51
|
Barsnes H, Vaudel M, Martens L. JSparklines: Making tabular proteomics data come alive. Proteomics 2015; 15:1428-31. [DOI: 10.1002/pmic.201400356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Accepted: 11/20/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Harald Barsnes
- Proteomics Unit, Department of Biomedicine; University of Bergen; Norway
| | - Marc Vaudel
- Proteomics Unit, Department of Biomedicine; University of Bergen; Norway
| | - Lennart Martens
- Department of Medical Protein Research; Ghent University; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
| |
Collapse
|
52
|
Tanco S, Tort O, Demol H, Aviles FX, Gevaert K, Van Damme P, Lorenzo J. C-terminomics screen for natural substrates of cytosolic carboxypeptidase 1 reveals processing of acidic protein C termini. Mol Cell Proteomics 2014; 14:177-90. [PMID: 25381060 DOI: 10.1074/mcp.m114.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic carboxypeptidases (CCPs) constitute a new subfamily of M14 metallocarboxypeptidases associated to axonal regeneration and neuronal degeneration, among others. CCPs are deglutamylating enzymes, able to catalyze the shortening of polyglutamate side-chains and the gene-encoded C termini of tubulin, telokin, and myosin light chain kinase. The functions of these enzymes are not entirely understood, in part because of the lack of information about C-terminal protein processing in the cell and its functional implications. By means of C-terminal COFRADIC, a positional proteomics approach, we searched for cellular substrates targets of CCP1, the most relevant member of this family. We here identified seven new putative CCP1 protein substrates, including ribosomal proteins, translation factors, and high mobility group proteins. Furthermore, we showed for the first time that CCP1 processes both glutamates as well as C-terminal aspartates. The implication of these C termini in molecular interactions furthermore suggests that CCP1-mediated shortening of acidic protein tails might regulate protein-protein and protein-DNA interactions.
Collapse
Affiliation(s)
- Sebastian Tanco
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Olivia Tort
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Hans Demol
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Francesc Xavier Aviles
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Kris Gevaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium;
| | - Julia Lorenzo
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
53
|
Bennike T, Ayturk U, Haslauer CM, Froehlich JW, Proffen B, Barnaby O, Birkelund S, Murray MM, Warman ML, Stensballe A, Steen H. A normative study of the synovial fluid proteome from healthy porcine knee joints. J Proteome Res 2014; 13:4377-87. [PMID: 25160569 PMCID: PMC4184458 DOI: 10.1021/pr500587x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 12/13/2022]
Abstract
Synovial fluid in an articulating joint contains proteins derived from the blood plasma and proteins that are produced by cells within the joint tissues, such as synovium, cartilage, ligament, and meniscus. The proteome composition of healthy synovial fluid and the cellular origins of many synovial fluid components are not fully understood. Here, we present a normative proteomics study using porcine synovial fluid. Using our optimized method, we identified 267 proteins with high confidence in healthy synovial fluid. We also evaluated mRNA expression data from tissues that can contribute to the synovial fluid proteome, including synovium, cartilage, blood, and liver, to better estimate the relative contributions from these sources to specific synovial fluid components. We identified 113 proteins in healthy synovial fluid that appear to be primarily derived from plasma transudates, 37 proteins primarily derived from synovium, and 11 proteins primarily derived from cartilage. Finally, we compared the identified synovial fluid proteome to the proteome of human plasma, and we found that the two body fluids share many similarities, underlining the detected plasma derived nature of many synovial fluid components. Knowing the synovial fluid proteome of a healthy joint will help to identify mechanisms that cause joint disease and pathways involved in disease progression.
Collapse
Affiliation(s)
- Tue Bennike
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
- Department
of Health Science and Technology, Aalborg
University, Aalborg DK-9220, Denmark
| | - Ugur Ayturk
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Carla M. Haslauer
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - John W. Froehlich
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Benedikt
L. Proffen
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Omar Barnaby
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Svend Birkelund
- Department
of Health Science and Technology, Aalborg
University, Aalborg DK-9220, Denmark
| | - Martha M. Murray
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Matthew L. Warman
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Allan Stensballe
- Department
of Health Science and Technology, Aalborg
University, Aalborg DK-9220, Denmark
| | - Hanno Steen
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
54
|
Renes J, Rosenow A, Roumans N, Noben JP, Mariman EC. Calorie restriction-induced changes in the secretome of human adipocytes, comparison with resveratrol-induced secretome effects. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1511-22. [DOI: 10.1016/j.bbapap.2014.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/17/2022]
|
55
|
Ternent T, Csordas A, Qi D, Gómez‐Baena G, Beynon RJ, Jones AR, Hermjakob H, Vizcaíno JA. How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics 2014; 14:2233-41. [DOI: 10.1002/pmic.201400120] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias Ternent
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Hinxton Cambridge UK
| | - Attila Csordas
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Hinxton Cambridge UK
| | - Da Qi
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | | | - Robert J. Beynon
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Andrew R. Jones
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Hinxton Cambridge UK
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory European Bioinformatics Institute (EMBL‐EBI), Wellcome Trust Genome Campus Hinxton Cambridge UK
| |
Collapse
|
56
|
Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, Wolberger C, Tackett AJ, Taverna SD. The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics 2014; 13:2896-910. [PMID: 25106422 DOI: 10.1074/mcp.m114.038174] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In yeast, the conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain "reader" function and enzymatic HAT activity that might ultimately affect gene expression. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential "histone/epigenetic code." MS data are available via ProteomeXchange with identifier PXD001167.
Collapse
Affiliation(s)
- Anne M Cieniewicz
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Linley Moreland
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alison E Ringel
- ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Samuel G Mackintosh
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ana Raman
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tonya M Gilbert
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Cynthia Wolberger
- §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan J Tackett
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205;
| | - Sean D Taverna
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
57
|
Gilbert TM, McDaniel SL, Byrum SD, Cades JA, Dancy BCR, Wade H, Tackett AJ, Strahl BD, Taverna SD. A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol Cell Proteomics 2014; 13:2883-95. [PMID: 25104842 DOI: 10.1074/mcp.m114.038224] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Post-translational modifications of histones, such as acetylation and methylation, are differentially positioned in chromatin with respect to gene organization. For example, although histone H3 is often trimethylated on lysine 4 (H3K4me3) and acetylated on lysine 14 (H3K14ac) at active promoter regions, histone H3 lysine 36 trimethylation (H3K36me3) occurs throughout the open reading frames of transcriptionally active genes. The conserved yeast histone acetyltransferase complex, NuA3, specifically binds H3K4me3 through a plant homeodomain (PHD) finger in the Yng1 subunit, and subsequently catalyzes the acetylation of H3K14 through the histone acetyltransferase domain of Sas3, leading to transcription initiation at a subset of genes. We previously found that Ylr455w (Pdp3), an uncharacterized proline-tryptophan-tryptophan-proline (PWWP) domain-containing protein, copurifies with stable members of NuA3. Here, we employ mass-spectrometric analysis of affinity purified Pdp3, biophysical binding assays, and genetic analyses to classify NuA3 into two functionally distinct forms: NuA3a and NuA3b. Although NuA3a uses the PHD finger of Yng1 to interact with H3K4me3 at the 5'-end of open reading frames, NuA3b contains the unique member, Pdp3, which regulates an interaction between NuA3b and H3K36me3 at the transcribed regions of genes through its PWWP domain. We find that deletion of PDP3 decreases NuA3-directed transcription and results in growth defects when combined with transcription elongation mutants, suggesting NuA3b acts as a positive elongation factor. Finally, we determine that NuA3a, but not NuA3b, is synthetically lethal in combination with a deletion of the histone acetyltransferase GCN5, indicating NuA3b has a specialized role at coding regions that is independent of Gcn5 activity. Collectively, these studies define a new form of the NuA3 complex that associates with H3K36me3 to effect transcriptional elongation. MS data are available via ProteomeXchange with identifier PXD001156.
Collapse
Affiliation(s)
- Tonya M Gilbert
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Stephen L McDaniel
- ¶Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephanie D Byrum
- ‖Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Jessica A Cades
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Blair C R Dancy
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Herschel Wade
- **Department of Biophysics and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Alan J Tackett
- ‖Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Brian D Strahl
- ¶Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599; ‡‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Sean D Taverna
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205;
| |
Collapse
|
58
|
Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M, Woods AG, Darie CC. A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 2014; 35:2046-54. [DOI: 10.1002/elps.201300370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/20/2014] [Accepted: 03/19/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Armand G. Ngounou Wetie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Kelly Wormwood
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Johannes Thome
- Department of Psychiatry; University of Rostock; Rostock Germany
- College of Medicine; Swansea University; Swansea UK
| | | | - Regina Taurines
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy; University of Würzburg; Germany
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy; University of Würzburg; Germany
| | - Alisa G. Woods
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| |
Collapse
|
59
|
Vaudel M, Barsnes H, Martens L, Berven FS. Bioinformatics for proteomics: opportunities at the interface between the scientists, their experiments, and the community. Methods Mol Biol 2014; 1156:239-48. [PMID: 24791993 DOI: 10.1007/978-1-4939-0685-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Within the last decade, bioinformatics has moved from command line scripts dedicated to single experiments towards production grade software integrated in experimental workflows providing a rich environment for biological investigation. Located at the interface between the scientists, their experiments, and the community, bioinformatics acts as a gateway to a wide source of information. This chapter does not list tools and methods, but rather hints at how bioinformatics can help in improving biological projects, all the way from their initial design to the dissemination of the results.
Collapse
Affiliation(s)
- Marc Vaudel
- Proteomics Unit, Department of Biomedicine, University of Bergen, Jonas Liesvei 91, Bergen, 5009, Norway,
| | | | | | | |
Collapse
|
60
|
Slany A, Paulitschke V, Haudek-Prinz V, Meshcheryakova A, Gerner C. Determination of cell type-specific proteome signatures of primary human leukocytes, endothelial cells, keratinocytes, hepatocytes, fibroblasts and melanocytes by comparative proteome profiling. Electrophoresis 2014; 35:1428-38. [PMID: 24644141 DOI: 10.1002/elps.201300581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/25/2022]
Abstract
Cells gain their functional specialization by different protein synthesis. A lot of knowledge with respect to cell type-specific proteins has been collected during the last thirty years. This knowledge was built mainly by using antibodies. Nowadays, modern MS, which supports comprehensive proteome analyses of biological samples, may render possible the search for cell type-specific proteins as well. However, a therefore necessary systematic MS study comprising many different cell types has not been performed until now. Here we present a proteome analysis strategy supporting the automated and meaningful comparison of any biological samples. We have presently applied this strategy to six different primary human cell types, namely leukocytes, endothelial cells, keratinocytes, hepatocytes, fibroblasts, and melanocytes. Comparative analysis of the resulting proteome profiles allowed us to select proteins specifically identified in one of the six cell types and not in any of the five others. Based on these results, we designated cell type-specific proteome signatures consisting each of six such characteristic proteins. These signatures independently reproduced well-known marker proteins already established for FACS analyses in addition to novel candidate marker proteins. We applied these signatures for the interpretation of proteome profiles obtained from the analyses of hepatocellular carcinoma-associated tissue homogenates and normal liver tissue homogenates. The identification of members of the above described signatures gave us an indication of the presence of characteristic cells in the diseased tissues and thus supported the interpretation of the proteomics data of these complex biological samples.
Collapse
Affiliation(s)
- Astrid Slany
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria; Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
61
|
Vaudel M, Venne AS, Berven FS, Zahedi RP, Martens L, Barsnes H. Shedding light on black boxes in protein identification. Proteomics 2014; 14:1001-5. [DOI: 10.1002/pmic.201300488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Marc Vaudel
- Proteomics Unit; Department of Biomedicine; University of Bergen; Norway
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; Dortmund Germany
| | - A. Saskia Venne
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; Dortmund Germany
| | - Frode S. Berven
- Proteomics Unit; Department of Biomedicine; University of Bergen; Norway
- Department of Clinical Medicine; The KG Jebsen Centre for MS-research; University of Bergen; Bergen Norway
- Department of Neurology; The Norwegian Multiple Sclerosis Competence Centre; Haukeland University Hospital; Bergen Norway
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V; Dortmund Germany
| | - Lennart Martens
- Department of Medical Protein Research; VIB; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
| | - Harald Barsnes
- Proteomics Unit; Department of Biomedicine; University of Bergen; Norway
| |
Collapse
|
62
|
Baker PR, Chalkley RJ. MS-viewer: a web-based spectral viewer for proteomics results. Mol Cell Proteomics 2014; 13:1392-6. [PMID: 24591702 DOI: 10.1074/mcp.o113.037200] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The sharing and viewing of peptide identification results from search engines analyzing mass-spectrometry-based proteomic data is made difficult by the range of analysis tools employed, in that each produces a different output format. Annotated results associated with a journal article often have to be made available, but providing these in a format that can be queried by other researchers is often difficult. This is because although standard formats for results have been developed, these are not necessarily easy to produce. In this manuscript we describe the MS-Viewer program, part of the Protein Prospector Web package, which uses easy-to-create tabular files as input for providing highly interactive viewing of search engine results. Thanks to the simplicity and flexibility of the input format, results from a wide variety of search engines have been successfully viewed through the Web interface of this tool.
Collapse
Affiliation(s)
- Peter R Baker
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | | |
Collapse
|
63
|
Lourenço A, Coenye T, Goeres DM, Donelli G, Azevedo AS, Ceri H, Coelho FL, Flemming HC, Juhna T, Lopes SP, Oliveira R, Oliver A, Shirtliff ME, Sousa AM, Stoodley P, Pereira MO, Azevedo NF. Minimum information about a biofilm experiment (MIABiE): standards for reporting experiments and data on sessile microbial communities living at interfaces. Pathog Dis 2014; 70:250-6. [PMID: 24478124 DOI: 10.1111/2049-632x.12146] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 02/04/2023] Open
Abstract
The minimum information about a biofilm experiment (MIABiE) initiative has arisen from the need to find an adequate and scientifically sound way to control the quality of the documentation accompanying the public deposition of biofilm-related data, particularly those obtained using high-throughput devices and techniques. Thereby, the MIABiE consortium has initiated the identification and organization of a set of modules containing the minimum information that needs to be reported to guarantee the interpretability and independent verification of experimental results and their integration with knowledge coming from other fields. MIABiE does not intend to propose specific standards on how biofilms experiments should be performed, because it is acknowledged that specific research questions require specific conditions which may deviate from any standardization. Instead, MIABiE presents guidelines about the data to be recorded and published in order for the procedure and results to be easily and unequivocally interpreted and reproduced. Overall, MIABiE opens up the discussion about a number of particular areas of interest and attempts to achieve a broad consensus about which biofilm data and metadata should be reported in scientific journals in a systematic, rigorous and understandable manner.
Collapse
Affiliation(s)
- Anália Lourenço
- Departamento de Informática, Universidade de Vigo, ESEI - Escuela Superior de Ingeniería Informática, Ourense, Spain; IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Van Damme P, Støve SI, Glomnes N, Gevaert K, Arnesen T. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant. Mol Cell Proteomics 2014; 13:2031-41. [PMID: 24408909 DOI: 10.1074/mcp.m113.035402] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-terminal acetylation (Nt-acetylation) occurs on the majority of eukaryotic proteins and is catalyzed by N-terminal acetyltransferases (NATs). Nt-acetylation is increasingly recognized as a vital modification with functional implications ranging from protein degradation to protein localization. Although early genetic studies in yeast demonstrated that NAT-deletion strains displayed a variety of phenotypes, only recently, the first human genetic disorder caused by a mutation in a NAT gene was reported; boys diagnosed with the X-linked Ogden syndrome harbor a p.Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of the NatA complex, and suffer from global developmental delays and lethality during infancy. Here, we describe a Saccharomyces cerevisiae model developed by introducing the human wild-type or mutant NatA complex into yeast lacking NatA (NatA-Δ). The wild-type human NatA complex phenotypically complemented the NatA-Δ strain, whereas only a partial rescue was observed for the Ogden mutant NatA complex suggesting that hNaa10 S37P is only partially functional in vivo. Immunoprecipitation experiments revealed a reduced subunit complexation for the mutant hNatA S37P next to a reduced in vitro catalytic activity. We performed quantitative Nt-acetylome analyses on a control yeast strain (yNatA), a yeast NatA deletion strain (yNatA-Δ), a yeast NatA deletion strain expressing wild-type human NatA (hNatA), and a yeast NatA deletion strain expressing mutant human NatA (hNatA S37P). Interestingly, a generally reduced degree of Nt-acetylation was observed among a large group of NatA substrates in the yeast expressing mutant hNatA as compared with yeast expressing wild-type hNatA. Combined, these data provide strong support for the functional impairment of hNaa10 S37P in vivo and suggest that reduced Nt-acetylation of one or more target substrates contributes to the pathogenesis of the Ogden syndrome. Comparative analysis between human and yeast NatA also provided new insights into the co-evolution of the NatA complexes and their substrates. For instance, (Met-)Ala- N termini are more prevalent in the human proteome as compared with the yeast proteome, and hNatA displays a preference toward these N termini as compared with yNatA.
Collapse
Affiliation(s)
- Petra Van Damme
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium;
| | - Svein I Støve
- ¶Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; **Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Nina Glomnes
- ¶Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; ‖Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway; and
| | - Kris Gevaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Thomas Arnesen
- ¶Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; **Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
65
|
Perez-Riverol Y, Wang R, Hermjakob H, Müller M, Vesada V, Vizcaíno JA. Open source libraries and frameworks for mass spectrometry based proteomics: a developer's perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:63-76. [PMID: 23467006 PMCID: PMC3898926 DOI: 10.1016/j.bbapap.2013.02.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 12/23/2022]
Abstract
Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Collapse
Affiliation(s)
- Yasset Perez-Riverol
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Ciudad de la Habana, Cuba
| | - Rui Wang
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Henning Hermjakob
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Markus Müller
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CMU - 1, rue Michel Servet CH-1211 Geneva, Switzerland
| | - Vladimir Vesada
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Ciudad de la Habana, Cuba
| | - Juan Antonio Vizcaíno
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
66
|
Bomans K, Lang A, Roedl V, Adolf L, Kyriosoglou K, Diepold K, Eberl G, Mølhøj M, Strauss U, Schmalz C, Vogel R, Reusch D, Wegele H, Wiedmann M, Bulau P. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing. PLoS One 2013; 8:e81639. [PMID: 24312330 PMCID: PMC3842259 DOI: 10.1371/journal.pone.0081639] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS). However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP) was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day) manner.
Collapse
Affiliation(s)
- Katrin Bomans
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Antje Lang
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | - Veronika Roedl
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lisa Adolf
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | - Gabriele Eberl
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Mølhøj
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ulrike Strauss
- Pharma Biotech, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Rudolf Vogel
- Professional Diagnostics, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Harald Wegele
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Patrick Bulau
- Pharma Development, Roche Diagnostics GmbH, Penzberg, Germany
- * E-mail:
| |
Collapse
|
67
|
ProfileDB: a resource for proteomics and cross-omics biomarker discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:960-6. [PMID: 24270047 DOI: 10.1016/j.bbapap.2013.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/18/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023]
Abstract
The increasing size and complexity of high-throughput datasets pose a growing challenge for researchers. Often very different (cross-omics) techniques with individual data analysis pipelines are employed making a unified biomarker discovery strategy and a direct comparison of different experiments difficult and time consuming. Here we present the comprehensive web-based application ProfileDB. The application is designed to integrate data from different high-throughput 'omics' data types (Transcriptomics, Proteomics, Metabolomics) with clinical parameters and prior knowledge on pathways and ontologies. Beyond data storage, ProfileDB provides a set of dedicated tools for study inspection and data visualization. The user can gain insights into a complex experiment with just a few mouse clicks. We will demonstrate the application by presenting typical use cases for the identification of proteomics biomarkers. All presented analyses can be reproduced using the public ProfileDB web server. The ProfileDB application is available by standard browser (Firefox 18+, Internet Explorer Version 9+) technology via http://profileDB.-microdiscovery.de/ (login and pass-word: profileDB). The installation contains several public datasets including different cross-'omics' experiments. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
|
68
|
Staes A, Vandenbussche J, Demol H, Goethals M, Yilmaz Ş, Hulstaert N, Degroeve S, Kelchtermans P, Martens L, Gevaert K. Asn3, a reliable, robust, and universal lock mass for improved accuracy in LC-MS and LC-MS/MS. Anal Chem 2013; 85:11054-60. [PMID: 24134513 DOI: 10.1021/ac4027093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of internal calibrants (the so-called lock mass approach) provides much greater accuracy in mass spectrometry based proteomics. However, the polydimethylcyclosiloxane (PCM) peaks commonly used for this purpose are quite unreliable, leading to missing calibrant peaks in spectra and correspondingly lower mass measurement accuracy. Therefore, we here introduce a universally applicable and robust internal calibrant, the tripeptide Asn3. We show that Asn3 is a substantial improvement over PCM both in terms of consistent detection and resulting mass measurement accuracy. Asn3 is also very easy to adopt in the lab, as it requires only minor adjustments to the analytical setup.
Collapse
Affiliation(s)
- An Staes
- Department of Medical Protein Research, VIB , B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Rosenow A, Noben JP, Bouwman FG, Mariman ECM, Renes J. Hypoxia-mimetic effects in the secretome of human preadipocytes and adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2761-71. [PMID: 24140569 DOI: 10.1016/j.bbapap.2013.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/16/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
White adipose tissue (WAT) regulates energy metabolism by secretion of proteins with endocrine and paracrine effects. Dysregulation of the secretome of obesity-associated enlarged WAT may lead to obesity-related disorders. This can be caused by hypoxia as a result of poorly vascularized WAT. The effect of hypoxia on the secretome of human (pre)adipocytes is largely unknown. Therefore, we investigated the effect of CoCl2, a hypoxia mimetic, on the secretome of human SGBS (pre)adipocytes by a proteomics approach combined with bioinformatic analysis. In addition, regulation of protein secretion was examined by protein turnover experiments. As such, secretome changes were particularly associated with protein down-regulation and extracellular matrix protein dysregulation. The observed up-regulation of collagens in adipocytes may be essential for cell survival while down-regulation of collagens in preadipocytes may indicate a disturbed differentiation process. These CoCl2-induced changes reflect WAT dysfunction that ultimately may lead to obesity-associated complications. In addition, 9 novel adipocyte secreted proteins were identified from which 6 were regulated by CoCl2. Mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD000162.
Collapse
Affiliation(s)
- Anja Rosenow
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
70
|
Nawrot R, Barylski J, Schulze WX. Incorrectly annotated keratin derived peptide sequences lead to misleading MS/MS data interpretation. J Proteomics 2013; 91:270-3. [DOI: 10.1016/j.jprot.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/01/2013] [Accepted: 07/07/2013] [Indexed: 11/25/2022]
|
71
|
Sacchi R, Li J, Villarreal F, Gardell AM, Kültz D. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium. ACTA ACUST UNITED AC 2013; 216:4626-38. [PMID: 24072791 DOI: 10.1242/jeb.093823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish.
Collapse
Affiliation(s)
- Romina Sacchi
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
72
|
Kültz D, Li J, Gardell A, Sacchi R. Quantitative molecular phenotyping of gill remodeling in a cichlid fish responding to salinity stress. Mol Cell Proteomics 2013; 12:3962-75. [PMID: 24065692 DOI: 10.1074/mcp.m113.029827] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into proteome changes that underlie the remodeling of tilapia gill epithelium in response to environmental salinity change.
Collapse
Affiliation(s)
- Dietmar Kültz
- Physiological Genomics Group, Department of Animal Sciences, University of California Davis, One Shields Avenue, Davis, California 95616
| | | | | | | |
Collapse
|
73
|
Venne AS, Vögtle FN, Meisinger C, Sickmann A, Zahedi RP. Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55. J Proteome Res 2013; 12:3823-30. [PMID: 23964590 DOI: 10.1021/pr400435d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present a novel straightforward method for enrichment of N-terminal peptides, utilizing charge-based fractional diagonal chromatography (ChaFRADIC). Our method is robust, easy to operate, fast, specific, and more sensitive than existing methods, enabling the differential quantitation of 1459 nonredundant N-terminal peptides between two S. cerevisiae samples within 10 h of LC-MS, starting from only 50 μg of protein per condition and analyzing only 40% of the obtained fractions. Using ChaFRADIC we compared mitochondrial proteins from wild-type and icp55Δ yeast (30 μg each). Icp55 is an intermediate cleaving peptidase, which, following mitochondrial processing peptidase (MPP)-dependent cleavage of signal sequences, removes a single amino acid from a specific set of proteins according to the N-end rule. Using ChaFRADIC we identified 36 icp55 substrates, 14 of which were previously unknown, expanding the set of known icp55 substrates to a total of 52 proteins. Interestingly, a novel substrate, Isa2, is likely processed by Icp55 in two consecutive steps and thus might represent the first example of a triple processing event in a mitochondrial precursor protein. Thus, ChaFRADIC is a powerful and practicable tool for protease and peptidase research, providing the sensitivity to characterize even samples that can be obtained only in small quantities.
Collapse
Affiliation(s)
- A Saskia Venne
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | | | | | | |
Collapse
|
74
|
Hu CW, Tseng CW, Chien CW, Huang HC, Ku WC, Lee SJ, Chen YJ, Juan HF. Quantitative proteomics reveals diverse roles of miR-148a from gastric cancer progression to neurological development. J Proteome Res 2013; 12:3993-4004. [PMID: 23869555 DOI: 10.1021/pr400302w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that control gene expression either by degradation of mRNAs or inhibition of protein translation. miR-148a has been reported to have the impacts on tumor progression. Here, a quantitative proteomics combined with stable isotope labeling was applied to identify the global profile of miR-148a-regulated downstream proteins. The data have been deposited to the ProteomeXchange with identifier PXD000190. A total of 2938 proteins were quantified, and 55 proteins were considered to be regulated by miR-148a. We found that not only proteins associated with cancer progression but also molecules involved in neural development were regulated by miR-148a. This study is the first to identify the function of miR-148a in neural development by using a proteomic approach. Analysis of a public clinical database also showed that the patients with neural diseases could display abnormal expression of miR-148a. Moreover, silencing of miR-148a led to the abnormal morphology and decreased expression of neuron-related markers in the developing brain of zebrafish. These results provided important insight into the regulation of neurological development elicited by miR-148a.
Collapse
Affiliation(s)
- Chia-Wei Hu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Yi Q, Zhao P, Wang X, Zou Y, Zhong X, Wang C, Xiang Z, Xia QY. Shotgun proteomic analysis of the Bombyx mori
anterior silk gland: An insight into the biosynthetic fiber spinning process. Proteomics 2013; 13:2657-63. [DOI: 10.1002/pmic.201200443] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 05/27/2013] [Accepted: 06/17/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Qiying Yi
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| | - Ping Zhao
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| | - Xin Wang
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| | - Yong Zou
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| | - Xiaowu Zhong
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| | - Chen Wang
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| | - Zhonghuai Xiang
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| | - Qing-you Xia
- The State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing China
| |
Collapse
|
76
|
Vu NB, Nguyen TT, Tran LCD, Do CD, Nguyen BH, Phan NK, Pham PV. Doxorubicin and 5-fluorouracil resistant hepatic cancer cells demonstrate stem-like properties. Cytotechnology 2013; 65:491-503. [PMID: 23104270 PMCID: PMC3720974 DOI: 10.1007/s10616-012-9511-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
The efficacy of hepatocellular carcinoma (HCC) treatment is very low because of the high percentage of recurrence and resistance to anticancer agents. Hepatic cancer stem cells (HCSCs) are considered the origin of such recurrence and resistance. Our aim was to evaluate the stemness of doxorubicin and 5-fluorouracil resistant hepatic cancer cells and establish the new method to isolate the HCSCs from primary cultured HCC tumors. HCC biopsies were used to establish primary cultures. Then, primary cells were selected for HCSCs by culture in medium supplemented with doxorubicin (0, 0.1, 0.25, 0.5 or 1 μg/mL), 5-fluorouracil (0, 0.1, 0.25, 0.5 or 1 μg/mL) or their combination. Selection was confirmed by detection of HCSC markers such as CD133, CD13, CD90, and the side population was identified by rhodamine 123 efflux. The cell population with the strongest expression of these markers was used to evaluate the cell cycle, gene expression profile, tumor sphere formation, marker protein expression, and in vivo tumorigenesis. Selective culture of primary cells in medium supplemented with 0.5 μg/mL doxorubicin and 1 μg/mL 5-fluorouracil selected cancer cells with the highest stemness properties. Selected cells strongly expressed CD13, CD133, CD90, and CD326, efflux rhodamine 123 and formed tumor spheres in suspension. Moreover, selected cells were induced to differentiate into cells with high expression of CD19 and AFP (alpha-fetoprotein), and importantly, could form tumors in NOD/SCID mice upon injection of 1 × 10(5) cells/mouse. Selective culture with doxorubicin and 5-fluorouracil will enrich HCSCs, is an easy method to obtain HCSCs that can be used to develop better therapeutic strategies for patients with HCC, and particularly HCSC-targeting therapy.
Collapse
Affiliation(s)
- Ngoc Bich Vu
- />Laboratory of Stem Cell Research and Application, University of Science, VNU-HCM, HCM City, Vietnam
| | - Tam Thanh Nguyen
- />Laboratory of Stem Cell Research and Application, University of Science, VNU-HCM, HCM City, Vietnam
| | - Long Cong-Duy Tran
- />University of Medical Center, Ho Chi Minh University of Medicine and Pharmacy, HCM City, Vietnam
| | - Cong Dinh Do
- />University of Medical Center, Ho Chi Minh University of Medicine and Pharmacy, HCM City, Vietnam
| | - Bac Hoang Nguyen
- />University of Medical Center, Ho Chi Minh University of Medicine and Pharmacy, HCM City, Vietnam
| | - Ngoc Kim Phan
- />Laboratory of Stem Cell Research and Application, University of Science, VNU-HCM, HCM City, Vietnam
| | - Phuc Van Pham
- />Laboratory of Stem Cell Research and Application, University of Science, VNU-HCM, HCM City, Vietnam
| |
Collapse
|
77
|
Vaudel M, Sickmann A, Martens L. Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:12-20. [PMID: 23845992 DOI: 10.1016/j.bbapap.2013.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/05/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
With the advent of mass spectrometry based proteomics, the identification of thousands of proteins has become commonplace in biology nowadays. Increasingly, efforts have also been invested toward the detection and localization of posttranslational modifications. It is furthermore common practice to quantify the identified entities, a task supported by a panel of different methods. Finally, the results can also be enriched with functional knowledge gained on the proteins, detecting for instance differentially expressed gene ontology terms or biological pathways. In this study, we review the resources, methods and tools available for the researcher to achieve such a quantitative functional analysis. These include statistics for the post-processing of identification and quantification results, online resources and public repositories. With a focus on free but user-friendly software, preferably also open-source, we provide a list of tools designed to help the researcher manage the vast amount of data generated. We also indicate where such applications currently remain lacking. Moreover, we stress the eventual pitfalls of every step of such studies. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Collapse
Affiliation(s)
- Marc Vaudel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | |
Collapse
|
78
|
Kültz D, Clayton DF, Robinson GE, Albertson C, Carey HV, Cummings ME, Dewar K, Edwards SV, Hofmann HA, Gross LJ, Kingsolver JG, Meaney MJ, Schlinger BA, Shingleton AW, Sokolowski MB, Somero GN, Stanzione DC, Todgham AE. New Frontiers for Organismal Biology. Bioscience 2013. [DOI: 10.1525/bio.2013.63.6.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
79
|
Vaudel M, Sickmann A, Martens L. Current methods for global proteome identification. Expert Rev Proteomics 2013. [PMID: 23194269 DOI: 10.1586/epr.12.51] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In a time frame of a few decades, protein identification went from laborious single protein identification to automated identification of entire proteomes. This shift was enabled by the emergence of peptide-centric, gel-free analyses, in particular the so-called shotgun approaches, which not only rely on extensive experiments, but also on cutting-edge data processing methods. The present review therefore provides an overview of a shotgun proteomics identification workflow, listing the state-of-the-art methods involved and software that implement these. The authors focus on freely available tools where possible. Finally, data analysis in the context of emerging across-omics studies will also be discussed briefly, where proteomics goes beyond merely delivering a list of protein accession numbers.
Collapse
Affiliation(s)
- Marc Vaudel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | | | | |
Collapse
|
80
|
Hulstaert N, Reisinger F, Rameseder J, Barsnes H, Vizcaíno JA, Martens L. Pride-asap: automatic fragment ion annotation of identified PRIDE spectra. J Proteomics 2013; 95:89-92. [PMID: 23603108 PMCID: PMC4085470 DOI: 10.1016/j.jprot.2013.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 11/13/2022]
Abstract
We present an open source software application and library written in Java that provides a uniform annotation of identified spectra stored in the PRIDE database. Pride-asap can be ran in a command line mode for automated processing of multiple PRIDE experiments, but also has a graphical user interface that allows end users to annotate the spectra in PRIDE experiments and to inspect the results in detail. Pride-asap binaries, source code and additional information can be downloaded from http://pride-asa-pipeline.googlecode.com.This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. We have built an automatic spectrum annotation pipeline for PRIDE. The tool provides both a GUI and a command-line. The provided annotations are robust and consistent. The tool can be applied easily to thousands of PRIDE experiments. Results are available in the GUI, and as text files for downstream analysis.
Collapse
Affiliation(s)
- Niels Hulstaert
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
81
|
Bischof S, Umhang M, Eicke S, Streb S, Qi W, Zeeman SC. Cecropia peltata accumulates starch or soluble glycogen by differentially regulating starch biosynthetic genes. THE PLANT CELL 2013; 25:1400-15. [PMID: 23632447 PMCID: PMC3663276 DOI: 10.1105/tpc.113.109793] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/15/2013] [Accepted: 04/08/2013] [Indexed: 05/08/2023]
Abstract
The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches--factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans.
Collapse
Affiliation(s)
| | - Martin Umhang
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Simona Eicke
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Weihong Qi
- Functional Genomics Center Zurich, 8057 Zurich, Switzerland
| | | |
Collapse
|
82
|
Crowdsourcing in proteomics: public resources lead to better experiments. Amino Acids 2013; 44:1129-37. [PMID: 23377569 DOI: 10.1007/s00726-012-1455-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 12/26/2012] [Indexed: 12/19/2022]
Abstract
With the growing interest in the field of proteomics, the amount of publicly available proteome resources has also increased dramatically. This means that there are many useful resources available for almost all aspects of a proteomics experiment. However, it remains vital to use the right resource, for the right purpose, at the right time. This review is therefore meant to aid the reader in obtaining an overview of the available resources and their application, thus providing the necessary background to choose the appropriate resources for the experiment at hand. Many of the resources are also taking advantage of so-called crowdsourcing to maximize the potential of the resource. What this means and how this can improve future experiments will also be discussed. The text roughly follows the steps involved in a proteomics experiment, starting with the planning of the experiment, via the processing of the data and the analysis of the results, to the community-wide sharing of the produced data.
Collapse
|
83
|
Perez-Riverol Y, Hermjakob H, Kohlbacher O, Martens L, Creasy D, Cox J, Leprevost F, Shan BP, Pérez-Nueno VI, Blazejczyk M, Punta M, Vierlinger K, Valiente PA, Leon K, Chinea G, Guirola O, Bringas R, Cabrera G, Guillen G, Padron G, Gonzalez LJ, Besada V. Computational proteomics pitfalls and challenges: HavanaBioinfo 2012 workshop report. J Proteomics 2013; 87:134-8. [PMID: 23376229 DOI: 10.1016/j.jprot.2013.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
The workshop "Bioinformatics for Biotechnology Applications (HavanaBioinfo 2012)", held December 8-11, 2012 in Havana, aimed at exploring new bioinformatics tools and approaches for large-scale proteomics, genomics and chemoinformatics. Major conclusions of the workshop include the following: (i) development of new applications and bioinformatics tools for proteomic repository analysis is crucial; current proteomic repositories contain enough data (spectra/identifications) that can be used to increase the annotations in protein databases and to generate new tools for protein identification; (ii) spectral libraries, de novo sequencing and database search tools should be combined to increase the number of protein identifications; (iii) protein probabilities and FDR are not yet sufficiently mature; (iv) computational proteomics software needs to become more intuitive; and at the same time appropriate education and training should be provided to help in the efficient exchange of knowledge between mass spectrometrists and experimental biologists and bioinformaticians in order to increase their bioinformatics background, especially statistics knowledge.
Collapse
|
84
|
Medina-Aunon JA, Krishna R, Ghali F, Albar JP, Jones AJ. A guide for integration of proteomic data standards into laboratory workflows. Proteomics 2013; 13:480-92. [DOI: 10.1002/pmic.201200268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/14/2012] [Accepted: 09/10/2012] [Indexed: 01/28/2023]
Affiliation(s)
| | - Ritesh Krishna
- Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Fawaz Ghali
- Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Juan P. Albar
- Centro Nacional de Biotecnología; CSIC; Madrid; Spain
| | - Andrew J. Jones
- Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| |
Collapse
|
85
|
Prins GS, Hu WY. Prostate Stem Cells, Hormones, and Development. STEM CELLS AND PROSTATE CANCER 2013:1-20. [DOI: 10.1007/978-1-4614-6498-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
86
|
Jiménez RC, Vizcaíno JA. Proteomics data exchange and storage: the need for common standards and public repositories. Methods Mol Biol 2013; 1007:317-333. [PMID: 23666733 DOI: 10.1007/978-1-62703-392-3_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Both the existence of data standards and public databases or repositories have been key factors behind the development of the existing "omics" approaches. In this book chapter we first review the main existing mass spectrometry (MS)-based proteomics resources: PRIDE, PeptideAtlas, GPMDB, and Tranche. Second, we report on the current status of the different proteomics data standards developed by the Proteomics Standards Initiative (PSI): the formats mzML, mzIdentML, mzQuantML, TraML, and PSI-MI XML are then reviewed. Finally, we present an easy way to query and access MS proteomics data in the PRIDE database, as a representative of the existing repositories, using the workflow management system (WMS) tool Taverna. Two different publicly available workflows are explained and described.
Collapse
|
87
|
Lewis S, Csordas A, Killcoyne S, Hermjakob H, Hoopmann MR, Moritz RL, Deutsch EW, Boyle J. Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework. BMC Bioinformatics 2012; 13:324. [PMID: 23216909 PMCID: PMC3538679 DOI: 10.1186/1471-2105-13-324] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 11/26/2012] [Indexed: 11/15/2022] Open
Abstract
Background For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. Results We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. Conclusion The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources.
Collapse
Affiliation(s)
- Steven Lewis
- Institute for Systems Biology, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Pérez-Riverol Y, Reisinger F, Ríos D, Wang R, Hermjakob H. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 2012. [PMID: 23203882 PMCID: PMC3531176 DOI: 10.1093/nar/gks1262] [Citation(s) in RCA: 1621] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Hu CW, Lin MH, Huang HC, Ku WC, Yi TH, Tsai CF, Chen YJ, Sugiyama N, Ishihama Y, Juan HF, Wu SH. Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production. J Proteome Res 2012; 11:5362-75. [PMID: 23030682 DOI: 10.1021/pr300582p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopseudomonas palustris (R. palustris) is a purple nonsulfur anoxygenic phototrophic bacterium with metabolic versatility and is able to grow under photoheterotrophic and chemoheterotrophic states. It has uses in carbon management, carbon recycling, hydrogen generation, and lipid production; therefore, it has the potential for bioenergy production and biodegradation. This study is the first to identify the phosphoproteome of R. palustris including 100 phosphopeptides from 54 phosphoproteins and 74 phosphopeptides from 42 phosphoproteins in chemoheterotrophic and photoheterotrophic growth conditions, respectively. In the identified phosphoproteome, phosphorylation at the threonine residue, Thr487, of pyruvate phosphate dikinase (PPDK, RPA1051) was found to participate in the regulation of carbon metabolism. Here, we show that PPDK enzyme activity is higher in photoheterotrophic growth, with Thr487 phosphorylation as a possible mediator. Under the same photoheterotrophic conditions, R. palustris with overexpressed wild-type PPDK showed an enhanced accumulation of total lipids than those with mutant PPDK (T487V) form. This study reveals the role of the PPDK in the production of biodiesel material, lipid content, with threonyl-phosphorylation as one of the possible regulatory events during photoheterotrophic growth in R. palustris.
Collapse
Affiliation(s)
- Chia-Wei Hu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Rappsilber J. Cross-linking/mass spectrometry as a new field and the proteomics information mountain of tomorrow. Expert Rev Proteomics 2012; 9:485-7. [PMID: 23194264 PMCID: PMC3926187 DOI: 10.1586/epr.12.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The European Proteomics Association (EuPA) 2012 Scientific Congress 'New Horizons and Applications for Proteomics', hosted by the British Society for Proteome Research (BSPR) Glasgow, Scotland, UK, 12 July 2012 Cross-linking/mass spectrometry ended decades of method developments and entered the era of applications at this year's European Proteomics Association meeting. The train has started moving, with successful applications of this tool by multiple pioneering laboratories addressing biological and structural problems. Proteomics, on the other side, sees ever increasing data volumes, leading to questions as to how to store the data mountain publically, use it and convert it into testable hypotheses. The European Proteomics Association meeting has been complementary to the American Society for Mass Spectrometry meeting in many ways, also thanks to its more manageable size and the vision of the organizers in inviting some of Europe's best emerging minds.
Collapse
Affiliation(s)
- Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK.
| |
Collapse
|
91
|
Côté RG, Griss J, Dianes JA, Wang R, Wright JC, van den Toorn HWP, van Breukelen B, Heck AJR, Hulstaert N, Martens L, Reisinger F, Csordas A, Ovelleiro D, Perez-Rivevol Y, Barsnes H, Hermjakob H, Vizcaíno JA. The PRoteomics IDEntification (PRIDE) Converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Mol Cell Proteomics 2012; 11:1682-9. [PMID: 22949509 PMCID: PMC3518121 DOI: 10.1074/mcp.o112.021543] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The original PRIDE Converter tool greatly simplified the process of submitting mass spectrometry (MS)-based proteomics data to the PRIDE database. However, after much user feedback, it was noted that the tool had some limitations and could not handle several user requirements that were now becoming commonplace. This prompted us to design and implement a whole new suite of tools that would build on the successes of the original PRIDE Converter and allow users to generate submission-ready, well-annotated PRIDE XML files. The PRIDE Converter 2 tool suite allows users to convert search result files into PRIDE XML (the format needed for performing submissions to the PRIDE database), generate mzTab skeleton files that can be used as a basis to submit quantitative and gel-based MS data, and post-process PRIDE XML files by filtering out contaminants and empty spectra, or by merging several PRIDE XML files together. All the tools have both a graphical user interface that provides a dialog-based, user-friendly way to convert and prepare files for submission, as well as a command-line interface that can be used to integrate the tools into existing or novel pipelines, for batch processing and power users. The PRIDE Converter 2 tool suite will thus become a cornerstone in the submission process to PRIDE and, by extension, to the ProteomeXchange consortium of MS-proteomics data repositories.
Collapse
Affiliation(s)
- Richard G Côté
- Proteomics Services Team, EMBL Outstation, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Vaudel M, Burkhart JM, Radau S, Zahedi RP, Martens L, Sickmann A. Integral Quantification Accuracy Estimation for Reporter Ion-based Quantitative Proteomics (iQuARI). J Proteome Res 2012; 11:5072-80. [DOI: 10.1021/pr300247u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marc Vaudel
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Dortmund, Germany
| | - Julia M. Burkhart
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Dortmund, Germany
| | - Sonja Radau
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Dortmund, Germany
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Dortmund, Germany
| | - Lennart Martens
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften − ISAS − e.V., Dortmund, Germany
- Medizinisches
Proteom-Center (MPC), Ruhr-Universität, Bochum, Germany
| |
Collapse
|
93
|
Rosenow A, Noben JP, Jocken J, Kallendrusch S, Fischer-Posovszky P, Mariman ECM, Renes J. Resveratrol-induced changes of the human adipocyte secretion profile. J Proteome Res 2012; 11:4733-43. [PMID: 22905912 DOI: 10.1021/pr300539b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enlarged white adipose tissue (WAT) is a feature of obesity and leads to changes in its paracrine and endocrine function. Dysfunction of WAT cells is associated with obesity-associated disorders like type 2 diabetes and cardiovascular diseases. Resveratrol (RSV), a natural polyphenolic compound, mimics beneficial effects of calorie restriction. As such, RSV seems a promising therapeutic target for obesity-associated disorders. The effect of RSV on the human adipokine profile is still elusive. Therefore, a proteomic study together with bioinformatical analysis was performed to investigate the effect of RSV on the secretion profile of mature human SGBS adipocytes. RSV incubation resulted in elevated basal glycerol release and reduced intracellular TG content. This increased intracellular lipolysis was accompanied by profound changes in the adipocyte secretion profile. Extracellular matrix proteins were down-regulated while processing proteins were mostly up-regulated after RSV treatment. Interestingly, RSV induced secretion of proteins protective against cellular stress and proteins involved in the regulation of apoptosis. Furthermore, we found a RSV-induced up-regulation of adiponectin and ApoE accompanied by a down-regulation of PAI-1 and PEDF secretion which may improve anti-inflammatory processes and increased insulin sensitivity. These effects may contribute to alleviate obesity-induced metabolic complications. In addition, two novel RSV-regulated adipocyte-secreted proteins were identified.
Collapse
Affiliation(s)
- Anja Rosenow
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
94
|
Zehr ES, Tabatabai LB, Bayles DO. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis. BMC Genomics 2012; 13:331. [PMID: 22823751 PMCID: PMC3447690 DOI: 10.1186/1471-2164-13-331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022] Open
Abstract
Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome’s G + C content was 39.93%. Twenty protein homologs to bacteriophage proteins, including 15 structural proteins, one lysogeny-related and one lysis-related protein, and three DNA replication proteins were identified by mass spectrometry. One of the tail proteins, gp36, may be a virulence-related protein. Conclusions Bacteriophage SuMu was characterized by genomic and proteomic methods and compared to enterobacteriophage Mu.
Collapse
Affiliation(s)
- Emilie S Zehr
- U.S. Department of Agriculture, Ruminant Diseases and Immunology, National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | |
Collapse
|
95
|
Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012; 404:939-65. [PMID: 22772140 DOI: 10.1007/s00216-012-6203-4] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 02/08/2023]
Abstract
Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.
Collapse
|
96
|
Barlow DJ, Buriani A, Ehrman T, Bosisio E, Eberini I, Hylands PJ. In-silico studies in Chinese herbal medicines' research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:526-534. [PMID: 22326356 PMCID: PMC7126886 DOI: 10.1016/j.jep.2012.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 05/31/2023]
Abstract
The available databases that catalogue information on traditional Chinese medicines are reviewed in terms of their content and utility for in-silico research on Chinese herbal medicines, as too are the various protein database resources, and the software available for use in such studies. The software available for bioinformatics and 'omics studies of Chinese herbal medicines are summarised, and a critical evaluation given of the various in-silico methods applied in screening Chinese herbal medicines, including classification trees, neural networks, support vector machines, docking and inverse docking algorithms. Recommendations are made regarding any future in-silico studies of Chinese herbal medicines.
Collapse
Affiliation(s)
- D J Barlow
- Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | | | | | | | | | | |
Collapse
|
97
|
Csordas A, Ovelleiro D, Wang R, Foster JM, Ríos D, Vizcaíno JA, Hermjakob H. PRIDE: quality control in a proteomics data repository. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bas004. [PMID: 22434838 PMCID: PMC3308160 DOI: 10.1093/database/bas004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The PRoteomics IDEntifications (PRIDE) database is a large public proteomics data repository, containing over 270 million mass spectra (by November 2011). PRIDE is an archival database, providing the proteomics data supporting specific scientific publications in a computationally accessible manner. While PRIDE faces rapid increases in data deposition size as well as number of depositions, the major challenge is to ensure a high quality of data depositions in the context of highly diverse proteomics work flows and data representations. Here, we describe the PRIDE curation pipeline and its practical application in quality control of complex data depositions. Database URL:http://www.ebi.ac.uk/pride/.
Collapse
Affiliation(s)
- Attila Csordas
- EMBL Outstation, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | | | | | | | | | | | | |
Collapse
|