51
|
DNA polymerase epsilon interacts with SUVH2/9 to repress the expression of genes associated with meiotic DSB hotspot in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2208441119. [PMID: 36191225 PMCID: PMC9564942 DOI: 10.1073/pnas.2208441119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is initiated by the SPORULATION 11 (SPO11)-triggered formation of double-strand breaks (DSBs) that usually occur in open chromatin with active transcriptional features in many eukaryotes. However, gene transcription at DSB sites appears to be detrimental for repair, but the regulatory mechanisms governing transcription at meiotic DSB sites are largely undefined in plants. Here, we demonstrate that the largest DNA polymerase epsilon subunit POL2A interacts with SU(VAR)3 to 9 homologs SUVH2 and SUVH9. N-SIM (structured illumination microscopy) observation shows that the colocalization of SUVH2 with the meiotic DSB marker γ-H2AX is dependent on POL2A. RNA-seq of male meiocytes demonstrates that POL2A and SUVH2 jointly repress the expression of 865 genes, which have several known characteristics associated with meiotic DSB sites. Bisulfite-seq and small RNA-seq of male meiocytes support the idea that the silencing of these genes by POL2A and SUVH2/9 is likely independent of CHH methylation or 24-nt siRNA accumulation. Moreover, pol2a suvh2 suvh9 triple mutants have more severe defects in meiotic recombination and fertility compared with either pol2a or suvh2 suvh9. Our results not only identify a epigenetic regulatory mechanism for gene silencing in male meiocytes but also reveal roles for DNA polymerase and SUVH2/9 beyond their classic functions in mitosis.
Collapse
|
52
|
Sato H, Köhler C. Genomic imprinting regulates establishment and release of seed dormancy. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102264. [PMID: 35872392 DOI: 10.1016/j.pbi.2022.102264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy enables plant seeds to time germination until environmental conditions become favorable for seedling survival. This trait has high adaptive value and is of great agricultural relevance. The endosperm is a reproductive tissue formed after fertilization that in addition to support embryo growth has major roles in establishing seed dormancy. Many genes adopt parent-of-origin specific expression patterns in the endosperm, a phenomenon that has been termed genomic imprinting. Imprinted genes are targeted by epigenetic mechanisms acting before and after fertilization. Recent studies revealed that imprinted genes are involved in establishing seed dormancy, highlighting a new mechanism of parental control over this adaptive trait. Here, we review the regulatory mechanisms establishing genomic imprinting and their effect on seed dormancy.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden; Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
53
|
Velay F, Méteignier LV, Laloi C. You shall not pass! A Chromatin barrier story in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:888102. [PMID: 36212303 PMCID: PMC9540200 DOI: 10.3389/fpls.2022.888102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
As in other eukaryotes, the plant genome is functionally organized in two mutually exclusive chromatin fractions, a gene-rich and transcriptionally active euchromatin, and a gene-poor, repeat-rich, and transcriptionally silent heterochromatin. In Drosophila and humans, the molecular mechanisms by which euchromatin is preserved from heterochromatin spreading have been extensively studied, leading to the identification of insulator DNA elements and associated chromatin factors (insulator proteins), which form boundaries between chromatin domains with antagonistic features. In contrast, the identity of factors assuring such a barrier function remains largely elusive in plants. Nevertheless, several genomic elements and associated protein factors have recently been shown to regulate the spreading of chromatin marks across their natural boundaries in plants. In this minireview, we focus on recent findings that describe the spreading of chromatin and propose avenues to improve the understanding of how plant chromatin architecture and transitions between different chromatin domains are defined.
Collapse
Affiliation(s)
- Florent Velay
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| | - Louis-Valentin Méteignier
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - Christophe Laloi
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, Marseille, F-13009, France
| |
Collapse
|
54
|
Sasaki E, Gunis J, Reichardt-Gomez I, Nizhynska V, Nordborg M. Conditional GWAS of non-CG transposon methylation in Arabidopsis thaliana reveals major polymorphisms in five genes. PLoS Genet 2022; 18:e1010345. [PMID: 36084135 PMCID: PMC9491579 DOI: 10.1371/journal.pgen.1010345] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 07/16/2022] [Indexed: 11/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have revealed that the striking natural variation for DNA CHH-methylation (mCHH; H is A, T, or C) of transposons has oligogenic architecture involving major alleles at a handful of known methylation regulators. Here we use a conditional GWAS approach to show that CHG-methylation (mCHG) has a similar genetic architecture-once mCHH is statistically controlled for. We identify five key trans-regulators that appear to modulate mCHG levels, and show that they interact with a previously identified modifier of mCHH in regulating natural transposon mobilization.
Collapse
Affiliation(s)
- Eriko Sasaki
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Joanna Gunis
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Ilka Reichardt-Gomez
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Viktoria Nizhynska
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
55
|
Guo Y, Chen Y, Zhang J, Li J, Fan K, Chen R, Liu Y, Zheng J, Fu J, Gu R, Wang G, Cui Y, Du X, Wang J. Epigenetic Mutation in a Tubulin-Folding Cofactor B (ZmTFCB) Gene Arrests Kernel Development in Maize. PLANT & CELL PHYSIOLOGY 2022; 63:1156-1167. [PMID: 35771678 DOI: 10.1093/pcp/pcac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Epialleles, the heritable epigenetic variants that are not caused by changes in DNA sequences, can broaden genetic and phenotypic diversity and benefit to crop breeding, but very few epialleles related to agricultural traits have been identified in maize. Here, we cloned a small kernel mutant, smk-wl10, from maize, which encoded a tubulin-folding cofactor B (ZmTFCB) protein. Expression of the ZmTFCB gene decreased in the smk-wl10 mutant, which arrested embryo, endosperm and basal endosperm transfer layer developments. Overexpression of ZmTFCB could complement the defective phenotype of smk-wl10. No nucleotide sequence variation in ZmTFCB could be found between smk-wl10 and wild type (WT). Instead, we detected hypermethylation of nucleotide CHG (where H is A, C or T nucleotide) sequence contexts and increased level of histone H3K9me2 methylation in the upstream sequence of ZmTFCB in smk-wl10 compared with WT, which might respond to the attenuating transcription of ZmTFCB. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays identified a strong interaction between ZmTFCB and its homolog ZmTFCE. Thus, our work identifies a novel epiallele of the maize ZmTFCB gene, which might represent a common phenomenon in the epigenetic regulation of important traits such as kernel development in maize.
Collapse
Affiliation(s)
- Yingmei Guo
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiankun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaijian Fan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongrong Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
56
|
Wang L, Liu J, Li X, Lyu X, Liu Z, Zhao H, Jiao X, Zhang W, Xie J, Liu W. A histone H3K9 methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in Trichoderma reesei. Microb Biotechnol 2022; 15:2533-2546. [PMID: 35921310 PMCID: PMC9518983 DOI: 10.1111/1751-7915.14103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022] Open
Abstract
Sorbicillinoids (also termed yellow pigment) are derived from either marine or terrestrial fungi, exhibit various biological activities and therefore show potential as commercial products for human or animal health. The cellulolytic filamentous fungus Trichoderma reesei is capable to biosynthesize sorbicillinoids, but the underlying regulatory mechanism is not yet completely clear. Herein, we identified a histone H3 lysine 9 (H3K9) methyltransferase, Dim5, in T. reesei. TrDIM5 deletion caused an impaired vegetative growth as well as conidiation, whereas the ∆Trdim5 strain displayed a remarkable increase in sorbicillinoid production. Post TrDIM5 deletion, the transcription of sorbicillinoid biosynthesis‐related (SOR) genes was significantly upregulated with a more open chromatin structure. Intriguingly, hardly any expression changes occurred amongst those genes located on both flanks of the SOR gene cluster. In addition, the assays provided evidence that H3K9 triple methylation (H3K9me3) modification acted as a repressive marker at the SOR gene cluster and thus directly mediated the repression of sorbicillinoid biosynthesis. Transcription factor Ypr1 activated the SOR gene cluster by antagonizing TrDim5‐mediated repression and therefore contributed to forming a relatively more open local chromatin environment, which further facilitated its binding and SOR gene expression. The results of this study will contribute to understanding the intricate regulatory network in sorbicillinoid biosynthesis and facilitate the endowment of T. reesei with preferred features for sorbicillinoid production by genetic engineering.
Collapse
Affiliation(s)
- Lei Wang
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jialong Liu
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaotong Li
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xinxing Lyu
- Institute of Basic Medicine, Shandong First Medical University&Shandong Academy of Medical Sciences, Jinan, China
| | - Zhizhen Liu
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hong Zhao
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Xie
- Collaborative Innovation Center of Reverse Microbial Etiology, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
57
|
Huang X, Sun MX. H3K27 methylation regulates the fate of two cell lineages in male gametophytes. THE PLANT CELL 2022; 34:2989-3005. [PMID: 35543471 PMCID: PMC9338816 DOI: 10.1093/plcell/koac136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
During angiosperm male gametogenesis, microspores divide to produce a vegetative cell (VC) and a male germline (MG), each with distinct cell fates. The mechanism underlying determination of the MG cell/VC fate remains an important area of research, with many unanswered questions. Here, we report that H3K27me3 is essential for VC fate commitment in male Arabidopsis thaliana gametophytes; H3K27me3 erasure contributes to MG cell fate initiation. VC-targeted H3K27me3 erasure disturbed VC development and shifted the VC fate toward a gamete destination, which suggests that MG cells require H3K27me3 erasure to trigger gamete cell fate. Multi-omics and cytological analyses confirmed the occurrence of extensive cell identity transition due to H3K27me3 erasure. Therefore, we experimentally confirmed that MG cell/VC fate is epigenetically regulated. H3K27 methylation plays a critical role in guiding MG cell/VC fate determination for pollen fertility in Arabidopsis. Our work also provides evidence for two previous hypotheses: the germline cell fate is specified by the differential distribution of unknown determinants and VC maintains the default microspore program (i.e. the H3K27me3 setting) while MG requires reprogramming.
Collapse
Affiliation(s)
- Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
58
|
Liu Q, Liu P, Ji T, Zheng L, Shen C, Ran S, Liu J, Zhao Y, Niu Y, Wang T, Dong J. The histone methyltransferase SUVR2 promotes DSB repair via chromatin remodeling and liquid-liquid phase separation. MOLECULAR PLANT 2022; 15:1157-1175. [PMID: 35610973 DOI: 10.1016/j.molp.2022.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Maintaining genomic integrity and stability is particularly important for stem cells, which are at the top of the cell lineage origin. Here, we discovered that the plant-specific histone methyltransferase SUVR2 maintains the genome integrity of the root tip stem cells through chromatin remodeling and liquid-liquid phase separation (LLPS) when facing DNA double-strand breaks (DSBs). The histone methyltransferase SUVR2 (MtSUVR2) has histone methyltransferase activity and catalyzes the conversion of histone H3 lysine 9 monomethylation (H3K9me1) to H3K9me2/3 in vitro and in Medicago truncatula. Under DNA damage, the proportion of heterochromatin decreased and the level of DSB damage marker γ-H2AX increased in suvr2 mutants, indicating that MtSUVR2 promotes the compaction of the chromatin structure through H3K9 methylation modification to protect DNA from damage. Interestingly, MtSUVR2 was induced by DSBs to phase separate and form droplets to localize at the damage sites, and this was confirmed by immunofluorescence and fluorescence recovery after photobleaching experiments. The IDR1 and low-complexity domain regions of MtSUVR2 determined its phase separation in the nucleus, whereas the IDR2 region determined the interaction with the homologous recombinase MtRAD51. Furthermore, we found that MtSUVR2 drove the phase separation of MtRAD51 to form "DNA repair bodies," which could enhance the stability of MtRAD51 proteins to facilitate error-free homologous recombination repair of stem cells. Taken together, our study reveals that chromatin remodeling-associated proteins participate in DNA repair through LLPS.
Collapse
Affiliation(s)
- Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Ji
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Shen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shasha Ran
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinling Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
59
|
Forgione I, Muto A, Woloszynska M, Chiappetta AA, Ferrari M, Van Lijsebettens M, Bitonti MB, Bruno L. Epigenetic mechanisms affect the curled leaf phenotype in the hypomethylated ddc mutant of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111254. [PMID: 35487663 DOI: 10.1016/j.plantsci.2022.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The ddc mutant of Arabidopsis thaliana is characterized by pleiotropic phenotypic alterations including a curl-shaped leaf, previously explained by disturbed auxin metabolism and transport. The present study was aimed at further explore the molecular bases underlying the abnormal phenotype of the ddc leaf. We demonstrated that genes specifically related to leaf fate commitment and morphogenesis were misexpressed on developing ddc leaves, such as upregulation of CURLY LEAF (CLF) and downregulation of ASYMMETRIC LEAVES2 (AS2), KNOTTED-like gene from A. thaliana (KNAT6), TEOSINTE-LIKE1 CYCLOIDEA and PROLIFERATING CELL FACTOR 2 (TCP2) and others. The CLF gene, encoding a component of Polycomb repressive complex 2 (PRC2) which adds trimethylation marks at Lys27 of histone H3, was overexpressed in the ddc mutant and concomitantly was correlated with DNA methylation-dependent repression of its negative regulator UCL1. KNAT6, encoding a class 1 KNOX homeotic gene, had increased H3K27me3 trimethylation levels, suggesting it is a target gene of the CLF containing PRC2 complex in the ddc mutant. We postulate that different epigenetic mechanisms modulate expression of genes related to auxin pathways as well as gene targets of Polycomb repressive action, during leaf morphogenesis.
Collapse
Affiliation(s)
- Ivano Forgione
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Antonella Muto
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Magdalena Woloszynska
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Genetics, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 7, 51-631 Wroclaw, Poland.
| | - Adriana Ada Chiappetta
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| |
Collapse
|
60
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
61
|
Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving Beyond DNA Sequence to Improve Plant Stress Responses. Front Genet 2022; 13:874648. [PMID: 35518351 PMCID: PMC9061961 DOI: 10.3389/fgene.2022.874648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
Plants offer a habitat for a range of interactions to occur among different stress factors. Epigenetics has become the most promising functional genomics tool, with huge potential for improving plant adaptation to biotic and abiotic stresses. Advances in plant molecular biology have dramatically changed our understanding of the molecular mechanisms that control these interactions, and plant epigenetics has attracted great interest in this context. Accumulating literature substantiates the crucial role of epigenetics in the diversity of plant responses that can be harnessed to accelerate the progress of crop improvement. However, harnessing epigenetics to its full potential will require a thorough understanding of the epigenetic modifications and assessing the functional relevance of these variants. The modern technologies of profiling and engineering plants at genome-wide scale provide new horizons to elucidate how epigenetic modifications occur in plants in response to stress conditions. This review summarizes recent progress on understanding the epigenetic regulation of plant stress responses, methods to detect genome-wide epigenetic modifications, and disentangling their contributions to plant phenotypes from other sources of variations. Key epigenetic mechanisms underlying stress memory are highlighted. Linking plant response with the patterns of epigenetic variations would help devise breeding strategies for improving crop performance under stressed scenarios.
Collapse
Affiliation(s)
- Faisal Saeed
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Usman Khalid Chaudhry
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Yasir Saeed
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
62
|
Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 2022; 38:676-707. [DOI: 10.1016/j.tig.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
63
|
CHROMOMETHYLTRANSFERASE3/KRYPTONITE maintains the sulfurea paramutation in Solanum lycopersicum. Proc Natl Acad Sci U S A 2022; 119:e2112240119. [PMID: 35324329 PMCID: PMC9060480 DOI: 10.1073/pnas.2112240119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
SignificanceParamutation involves the transfer of a repressive epigenetic mark between silent and active alleles. It is best known from exceptional non-Mendelian inheritance of conspicuous phenotypes in maize but also in other plants and animals. Recent genomic studies, however, indicate that paramutation may be less exceptional. It may be a consequence of wide-cross hybridization and may contribute to quantitative trait variation or unstable phenotypes in crops. Using the sulfurea (sulf) locus in tomato, we demonstrate that a self-reinforcing feedback loop involving DNA- and histone-methyl transferases CHROMOMETHYLTRANSFERASE3 (CMT3) and KRYPTONITE (KYP) is required for paramutation of sulf and that there is a change in chromatin organization. These findings advance the understanding of non-Mendelian inheritance in plants.
Collapse
|
64
|
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. PLANT PHYSIOLOGY 2022; 188:1811-1824. [PMID: 35134247 PMCID: PMC8968285 DOI: 10.1093/plphys/kiac033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
65
|
Godwin J, Farrona S. The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. EPIGENOMES 2022; 6:epigenomes6010008. [PMID: 35323212 PMCID: PMC8948837 DOI: 10.3390/epigenomes6010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is arguably the best-known plant complex of the Polycomb Group (PcG) pathway, formed by a group of proteins that epigenetically represses gene expression. PRC2-mediated deposition of H3K27me3 has amply been studied in Arabidopsis and, more recently, data from other plant model species has also been published, allowing for an increasing knowledge of PRC2 activities and target genes. How PRC2 molecular functions are regulated and how PRC2 is recruited to discrete chromatin regions are questions that have brought more attention in recent years. A mechanism to modulate PRC2-mediated activity is through its interaction with other protein partners or accessory proteins. Current evidence for PRC2 interactors has demonstrated the complexity of its protein network and how far we are from fully understanding the impact of these interactions on the activities of PRC2 core subunits and on the formation of new PRC2 versions. This review presents a list of PRC2 interactors, emphasizing their mechanistic action upon PRC2 functions and their effects on transcriptional regulation.
Collapse
|
66
|
Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022; 23:137-153. [PMID: 34608297 DOI: 10.1038/s41576-021-00416-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.
Collapse
Affiliation(s)
- Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
67
|
Decoding the sorghum methylome: understanding epigenetic contributions to agronomic traits. Biochem Soc Trans 2022; 50:583-596. [PMID: 35212360 PMCID: PMC9022969 DOI: 10.1042/bst20210908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation is a chromatin modification that plays an essential role in regulating gene expression and genome stability and it is typically associated with gene silencing and heterochromatin. Owing to its heritability, alterations in the patterns of DNA methylation have the potential to provide for epigenetic inheritance of traits. Contemporary epigenomic technologies provide information beyond sequence variation and could supply alternative sources of trait variation for improvement in crops such as sorghum. Yet, compared with other species such as maize and rice, the sorghum DNA methylome is far less well understood. The distribution of CG, CHG, and CHH methylation in the genome is different compared with other species. CG and CHG methylation levels peak around centromeric segments in the sorghum genome and are far more depleted in the gene dense chromosome arms. The genes regulating DNA methylation in sorghum are also yet to be functionally characterised; better understanding of their identity and functional analysis of DNA methylation machinery mutants in diverse genotypes will be important to better characterise the sorghum methylome. Here, we catalogue homologous genes encoding methylation regulatory enzymes in sorghum based on genes in Arabidopsis, maize, and rice. Discovering variation in the methylome may uncover epialleles that provide extra information to explain trait variation and has the potential to be applied in epigenome-wide association studies or genomic prediction. DNA methylation can also improve genome annotations and discover regulatory elements underlying traits. Thus, improving our knowledge of the sorghum methylome can enhance our understanding of the molecular basis of traits and may be useful to improve sorghum performance.
Collapse
|
68
|
Histone demethylase IBM1-mediated meiocyte gene expression ensures meiotic chromosome synapsis and recombination. PLoS Genet 2022; 18:e1010041. [PMID: 35192603 PMCID: PMC8896719 DOI: 10.1371/journal.pgen.1010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Histone methylation and demethylation play important roles in plant growth and development, but the involvement of histone demethylation during meiosis is poorly understood. Here we show that disruption of Arabidopsis thaliana INCREASE IN BONSAI METHYLATION 1 (IBM1) causes incomplete synapsis, chromosome entanglement and reduction of recombination during meiosis, leading to sterility. Interestingly, these ibm1 meiotic defects are rescued by mutations in either SUVH4/KYP or CMT3. Using transcriptomic analyses we show that mutation of IBM1 down-regulates thousands of genes expressed in meiocytes, and that expression of about 38% of these genes are restored to wild type levels in ibm1 cmt3 double mutants. Changes in the expression of 437 of these, including the ARABIDOPSIS MEI2-LIKE AML3-5 genes, are correlated with a significant reduction of gene body CHG methylation. Consistently, the aml3 aml4 aml5 triple have defects in synapsis and chromosome entanglement similar to ibm1. Genetic analysis shows that aml3 aml4 aml5 ibm1 quadruple mutants resembles the ibm1 single mutant. Strikingly, over expression of AML5 in ibm1 can partially rescue the ibm1 meiotic defects. Taken together, our results demonstrate that histone demethylase IBM1 is required for meiosis likely via coordinated regulation of meiocyte gene expression during meiosis.
Collapse
|
69
|
Local and global crosstalk among heterochromatin marks drives DNA methylome patterning in Arabidopsis. Nat Commun 2022; 13:861. [PMID: 35165291 PMCID: PMC8844080 DOI: 10.1038/s41467-022-28468-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are robustly silenced by multiple epigenetic marks, but dynamics of crosstalk among these marks remains enigmatic. In Arabidopsis, TEs are silenced by cytosine methylation in both CpG and non-CpG contexts (mCG and mCH) and histone H3 lysine 9 methylation (H3K9me). While mCH and H3K9me are mutually dependent for their maintenance, mCG and mCH/H3K9me are independently maintained. Here, we show that establishment, rather than maintenance, of mCH depends on mCG, accounting for the synergistic colocalization of these silent marks in TEs. When mCG is lost, establishment of mCH is abolished in TEs. mCG also guides mCH in active genes, though the resulting mCH/H3K9me is removed thereafter. Unexpectedly, targeting efficiency of mCH depends on relative, rather than absolute, levels of mCG within the genome, suggesting underlying global negative controls. We propose that local positive feedback in heterochromatin dynamics, together with global negative feedback, drive robust and balanced DNA methylome patterning. In plant genomes, both mCG and H3K9me2/mCH are important for silencing transposable elements (TEs). Here, the authors show that establishment of mCH is abolished in both TE and active genes when mCG is lost and targeting efficiency of mCH depends on relative levels of mCG within the genome.
Collapse
|
70
|
Wen YX, Wang JY, Zhu HH, Han GH, Huang RN, Huang L, Hong YG, Zheng SJ, Yang JL, Chen WW. Potential Role of Domains Rearranged Methyltransferase7 in Starch and Chlorophyll Metabolism to Regulate Leaf Senescence in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:836015. [PMID: 35211145 PMCID: PMC8860812 DOI: 10.3389/fpls.2022.836015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation is an important epigenetic mark involved in diverse biological processes. Here, we report the critical function of tomato (Solanum lycopersicum) Domains Rearranged Methyltransferase7 (SlDRM7) in plant growth and development, especially in leaf interveinal chlorosis and senescence. Using a hairpin RNA-mediated RNA interference (RNAi), we generated SlDRM7-RNAi lines and observed pleiotropic developmental defects including small and interveinal chlorosis leaves. Combined analyses of whole genome bisulfite sequence (WGBS) and RNA-seq revealed that silencing of SlDRM7 caused alterations in both methylation levels and transcript levels of 289 genes, which are involved in chlorophyll synthesis, photosynthesis, and starch degradation. Furthermore, the photosynthetic capacity decreased in SlDRM7-RNAi lines, consistent with the reduced chlorophyll content and repression of genes involved in chlorophyll biosynthesis, photosystem, and photosynthesis. In contrast, starch granules were highly accumulated in chloroplasts of SlDRM7-RNAi lines and associated with lowered expression of genes in the starch degradation pathway. In addition, SlDRM7 was activated by aging- and dark-induced senescence. Collectively, these results demonstrate that SlDRM7 acts as an epi-regulator to modulate the expression of genes related to starch and chlorophyll metabolism, thereby affecting leaf chlorosis and senescence in tomatoes.
Collapse
Affiliation(s)
- Yu Xin Wen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guang Hao Han
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ru Nan Huang
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yi Guo Hong
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wei Chen
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
71
|
Lopez L, Perrella G, Calderini O, Porceddu A, Panara F. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume Medicago truncatula and Their Expression Analysis in Nodules. PLANTS 2022; 11:plants11030322. [PMID: 35161303 PMCID: PMC8838541 DOI: 10.3390/plants11030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023]
Abstract
Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Giorgio Perrella
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Ornella Calderini
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Francesco Panara
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| |
Collapse
|
72
|
Farrell C, Vaquero-Sedas MI, Cubiles MD, Thompson M, Vega-Vaquero A, Pellegrini M, Vega-Palas MA. A complex network of interactions governs DNA methylation at telomeric regions. Nucleic Acids Res 2022; 50:1449-1464. [PMID: 35061900 PMCID: PMC8860613 DOI: 10.1093/nar/gkac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
DNA methylation modulates telomere function. In Arabidopsis thaliana, telomeric regions have a bimodal chromatin organization with unmethylated telomeres and methylated subtelomeres. To gain insight into this organization we have generated TAIR10-Tel, a modified version of the Arabidopsis reference genome with additional sequences at most chromosome ends. TAIR10-Tel has allowed us to analyse DNA methylation at nucleotide resolution level in telomeric regions. We have analysed the wild-type strain and mutants that encode inactive versions of all currently known relevant methyltransferases involved in cytosine methylation. These analyses have revealed that subtelomeric DNA methylation extends 1 to 2 kbp from Interstitial Telomeric Sequences (ITSs) that abut or are very near to telomeres. However, DNA methylation drops at the telomeric side of the telomere-subtelomere boundaries and disappears at the inner part of telomeres. We present a comprehensive and integrative model for subtelomeric DNA methylation that should help to decipher the mechanisms that govern the epigenetic regulation of telomeres. This model involves a complex network of interactions between methyltransferases and subtelomeric DNA sequences.
Collapse
Affiliation(s)
- Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA90095, USA
| | - María I Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Seville, E41092, Spain
| | - María D Cubiles
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, Seville, E41012, Spain
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA90095, USA
| | - Alejandro Vega-Vaquero
- Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Seville, E41012, Spain
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA90095, USA.,Institute of Genomics and Proteomics, Los Angeles, CA90095, USA
| | - Miguel A Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Seville, E41092, Spain
| |
Collapse
|
73
|
Liu Y, Yang X, Zhou M, Yang Y, Li F, Yan X, Zhang M, Wei Z, Qin S, Min J. Structural basis for the recognition of methylated histone H3 by the Arabidopsis LHP1 chromodomain. J Biol Chem 2022; 298:101623. [PMID: 35074427 PMCID: PMC8861120 DOI: 10.1016/j.jbc.2022.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein.
Collapse
Affiliation(s)
- Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, PR China.
| | - Xiajie Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Mengqi Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Yinxue Yang
- College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, PR China
| | - Fangzhou Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xuemei Yan
- College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, PR China
| | | | - Zhengguo Wei
- School of Biology and Basic Medical Science, Soochow University, Su Zhou, Jiangsu 215021, PR China
| | - Su Qin
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
74
|
Fonseca R, Capel C, Yuste-Lisbona FJ, Quispe JL, Gómez-Martín C, Lebrón R, Hackenberg M, Oliver JL, Angosto T, Lozano R, Capel J. Functional characterization of the tomato HAIRPLUS gene reveals the implication of the epigenome in the control of glandular trichome formation. HORTICULTURE RESEARCH 2022; 9:uhab015. [PMID: 35039829 PMCID: PMC8795820 DOI: 10.1093/hr/uhab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/18/2022] [Accepted: 10/01/2021] [Indexed: 06/14/2023]
Abstract
Trichomes are specialised epidermal cells developed in the aerial surface of almost every terrestrial plant. These structures form physical barriers, which combined with their capability of synthesis of complex molecules, prevent plagues from spreading and confer trichomes a key role in the defence against herbivores. In this work, the tomato gene HAIRPLUS (HAP) that controls glandular trichome density in tomato plants was characterised. HAP belongs to a group of proteins involved in histone tail modifications although some also bind methylated DNA. HAP loss of function promotes epigenomic modifications in the tomato genome reflected in numerous differentially methylated cytosines and causes transcriptomic changes in hap mutant plants. Taken together, these findings demonstrate that HAP links epigenome remodelling with multicellular glandular trichome development and reveal that HAP is a valuable genomic tool for pest resistance in tomato breeding.
Collapse
Affiliation(s)
- Rocío Fonseca
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Jorge L Quispe
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Cristina Gómez-Martín
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Ricardo Lebrón
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - José L Oliver
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Trinidad Angosto
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Juan Capel
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
75
|
Zhou M, Coruh C, Xu G, Martins LM, Bourbousse C, Lambolez A, Law JA. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis. Nat Commun 2022; 13:244. [PMID: 35017514 PMCID: PMC8752594 DOI: 10.1038/s41467-021-27690-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation shapes the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As is evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that CLASSY1-4 (CLSY1-4), four locus-specific regulators of DNA methylation, also control tissue-specific methylation patterns, with the most striking pattern observed in ovules where CLSY3 and CLSY4 control DNA methylation at loci with a highly conserved DNA motif. On a more global scale, we demonstrate that specific clsy mutants are sufficient to shift the epigenetic landscape between tissues. Together, these findings reveal substantial epigenetic diversity between tissues and assign these changes to specific CLSY proteins, elucidating how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development. CLASSY (CLSY) proteins regulate DNA methylation at specific loci in the Arabidopsis genome. Here the authors show that the CLSYs also control tissue-specific DNA methylation, including at siren loci in ovules, and that the lack of an individual CLSYs can shift the epigenetic landscape between tissues.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Laura M Martins
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA
| | - Clara Bourbousse
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.,Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Alice Lambolez
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Biological Sciences, Faculty of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyō-ku, Tōkyō, 113-8654, Japan
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, 92037, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
76
|
Wang Z, Cao H, Zhang C, Chen F, Liu Y. The SNF5-type protein BUSHY regulates seed germination via the gibberellin pathway and is dependent on HUB1 in Arabidopsis. PLANTA 2022; 255:34. [PMID: 35006338 DOI: 10.1007/s00425-021-03767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
The SNF5-type protein BUSHY plays a role in the regulation of seed germination via the gibberellin pathway dependent on HUB1 in Arabidopsis thaliana. SWITCH/SUCROSE NONFERMENTING (SWI/SNF) complexes play diverse roles in plant development. Some components have roles in embryo development and seed maturation, however, whether the SNF5-type protein BUSHY (BSH), one of the components, plays a role in Arabidopsis seed related traits is presently unclear. In our study, we show that a loss-of-function mutation in BSH causes increased seed germination in Arabidopsis. BSH transcription was induced by the gibberellin (GA) inhibitor paclobutrazol (PAC) in the seed, and BSH regulates the expression of GA pathway genes, such as Gibberellin 3-Oxidase 1 (GA3OX1), Gibberellic Acid-Stimulated Arabidopsis 4 (GASA4), and GASA6 during seed germination. A genetic analysis showed that seed germination was distinctly improved in the bshga3ox1ga3ox2 triple mutant, indicating that BSH acts partially downstream of GA3OX1 and GA3OX2. Moreover, the regulation of seed germination by BSH in response to PAC is dependent on HUB1. These results provide new insights and clues to understand the mechanisms of phytohormones in the regulation of seed germination.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cun Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
77
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
78
|
Hüther P, Hagmann J, Nunn A, Kakoulidou I, Pisupati R, Langenberger D, Weigel D, Johannes F, Schultheiss SJ, Becker C. MethylScore, a pipeline for accurate and context-aware identification of differentially methylated regions from population-scale plant whole-genome bisulfite sequencing data. QUANTITATIVE PLANT BIOLOGY 2022; 3:e19. [PMID: 37077980 PMCID: PMC10095865 DOI: 10.1017/qpb.2022.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/03/2023]
Abstract
Whole-genome bisulfite sequencing (WGBS) is the standard method for profiling DNA methylation at single-nucleotide resolution. Different tools have been developed to extract differentially methylated regions (DMRs), often built upon assumptions from mammalian data. Here, we present MethylScore, a pipeline to analyse WGBS data and to account for the substantially more complex and variable nature of plant DNA methylation. MethylScore uses an unsupervised machine learning approach to segment the genome by classification into states of high and low methylation. It processes data from genomic alignments to DMR output and is designed to be usable by novice and expert users alike. We show how MethylScore can identify DMRs from hundreds of samples and how its data-driven approach can stratify associated samples without prior information. We identify DMRs in the A. thaliana 1,001 Genomes dataset to unveil known and unknown genotype-epigenotype associations .
Collapse
Affiliation(s)
- Patrick Hüther
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | | | - Adam Nunn
- ecSeq Bioinformatics GmbH, 04103 Leipzig, Germany
- Department of Computer Science, Leipzig University, 04107 Leipzig, Germany
| | - Ioanna Kakoulidou
- Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rahul Pisupati
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | | | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | | | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| |
Collapse
|
79
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
80
|
Vigneau J, Borg M. The epigenetic origin of life history transitions in plants and algae. PLANT REPRODUCTION 2021; 34:267-285. [PMID: 34236522 PMCID: PMC8566409 DOI: 10.1007/s00497-021-00422-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 05/17/2023]
Abstract
Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.
Collapse
Affiliation(s)
- Jérômine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
81
|
Fang H, Shao Y, Wu G. Reprogramming of Histone H3 Lysine Methylation During Plant Sexual Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:782450. [PMID: 34917115 PMCID: PMC8669150 DOI: 10.3389/fpls.2021.782450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Plants undergo extensive reprogramming of chromatin status during sexual reproduction, a process vital to cell specification and pluri- or totipotency establishment. As a crucial way to regulate chromatin organization and transcriptional activity, histone modification can be reprogrammed during sporogenesis, gametogenesis, and embryogenesis in flowering plants. In this review, we first introduce enzymes required for writing, recognizing, and removing methylation marks on lysine residues in histone H3 tails, and describe their differential expression patterns in reproductive tissues, then we summarize their functions in the reprogramming of H3 lysine methylation and the corresponding chromatin re-organization during sexual reproduction in Arabidopsis, and finally we discuss the molecular significance of histone reprogramming in maintaining the pluri- or totipotency of gametes and the zygote, and in establishing novel cell fates throughout the plant life cycle. Despite rapid achievements in understanding the molecular mechanism and function of the reprogramming of chromatin status in plant development, the research in this area still remains a challenge. Technological breakthroughs in cell-specific epigenomic profiling in the future will ultimately provide a solution for this challenge.
Collapse
|
82
|
Zhang Y, Jang H, Xiao R, Kakoulidou I, Piecyk RS, Johannes F, Schmitz RJ. Heterochromatin is a quantitative trait associated with spontaneous epiallele formation. Nat Commun 2021; 12:6958. [PMID: 34845222 PMCID: PMC8630088 DOI: 10.1038/s41467-021-27320-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
Epialleles are meiotically heritable variations in expression states that are independent from changes in DNA sequence. Although they are common in plant genomes, their molecular origins are unknown. Here we show, using mutant and experimental populations, that epialleles in Arabidopsis thaliana that result from ectopic hypermethylation are due to feedback regulation of pathways that primarily function to maintain DNA methylation at heterochromatin. Perturbations to maintenance of heterochromatin methylation leads to feedback regulation of DNA methylation in genes. Using single base resolution methylomes from epigenetic recombinant inbred lines (epiRIL), we show that epiallelic variation is abundant in euchromatin, yet, associates with QTL primarily in heterochromatin regions. Mapping three-dimensional chromatin contacts shows that genes that are hotspots for ectopic hypermethylation have increases in contact frequencies with regions possessing H3K9me2. Altogether, these data show that feedback regulation of pathways that have evolved to maintain heterochromatin silencing leads to the origins of spontaneous hypermethylated epialleles.
Collapse
Affiliation(s)
- Yinwen Zhang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Ioanna Kakoulidou
- Department of Plant Sciences, Technical University of Munich, Freising, Germany
| | - Robert S Piecyk
- Department of Plant Sciences, Technical University of Munich, Freising, Germany
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.
- Institute for Advanced Study (IAS), Technical University of Munich, Garching, Germany.
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, USA.
- Institute for Advanced Study (IAS), Technical University of Munich, Garching, Germany.
| |
Collapse
|
83
|
Wang Q, Liu P, Jing H, Zhou XF, Zhao B, Li Y, Jin JB. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:221-236. [PMID: 34197643 DOI: 10.1111/nph.17593] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Dimethylation of histone H3 at lysine 9 (H3K9me2) is associated with heterochromatinization and transcriptional gene silencing in plants. The activation of sets of genes by drought stress is correlated with reduced H3K9me2 levels, but the role of H3K9 methylation in the regulation of drought-stress responses remains elusive. Here, we show that the Jumonji domain-containing H3K9 demethylase JMJ27 positively regulates drought-stress responses through its histone demethylase activity. RNA-seq analysis identified JMJ27-regulated genes, including positive regulators of drought stress GALACTINOL SYNTHASE 2 (GOLS2) and RESPONSE TO DESICCATION 20 (RD20). Genetic analysis demonstrated that JMJ27 positively regulates drought-stress responses at least partly through GOLS2 and RD20. JMJ27 directly associated with GOLS2 and RD20, and protected these loci from silencing by reducing H3K9me2 levels under normal conditions. REGULATORY PARTICLE NON-ATPASE 1a (RPN1a), a subunit of the 26S proteasome, interacted with JMJ27 and negatively regulated JMJ27 accumulation. Drought stress diminished RPN1a abundance, resulting in increased JMJ27 abundance. The drought stress-promoted occupancy of JMJ27 at GOLS2 and RD20 chromatin may reinforce their transcriptional induction by locally reducing the H3K9me2 levels. These results indicate that the RPN1a-JMJ27 module precisely regulates dynamic H3K9me2 deposition plasticity, ensuring proper adaptation to drought stress in Arabidopsis.
Collapse
Affiliation(s)
- Qiongli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Peng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hua Jing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Feng Zhou
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
84
|
Rothi MH, Tsuzuki M, Sethuraman S, Wierzbicki AT. Reinforcement of transcriptional silencing by a positive feedback between DNA methylation and non-coding transcription. Nucleic Acids Res 2021; 49:9799-9808. [PMID: 34469565 PMCID: PMC8464056 DOI: 10.1093/nar/gkab746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
Non-coding transcription is an important determinant of heterochromatin formation. In Arabidopsis thaliana a specialized RNA polymerase V (Pol V) transcribes pervasively and produces long non-coding RNAs. These transcripts work with small interfering RNA to facilitate locus-specific establishment of RNA-directed DNA methylation (RdDM). Subsequent maintenance of RdDM is associated with elevated levels of Pol V transcription. However, the impact of DNA methylation on Pol V transcription remained unresolved. We found that DNA methylation strongly enhances Pol V transcription. The level of Pol V transcription is reduced in mutants defective in RdDM components working downstream of Pol V, indicating that RdDM is maintained by a mutual reinforcement of DNA methylation and Pol V transcription. Pol V transcription is affected only on loci that lose DNA methylation in all sequence contexts in a particular mutant, including mutants lacking maintenance DNA methyltransferases, which suggests that RdDM works in a complex crosstalk with other silencing pathways.
Collapse
Affiliation(s)
- M Hafiz Rothi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masayuki Tsuzuki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shriya Sethuraman
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
85
|
Sato H, Santos-González J, Köhler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife 2021; 10:e64593. [PMID: 34427186 PMCID: PMC8456740 DOI: 10.7554/elife.64593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) and methylation of histone 3 on lysine 9 (H3K9me) are two repressive epigenetic modifications that are typically localized in distinct regions of the genome. For reasons unknown, however, they co-occur in some organisms and special tissue types. In this study, we show that maternal alleles marked by H3K27me3 in the Arabidopsis endosperm were targeted by the H3K27me3 demethylase REF6 and became activated during germination. In contrast, maternal alleles marked by H3K27me3, H3K9me2, and CHG methylation (CHGm) are likely to be protected from REF6 targeting and remained silenced. Our study unveils that combinations of different repressive epigenetic modifications time a key adaptive trait by modulating access of REF6.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| |
Collapse
|
86
|
Wang Q, Bao X, Chen S, Zhong H, Liu Y, Zhang L, Xia Y, Kragler F, Luo M, Li XD, Lam HM, Zhang S. AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:9755-9767. [PMID: 34403482 PMCID: PMC8464031 DOI: 10.1093/nar/gkab706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pericentromeric DNA, consisting of high-copy-number tandem repeats and transposable elements, is normally silenced through DNA methylation and histone modifications to maintain chromosomal integrity and stability. Although histone deacetylase 6 (HDA6) has been known to participate in pericentromeric silencing, the mechanism is still yet unclear. Here, using whole genome bisulfite sequencing (WGBS) and chromatin immunoprecipitation-sequencing (ChIP-Seq), we mapped the genome-wide patterns of differential DNA methylation and histone H3 lysine 18 acetylation (H3K18ac) in wild-type and hda6 mutant strains. Results show pericentromeric CHG hypomethylation in hda6 mutants was mediated by DNA demethylases, not by DNA methyltransferases as previously thought. DNA demethylases can recognize H3K18ac mark and then be recruited to the chromatin. Using biochemical assays, we found that HDA6 could function as an ‘eraser’ enzyme for H3K18ac mark to prevent DNA demethylation. Oxford Nanopore Technology Direct RNA Sequencing (ONT DRS) also revealed that hda6 mutants with H3K18ac accumulation and CHG hypomethylation were shown to have transcriptionally active pericentromeric DNA.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Xiucong Bao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Shengjie Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Yaqin Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Li Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yiji Xia
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region.,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Ming Luo
- Agriculture and Biotechnology Research Center, Guangdong Provincial Key Laboratory of Applied Botany, Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Shoudong Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| |
Collapse
|
87
|
Papareddy RK, Páldi K, Smolka AD, Hüther P, Becker C, Nodine MD. Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis. eLife 2021; 10:e69396. [PMID: 34296996 PMCID: PMC8352596 DOI: 10.7554/elife.69396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases from ectopically methylating genes are expected to be of prime importance during periods of dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known regarding how DNA methyltransferase activities are precisely regulated during embryogenesis to prevent the induction of potentially deleterious and mitotically stable genic epimutations. Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of genes during embryogenesis that can persist for weeks afterwards. Our results are also consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing transcriptional activation reducing their expression. Therefore, the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also provide a model that may help reconcile conflicting viewpoints regarding the functions of gene-body methylation that occurs in nearly all flowering plants.
Collapse
Affiliation(s)
- Ranjith K Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Katalin Páldi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Anna D Smolka
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
| | - Patrick Hüther
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Genetics, LMU Biocenter, Ludwig-Maximilians UniversityMartinsriedGermany
| | - Claude Becker
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Genetics, LMU Biocenter, Ludwig-Maximilians UniversityMartinsriedGermany
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3ViennaAustria
- Laboratory of Molecular Biology, Wageningen UniversityWageningenNetherlands
| |
Collapse
|
88
|
Abstract
Meiotic recombination is a fundamental process that generates genetic diversity and ensures the accurate segregation of homologous chromosomes. While a great deal is known about genetic factors that regulate recombination, relatively little is known about epigenetic factors, such as DNA methylation. In maize, we examined the effects on meiotic recombination of a mutation in a component of the RNA-directed DNA methylation pathway, Mop1 (Mediator of paramutation1), as well as a mutation in a component of the trans-acting small interference RNA biogenesis pathway, Lbl1 (Leafbladeless1). MOP1 is of particular interest with respect to recombination because it is responsible for methylation of transposable elements that are immediately adjacent to transcriptionally active genes. In the mop1 mutant, we found that meiotic recombination is uniformly decreased in pericentromeric regions but is generally increased in gene rich chromosomal arms. This observation was further confirmed by cytogenetic analysis showing that although overall crossover numbers are unchanged, they occur more frequently in chromosomal arms in mop1 mutants. Using whole genome bisulfite sequencing, our data show that crossover redistribution is driven by loss of CHH (where H = A, T, or C) methylation within regions near genes. In contrast to what we observed in mop1 mutants, no significant changes were observed in the frequency of meiotic recombination in lbl1 mutants. Our data demonstrate that CHH methylation has a significant impact on the overall recombination landscape in maize despite its low frequency relative to CG and CHG methylation.
Collapse
|
89
|
Genetic and Molecular Control of Somatic Embryogenesis. PLANTS 2021; 10:plants10071467. [PMID: 34371670 PMCID: PMC8309254 DOI: 10.3390/plants10071467] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.
Collapse
|
90
|
DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2023347118. [PMID: 33495321 PMCID: PMC7865151 DOI: 10.1073/pnas.2023347118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plant DNA methylation, which occurs in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C), is established and maintained by different mechanisms. In this study, we present genome-wide chromatin accessibility profiles of Arabidopsis mutants that are deficient in CG, CHG, and/or CHH methylation. Through a combination of DNA methylation, chromatin accessibility, and higher-order chromosome conformation profiling of these mutants, we uncover links between DNA methylation, chromatin accessibility, and 3D genome architecture. These results reveal the interplay between CG and non-CG methylation in heterochromatin maintenance and suggest that DNA methylation can directly impact chromatin structure. DNA methylation is a major epigenetic modification found across species and has a profound impact on many biological processes. However, its influence on chromatin accessibility and higher-order genome organization remains unclear, particularly in plants. Here, we present genome-wide chromatin accessibility profiles of 18 Arabidopsis mutants that are deficient in CG, CHG, or CHH DNA methylation. We find that DNA methylation in all three sequence contexts impacts chromatin accessibility in heterochromatin. Many chromatin regions maintain inaccessibility when DNA methylation is lost in only one or two sequence contexts, and signatures of accessibility are particularly affected when DNA methylation is reduced in all contexts, suggesting an interplay between different types of DNA methylation. In addition, we found that increased chromatin accessibility was not always accompanied by increased transcription, suggesting that DNA methylation can directly impact chromatin structure by other mechanisms. We also observed that an increase in chromatin accessibility was accompanied by enhanced long-range chromatin interactions. Together, these results provide a valuable resource for chromatin architecture and DNA methylation analyses and uncover a pivotal role for methylation in the maintenance of heterochromatin inaccessibility.
Collapse
|
91
|
Wang Y, Zhou X, Luo J, Lv S, Liu R, Du X, Jia B, Yuan F, Zhang H, Du J. Recognition of H3K9me1 by maize RNA-directed DNA methylation factor SHH2. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1091-1096. [PMID: 33913587 DOI: 10.1111/jipb.13103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation pathway, which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2 (SHH2) is an H3K9me1 reader. Our structural studies reveal that H3K9me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di- and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a mono-methyllysine recognition mechanism which potentially links RdDM to H3K9me1 in maize.
Collapse
Affiliation(s)
- Yuhua Wang
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xuelin Zhou
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyan Luo
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| | - Suhui Lv
- School of Life Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Liu
- School of Life Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuan Du
- School of Life Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bei Jia
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| | - Fengtong Yuan
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Zhang
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jiamu Du
- School of Life Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
92
|
He K, Cao X, Deng X. Histone methylation in epigenetic regulation and temperature responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102001. [PMID: 33508540 DOI: 10.1016/j.pbi.2021.102001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Methylation of histones on different lysine residues is dynamically added by distinct writer enzymes, interpreted by reader proteins, and removed by eraser enzymes. This epigenetic mark has widespread, dynamic roles in plant development and environmental responses. For example, histone methylation plays a key role in mediating plant responses to temperature, including alterations of flowering time. In this review, we summarize recent advances in understanding the mechanism by which histone methylation regulates these processes, and discuss the role of histone methylation in temperature responses, based on data from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
93
|
Zhang C, Zuo Q, Gao X, Hu C, Zhou S, Chen C, Zou Y, Zhao J, Zhang Y, Li B. H3K4me2 Promotes the Activation of lncCPSET1 by Jun in the Chicken PGC Formation. Animals (Basel) 2021; 11:1572. [PMID: 34072197 PMCID: PMC8227976 DOI: 10.3390/ani11061572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Primordial germ cells are the ancestors of female and male cells. Current research has shown that long non-coding RNA (lncRNA) and Histone methylation are the pivotal epigenetic factors in the PGC formation. However, there are few studies on the regulatory mechanism of lncRNA in the formation of PGC. Here, we define the lncRNA highly expressed in chicken PGC, lncCPSET1 (chicken-PGC-specifically-expressed transcript 1) This study found that compared with the interference of lncCPSET1/histone methylase Mll2 alone, the PGC formation was severely inhibited with the interference of lncCPSET1 and histone methylase Mll2 jointly in vivo and in vitro. Studies on the transcription level of lncCPSET1 found that H3K4me2 and transcription factor Jun have a positive effect on the activation of lncCPSET1; while DNA hypomethylation inhibits the expression of lncCPSET1. In terms of mechanism, compared with DNA methylation, H3K4me2 dominates lncCPSET1 activation. H3K4me2 can be enriched in the lncCPSET1 promoter, change its chromosome conformation, recruit the transcription factor Jun, and activate the expression of lncCPSET1. Taken together, we confirmed the model that H3K4me2 rather than DNA hypomethylation mediates Jun to regulate lncCPSET1 transcription, which broadens the study of lncCPSET1 pre-transcriptional mechanism.
Collapse
Affiliation(s)
- Chen Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Xiaomin Gao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Cai Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Shujian Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Chen Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Yichen Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Juanjuan Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Yani Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Z.); (Q.Z.); (X.G.); (C.H.); (S.Z.); (C.C.); (Y.Z.); (J.Z.); (Y.Z.)
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| |
Collapse
|
94
|
Ke Y, Podio M, Conner J, Ozias-Akins P. Single-cell transcriptome profiling of buffelgrass (Cenchrus ciliaris) eggs unveils apomictic parthenogenesis signatures. Sci Rep 2021; 11:9880. [PMID: 33972603 PMCID: PMC8110759 DOI: 10.1038/s41598-021-89170-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 12/04/2022] Open
Abstract
Apomixis, a type of asexual reproduction in angiosperms, results in progenies that are genetically identical to the mother plant. It is a highly desirable trait in agriculture due to its potential to preserve heterosis of F1 hybrids through subsequent generations. However, no major crops are apomictic. Deciphering mechanisms underlying apomixis becomes one of the alternatives to engineer self-reproducing capability into major crops. Parthenogenesis, a major component of apomixis, commonly described as the ability to initiate embryo formation from the egg cell without fertilization, also can be valuable in plant breeding for doubled haploid production. A deeper understanding of transcriptional differences between parthenogenetic and sexual or non-parthenogenetic eggs can assist with pathway engineering. By conducting laser capture microdissection-based RNA-seq on sexual and parthenogenetic egg cells on the day of anthesis, a de novo transcriptome for the Cenchrus ciliaris egg cells was created, transcriptional profiles that distinguish the parthenogenetic egg from its sexual counterpart were identified, and functional roles for a few transcription factors in promoting natural parthenogenesis were suggested. These transcriptome data expand upon previous gene expression studies and will be a resource for future research on the transcriptome of egg cells in parthenogenetic and sexual genotypes.
Collapse
Affiliation(s)
- Yuji Ke
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, 31793, USA
| | - Maricel Podio
- Department of Horticulture, University of Georgia, Tifton, GA, 31793, USA
| | - Joann Conner
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, 31793, USA.,Department of Horticulture, University of Georgia, Tifton, GA, 31793, USA
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, 31793, USA. .,Department of Horticulture, University of Georgia, Tifton, GA, 31793, USA.
| |
Collapse
|
95
|
Wang Z, Butel N, Santos-González J, Simon L, Wärdig C, Köhler C. Transgenerational effect of mutants in the RNA-directed DNA methylation pathway on the triploid block in Arabidopsis. Genome Biol 2021; 22:141. [PMID: 33957942 PMCID: PMC8101200 DOI: 10.1186/s13059-021-02359-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hybridization of plants that differ in number of chromosome sets (ploidy) frequently causes endosperm failure and seed arrest, a phenomenon referred to as triploid block. In Arabidopsis, loss of function of NRPD1, encoding the largest subunit of the plant-specific RNA polymerase IV (Pol IV), can suppress the triploid block. Pol IV generates short RNAs required to guide de novo methylation in the RNA-directed DNA methylation (RdDM) pathway. Recent work suggests that suppression of the triploid block by mutants in RdDM components differs, depending on whether the diploid pollen is derived from tetraploid plants or from the omission in second division 1 (osd1) mutant. This study aims to understand this difference. RESULTS In this study, we find that the ability of mutants in the RdDM pathway to suppress the triploid block depends on their degree of inbreeding. While first homozygous generation mutants in RdDM components NRPD1, RDR2, NRPE1, and DRM2 have weak or no ability to rescue the triploid block, they are able to suppress the triploid block with successive generations of inbreeding. Inbreeding of nrpd1 was connected with a transgenerational loss of non-CG DNA methylation on sites jointly regulated by CHROMOMETHYLASES 2 and 3. CONCLUSIONS Our data reveal that loss of RdDM function differs in its effect in early and late generations, which has important implications when interpreting the effect of RdDM mutants.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Present address: College of Horticulture, Nanjing Agricultural University and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, 210095 China
| | - Nicolas Butel
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Lauriane Simon
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
96
|
Li Y, Chen X, Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep 2021; 22:e51803. [PMID: 33844406 PMCID: PMC8097341 DOI: 10.15252/embr.202051803] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides and histone lysine and arginine residues is a chromatin modification that critically contributes to the regulation of genome integrity, replication, and accessibility. A strong correlation exists between the genome-wide distribution of DNA and histone methylation, suggesting an intimate relationship between these epigenetic marks. Indeed, accumulating literature reveals complex mechanisms underlying the molecular crosstalk between DNA and histone methylation. These in vitro and in vivo discoveries are further supported by the finding that genes encoding DNA- and histone-modifying enzymes are often mutated in overlapping human diseases. Here, we summarize recent advances in understanding how DNA and histone methylation cooperate to maintain the cellular epigenomic landscape. We will also discuss the potential implication of these insights for understanding the etiology of, and developing biomarkers and therapies for, human congenital disorders and cancers that are driven by chromatin abnormalities.
Collapse
Affiliation(s)
- Yinglu Li
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Xiao Chen
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
97
|
Annacondia ML, Markovic D, Reig-Valiente JL, Scaltsoyiannes V, Pieterse CMJ, Ninkovic V, Slotkin RK, Martinez G. Aphid feeding induces the relaxation of epigenetic control and the associated regulation of the defense response in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:1185-1200. [PMID: 33475147 DOI: 10.1111/nph.17226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/14/2021] [Indexed: 05/23/2023]
Abstract
Environmentally induced changes in the epigenome help individuals to quickly adapt to fluctuations in the conditions of their habitats. We explored those changes in Arabidopsis thaliana plants subjected to multiple biotic and abiotic stresses, and identified transposable element (TE) activation in plants infested with the green peach aphid, Myzus persicae. We performed a genome-wide analysis mRNA expression, small RNA accumulation and DNA methylation Our results demonstrate that aphid feeding induces loss of methylation of hundreds of loci, mainly TEs. This loss of methylation has the potential to regulate gene expression and we found evidence that it is involved in the control of plant immunity genes. Accordingly, mutant plants deficient in DNA and H3K9 methylation (kyp) showed increased resistance to M. persicae infestation. Collectively, our results show that changes in DNA methylation play a significant role in the regulation of the plant transcriptional response and induction of defense response against aphid feeding.
Collapse
Affiliation(s)
- Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Dimitrije Markovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
- Faculty of Agriculture, University of Banja Luka, Banja Luka, 78000, Bosnia and Herzegovina
| | - Juan Luis Reig-Valiente
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Vassilis Scaltsoyiannes
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Institut de Biologie de Moléculaire des Plantes, UPR 2357 du CNRS, Strasbourg University, Strasbourg, 67000, France
| | - Corné M J Pieterse
- Department of Biology, Science4Life, Utrecht University, Utrecht, 3584 CS, the Netherlands
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, 65021, USA
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
98
|
Dvořák Tomaštíková E, Hafrén A, Trejo-Arellano MS, Rasmussen SR, Sato H, Santos-González J, Köhler C, Hennig L, Hofius D. Polycomb Repressive Complex 2 and KRYPTONITE regulate pathogen-induced programmed cell death in Arabidopsis. PLANT PHYSIOLOGY 2021; 185:2003-2021. [PMID: 33566101 PMCID: PMC8133635 DOI: 10.1093/plphys/kiab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/10/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is well-known for its role in controlling developmental transitions by suppressing the premature expression of key developmental regulators. Previous work revealed that PRC2 also controls the onset of senescence, a form of developmental programmed cell death (PCD) in plants. Whether the induction of PCD in response to stress is similarly suppressed by the PRC2 remained largely unknown. In this study, we explored whether PCD triggered in response to immunity- and disease-promoting pathogen effectors is associated with changes in the distribution of the PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) modification in Arabidopsis thaliana. We furthermore tested the distribution of the heterochromatic histone mark H3K9me2, which is established, to a large extent, by the H3K9 methyltransferase KRYPTONITE, and occupies chromatin regions generally not targeted by PRC2. We report that effector-induced PCD caused major changes in the distribution of both repressive epigenetic modifications and that both modifications have a regulatory role and impact on the onset of PCD during pathogen infection. Our work highlights that the transition to pathogen-induced PCD is epigenetically controlled, revealing striking similarities to developmental PCD.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Institute of Experimental Botany, Czech Academy of Sciences; Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Sheena Ricafranca Rasmussen
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Author for communication:
| |
Collapse
|
99
|
Zhang YZ, Lin J, Ren Z, Chen CX, Miki D, Xie SS, Zhang J, Chang YN, Jiang J, Yan J, Li QQ, Zhu JK, Duan CG. Genome-wide distribution and functions of the AAE complex in epigenetic regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:707-722. [PMID: 33438356 DOI: 10.1111/jipb.13068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhizhong Ren
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chun-Xiang Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jun Yan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, 91766, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
100
|
Möller M, Habig M, Lorrain C, Feurtey A, Haueisen J, Fagundes WC, Alizadeh A, Freitag M, Stukenbrock EH. Recent loss of the Dim2 DNA methyltransferase decreases mutation rate in repeats and changes evolutionary trajectory in a fungal pathogen. PLoS Genet 2021; 17:e1009448. [PMID: 33750960 PMCID: PMC8016269 DOI: 10.1371/journal.pgen.1009448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/01/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
DNA methylation is found throughout all domains of life, yet the extent and function of DNA methylation differ among eukaryotes. Strains of the plant pathogenic fungus Zymoseptoria tritici appeared to lack cytosine DNA methylation (5mC) because gene amplification followed by Repeat-Induced Point mutation (RIP) resulted in the inactivation of the dim2 DNA methyltransferase gene. 5mC is, however, present in closely related sister species. We demonstrate that inactivation of dim2 occurred recently as some Z. tritici isolates carry a functional dim2 gene. Moreover, we show that dim2 inactivation occurred by a different path than previously hypothesized. We mapped the genome-wide distribution of 5mC in strains with or without functional dim2 alleles. Presence of functional dim2 correlates with high levels of 5mC in transposable elements (TEs), suggesting a role in genome defense. We identified low levels of 5mC in strains carrying non-functional dim2 alleles, suggesting that 5mC is maintained over time, presumably by an active Dnmt5 DNA methyltransferase. Integration of a functional dim2 allele in strains with mutated dim2 restored normal 5mC levels, demonstrating de novo cytosine methylation activity of Dim2. To assess the importance of 5mC for genome evolution, we performed an evolution experiment, comparing genomes of strains with high levels of 5mC to genomes of strains lacking functional dim2. We found that presence of a functional dim2 allele alters nucleotide composition by promoting C to T transitions (C→T) specifically at CpA (CA) sites during mitosis, likely contributing to TE inactivation. Our results show that 5mC density at TEs is a polymorphic trait in Z. tritici populations that can impact genome evolution.
Collapse
Affiliation(s)
- Mareike Möller
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Habig
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cécile Lorrain
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alice Feurtey
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Janine Haueisen
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Wagner C. Fagundes
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alireza Alizadeh
- Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States of America
| | - Eva H. Stukenbrock
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|