Doblas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Elena M. Yubero-Serrano
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, Córdoba, Spain
| | - Marina E. Sánchez-Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Álvaro Arjona-Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Surgery Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
87
|
Jiang Y, Dong YH, Zhao SW, Liu DY, Zhang JY, Xu XY, Chen H, Chen H, Jin JB. Multiregion WES of metastatic pancreatic neuroendocrine tumors revealed heterogeneity in genomic alterations, immune microenvironment and evolutionary patterns. Cell Commun Signal 2024; 22:164. [PMID: 38448900 PMCID: PMC10916270 DOI: 10.1186/s12964-024-01545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs), though uncommon, have a high likelihood of spreading to other body parts. Previously, the genetic diversity and evolutionary patterns in metastatic PanNETs were not well understood. To investigate this, we performed multiregion sampling whole-exome sequencing (MRS-WES) on samples from 10 patients who had not received prior treatment for metastatic PanNETs. This included 29 primary tumor samples, 31 lymph node metastases, and 15 liver metastases. We used the MSK-MET dataset for survival analysis and validation of our findings. Our research indicates that mutations in the MEN1/DAXX genes might trigger the early stages of PanNET development. We categorized the patients based on the presence (MEN1/DAXXmut, n = 7) or absence (MEN1/DAXXwild, n = 3) of these mutations. Notable differences were observed between the two groups in terms of genetic alterations and clinically relevant mutations, confirmed using the MSK-MET dataset. Notably, patients with mutations in MEN1/DAXX/ATRX genes had a significantly longer median overall survival compared to those without these mutations (median not reached vs. 43.63 months, p = 0.047). Multiplex immunohistochemistry (mIHC) analysis showed a more prominent immunosuppressive environment in metastatic tumors, especially in patients with MEN1/DAXX mutations. These findings imply that MEN1/DAXX mutations lead PanNETs through a unique evolutionary path. The disease's progression pattern indicates that PanNETs can spread early, even before clinical detection, highlighting the importance of identifying biomarkers related to metastasis to guide personalized treatment strategies.
Collapse
Affiliation(s)
- Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yi-Han Dong
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shi-Wei Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China
| | - Dong-Yu Liu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Ji-Yang Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Xiao-Ya Xu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Hao Chen
- Bioinformatics Department, JMDNA Inc., Building 23, 500 Furonghua Road, Shanghai, 201203, People's Republic of China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Jia-Bin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
88
|
Duan S, Sawyer TW, Witten BL, Song H, Else T, Merchant JL. Spatial profiling reveals tissue-specific neuro-immune interactions in gastroenteropancreatic neuroendocrine tumors. J Pathol 2024; 262:362-376. [PMID: 38229586 PMCID: PMC10869639 DOI: 10.1002/path.6241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies that arise from complex cellular interactions within the tissue microenvironment. Here, we sought to decipher tumor-derived signals from the surrounding microenvironment by applying digital spatial profiling (DSP) to hormone-secreting and non-functional GEP-NETs. By combining this approach with in vitro studies of human-derived organoids, we demonstrated the convergence of cell autonomous immune and pro-inflammatory proteins that suggests their role in neuroendocrine differentiation and tumorigenesis. DSP was used to evaluate the expression of 40 neural- and immune-related proteins in surgically resected duodenal and pancreatic NETs (n = 20) primarily consisting of gastrinomas (18/20). A total of 279 regions of interest were examined between tumors, adjacent normal and abnormal-appearing epithelium, and the surrounding stroma. The results were stratified by tissue type and multiple endocrine neoplasia I (MEN1) status, whereas protein expression was validated by immunohistochemistry (IHC). A tumor immune cell autonomous inflammatory signature was further evaluated by IHC and RNAscope, while functional pro-inflammatory signaling was confirmed using patient-derived duodenal organoids. Gastrin-secreting and non-functional pancreatic NETs showed a higher abundance of immune cell markers and immune infiltrate compared with duodenal gastrinomas. Compared with non-MEN1 tumors, MEN1 gastrinomas and preneoplastic lesions showed strong immune exclusion and upregulated expression of neuropathological proteins. Despite a paucity of immune cells, duodenal gastrinomas expressed the pro-inflammatory and pro-neural factor IL-17B. Treatment of human duodenal organoids with IL-17B activated NF-κB and STAT3 signaling and induced the expression of neuroendocrine markers. In conclusion, multiplexed spatial protein analysis identified tissue-specific neuro-immune signatures in GEP-NETs. Duodenal gastrinomas are characterized by an immunologically cold microenvironment that permits cellular reprogramming and neoplastic transformation of the preneoplastic epithelium. Moreover, duodenal gastrinomas cell autonomously express immune and pro-inflammatory factors, including tumor-derived IL-17B, that stimulate the neuroendocrine phenotype. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Suzann Duan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Travis W. Sawyer
- Department of Optical Sciences, University of Arizona Wyant College of Optical Sciences, Tucson, AZ, USA
| | - Brandon L. Witten
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Heyu Song
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tobias Else
- Department of Internal Medicine, Endocrinology, University of Michigan, Ann Harbor, Michigan, USA
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
89
|
Pinto LM, Pailas A, Bondarchenko M, Sharma AB, Neumann K, Rizzo AJ, Jeanty C, Nicot N, Racca C, Graham MK, Naughton C, Liu Y, Chen CL, Meakin PJ, Gilbert N, Britton S, Meeker AK, Heaphy CM, Larminat F, Van Dyck E. DAXX promotes centromeric stability independently of ATRX by preventing the accumulation of R-loop-induced DNA double-stranded breaks. Nucleic Acids Res 2024; 52:1136-1155. [PMID: 38038252 PMCID: PMC10853780 DOI: 10.1093/nar/gkad1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.
Collapse
Affiliation(s)
- Lia M Pinto
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Alexandros Pailas
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Max Bondarchenko
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Communication, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Abhishek Bharadwaj Sharma
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Anthony J Rizzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Céline Jeanty
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| | - Nathalie Nicot
- Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Carine Racca
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Mindy K Graham
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Catherine Naughton
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 1QY, UK
| | - Yaqun Liu
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75248 Paris Cedex 05, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75248 Paris Cedex 05, France
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 1QY, UK
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Florence Larminat
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077 Toulouse Cedex 4, France
| | - Eric Van Dyck
- DNA Repair and Chemoresistance Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
| |
Collapse
|
90
|
Sang W, Zhou Y, Chen H, Yu C, Dai L, Liu Z, Chen L, Fang Y, Ma P, Wu X, Kong H, Liao W, Jiang H, Qian J, Wang D, Liu YH. Receptor-interacting Protein Kinase 2 Is an Immunotherapy Target in Pancreatic Cancer. Cancer Discov 2024; 14:326-347. [PMID: 37824278 DOI: 10.1158/2159-8290.cd-23-0584] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal malignancy because of its aggressive nature and the paucity of effective treatment options. Almost all registered drugs have proven ineffective in addressing the needs of patients with PDAC. This is the result of a poor understanding of the unique tumor-immune microenvironment (TME) in PDAC. To identify druggable regulators of immunosuppressive TME, we performed a kinome- and membranome-focused CRISPR screening using orthotopic PDAC models. Our data showed that receptor-interacting protein kinase 2 (RIPK2) is a crucial driver of immune evasion of cytotoxic T-cell killing and that genetic or pharmacologic targeting of RIPK2 sensitizes PDAC to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy, leading to prolonged survival or complete regression. Mechanistic studies revealed that tumor-intrinsic RIPK2 ablation disrupts desmoplastic TME and restores MHC class I (MHC-I) surface levels through eliminating NBR1-mediated autophagy-lysosomal degradation. Our results provide a rationale for a novel combination therapy consisting of RIPK2 inhibition and anti-PD-1 immunotherapy for PDAC. SIGNIFICANCE PDAC is resistant to almost all available therapies, including immune checkpoint blockade. Through in vivo CRISPR screen, we identified that RIPK2 plays a crucial role in facilitating immune evasion by impeding antigen presentation and cytotoxic T-cell killing. Targeting tumor-intrinsic RIPK2 either genetically or pharmacologically improves PDAC to anti-PD-1 immunotherapy. See related commentary by Liu et al., p. 208 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Wenhua Sang
- Department of Colorectal Surgery & Oncology of the Second Affiliated Hospital, and Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiduo Zhou
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Chen
- Department of Radiation Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengxuan Yu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisi Dai
- Department of Colorectal Surgery & Oncology of the Second Affiliated Hospital, and Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkun Liu
- Department of Colorectal Surgery & Oncology of the Second Affiliated Hospital, and Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lang Chen
- Department of Colorectal Surgery & Oncology of the Second Affiliated Hospital, and Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panpan Ma
- Department of Colorectal Surgery & Oncology of the Second Affiliated Hospital, and Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangji Wu
- Department of Pancreatic Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Kong
- Department of Pancreatic Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenting Liao
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hong Jiang
- Department of Pancreatic Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Da Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
| | - Yun-Hua Liu
- Department of Colorectal Surgery & Oncology of the Second Affiliated Hospital, and Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
91
|
Paller CJ, Tukachinsky H, Maertens A, Decker B, Sampson JR, Cheadle JP, Antonarakis ES. Pan-Cancer Interrogation of MUTYH Variants Reveals Biallelic Inactivation and Defective Base Excision Repair Across a Spectrum of Solid Tumors. JCO Precis Oncol 2024; 8:e2300251. [PMID: 38394468 PMCID: PMC10901435 DOI: 10.1200/po.23.00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene MUTYH predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic MUTYH variants and MUTYH loss of heterozygosity (LOH) in a large pan-cancer analysis. MATERIALS AND METHODS Data from 354,366 solid tumor biopsies that were sequenced as part of routine clinical care were analyzed using a validated algorithm to distinguish germline from somatic MUTYH variants. RESULTS Biallelic germline pathogenic MUTYH variants were identified in 119 tissue biopsies. Most were CRCs and showed increased tumor mutational burden (TMB) and a mutational signature consistent with defective BER (COSMIC Signature SBS18). Germline heterozygous pathogenic variants were identified in 5,991 biopsies and their prevalence was modestly elevated in some cancer types. About 12% of these cancers (738 samples: including adrenal gland cancers, pancreatic islet cell tumors, nonglioma CNS tumors, GI stromal tumors, and thyroid cancers) showed somatic LOH for MUTYH, higher rates of chromosome 1p loss (where MUTYH is located), elevated genomic LOH, and higher COSMIC SBS18 signature scores, consistent with BER deficiency. CONCLUSION This analysis of MUTYH alterations in a large set of solid cancers suggests that in addition to the established role of biallelic pathogenic MUTYH variants in cancer predisposition, a broader range of cancers may possibly arise in MUTYH heterozygotes via a mechanism involving somatic LOH at the MUTYH locus and defective BER. However, the effect is modest and requires confirmation in additional studies before being clinically actionable.
Collapse
Affiliation(s)
- Channing J Paller
- Johns Hopkins University School of Medicine, Oncology, Baltimore, MD
| | | | - Alexandra Maertens
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD
| | | | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jeremy P Cheadle
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Emmanuel S Antonarakis
- University of Minnesota Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN
| |
Collapse
|
92
|
Xue J, Lyu Q. Challenges and opportunities in rare cancer research in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:274-285. [PMID: 38036799 DOI: 10.1007/s11427-023-2422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 12/02/2023]
Abstract
Cancer is one of the major public health challenges in China. Rare cancers collectively account for a considerable proportion of all malignancies. The lack of awareness of rare cancers among healthcare professionals and the general public, the typically complex and delayed diagnosis, and limited access to clinical trials are key challenges. Recent years have witnessed an increase in funding for research related to rare cancers in China. In this review, we provide a comprehensive overview of rare cancers and summarize the status of research on rare cancers in China and overseas, including the trends of funding and publications. We also highlight the challenges and perspectives regarding rare cancers in China.
Collapse
Affiliation(s)
- Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Natural Science Foundation of China, Beijing, 100085, China
| | - Qunyan Lyu
- National Natural Science Foundation of China, Beijing, 100085, China.
| |
Collapse
|
93
|
Salguero-Aranda C, Di Blasi E, Galán L, Zaldumbide L, Civantos G, Marcilla D, de Álava E, Díaz-Martín J. Identification of Novel/Rare EWSR1 Fusion Partners in Undifferentiated Mesenchymal Neoplasms. Int J Mol Sci 2024; 25:1735. [PMID: 38339014 PMCID: PMC10855420 DOI: 10.3390/ijms25031735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recurrent gene fusions (GFs) in translocated sarcomas are recognized as major oncogenic drivers of the disease, as well as diagnostic markers whose identification is necessary for differential diagnosis. EWSR1 is a 'promiscuous' gene that can fuse with many different partner genes, defining different entities among a broad range of mesenchymal neoplasms. Molecular testing of EWSR1 translocation traditionally relies on FISH assays with break-apart probes, which are unable to identify the fusion partner. Therefore, other ancillary molecular diagnostic modalities are being increasingly adopted for accurate classification of these neoplasms. Herein, we report three cases with rare GFs involving EWSR1 in undifferentiated mesenchymal neoplasms with uncertain differential diagnoses, using targeted RNA-seq and confirming with RT-PCR and Sanger sequencing. Two GFs involved hormone nuclear receptors as 3' partners, NR4A2 and RORB, which have not been previously reported. NR4A2 may functionally replace NR4A3, the usual 3' partner in extraskeletal myxoid chondrosarcoma. The third GF, EWSR1::BEND2, has previously been reported in a subtype of astroblastoma and other rare entities, including a single case of a soft-tissue tumor that we discuss in this work. In conclusion, our findings indicate that the catalogue of mesenchymal neoplasm-bearing EWSR1 fusions continues to grow, underscoring the value of using molecular ancillary techniques with higher diagnostic abilities in the routine clinical setting.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elena Di Blasi
- Istituto Nazionale dei Tumori, Università degli Studi di Milano, 20133 Milan, Italy
| | - Lourdes Galán
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - Laura Zaldumbide
- Department of Pathology, Hospital Universitario Cruces, 48903 Barakaldo, Spain
| | - Gema Civantos
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - David Marcilla
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
| | - Enrique de Álava
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Juan Díaz-Martín
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain; (C.S.-A.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III (CB16/12/00361; CIBERONC-ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
| |
Collapse
|
94
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
95
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The Evolutionary History of Metastatic Pancreatic Neuroendocrine Tumours Reveals a Therapy Driven Route to High-Grade Transformation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24300723. [PMID: 38313278 PMCID: PMC10836126 DOI: 10.1101/2024.01.08.24300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular, show frequent progression from a low/intermediate to a high-grade disease. To understand the molecular mechanisms underlying this phenomenon, we performed multi-omics analysis of 32 longitudinal samples from six metastatic PanNET patients. Following MEN1 inactivation, PanNETs exhibit genetic heterogeneity on both spatial and temporal dimensions with parallel and convergent tumuor evolution involving the ATRX/DAXX and mTOR pathways. Following alkylating chemotherapy treatment, some PanNETs develop mismatch repair deficiency and acquire a hypermutator phenotype. This DNA hypermutation phenotype was only found in cases that also showed transformation into a high-grade PanNET. Overall, our findings contribute to broaden the understanding of metastatic PanNET, and suggests that therapy driven disease evolution is an important hallmark of this disease.
Collapse
|
96
|
Swetha C, Hemalatha M, Teja KD, Girish B. Enigmatic role of T cells in pancreatic ductal adenocarcinoma: An introspective study. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:159-171. [DOI: 10.1016/b978-0-443-23523-8.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
97
|
Modica R, Liccardi A, Minotta R, Cannavale G, Benevento E, Colao A. Current understanding of pathogenetic mechanisms in neuroendocrine neoplasms. Expert Rev Endocrinol Metab 2024; 19:49-61. [PMID: 37936421 DOI: 10.1080/17446651.2023.2279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite the fact that important advances in research on neuroendocrine neoplasms (NENs) have been made, consistent data about their pathogenetic mechanism are still lacking. Furthermore, different primary sites may recognize different pathogenetic mechanisms. AREAS COVERED This review analyzes the possible biological and molecular mechanisms that may lead to NEN onset and progression in different organs. Through extensive research of the literature, risk factors including hypercholesterolemia, inflammatory bowel disease, chronic atrophic gastritis are evaluated as potential pathogenetic mechanisms. Consistent evidence is available regarding sporadic gastric NENs and MEN1 related duodenopancreatic NENs precursor lesions, and genetic-epigenetic mutations may play a pivotal role in tumor development and bone metastases onset. In lung neuroendocrine tumors (NETs), diffuse proliferation of neuroendocrine cells on the bronchial wall (DIPNECH) has been proposed as a premalignant lesion, while in lung neuroendocrine carcinoma nicotine and smoke could be responsible for carcinogenic processes. Also, rare primary NENs such as thymic (T-NENs) and Merkel cell carcinoma (MCC) have been analyzed, finding different possible pathogenetic mechanisms. EXPERT OPINION New technologies in genomics and epigenomics are bringing new light to the pathogenetic landscape of NENs, but further studies are needed to improve both prevention and treatment in these heterogeneous neoplasms.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Alessia Liccardi
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Roberto Minotta
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Giuseppe Cannavale
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Elio Benevento
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
| | - Annamaria Colao
- Endocrinology Unit, Department of Clinical Medicine and Surgery, Federico II University, Naples, Napoli, Italy
- UNESCO Chair "Education for Health and Sustainable Development, " Federico II University, Naples, Italy
| |
Collapse
|
98
|
Goul C, Peruzzo R, Zoncu R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol 2023; 24:857-875. [PMID: 37612414 DOI: 10.1038/s41580-023-00641-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.
Collapse
Affiliation(s)
- Claire Goul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
99
|
Mariën L, Islam O, Chhajlani S, Lybaert W, Peeters M, Van Camp G, Op de Beeck K, Vandamme T. The Quest for Circulating Biomarkers in Neuroendocrine Neoplasms: a Clinical Perspective. Curr Treat Options Oncol 2023; 24:1833-1851. [PMID: 37989978 DOI: 10.1007/s11864-023-01147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
OPINION STATEMENT Given the considerable heterogeneity in neuroendocrine neoplasms (NENs), it appears unlikely that a sole biomarker exists capable of fully capturing all useful clinical aspects of these tumors. This is reflected in the abundant number of biomarkers presently available for the diagnosis, prognosis, and monitoring of NEN patients. Although assessment of immunohistochemical and radiological markers remains paramount and often obligatory, there has been a notable surge of interest in circulating biomarkers over the years given the numerous benefits associated with liquid biopsies. Currently, the clinic primarily relies on single-analyte assays such as the chromogranin A assay, but these are far from ideal because of limitations such as compromised sensitivity and specificity as well as a lack of standardization. Consequently, the quest for NEN biomarkers continued with the exploration of multianalyte markers, exemplified by the development of the NETest and ctDNA-based analysis. Here, an extensive panel of markers is simultaneously evaluated to identify distinct signatures that could enhance the accuracy of patient diagnosis, prognosis determination, and response to therapy prediction and monitoring. Given the promising results, the development and implementation of these multianalyte markers are expected to usher in a new era of NEN biomarkers in the clinic. In this review, we will outline both clinically implemented and more experimental circulating markers to provide an update on developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Mariën
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Odeta Islam
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Siddharth Chhajlani
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Willem Lybaert
- NETwerk and Department of Oncology, VITAZ, Lodewijk de Meesterstraat 5, 9100, Sint-Niklaas, Belgium
| | - Marc Peeters
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650, Edegem, Belgium
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Timon Vandamme
- Integrated Personalized and Precision Oncology Network (IPPON), Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- NETwerk and Department of Oncology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
| |
Collapse
|
100
|
Krauß L, Schneider C, Hessmann E, Saur D, Schneider G. Epigenetic control of pancreatic cancer metastasis. Cancer Metastasis Rev 2023; 42:1113-1131. [PMID: 37659057 PMCID: PMC10713713 DOI: 10.1007/s10555-023-10132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles. Interfering with epigenetic reprogramming can potentially control the adaptive processes responsible for metastatic progression and therapy resistance, thereby enhancing treatment responses and preventing recurrence. This review will focus on the relevance of histone-modifying enzymes in pancreatic cancer, specifically on their impact on the metastatic cascade. Additionally, it will also provide a brief update on the current clinical developments in epigenetic therapies.
Collapse
Affiliation(s)
- Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany.
| |
Collapse
|