51
|
Faraji A, Haas-Stapleton E, Sorensen B, Scholl M, Goodman G, Buettner J, Schon S, Lefkow N, Lewis C, Fritz B, Hoffman C, Williams G. Toys or Tools? Utilization of Unmanned Aerial Systems in Mosquito and Vector Control Programs. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1896-1909. [PMID: 34117758 DOI: 10.1093/jee/toab107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Organized mosquito control programs (MCP) in the United States have been protecting public health since the early 1900s. These programs utilize integrated mosquito management for surveillance and control measures to enhance quality of life and protect the public from mosquito-borne diseases. Because much of the equipment and insecticides are developed for agriculture, MCP are left to innovate and adapt what is available to accomplish their core missions. Unmanned aerial systems (UAS) are one such innovation that are quickly being adopted by MCP. The advantages of UAS are no longer conjectural. In addition to locating mosquito larval habitats, UAS affords MCP real-time imagery, improved accuracy of aerial insecticide applications, mosquito larval detection and sampling. UAS are also leveraged for applying larvicides to water in habitats that range in size from multi-acre wetlands to small containers in urban settings. Employing UAS can reduce staff exposure to hazards and the impact associated with the use of heavy equipment in sensitive habitats. UAS are utilized by MCP nationally and their use will continue to increase as technology advances and regulations change. Current impediments include a dearth of major UAS manufacturers of equipment that is tailor-made for mosquito control, pesticides that are optimized for application via UAS and regulations that limit the access of UAS to national airspace. This manuscript highlights the strengths and weaknesses of UAS within MCP, provides an update on systems and methods used, and charts the future direction of UAS technology within MCP tasked with public health protection.
Collapse
Affiliation(s)
- Ary Faraji
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT 84116, USA
| | | | - Brad Sorensen
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT 84116, USA
| | - Marty Scholl
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA 95624, USA
| | - Gary Goodman
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA 95624, USA
| | - Joel Buettner
- Placer Mosquito and Vector Control District, Roseville, CA 95678, USA
| | - Scott Schon
- Placer Mosquito and Vector Control District, Roseville, CA 95678, USA
| | - Nicholas Lefkow
- Lee County Mosquito/Hyacinth Control District, Lehigh Acres, FL 33971, USA
| | - Colin Lewis
- Lee County Mosquito/Hyacinth Control District, Lehigh Acres, FL 33971, USA
| | - Bradley Fritz
- USDA ARS Aerial Application Technology Research Unit, College Station, TX 77845, USA
| | - Clint Hoffman
- Innovative Vector Control Consortium, Liverpool L3 5QA, UK
| | - Greg Williams
- Hudson Regional Health Commission, Secaucus, NJ 07094, USA
| |
Collapse
|
52
|
Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia. Proc Natl Acad Sci U S A 2021; 118:2106828118. [PMID: 34607949 PMCID: PMC8521666 DOI: 10.1073/pnas.2106828118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
With over 40% of humans at risk from mosquito-borne diseases such as dengue, yellow fever, chikungunya, and Zika, the development of environmentally friendly mosquito-control tools is critical. The release of reproductively incompatible male mosquitoes carrying a Wolbachia bacterium can drive mating events that kill the eggs. Through replicated treatment and control experiments in northern Australia, regular releases of Aedes aegypti males infected with a Wolbachia from Aedes albopictus was shown to drive strong population suppression in mosaic populations of wild-type (no Wolbachia) and wMel-Wolbachia–carrying Ae. aegypti. In a demonstration of bidirectional incompatibility between different Wolbachia strains in the field, we also demonstrate that one season’s suppression experiment can also show an ongoing effect into the following season. Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.
Collapse
|
53
|
Vythilingam I, Chua TH, Liew JWK, Manin BO, Ferguson HM. The vectors of Plasmodium knowlesi and other simian malarias Southeast Asia: challenges in malaria elimination. ADVANCES IN PARASITOLOGY 2021; 113:131-189. [PMID: 34620382 DOI: 10.1016/bs.apar.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tock Hing Chua
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia.
| | - Jonathan Wee Kent Liew
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia; Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Benny O Manin
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
54
|
Benedict MQ. Sterile Insect Technique: Lessons From the Past. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1974-1979. [PMID: 33629719 DOI: 10.1093/jme/tjab024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 06/12/2023]
Abstract
When E.F. Knipling conceived of the release of sexually sterile insects to suppress wild populations, he laid down several fundamental qualities that characterized suitable target species-some of which mosquitoes generally violate-including high reproductive rates and large population numbers. Regardless of this, their global importance in public health has led numerous research teams to attempt to use the mosquito sterile insect technique against several species. Because of the degree of financial commitment required for suppression programs, most releases have consisted of preliminary investigations of male performance, population characteristics, and production methods. Those that have accomplished suppression provide important insights regarding the challenges of production, dispersal, and immigration. Insights gained from these studies remain relevant today, regardless of the genetic control technology being applied. In this article, I highlight studies that were notable for the insights that were gained, the intrinsic difficulties that mosquitoes present, and synthesize these into recommendations for successful applications of the sterile insect technique and newer technologies to mosquitoes.
Collapse
|
55
|
Feng X, Kambic L, Nishimoto JH, Reed FA, Denton JA, Sutton JT, Gantz VM. Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito Culex quinquefasciatus. CRISPR J 2021; 4:595-608. [PMID: 34280034 PMCID: PMC8392076 DOI: 10.1089/crispr.2021.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of several human and animal pathogens. Their biology and behavior allow them to thrive in proximity to urban areas, rendering them a constant public health threat. Their mixed bird/mammal feeding behavior further offers a vehicle for zoonotic pathogens transmission to people and, separately, poses a threat to the conservation of insular birds. The advent of CRISPR has led to the development of novel technologies for the genetic engineering of wild mosquito populations. Yet, research into Cx. quinquefasciatus has been lagging compared to other disease vectors. Here, we use this tool to disrupt a set of five pigmentation genes in Cx. quinquefasciatus that, when altered, lead to visible, homozygous-viable phenotypes. We further validate this approach in separate laboratories and in two distinct strains of Cx. quinquefasciatus that are relevant to potential future public health and bird conservation applications. We generate a double-mutant line, demonstrating the possibility of sequentially combining multiple such mutations in a single individual. Lastly, we target two loci, doublesex in the sex-determination pathway and proboscipedia, a hox gene, demonstrating the flexibility of these methods applied to novel targets. Our work provides a platform of seven validated loci that could be used for targeted mutagenesis in Cx. quinquefasciatus and the future development of genetic suppression strategies for this species. Furthermore, the mutant lines generated here could have widespread utility to the research community using this model organism, as they could be used as targets for transgene delivery, where a copy of the disrupted gene could be included as an easily scored transgenesis marker.
Collapse
Affiliation(s)
- Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Lukas Kambic
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | | | - Floyd A. Reed
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawai‘i, USA
| | - Jai A. Denton
- Institute of Vector-borne Disease, University of Monash, Clayton, Australia
| | - Jolene T. Sutton
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | - Valentino M. Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
56
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
57
|
Caragata EP, Dutra HLC, Sucupira PHF, Ferreira AGA, Moreira LA. Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol 2021; 37:1050-1067. [PMID: 34303627 DOI: 10.1016/j.pt.2021.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023]
Abstract
In this review we examine how exploiting the Wolbachia-mosquito relationship has become an increasingly popular strategy for controlling arbovirus transmission. Field deployments of Wolbachia-infected mosquitoes have led to significant decreases in dengue virus incidence via high levels of mosquito population suppression and replacement, emphasizing the success of Wolbachia approaches. Here, we examine how improved knowledge of Wolbachia-host interactions has provided key insight into the mechanisms of the essential phenotypes of pathogen blocking and cytoplasmic incompatibility. And we discuss recent studies demonstrating that extrinsic factors, such as ambient temperature, can modulate Wolbachia density and maternal transmission. Finally, we assess the prospects of using Wolbachia to control other vectors and agricultural pest species.
Collapse
Affiliation(s)
- Eric P Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA.
| | - Heverton L C Dutra
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Pedro H F Sucupira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil
| | - Alvaro G A Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil
| | - Luciano A Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, MG, Brazil.
| |
Collapse
|
58
|
Effect of cage size on Aedes albopictus wing length, survival and egg production. Heliyon 2021; 7:e07381. [PMID: 34222702 PMCID: PMC8242996 DOI: 10.1016/j.heliyon.2021.e07381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/18/2020] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aedes albopictus is currently the most widespread invasive mosquito species in the world. It has paramount medical importance since females are efficient vectors of important viruses affecting humans. The development of alternative control strategies to complement control measures has become an imperative and involves the Sterile Insect Technique (SIT). Research to improve the productivity of mass-rearing, as well as the quality of mass-reared males is of essential importance for the success of SIT. Methods This study compared the influence of three differently sized cages for Ae. albopictus mass-rearing on wing length, adult survival and egg production during 20 generations of colonization. Plexiglas cages of 40x40x40 cm (C1), 100 × 20 × 100 cm (C2) and 100 × 65 × 100 cm (C3) were loaded with equal adult density, and sex ratio of 1:1. An open source image processing and analysis programme (ImageJ) was used for the wing measurement and egg counting. Results In all tested cages, we identified two periods separated by the generation showing the minimum value of each considered parameter (wing length, adult survival and egg production). The wing length and adult survival passed through the phases of initial decrease to about intermediate colonization time, and increased afterwards. Fecundity was steady during the first period and increased in the second one. Cage C1 demonstrated not only the best values for all parameters but also the smallest decrease in the initial phase. Recovering of the caged mosquitoes in the second half of the study was higher in cages C1 and C2, than in C3. Conclusions C1 provided the least negative selection pressure on wing length, adult survival and egg production for reared Ae. albopictus. Anyhow, since maximising mosquito density by exploiting the minimum space is a priority in mosquito mass-rearing, C2 might be a better choice for better fitting the space of mass-rearing rooms.
Collapse
|
59
|
Vella MR, Gould F, Lloyd AL. Mathematical modeling of genetic pest management through female-specific lethality: Is one locus better than two? Evol Appl 2021; 14:1612-1622. [PMID: 34178107 PMCID: PMC8210802 DOI: 10.1111/eva.13228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/03/2023] Open
Abstract
Many novel genetic approaches are under development to combat insect pests. One genetic strategy aims to suppress or locally eliminate a species through large, repeated releases of genetically engineered strains that render female offspring unviable under field conditions. Strains with this female-killing characteristic have been developed either with all of the molecular components in a single construct or with the components in two constructs inserted at independently assorting loci. Strains with two constructs are typically considered to be only of value as research tools and for producing solely male offspring in rearing factories which are subsequently sterilized by radiation before release. A concern with the two-construct strains is that once released, the two constructs would become separated and therefore non-functional. The only female-killing strains that have been released in the field without sterilization are single-construct strains. Here, we use a population genetics model with density dependence to evaluate the relative effectiveness of female-killing approaches based on single- and two-construct arrangements. We find that, in general, the single-construct arrangement results in slightly faster population suppression, but the two-construct arrangement can eventually cause stronger suppression and cause local elimination with a smaller release size. Based on our results, there is no a priori reason that males carrying two independently segregating constructs need to be sterilized prior to release. In some cases, a fertile release would be more efficient for population suppression.
Collapse
Affiliation(s)
- Michael R. Vella
- Biomathematics Graduate ProgramNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Fred Gould
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Alun L. Lloyd
- Biomathematics Graduate ProgramNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of MathematicsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
60
|
Vollans M, Bonsall MB. The concomitant effects of self-limiting insect releases and behavioural interference on patterns of coexistence and exclusion of competing mosquitoes. Proc Biol Sci 2021; 288:20210714. [PMID: 34004130 PMCID: PMC8131123 DOI: 10.1098/rspb.2021.0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
Aedes aegypti is the dominant vector of dengue, a potentially fatal virus whose incidence has increased eightfold in the last two decades. As dengue has no widely available vaccine, vector control is key to reducing the global public health burden. A promising method is the release of self-limiting Ae. aegypti, which mate with wild Ae. aegypti and produce non-viable offspring. The resultant decrease in Ae. aegypti population size may impact coexistence with Ae. albopictus, another vector of dengue. A behavioural mechanism influencing coexistence between these species is reproductive interference, where incomplete species recognition results in heterospecifics engaging in mating activities. We develop a theoretical framework to investigate the interaction between self-limiting Ae. aegypti releases and reproductive interference between Ae. aegypti and Ae. albopictus on patterns of coexistence. In the absence of self-limiting Ae. aegypti release, coexistence can occur when the strength of reproductive interference experienced by both species is low. Results show that substantial overflooding with self-limiting Ae. aegypti prevents coexistence. For lower release ratios, as the release ratio increases, coexistence can occur when the strength of reproductive interference is increasingly high for Ae. albopictus and increasingly low for Ae. aegypti. This emphasizes the importance of including behavioural ecological processes into population models to evaluate the efficacy of vector control.
Collapse
Affiliation(s)
- Maisie Vollans
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
61
|
A functional requirement for sex-determination M/m locus region lncRNA genes in Aedes aegypti female larvae. Sci Rep 2021; 11:10657. [PMID: 34017069 PMCID: PMC8137943 DOI: 10.1038/s41598-021-90194-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/25/2023] Open
Abstract
Although many putative long non-coding RNA (lncRNA) genes have been identified in insect genomes, few of these genes have been functionally validated. A screen for female-specific larvicides that facilitate Aedes aegypti male sex separation uncovered multiple interfering RNAs with target sites in lncRNA genes located in the M/m locus region, including loci within or tightly linked to the sex determination locus. Larval consumption of a Saccharomyces cerevisiae (yeast) strain engineered to express interfering RNA corresponding to lncRNA transcripts resulted in significant female death, yet had no impact on male survival or fitness. Incorporation of the yeast larvicides into mass culturing protocols facilitated scaled production and separation of fit adult males, indicating that yeast larvicides could benefit mosquito population control strategies that rely on mass releases of male mosquitoes. These studies functionally verified a female-specific developmental requirement for M/m locus region lncRNA genes, suggesting that sexually antagonistic lncRNA genes found within this highly repetitive pericentromeric DNA sequence may be contributing to the evolution of A. aegypti sex chromosomes.
Collapse
|
62
|
Gato R, Menéndez Z, Prieto E, Argilés R, Rodríguez M, Baldoquín W, Hernández Y, Pérez D, Anaya J, Fuentes I, Lorenzo C, González K, Campo Y, Bouyer J. Sterile Insect Technique: Successful Suppression of an Aedes aegypti Field Population in Cuba. INSECTS 2021; 12:insects12050469. [PMID: 34070177 PMCID: PMC8158475 DOI: 10.3390/insects12050469] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary The sterile insect technique (SIT) is a species-specific and environment-friendly method of insect control that relies on the release of large numbers of sterile insects. Mating released sterile males with wild females leads to a decrease in the reproductive potential and to the local suppression of the target population. There is increased interest in applying this approach to manage disease-transmitting mosquito populations. The main focus of this pilot trial was to assess the efficacy of the SIT for the suppression of Aedes aegypti populations. Two areas in Havana city, Cuba, were selected as control and release trial sites. The presence, density and fertility of the target wild population were monitored through a network of ovitraps. Approximately 1,270,000 irradiated Ae. aegypti males were released in the 50 ha target area over a period of 20 weeks. The released mosquitoes showed excellent mating competitiveness and induced high levels of sterility in the wild Ae. aegypti population. The target natural population was suppressed as reflected in the ovitrap index and in the mean number of eggs/trap values which dropped to zero by the last 3 weeks of the trial. We conclude that the released sterile male Ae. aegypti competed successfully and induced significant sterility in the local target Ae. aegypti population, resulting in suppression of the vector. Abstract Dengue virus infections are a serious public health problem worldwide. Aedes aegypti is the primary vector of dengue in Cuba. As there is no vaccine or specific treatment, the control efforts are directed to the reduction of mosquito populations. The indiscriminate use of insecticides can lead to adverse effects on ecosystems, including human health. The sterile insect technique is a species-specific and environment-friendly method of insect population control based on the release of large numbers of sterile insects, ideally males only. The success of this technique for the sustainable management of agricultural pests has encouraged its evaluation for the population suppression of mosquito vector species. Here, we describe an open field trial to evaluate the effect of the release of irradiated male Ae. aegypti on a wild population. The pilot trial was carried out in a suburb of Havana and compared the mosquito population density before and after the intervention, in both untreated control and release areas. The wild population was monitored by an ovitrap network, recording frequency and density of eggs as well as their hatch rate. A significant amount of sterility was induced in the field population of the release area, as compared with the untreated control area. The ovitrap index and the mean number of eggs/trap declined dramatically after 12 and 5 weeks of releases, respectively. For the last 3 weeks, no eggs were collected in the treatment area, clearly indicating a significant suppression of the wild target population. We conclude that the sterile males released competed successfully and induced enough sterility to suppress the local Ae. aegypti population.
Collapse
Affiliation(s)
- René Gato
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
- Correspondence: ; Tel.: +53-5346-3992
| | - Zulema Menéndez
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Enrique Prieto
- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 y 5ta ave. Miramar, La Habana 11300, Cuba;
| | - Rafael Argilés
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria; (R.A.); (J.B.)
| | - Misladys Rodríguez
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Waldemar Baldoquín
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Yisel Hernández
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Dennis Pérez
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Jorge Anaya
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Ilario Fuentes
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Claudia Lorenzo
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Keren González
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Yudaisi Campo
- Instituto Pedro Kourí, Autopista Novia del Mediodia, La Lisa, La Habana 11400, Cuba; (Z.M.); (M.R.); (W.B.); (Y.H.); (D.P.); (J.A.); (I.F.); (C.L.); (K.G.); (Y.C.)
| | - Jérémy Bouyer
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria; (R.A.); (J.B.)
| |
Collapse
|
63
|
Reduced competence to arboviruses following the sustainable invasion of Wolbachia into native Aedes aegypti from Southeastern Brazil. Sci Rep 2021; 11:10039. [PMID: 33976301 PMCID: PMC8113270 DOI: 10.1038/s41598-021-89409-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Field release of Wolbachia-infected Aedes aegypti has emerged as a promising solution to manage the transmission of dengue, Zika and chikungunya in endemic areas across the globe. Through an efficient self-dispersing mechanism, and the ability to induce virus-blocking properties, Wolbachia offers an unmatched potential to gradually modify wild Ae. aegypti populations turning them unsuitable disease vectors. Here we describe a proof-of-concept field trial carried out in a small community of Niterói, greater Rio de Janeiro, Brazil. Following the release of Wolbachia-infected eggs, we report here a successful invasion and long-term establishment of the bacterium across the territory, as denoted by stable high-infection indexes (> 80%). We have also demonstrated that refractoriness to dengue and Zika viruses, either thorough oral-feeding or intra-thoracic saliva challenging assays, was maintained over the adaptation to the natural environment of Southeastern Brazil. These findings further support Wolbachia's ability to invade local Ae. aegypti populations and impair disease transmission, and will pave the way for future epidemiological and economic impact assessments.
Collapse
|
64
|
Kaczmarek A, Wrońska AK, Boguś MI, Kazek M, Gliniewicz A, Mikulak E, Matławska M. The type of blood used to feed Aedes aegypti females affects their cuticular and internal free fatty acid (FFA) profiles. PLoS One 2021; 16:e0251100. [PMID: 33930098 PMCID: PMC8087090 DOI: 10.1371/journal.pone.0251100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti, the primary vector of various arthropod-borne viral (arboviral) diseases such as dengue and Zika, is a popular laboratory model in vector biology. However, its maintenance in laboratory conditions is difficult, mostly because the females require blood meals to complete oogenesis, which is often provided as sheep blood. The outermost layer of the mosquito cuticle is consists of lipids which protects against numerous entomopathogens, prevents desiccation and plays an essential role in signalling processes. The aim of this work was to determine how the replacement of human blood with sheep blood affects the cuticular and internal FFA profiles of mosquitoes reared in laboratory culture. The individual FFAs present in cuticular and internal extracts from mosquito were identified and quantified by GC-MS method. The normality of their distribution was checked using the Kolmogorov-Smirnov test and the Student's t-test was used to compare them. GC-MS analysis revealed similar numbers of internal and cuticular FFAs in the female mosquitoes fed sheep blood by membrane (MFSB) and naturally fed human blood (NFHB), however MFSB group demonstrated 3.1 times greater FFA concentrations in the cuticular fraction and 1.4 times the internal fraction than the NFHB group. In the MFSB group, FFA concentration was 1.6 times higher in the cuticular than the internal fraction, while for NFHB, FFA concentration was 1.3 times lower in the cuticular than the internal fraction. The concentration of C18:3 acid was 223 times higher in the internal fraction than the cuticle in the MHSB group but was absent in the NFHB group. MFSB mosquito demonstrate different FFA profiles to wild mosquitoes, which might influence their fertility and the results of vital processes studied under laboratory conditions. The membrane method of feeding mosquitoes is popular, but our research indicates significant differences in the FFA profiles of MFSB and NFHB. Such changes in FFA profile might influence female fertility, as well as other vital processes studied in laboratory conditions, such as the response to pesticides. Our work indicates that sheep blood has potential shortcomings as a substitute feed for human blood, as its use in laboratory studies may yield different results to those demonstrated by free-living mosquitoes.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | | | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Mikulak
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Marta Matławska
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
65
|
Champer J, Champer SE, Kim IK, Clark AG, Messer PW. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives. Evol Appl 2021; 14:1052-1069. [PMID: 33897820 PMCID: PMC8061266 DOI: 10.1111/eva.13180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
CRISPR gene drive systems offer a mechanism for transmitting a desirable transgene throughout a population for purposes ranging from vector-borne disease control to invasive species suppression. In this simulation study, we assess the performance of several CRISPR-based underdominance gene drive constructs employing toxin-antidote (TA) principles. These drives disrupt the wild-type version of an essential gene using a CRISPR nuclease (the toxin) while simultaneously carrying a recoded version of the gene (the antidote). Drives of this nature allow for releases that could be potentially confined to a desired geographic location. This is because such drives have a nonzero-invasion threshold frequency required for the drive to spread through the population. We model drives which target essential genes that are either haplosufficient or haplolethal, using nuclease promoters with expression restricted to the germline, promoters that additionally result in cleavage activity in the early embryo from maternal deposition, and promoters that have ubiquitous somatic expression. We also study several possible drive architectures, considering both "same-site" and "distant-site" systems, as well as several reciprocally targeting drives. Together, these drive variants provide a wide range of invasion threshold frequencies and options for both population modification and suppression. Our results suggest that CRISPR TA underdominance drive systems could allow for the design of flexible and potentially confinable gene drive strategies.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Samuel E. Champer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | - Isabel K. Kim
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | - Andrew G. Clark
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Philipp W. Messer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
66
|
Viktorov AG. Genetic Methods of Insect Control: History and Current State. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2021. [DOI: 10.1134/s2075111721020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Abstract
The review considers the main stages in the development of genetic method of insect control: 1) The idea of A.S. Serebrovsky, who suggested releasing males with non-viable translocations into nature; 2) "Z-lethal" method of V.A. Strunnikov for control of harmful Lepidoptera, which consists in the release of males carrying two non-allelic recessive mutations in the sex Z-chromosomes into nature; 3) Sterile insect technique (SIT) used widely in practice in the second half of the XX-th century; 4) Genetically engineered biotechnology RIDL (Release of Insects carrying a Dominant Lethal) used in practice to control the invasive mosquito Aedes aegypti , the vector of Zika viruses and yellow fever. It is generalized that the main opponent of the genetic method of insect control is natural selection, which supports females, choosing natural rather than sterile or "genetically modified" males on mating. It follows from the above that genetic methods of control can be effective only in control of invasive species have not spread widely yet.
Collapse
|
68
|
Nolan T. Control of malaria-transmitting mosquitoes using gene drives. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190803. [PMID: 33357060 PMCID: PMC7776936 DOI: 10.1098/rstb.2019.0803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
Gene drives are selfish genetic elements that can be re-designed to invade a population and they hold tremendous potential for the control of mosquitoes that transmit disease. Much progress has been made recently in demonstrating proof of principle for gene drives able to suppress populations of malarial mosquitoes, or to make them refractory to the Plasmodium parasites they transmit. This has been achieved using CRISPR-based gene drives. In this article, I will discuss the relative merits of this type of gene drive, as well as barriers to its technical development and to its deployment in the field as malaria control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Tony Nolan
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
69
|
Jones RT, Pretorius E, Ant TH, Bradley J, Last A, Logan JG. The use of islands and cluster-randomized trials to investigate vector control interventions: a case study on the Bijagós archipelago, Guinea-Bissau. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190807. [PMID: 33357055 PMCID: PMC7776941 DOI: 10.1098/rstb.2019.0807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Vector-borne diseases threaten the health of populations around the world. While key interventions continue to provide protection from vectors, there remains a need to develop and test new vector control tools. Cluster-randomized trials, in which the intervention or control is randomly allocated to clusters, are commonly selected for such evaluations, but their design must carefully consider cluster size and cluster separation, as well as the movement of people and vectors, to ensure sufficient statistical power and avoid contamination of results. Island settings present an opportunity to conduct these studies. Here, we explore the benefits and challenges of conducting intervention studies on islands and introduce the Bijagós archipelago of Guinea-Bissau as a potential study site for interventions intended to control vector-borne diseases. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Robert T. Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Elizabeth Pretorius
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Thomas H. Ant
- Centre for Virus Research, Bearsden Road, Bearsden, Glasgow G61 1QH, UK
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Anna Last
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - James G. Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
70
|
Koskinioti P, Augustinos AA, Carvalho DO, Misbah-ul-Haq M, Pillwax G, de la Fuente LD, Salvador-Herranz G, Herrero RA, Bourtzis K. Genetic sexing strains for the population suppression of the mosquito vector Aedes aegypti. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190808. [PMID: 33357054 PMCID: PMC7776939 DOI: 10.1098/rstb.2019.0808] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/04/2022] Open
Abstract
Aedes aegypti is the primary vector of arthropod-borne viruses including dengue, chikungunya and Zika. Vector population control methods are reviving to impede disease transmission. An efficient sex separation for male-only releases is crucial for area-wide mosquito population suppression strategies. Here, we report on the construction of two genetic sexing strains using red- and white-eye colour mutations as selectable markers. Quality control analysis showed that the Red-eye genetic sexing strains (GSS) is better and more genetically stable than the White-eye GSS. The introduction of an irradiation-induced inversion (Inv35) increases genetic stability and reduces the probability of female contamination of the male release batches. Bi-weekly releases of irradiated males of both the Red-eye GSS and the Red-eye GSS/Inv35 fully suppressed target laboratory cage populations within six and nine weeks, respectively. An image analysis algorithm allowing sex determination based on eye colour identification at the pupal stage was developed. The next step is to automate the Red-eye-based genetic sexing and validate it in pilot trials prior to its integration in large-scale population suppression programmes. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Antonios A. Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Danilo O. Carvalho
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Muhammad Misbah-ul-Haq
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
- Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Gulizar Pillwax
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Lucia Duran de la Fuente
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Gustavo Salvador-Herranz
- Departamento de Expresión Gráfica, Proyectos y Urbanismo, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Rafael Argilés Herrero
- Insect Pest Control Section, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Wagramerstrasse 5, PO Box 100, 1400 Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| |
Collapse
|
71
|
Shults P, Cohnstaedt LW, Adelman ZN, Brelsfoard C. Next-generation tools to control biting midge populations and reduce pathogen transmission. Parasit Vectors 2021; 14:31. [PMID: 33413518 PMCID: PMC7788963 DOI: 10.1186/s13071-020-04524-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically difficult, expensive and ineffective if not instituted and maintained properly. With these limitations, a population-level approach to the management of Culicoides midges should be investigated as a means to replace or supplement existing control strategies. Next-generation control methods such as Wolbachia- and genetic-based population suppression and replacement are being investigated in several vector species. Here we assess the feasibility and applicability of these approaches for use against biting midges. We also discuss the technical and logistical hurdles needing to be addressed for each method to be successful, as well as emphasize the importance of addressing community engagement and involving stakeholders in the investigation and development of these approaches.
Collapse
Affiliation(s)
- Phillip Shults
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA.
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Zach N Adelman
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA
| | | |
Collapse
|
72
|
Hasaballah AI. Impact of paternal transmission of gamma radiation on reproduction, oogenesis, and spermatogenesis of the housefly, Musca domestica L. (Diptera: Muscidae). Int J Radiat Biol 2021; 97:376-385. [PMID: 33320767 DOI: 10.1080/09553002.2021.1864046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This study aimed to investigate the impact of gamma radiation of Musca domestica males (resulted from irradiated pupae) crossed with unirradiated females on fecundity, egg hatchability, adult emergence, sex ratio, sterility, in addition to reproductive development at the level of oogenesis and spermatogenesis compared to unirradiated group. MATERIAL AND METHODS The housefly, M. domestica pupae were exposed to three sublethal doses of 5, 10, and 15 Gy. RESULTS Fecundity was severely reduced particularly in F2 (11.33 ± 1.528; 7.33 ± 1.115 eggs/♀) and F3 (9.0 ± 1.00; 4.67 ± 1.115 eggs/♀) for doses of 10 and 15 Gy, respectively, compared with (52.0 ± 1.4 eggs/♀) for the control. Data revealed latent dose- and generation-dependent reduction in egg hatchability. Hatchability percentages reduced from 93.59 for the control to 10.07 (F1), 8.09 (F2), and 8.34 (F3) when the highest radiation dose 15 Gy was applied. Irradiation induced paternal deleterious substerility effects. Irradiation with 15 Gy induced substerility that reached about 97.0% in F2 and F3 generations. A significant (P < 0.05) reduction of the mean numbers of adult emergence was remarkably detected in the F1, F2, and F3 generations. Applied gamma doses did not affect the male to female ratio in the Parental or F1 generations. However, the F2 and F3 generations did show changes to the sex ratio with males occurring more frequently than females. This trend became more pronounced as dose increased. Ultrastructural examinations exhibited unusual damage and malformation either for males or female reproductive organs. CONCLUSION The obtained results clearly show that gamma radiation of M. domestica irradiated as pupae induced considerably visible impact on tested biological aspects and reproductive potential.
Collapse
Affiliation(s)
- Ahmed I Hasaballah
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
73
|
Leftwich PT, Spurgin LG, Harvey-Samuel T, Thomas CJE, Paladino LC, Edgington MP, Alphey L. Genetic pest management and the background genetics of release strains. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190805. [PMID: 33357053 DOI: 10.1098/rstb.2019.0805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic pest management (GPM) methods involve releasing modified versions of a pest species to mate with wild pests in the target area. Proposed for a wide range of applications in public health, agriculture and conservation, most progress has been made with pest insects. Offspring of the released modified insects and wild pests carry the modification-which might be transgenes, artificially introduced Wolbachia or genetic damage from radiation, for example-but they also carry a complete haploid genome from their laboratory-reared parent, as well as one from their wild parent. Unless these F1 hybrids are completely unable to reproduce, further mating will lead to introgression of DNA sequences from the release strain into the wild population. We discuss issues around strain selection and the potential consequences of such introgression. We conclude that such introgression is probably harmless in almost all circumstances, and could, in theory, provide specific additional benefits to the release programme. We outline population monitoring approaches that could be used, going forward, to determine how background genetics may affect GPM. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright GU24 0NF, UK
| |
Collapse
|
74
|
Kang DS, Cunningham JM, Lovin DD, Chadee DD, Severson DW. Mating Competitiveness of Transgenic Aedes aegypti (Diptera: Culicidae) Males Against Wild-Type Males Reared Under Simulated Field Conditions. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1775-1781. [PMID: 32556270 PMCID: PMC7899268 DOI: 10.1093/jme/tjaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 05/07/2023]
Abstract
Efforts directed at genetic modification of mosquitoes for population control or replacement are highly dependent on the initial mating success of transgenic male mosquitoes following their release into natural populations. Adult mosquito phenotypes are influenced by the environmental conditions experienced as larvae. Semifield studies conducted to date have not taken that under consideration when testing male mating fitness, and have compared mating success of males reared under identical environmental conditions. We performed pairwise mating challenges between males from a genetically modified laboratory strain (BF2) versus males from a recent Trinidad field isolate of Aedes aegypti (L.), a major vector of multiple arboviruses. We utilized larval density and nutrition to simulate environmental stress experienced by the Trinidad males and females. Our results indicated that environmental stress during larval development negatively influenced the competitiveness and reproductive success of males from the Trinidad population when paired with optimum reared BF2 males. Small (0.027 m3) and large (0.216 m3) trials were conducted wherein stressed or optimum Trinidad males competed with optimum BF2 males for mating with stressed Trinidad females. When competing with stress reared Trinidad males, optimum reared BF2 males were predominant in matings with stress reared Trinidad females, and large proportions of these females mated with males of both strains. When competing with optimum reared Trinidad males, no difference in mating success was observed between them and BF2 males, and frequencies of multiple matings were low. Our results indicate that future mating competition studies should incorporate appropriate environmental conditions when designing mating fitness trials of genetically modified males.
Collapse
Affiliation(s)
- David S Kang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
| | | | - Diane D Lovin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
| | - Dave D Chadee
- Department of Life Sciences, University of the West Indies, Saint Augustine, Trinidad and Tobago
| | - David W Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN
- Department of Life Sciences, University of the West Indies, Saint Augustine, Trinidad and Tobago
- Corresponding author, e-mail:
| |
Collapse
|
75
|
EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Bonsall MB, Mumford J, Wimmer EA, Devos Y, Paraskevopoulos K, Firbank LG. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J 2020; 18:e06297. [PMID: 33209154 PMCID: PMC7658669 DOI: 10.2903/j.efsa.2020.6297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.
Collapse
|
76
|
New Insights into Cockroach Control: Using Functional Diversity of Blattella germanica Symbionts. INSECTS 2020; 11:insects11100696. [PMID: 33066069 PMCID: PMC7601444 DOI: 10.3390/insects11100696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Insect hosts have close relationships with microbial symbionts. The limited metabolic networks of most insects are enhanced by these symbiotic relationships. Using symbiotic microorganisms for biological control of insects and insect-borne diseases has become an important research topic and shows potential for the development of applicable control approaches. Blattella germanica (L.) is public health pest worldwide; it is difficult to control because of its strong reproductive ability, adaptability, and resistance to insecticides. In this paper, the diverse biological functions (nutrition metabolism, reproductive regulation, insecticide resistance, defense, and behavior management) of symbionts, their interaction mechanism with hosts, and the research progress in the control of B. germanica are reviewed and discussed. Abstract Insects have close symbiotic relationships with several microbes, which extends the limited metabolic networks of most insects. Using symbiotic microorganisms for the biological control of pests and insect-borne diseases has become a promising direction. Blattella germanica (L.) (Blattaria: Blattidae) is a public health pest worldwide, which is difficult to control because of its strong reproductive ability, adaptability, and resistance to insecticides. In this paper, the diverse biological functions (nutrition, reproductive regulation, insecticide resistance, defense, and behavior) of symbionts were reviewed, and new biological control strategies on the basis of insect–symbiont interaction were proposed. We highlight new directions in B. germanica control, such as suppressing cockroach population using Wolbachia or paratransgenes, and combining fungal insecticides with synergistic agents to enhance insecticidal efficacy.
Collapse
|
77
|
Qadri M, Short S, Gast K, Hernandez J, Wong ACN. Microbiome Innovation in Agriculture: Development of Microbial Based Tools for Insect Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.547751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
78
|
Rodrigues-Alves ML, Melo-Júnior OADO, Silveira P, Mariano RMDS, Leite JC, Santos TAP, Soares IS, Lair DF, Melo MM, Resende LA, da Silveira-Lemos D, Dutra WO, Gontijo NDF, Araujo RN, Sant'Anna MRV, Andrade LAF, da Fonseca FG, Moreira LA, Giunchetti RC. Historical Perspective and Biotechnological Trends to Block Arboviruses Transmission by Controlling Aedes aegypti Mosquitos Using Different Approaches. Front Med (Lausanne) 2020; 7:275. [PMID: 32656216 PMCID: PMC7325419 DOI: 10.3389/fmed.2020.00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Continuous climate changes associated with the disorderly occupation of urban areas have exposed Latin American populations to the emergence and reemergence of arboviruses transmitted by Aedes aegypti. The magnitude of the financial and political problems these epidemics may bring to the future of developing countries is still ignored. Due to the lack of effective antiviral drugs and vaccines against arboviruses, the primary measure for preventing or reducing the transmission of diseases depends entirely on the control of vectors or the interruption of human-vector contact. In Brazil the first attempt to control A. aegypti took place in 1902 by eliminating artificial sites of eproduction. Other strategies, such as the use of oviposition traps and chemical control with dichlorodiphenyltrichlorethane and pyrethroids, were successful, but only for a limited time. More recently, biotechnical approaches, such as the release of transgenics or sterile mosquitoes and the, development of transmission blocking vaccines, are being applied to try to control the A. aegypti population and/or arbovirus transmission. Endemic countries spend about twice as much to treat patients as they do on the prevention of mosquito-transmitted diseases. The result of this strategy is an explosive outbreak of arboviruses cases. This review summarizes the social impacts caused by A. aegypti-transmitted diseases, mainly from a biotechnological perspective in vector control aimed at protecting Latin American populations against arboviruses.
Collapse
Affiliation(s)
- Marina Luiza Rodrigues-Alves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Otoni Alves de Oliveira Melo-Júnior
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Silveira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaiza Aline Pereira Santos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingrid Santos Soares
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Ferreira Lair
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marília Martins Melo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucilene Aparecida Resende
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise da Silveira-Lemos
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Medicina, Universidade José Do Rosário Vellano, UNIFENAS, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nelder de Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Nascimento Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luis Adan Flores Andrade
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciano Andrade Moreira
- Laboratório de Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
79
|
Zhao Y, Schetelig MF, Handler AM. Genetic breakdown of a Tet-off conditional lethality system for insect population control. Nat Commun 2020; 11:3095. [PMID: 32555259 PMCID: PMC7303202 DOI: 10.1038/s41467-020-16807-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Genetically modified conditional lethal strains have been created to improve the control of insect pest populations damaging to human health and agriculture. However, understanding the potential for the genetic breakdown of lethality systems by rare spontaneous mutations, or selection for inherent suppressors, is critical since field release studies are in progress. This knowledge gap was addressed in a Drosophila tetracycline-suppressible embryonic lethality system by analyzing the frequency and structure of primary-site spontaneous mutations and second-site suppressors resulting in heritable survivors from 1.2 million zygotes. Here we report that F1 survivors due to primary-site deletions and indels occur at a 5.8 × 10−6 frequency, while survival due to second-site maternal-effect suppressors occur at a ~10−5 frequency. Survivors due to inherent lethal effector suppressors could result in a resistant field population, and we suggest that this risk may be mitigated by the use of dual redundant, albeit functionally unrelated, lethality systems. Insect population control using conditional lethal systems could break down due to spontaneous mutations that render the system ineffective. Here the authors analyse the structure and frequency of such mutations in Drosophila and suggest the use of dual lethality systems to mitigate their survival.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biology Resources, Guangxi University, 100 Daxuedong Road, 530005, Nanning, Guangxi, China.,Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Marc F Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus-Liebig University Gießen, Winchesterstr. 2, 35394, Gießen, Germany
| | - Alfred M Handler
- Center for Medical, Agricultural and Veterinary Entomology, USDA/ARS, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
80
|
Environmental influences on Aedes aegypti catches in Biogents Sentinel traps during a Californian "rear and release" program: Implications for designing surveillance programs. PLoS Negl Trop Dis 2020; 14:e0008367. [PMID: 32530921 PMCID: PMC7314095 DOI: 10.1371/journal.pntd.0008367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/24/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023] Open
Abstract
As Aedes aegypti continues to expand its global distribution, the diseases it vectors (dengue, Zika, chikungunya and yellow fever) are of increasing concern. Modern efforts to control this species include "rear and release" strategies where lab-reared mosquitoes are distributed throughout the landscape to replace or suppress invasive populations. These programs require intensive surveillance efforts to monitor their success, and the Biogents Sentinel (BGS) trap is one of the most effective tools for sampling adult Ae. aegypti. BGS trap catches can be highly variable throughout landscapes, so we investigated the potential impacts of environmental factors on adult Ae. aegypti capture rates during a "rear and release" program in California to better understand the relative contributions of true variability in population density across a landscape and trap context. We recorded male and female Ae. aegypti catches from BGS traps, with and without CO2, throughout control sites where no mosquitoes were released and in treatment sites where males infected with Wolbachia were released. BGS trap catches were positively influenced by higher proportions of shade or bushes in the front yard of the premises as well as the presence of potential larval habitats such as subterranean vaults. In contrast, an increase in residential habitat within a 100 m radius of trap locations negatively influenced BGS trap catches. For male Ae. aegypti, increased visual complexity of the trap location positively influenced capture rates, and the presence of yard drains negatively affected catch rates in control sites. Lastly, for BGS traps using CO2, higher catch rates were noted from traps placed greater than one meter from walls or fences for both male and female mosquitoes. These results have important implications for surveillance programs of Ae. aegypti throughout the Californian urban environment including adult monitoring during "rear and release" programs.
Collapse
|
81
|
Optimizing the impacts of an invasive species on the threatened endemic biota of a remote RAMSAR site: Tilapia (Oreochromis niloticus) in Lake Kutubu, Papua New Guinea. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02289-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
82
|
Natiello MA, Solari HG. Modelling population dynamics based on experimental trials with genetically modified (RIDL) mosquitoes. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.108986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
83
|
Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D, Deegan B, Gong K, Hopkins KC, Howell P, Hyde JS, Livni J, Behling C, Benza R, Chen W, Dobson KL, Eldershaw C, Greeley D, Han Y, Hughes B, Kakani E, Karbowski J, Kitchell A, Lee E, Lin T, Liu J, Lozano M, MacDonald W, Mains JW, Metlitz M, Mitchell SN, Moore D, Ohm JR, Parkes K, Porshnikoff A, Robuck C, Sheridan M, Sobecki R, Smith P, Stevenson J, Sullivan J, Wasson B, Weakley AM, Wilhelm M, Won J, Yasunaga A, Chan WC, Holeman J, Snoad N, Upson L, Zha T, Dobson SL, Mulligan FS, Massaro P, White BJ. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol 2020; 38:482-492. [PMID: 32265562 DOI: 10.1038/s41587-020-0471-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 11/09/2022]
Abstract
The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.
Collapse
Affiliation(s)
| | | | | | | | - Devon Cornel
- Consolidated Mosquito Abatement District, Parlier, CA, USA
| | | | - Kyle Gong
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - Paul Howell
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - Josh Livni
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - Renzo Benza
- Verily Life Sciences, South San Francisco, CA, USA
| | - Willa Chen
- Verily Life Sciences, South San Francisco, CA, USA
| | | | | | | | - Yi Han
- Verily Life Sciences, South San Francisco, CA, USA
| | | | | | | | | | - Erika Lee
- Verily Life Sciences, South San Francisco, CA, USA
| | - Teresa Lin
- Verily Life Sciences, South San Francisco, CA, USA
| | - Jianyi Liu
- Verily Life Sciences, South San Francisco, CA, USA
| | | | | | | | | | | | - David Moore
- Verily Life Sciences, South San Francisco, CA, USA
| | | | | | | | - Chris Robuck
- Verily Life Sciences, South San Francisco, CA, USA
| | | | | | - Peter Smith
- Verily Life Sciences, South San Francisco, CA, USA
| | | | | | - Brian Wasson
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - Mark Wilhelm
- Verily Life Sciences, South San Francisco, CA, USA
| | - Joshua Won
- Verily Life Sciences, South San Francisco, CA, USA
| | - Ari Yasunaga
- Verily Life Sciences, South San Francisco, CA, USA
| | | | - Jodi Holeman
- Consolidated Mosquito Abatement District, Parlier, CA, USA
| | - Nigel Snoad
- Verily Life Sciences, South San Francisco, CA, USA
| | - Linus Upson
- Verily Life Sciences, South San Francisco, CA, USA
| | - Tiantian Zha
- Verily Life Sciences, South San Francisco, CA, USA
| | - Stephen L Dobson
- MosquitoMate Inc., Lexington, KY, USA.,Department of Entomology, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
84
|
Serr ME, Valdez RX, Barnhill-Dilling KS, Godwin J, Kuiken T, Booker M. Scenario analysis on the use of rodenticides and sex-biasing gene drives for the removal of invasive house mice on islands. Biol Invasions 2020. [DOI: 10.1007/s10530-019-02192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
85
|
Xu X, Bi H, Wang Y, Li X, Xu J, Liu Z, He L, Li K, Huang Y. Disruption of the ovarian serine protease (Osp) gene causes female sterility in Bombyx mori and Spodoptera litura. PEST MANAGEMENT SCIENCE 2020; 76:1245-1255. [PMID: 31595658 DOI: 10.1002/ps.5634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 07/09/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Precise regulation of oogenesis is crucial to female reproduction. Seventy percent of pests belong to lepidopteran species, so it would be interesting to explore the highly conserved genes involved in oogenesis that do not affect growth and development in the lepidopteran model, Bombyx mori. This can provide potential target genes for pest control and promote the development of insect sterility technology. RESULTS In lepidopteran species, ovarian serine protease (Osp), which encodes a member of the serine protease family, is essential for oogenesis. In this study, we used transgenic CRISPR/Cas9 technology to obtain Osp mutants in the model lepidopteran insect Bombyx mori and in the lepidopteran agricultural pest Spodoptera litura. Sequence analysis of mutants revealed an array of deletions in Osp loci in both species. We found that the deletion of Osp resulted in female sterility, whereas male fertility was not affected. Although B. mori and S. litura mutant females mated normally, they laid fewer eggs than wild-type females and eggs did not hatch. CONCLUSION Osp is crucial for female reproductive success in two species of Lepidoptera. As the Osp gene is highly conserved in insect species, this gene is a potential molecular target for genetic-based pest management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xia Xu
- School of Life Science, East China Normal University, Shanghai, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Honglun Bi
- School of Life Science, East China Normal University, Shanghai, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
86
|
Cisnetto V, Barlow J. The development of complex and controversial innovations. Genetically modified mosquitoes for malaria eradication. RESEARCH POLICY 2020; 49:103917. [PMID: 32255861 PMCID: PMC7104890 DOI: 10.1016/j.respol.2019.103917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using the example of mosquitoes that are genetically modified for malaria eradication through gene drive methods, a scientifically complex ‘living technology’, we show how complexity, uncertainty and risk can propel NPD processes towards a linear sequence of stages. Although the need to control risks associated with gene drive technology imposes linearity to the NPD process, there are possibilities for deviation from a structured sequence of stages. This is due to the effects of feedback loops in the wider system of evidence creation and learning at the population and governance levels, which cumulatively impact on acceptance of the innovation. The NPD and adoption processes involved in the use of gene drive technology are closely intertwined, and the endpoint for R&D and beginning of ‘mainstream’ adoption and diffusion are unclear.
When there is significant uncertainty in an innovation project, research literature suggests that strictly sequencing actions and stages may not be an appropriate mode of project management. We use a longitudinal process approach and qualitative system dynamics modelling to study the development of genetically modified (GM) mosquitoes for malaria eradication in an African country. Our data were collected in real time, from early scientific research to deployment of the first prototype mosquitoes in the field. The 'gene drive' technology for modifying the mosquitoes is highly complex and controversial due to risks associated with its characteristics as a living, self-replicating technology. We show that in this case the innovation journey is linear and highly structured, but also embedded within a wider system of adoption that displays emergent behaviour. Although the need to control risks associated with the technology imposes a linearity to the NPD process, there are possibilities for deviation from a more structured sequence of stages. This arises from the effects of feedback loops in the wider system of evidence creation and learning at the population and governance levels, which cumulatively impact on acceptance of the innovation. The NPD and adoption processes are therefore closely intertwined, meaning that the endpoint for R&D and beginning of 'mainstream' adoption and diffusion are unclear. A key challenge for those responsible for NPD and its regulation is to plan for the adoption of the technology while simultaneously conducting its scientific and technical development.
Collapse
Affiliation(s)
- Valentina Cisnetto
- Imperial College London, Department of Life Sciences, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - James Barlow
- Imperial College Business School, South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|
87
|
Wilder-Smith A, Preet R, Brickley EB, Ximenes RADA, Miranda-Filho DDB, Turchi Martelli CM, Araújo TVBD, Montarroyos UR, Moreira ME, Turchi MD, Solomon T, Jacobs BC, Villamizar CP, Osorio L, de Filipps AMB, Neyts J, Kaptein S, Huits R, Ariën KK, Willison HJ, Edgar JM, Barnett SC, Peeling R, Boeras D, Guzman MG, de Silva AM, Falconar AK, Romero-Vivas C, Gaunt MW, Sette A, Weiskopf D, Lambrechts L, Dolk H, Morris JK, Orioli IM, O'Reilly KM, Yakob L, Rocklöv J, Soares C, Ferreira MLB, Franca RFDO, Precioso AR, Logan J, Lang T, Jamieson N, Massad E. ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas. Glob Health Action 2020; 12:1666566. [PMID: 31640505 PMCID: PMC6818126 DOI: 10.1080/16549716.2019.1666566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zika Preparedness Latin American Network (ZikaPLAN) is a research consortium funded by the European Commission to address the research gaps in combating Zika and to establish a sustainable network with research capacity building in the Americas. Here we present a report on ZikaPLAN`s mid-term achievements since its initiation in October 2016 to June 2019, illustrating the research objectives of the 15 work packages ranging from virology, diagnostics, entomology and vector control, modelling to clinical cohort studies in pregnant women and neonates, as well as studies on the neurological complications of Zika infections in adolescents and adults. For example, the Neuroviruses Emerging in the Americas Study (NEAS) has set up more than 10 clinical sites in Colombia. Through the Butantan Phase 3 dengue vaccine trial, we have access to samples of 17,000 subjects in 14 different geographic locations in Brazil. To address the lack of access to clinical samples for diagnostic evaluation, ZikaPLAN set up a network of quality sites with access to well-characterized clinical specimens and capacity for independent evaluations. The International Committee for Congenital Anomaly Surveillance Tools was formed with global representation from regional networks conducting birth defects surveillance. We have collated a comprehensive inventory of resources and tools for birth defects surveillance, and developed an App for low resource regions facilitating the coding and description of all major externally visible congenital anomalies including congenital Zika syndrome. Research Capacity Network (REDe) is a shared and open resource centre where researchers and health workers can access tools, resources and support, enabling better and more research in the region. Addressing the gap in research capacity in LMICs is pivotal in ensuring broad-based systems to be prepared for the next outbreak. Our shared and open research space through REDe will be used to maximize the transfer of research into practice by summarizing the research output and by hosting the tools, resources, guidance and recommendations generated by these studies. Leveraging on the research from this consortium, we are working towards a research preparedness network.
Collapse
Affiliation(s)
| | - Raman Preet
- Department of Epidemiology and Global Health, Umeå University , Umeå , Sweden
| | | | - Ricardo Arraes de Alencar Ximenes
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco , Recife , Brasil.,Departamento de Medicina Interna, Universidade de Pernambuco , Recife , Brasil
| | | | | | | | | | | | - Marília Dalva Turchi
- Instituto de Patologia Tropical e Saúde Publica, Universidade Federal de Goiás , Goiânia , Brasil
| | - Tom Solomon
- Institute of Infection and Global Health, The University of Liverpool , Liverpool , UK
| | - Bart C Jacobs
- Departments of Neurology and Immunology, Erasmus Universitair Medisch Centrum Rotterdam , The Netherlands
| | | | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute of Medical Research , Leuven , Belgium
| | - Suzanne Kaptein
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute of Medical Research , Leuven , Belgium
| | - Ralph Huits
- Institute of Tropical Medicine , Antwerp , Belgium
| | | | - Hugh J Willison
- Institute of Infection, Immunity & Inflammation, University of Glasgow , Glasgow , UK
| | - Julia M Edgar
- Institute of Infection, Immunity & Inflammation, University of Glasgow , Glasgow , UK
| | - Susan C Barnett
- Institute of Infection, Immunity & Inflammation, University of Glasgow , Glasgow , UK
| | | | - Debi Boeras
- London School of Hygiene & Tropical Medicine , London , UK
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill , NC , USA
| | - Andrew K Falconar
- London School of Hygiene & Tropical Medicine , London , UK.,Departmento del Medicina, Fundacion Universidad del Norte , Barranquilla , Colombia
| | - Claudia Romero-Vivas
- Departmento del Medicina, Fundacion Universidad del Norte , Barranquilla , Colombia
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla , CA , USA.,Department of Medicine, University of California San Diego , La Jolla , CA , USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla , CA , USA
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS , Paris , France
| | - Helen Dolk
- Maternal Fetal and Infant Research Centre, Institute of Nursing and Health Research, Ulster University , Newtownabbey , UK
| | - Joan K Morris
- Population Health Research Institute, St George's, University of London , London , UK
| | - Ieda M Orioli
- Associação Técnico-Científica Estudo Colaborativo Latino Americano de Malformações Congênitas (ECLAMC) no Departmento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Laith Yakob
- London School of Hygiene & Tropical Medicine , London , UK
| | - Joacim Rocklöv
- Department of Epidemiology and Global Health, Umeå University , Umeå , Sweden
| | - Cristiane Soares
- Hospital Federal dos Servidores do Estado , Rio de Janeiro , Brazil
| | | | | | - Alexander R Precioso
- Instituto Butantan , Brazil.,Pediatrics Department, Medical School of University of Sao Paulo , Sao Paulo , Brazil
| | - James Logan
- London School of Hygiene & Tropical Medicine , London , UK
| | - Trudie Lang
- The Global Health Network, Masters and Scholars of the University of Oxford , Oxford , UK
| | - Nina Jamieson
- The Global Health Network, Masters and Scholars of the University of Oxford , Oxford , UK
| | - Eduardo Massad
- Fundacao de Apoio a Universidade de Sao Paulo , Sao Paulo , Brazil.,School of Applied Mathematics, Fundacao Getulio Vargas , Rio de Janeiro , Brazil
| |
Collapse
|
88
|
Shelton AM, Long SJ, Walker AS, Bolton M, Collins HL, Revuelta L, Johnson LM, Morrison NI. First Field Release of a Genetically Engineered, Self-Limiting Agricultural Pest Insect: Evaluating Its Potential for Future Crop Protection. Front Bioeng Biotechnol 2020; 7:482. [PMID: 32083066 PMCID: PMC7000757 DOI: 10.3389/fbioe.2019.00482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 01/26/2023] Open
Abstract
Alternative, biologically-based approaches for pest management are sorely needed and one approach is to use genetically engineered insects. Herein we describe a series of integrated field, laboratory and modeling studies with the diamondback moth, Plutella xylostella, a serious global pest of crucifers. A "self-limiting" strain of Plutella xylostella (OX4319L), genetically engineered to allow the production of male-only cohorts of moths for field releases, was developed as a novel approach to protect crucifer crops. Wild-type females that mate with these self-limiting males will not produce viable female progeny. Our previous greenhouse studies demonstrated that releases of OX4319L males lead to suppression of the target pest population and dilution of insecticide-resistance genes. We report results of the first open-field release of a non-irradiated, genetically engineered self-limiting strain of an agricultural pest insect. In a series of mark-release-recapture field studies with co-releases of adult OX4319L males and wild-type counterparts, the dispersal, persistence and field survival of each strain were measured in a 2.83 ha cabbage field. In most cases, no differences were detected in these parameters. Overall, 97.8% of the wild-type males and 95.4% of the OX4319L males recaptured dispersed <35 m from the release point. The predicted persistence did not differ between strains regardless of release rate. With 95% confidence, 75% of OX4319L males released at a rate of 1,500 could be expected to live between 3.5 and 5.4 days and 95% of these males could be expected to be detected within 25.8-34.9 m from the release point. Moth strain had no effect on field survival but release rate did. Collectively, these results suggest similar field behavior of OX4319L males compared to its wild-type counterpart. Laboratory studies revealed no differences in mating competitiveness or intrinsic growth rates between the strains and small differences in longevity. Using results from these studies, mathematical models were developed that indicate release of OX4319L males should offer efficacious pest management of P. xylostella. Further field studies are recommended to demonstrate the potential for this self-limiting P. xylostella to provide pest suppression and resistance management benefits, as was previously demonstrated in greenhouse studies.
Collapse
Affiliation(s)
- Anthony M. Shelton
- Department of Entomology, AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, United States
| | - Stefan J. Long
- Department of Entomology, AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, United States
| | | | - Michael Bolton
- Oxitec Ltd, Milton Park, Abingdon, United Kingdom
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, United Kingdom
| | - Hilda L. Collins
- Department of Entomology, AgriTech, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, United States
| | | | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
89
|
Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, Bennett J, Sánchez C HM, Lanzaro GC, Schmidt H, Lee Y, Marshall JM, Akbari OS. Development of a confinable gene drive system in the human disease vector Aedes aegypti. eLife 2020; 9:e51701. [PMID: 31960794 PMCID: PMC6974361 DOI: 10.7554/elife.51701] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Aedes aegypti is the principal mosquito vector for many arboviruses that increasingly infect millions of people every year. With an escalating burden of infections and the relative failure of traditional control methods, the development of innovative control measures has become of paramount importance. The use of gene drives has sparked significant enthusiasm for genetic control of mosquitoes; however, no such system has been developed in Ae. aegypti. To fill this void, here we develop several CRISPR-based split gene drives for use in this vector. With cleavage rates up to 100% and transmission rates as high as 94%, mathematical models predict that these systems could spread anti-pathogen effector genes into wild populations in a safe, confinable and reversible manner appropriate for field trials and effective for controlling disease. These findings could expedite the development of effector-linked gene drives that could safely control wild populations of Ae. aegypti to combat local pathogen transmission.
Collapse
Affiliation(s)
- Ming Li
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Ting Yang
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Nikolay P Kandul
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Michelle Bui
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Stephanie Gamez
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Robyn Raban
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Jared Bennett
- Department of BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Héctor M Sánchez C
- Division of Epidemiology and Biostatistics, School of Public HealthUniversity of California, BerkeleyBerkeleyUnited States
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public HealthUniversity of California, BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Omar S Akbari
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
- Tata Institute for Genetics and SocietyUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
90
|
Xu X, Wang Y, Bi H, Xu J, Liu Z, Niu C, He L, James AA, Li K, Huang Y. Mutation of the seminal protease gene, serine protease 2, results in male sterility in diverse lepidopterans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103243. [PMID: 31541694 DOI: 10.1016/j.ibmb.2019.103243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Sterile insect technology (SIT) is an environmentally friendly method for pest control. As part of our efforts to develop a strategy that results in engineered male-sterile strains with minimum effects on viability and mating competition, we used CRISPR/Cas9 technology to disrupt Ser2, which encodes a seminal fluid protein, in the model lepidopteran insect, Bombyx mori, and an important agricultural pest, Plutella xylostella. Disruption of Ser2 resulted in dominant heritable male sterility. Wild-type females mated with Ser2-deficient males laid eggs normally, but the eggs did not hatch. We detected no differences in other reproductive behaviors in the mutant males. These results support the conclusion that Ser2 gene is necessary for male reproductive success in diverse lepidopterans. Targeting Ser2 gene has the potential to form the basis for a new strategy for pest control.
Collapse
Affiliation(s)
- Xia Xu
- School of Life Science, East China Normal University, 200241, Shanghai, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China; Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Honglun Bi
- School of Life Science, East China Normal University, 200241, Shanghai, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lin He
- School of Life Science, East China Normal University, 200241, Shanghai, China.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Kai Li
- School of Life Science, East China Normal University, 200241, Shanghai, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
91
|
Lau MJ, Endersby-Harshman NM, Axford JK, Ritchie SA, Hoffmann AA, Ross PA. Measuring the Host-Seeking Ability of Aedes aegypti Destined for Field Release. Am J Trop Med Hyg 2020; 102:223-231. [PMID: 31769394 PMCID: PMC6947783 DOI: 10.4269/ajtmh.19-0510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Host seeking is an essential process in mosquito reproduction. Field releases of modified mosquitoes for population replacement rely on successful host seeking by female mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females with different Wolbachia infection types (wMel-, wAlbB-infected, and uninfected) or from different origins (laboratory and field) were released at one end of a semi-field cage and recaptured as they landed on human experimenters 15 m away. Mosquitoes from each population were then identified with molecular tools or through minimal dusting with fluorescent powder. Wolbachia-infected and uninfected populations had similar average durations to landing and overall recapture proportions, as did laboratory and field-sourced Ae. aegypti. These results indicate that the host-seeking ability of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory maintenance. This method provides an approach to study the host-seeking ability of mosquitoes in a realistic setting, which will be useful when evaluating strains of mosquitoes that are planned for releases into the field to suppress arbovirus transmission.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Nancy M. Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
92
|
Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet 2019; 15:e1008440. [PMID: 31856182 PMCID: PMC6922335 DOI: 10.1371/journal.pgen.1008440] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed ‘full introduction’ (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6–8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6–12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13–16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs. The experimental introduction of manipulated genes into insect species has a long history in basic genetics. Recent advances in genome editing technologies have spurred considerable effort to exploit these methodologies to provide genetic solutions to some of the worst medical and agricultural problems caused by insects. Insect population suppression and population modification approaches have been proposed to control transmission of vector-borne diseases, including malaria. We used small cage trials to explore the efficacy of non-drive and gene-drive releases to deliver anti-malarial effector genes to a vector mosquito, Anopheles stephensi. We show that both approaches can work to introduce genes to high percentages, but as expected, the gene-drive approaches were more efficient in that they needed only a single release with a much lower number of released insects. The gene-drive females in our studies exhibited a significant load that resulted in some cage populations going to extinction. Furthermore, the accumulation of drive-resistant target genes prevented full introduction of the transgenes in those cages that did not go extinct. While none of the strains evaluated here are proposed for open release, these laboratory cage trials reveal features that can be used to improve next-generation gene-drive strains for population modification.
Collapse
|
93
|
Cryo-Electron Microscopy Reveals That Sperm Modification Coincides with Female Fertility in the Mosquito Aedes aegypti. Sci Rep 2019; 9:18537. [PMID: 31811199 PMCID: PMC6898104 DOI: 10.1038/s41598-019-54920-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Manipulating mosquito reproduction is a promising approach to reducing mosquito populations and the burden of diseases they carry. A thorough understanding of reproductive processes is necessary to develop such strategies, but little is known about how sperm are processed and prepared for fertilization within female mosquitoes. By employing cryo-electron microscopy for the first time to study sperm of the mosquito Aedes aegypti, we reveal that sperm shed their entire outer coat, the glycocalyx, within 24 hours of being stored in the female. Motility assays demonstrate that as their glycocalyx is shed in the female’s sperm storage organs, sperm transition from a period of dormancy to rapid motility—a critical prerequisite for sperm to reach the egg. We also show that females gradually become fertile as sperm become motile, and that oviposition behavior increases sharply after females reach peak fertility. Together, these experiments demonstrate a striking coincidence of the timelines of several reproductive events in Ae. aegypti, suggesting a direct relationship between sperm modification and female reproductive capacity.
Collapse
|
94
|
Kittayapong P, Ninphanomchai S, Limohpasmanee W, Chansang C, Chansang U, Mongkalangoon P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl Trop Dis 2019; 13:e0007771. [PMID: 31658265 PMCID: PMC6837763 DOI: 10.1371/journal.pntd.0007771] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/07/2019] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Important arboviral diseases, such as dengue, chikungunya, and Zika virus infections, are transmitted mainly by the Aedes aegypti vector. So far, controlling this vector species with current tools and strategies has not demonstrated sustainable and significant impacts. Our main objective was to evaluate whether open field release of sterile males, produced from combining the sterile insect technique using radiation with the insect incompatible technique through Wolbachia-induced incompatibility (SIT/IIT), could suppress natural populations of Ae. aegypti in semi-rural village settings in Thailand. METHODOLOGY/PRINCIPAL FINDINGS Irradiated Wolbachia-infected Aedes aegypti males produced by the SIT/IIT approach were completely sterile and were able to compete with the wild fertile ones. Open field release of these sterile males was conducted in an ecologically isolated village in Chachoengsao Province, eastern Thailand. House-to-house visit and media reports resulted in community acceptance and public awareness of the technology. During intervention, approximately 100-200 sterile males were released weekly in each household. After 6 months of sterile male release, a significant reduction (p<0.05) of the mean egg hatch rate (84%) and the mean number of females per household (97.30%) was achieved in the treatment areas when compared to the control ones. CONCLUSIONS/SIGNIFICANCE Our study represents the first open field release of sterile Ae. aegypti males developed from a combined SIT/IIT approach. Entomological assessment using ovitraps, adult sticky traps, and portable vacuum aspirators confirmed the success in reducing natural populations of Ae. aegypti females in treated areas. Public awareness through media resulted in positive support for practical use of this strategy in wider areas. Further study using a systematic randomized trial is needed to determine whether this approach could have a significant impact on the diseases transmitted by Ae. aegypti vector.
Collapse
Affiliation(s)
- Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Suwannapa Ninphanomchai
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Wanitch Limohpasmanee
- Thailand Institute of Nuclear Technology, Ministry of Science and Technology, Nakhon Nayok, Thailand
| | - Chitti Chansang
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Uruyakorn Chansang
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Piti Mongkalangoon
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
95
|
Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus. Viruses 2019; 11:v11100960. [PMID: 31627415 PMCID: PMC6832525 DOI: 10.3390/v11100960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host–virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.
Collapse
|
96
|
Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J, Bucht G. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector Borne Zoonotic Dis 2019; 20:71-81. [PMID: 31556813 PMCID: PMC7041325 DOI: 10.1089/vbz.2019.2486] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: Two species of Aedes (Ae.) mosquitoes (Ae. aegypti and Ae. albopictus) are primary vectors for emerging arboviruses that are a significant threat to public health and economic burden worldwide. Distribution of these vectors and the associated arboviruses, such as dengue virus, chikungunya virus, yellow fever virus, and Zika virus, was for a long time restricted by geographical, ecological, and biological factors. Presently, arbovirus emergence and dispersion are more rapid and geographically widespread, largely due to expansion of the range for these two mosquitoes that have exploited the global transportation network, land perturbation, and failure to contain the mosquito population coupled with enhanced vector competence. Ae. aegypti and Ae. albopictus may also sustain transmission between humans without having to depend on their natural reservoir forest cycles due to arthropod adaptation to urbanization. Currently, there is no single strategy that is adequate to control these vectors, especially when managing arbovirus outbreaks. Objective: This review aimed at presenting the characteristics and abilities of Ae. aegypti and Ae. albopictus, which can drive a global public health risk, and suggests strategies for prevention and control. Methods: This review presents the geographic range, reproduction and ecology, vector competence, genetic evolution, and biological and chemical control of these two mosquito species and how they have changed and developed over time combined with factors that may drive pandemics and mitigation measures. Conclusion: We suggest that more efforts should be geared toward the development of a concerted multidisciplinary approach.
Collapse
Affiliation(s)
- Olivia Wesula Lwande
- Virology Section, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Consortium for Epidemiology and Ecology (CEER-Africa), Nairobi, Kenya.,Arctic Research Centre at Umeå University, Sweden University, Umeå, Sweden
| | - Vincent Obanda
- Consortium for Epidemiology and Ecology (CEER-Africa), Nairobi, Kenya.,Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Clas Ahlm
- Arctic Research Centre at Umeå University, Sweden University, Umeå, Sweden.,Infection and Immunology Section, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Virology Section, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Arctic Research Centre at Umeå University, Sweden University, Umeå, Sweden
| | - Jonas Näslund
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå, Sweden
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå, Sweden
| |
Collapse
|
97
|
Transgenic Aedes aegypti Mosquitoes Transfer Genes into a Natural Population. Sci Rep 2019; 9:13047. [PMID: 31506595 PMCID: PMC6736937 DOI: 10.1038/s41598-019-49660-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/29/2019] [Indexed: 11/08/2022] Open
Abstract
In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. If lethality is complete, releasing this strain should only reduce population size and not affect the genetics of the target populations. Approximately 450 thousand males of this strain were released each week for 27 months in Jacobina, Bahia, Brazil. We genotyped the release strain and the target Jacobina population before releases began for >21,000 single nucleotide polymorphisms (SNPs). Genetic sampling from the target population six, 12, and 27-30 months after releases commenced provides clear evidence that portions of the transgenic strain genome have been incorporated into the target population. Evidently, rare viable hybrid offspring between the release strain and the Jacobina population are sufficiently robust to be able to reproduce in nature. The release strain was developed using a strain originally from Cuba, then outcrossed to a Mexican population. Thus, Jacobina Ae. aegypti are now a mix of three populations. It is unclear how this may affect disease transmission or affect other efforts to control these dangerous vectors. These results highlight the importance of having in place a genetic monitoring program during such releases to detect un-anticipated outcomes.
Collapse
|
98
|
Engineered action at a distance: Blood-meal-inducible paralysis in Aedes aegypti. PLoS Negl Trop Dis 2019; 13:e0007579. [PMID: 31479450 PMCID: PMC6719823 DOI: 10.1371/journal.pntd.0007579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background Population suppression through mass-release of Aedes aegypti males carrying dominant-lethal transgenes has been demonstrated in the field. Where population dynamics show negative density-dependence, suppression can be enhanced if lethality occurs after the density-dependent (i.e. larval) stage. Existing molecular tools have limited current examples of such Genetic Pest Management (GPM) systems to achieving this through engineering ‘cell-autonomous effectors’ i.e. where the expressed deleterious protein is restricted to the cells in which it is expressed–usually under the control of the regulatory elements (e.g. promoter regions) used to build the system. This limits the flexibility of these technologies as regulatory regions with useful spatial, temporal or sex-specific expression patterns may only be employed if the cells they direct expression in are simultaneously sensitive to existing effectors, and also precludes the targeting of extracellular regions such as cell-surface receptors. Expanding the toolset to ‘non-cell autonomous’ effectors would significantly reduce these limitations. Methodology/Principal findings We sought to engineer female-specific, late-acting lethality through employing the Ae. aegypti VitellogeninA1 promoter to drive blood-meal-inducible, fat-body specific expression of tTAV. Initial attempts using pro-apoptotic effectors gave no evident phenotype, potentially due to the lower sensitivity of terminally-differentiated fat-body cells to programmed-death signals. Subsequently, we dissociated the temporal and spatial expression of this system by engineering a novel synthetic effector (Scorpion neurotoxin–TetO-gp67.AaHIT) designed to be secreted out of the tissue in which it was expressed (fat-body) and then affect cells elsewhere (neuro-muscular junctions). This resulted in a striking, temporary-paralysis phenotype after blood-feeding. Conclusions/Significance These results are significant in demonstrating for the first time an engineered ‘action at a distance’ phenotype in a non-model pest insect. The potential to dissociate temporal and spatial expression patterns of useful endogenous regulatory elements will extend to a variety of other pest insects and effectors. A recent addition to the toolbox for controlling populations of the disease vector Aedes aegypti is the mass-release of males engineered with dominant, lethal transgenes. The lethal effect of these transgenes is activated in the progeny of these released engineered males and wild females they mate with in the field and with continuous release of males can cause population collapse. To date, these systems have relied on the use of ‘cell-autonomous’ effectors, meaning that their action is restricted to the cells in which they are expressed, limiting the flexibility of designing new, more complex systems. Here we demonstrate that it is possible to engineer ‘non-cell autonomous’ effectors–that is where the effect (e.g. the action of a toxic protein) can act on cells distant from the tissues in which they are originally expressed. To achieve this we utilised the endogenous cell secretory pathway to engineer a novel control phenotype–blood-meal inducible (i.e. late-acting, female-specific) reversible paralysis. The logic behind engineering such ‘action at a distance’ phenotypes will extend to a variety of other pest insects and control phenotypes.
Collapse
|
99
|
Matowo NS, Abbasi S, Munhenga G, Tanner M, Mapua SA, Oullo D, Koekemoer LL, Kaindoa E, Ngowo HS, Coetzee M, Utzinger J, Okumu FO. Fine-scale spatial and temporal variations in insecticide resistance in Culex pipiens complex mosquitoes in rural south-eastern Tanzania. Parasit Vectors 2019; 12:413. [PMID: 31443737 PMCID: PMC6708135 DOI: 10.1186/s13071-019-3676-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Culex mosquitoes cause considerable biting nuisance and sporadic transmission of arboviral and filarial diseases. METHODS Using standard World Health Organization procedures, insecticide resistance profiles and underlying mechanisms were investigated during dry and wet seasons of 2015 and 2016 in Culex pipiens complex from three neighbouring administrative wards in Ulanga District, Tanzania. Synergist tests with piperonyl butoxide, diethyl maleate, and triphenyl phosphate, were employed to investigate mechanisms of the observed resistance phenotypes. Proportional biting densities of Culex species, relative to other taxa, were determined from indoor surveillance data collected in 2012, 2013, and 2015. RESULTS Insecticide resistance varied significantly between wards and seasons. For example, female mosquitoes in one ward were susceptible to bendiocarb and fenitrothion in the wet season, but resistant during the dry season, while in neighbouring ward, the mosquitoes were fully susceptible to these pesticides in both seasons. Similar variations occurred against bendiocarb, DDT, deltamethrin, and lambda-cyhalothrin. Surprisingly, with the exception of one ward in the wet season, the Culex populations were susceptible to permethrin, commonly used on bednets in the area. No insecticide resistance was observed against the organophosphates, pirimiphos-methyl and malathion, except for one incident of reduced susceptibility in the dry season. Synergist assays revealed possible involvement of monooxygenases, esterases, and glutathione S-transferase in pyrethroid and DDT resistance. Morphology-based identification and molecular assays of adult Culex revealed that 94% were Cx. pipiens complex, of which 81% were Cx. quinquefasciatus, 2% Cx. pipiens, and 3% hybrids. About 14% of the specimens were non-amplified during molecular identifications. Female adults collected indoors were 100% Cx. pipiens complex, and constituted 79% of the overall biting risk. CONCLUSIONS The Cx. pipiens complex constituted the greatest biting nuisance inside people's houses, and showed resistance to most public health insecticides possible. Resistance varied at a fine geographical scale, between adjacent wards, and seasons, which warrants some modifications to current insecticide resistance monitoring strategies. Resistance phenotypes are partly mediated by metabolic mechanisms, but require further evaluation through biochemical and molecular techniques. The high densities and resistance in Culex could negatively influence the acceptability of other interventions such as those used against malaria mosquitoes.
Collapse
Affiliation(s)
- Nancy S. Matowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Said Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Givemore Munhenga
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Salum A. Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - David Oullo
- US Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Emanuel Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Halfan S. Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
100
|
Sharp TM, Lorenzi O, Torres-Velásquez B, Acevedo V, Pérez-Padilla J, Rivera A, Muñoz-Jordán J, Margolis HS, Waterman SH, Biggerstaff BJ, Paz-Bailey G, Barrera R. Autocidal gravid ovitraps protect humans from chikungunya virus infection by reducing Aedes aegypti mosquito populations. PLoS Negl Trop Dis 2019; 13:e0007538. [PMID: 31344040 PMCID: PMC6657827 DOI: 10.1371/journal.pntd.0007538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background Public health responses to outbreaks of dengue, chikungunya, and Zika virus have been stymied by the inability to control the primary vector, Aedes aegypti mosquitos. Consequently, the need for novel approaches to Aedes vector control is urgent. Placement of three autocidal gravid ovitraps (AGO traps) in ~85% of homes in a community was previously shown to sustainably reduce the density of female Ae. aegypti by >80%. Following the introduction of chikungunya virus (CHIKV) to Puerto Rico, we conducted a seroprevalence survey to estimate the prevalence of CHIKV infection in communities with and without AGO traps and evaluate their effect on reducing CHIKV transmission. Methods and findings Multivariate models that calculated adjusted prevalence ratios (aPR) showed that among 175 and 152 residents of communities with and without AGO traps, respectively, an estimated 26.1% and 43.8% had been infected with CHIKV (aPR = 0.50, 95% CI: 0.37–0.91). After stratification by time spent in their community, protection from CHIKV infection was strongest among residents who reported spending many or all weekly daytime hours in their community:10.3% seropositive in communities with AGO traps vs. 48.7% in communities without (PR = 0.21, 95% CI: 0.11–0.41). The age-adjusted rate of fever with arthralgia attributable to CHIKV infection was 58% (95% CI: 46–66%). The monthly number of CHIKV-infected mosquitos and symptomatic residents were diminished in communities with AGO traps compared to those without. Conclusions These findings indicate that AGO traps are an effective tool that protects humans from infection with a virus transmitted by Ae. aegypti mosquitos. Future studies should evaluate their protective effectiveness in large, urban communities. Aedes species mosquitos transmit pathogens of public health importance, including dengue, Zika, and chikungunya viruses. No tools exist to control these mosquitos that sustainably and effectively prevent human infections. Autocidal gravid ovitraps (AGO traps) have been shown to sustainably reduce Aedes populations by >80%. After chikungunya virus was introduced into Puerto Rico, we conducted serosurveys in communities with and without AGO traps. We observed a two-fold lower prevalence of chikungunya virus infection among residents of communities with AGO traps compared to communities without. Among infected residents of communities with traps, a significant proportion likely had been infected while outside their community. These findings indicate that AGO traps are an effective tool that protects humans from infection with pathogens transmitted by Aedes mosquitos.
Collapse
Affiliation(s)
- Tyler M. Sharp
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
- United States Public Health Service, Silver Springs, Maryland, United States of America
- * E-mail:
| | - Olga Lorenzi
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Brenda Torres-Velásquez
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Veronica Acevedo
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Janice Pérez-Padilla
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Aidsa Rivera
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Jorge Muñoz-Jordán
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Harold S. Margolis
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Stephen H. Waterman
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
- United States Public Health Service, Silver Springs, Maryland, United States of America
| | - Brad J. Biggerstaff
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, Colorado, United States of America
| | - Gabriela Paz-Bailey
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Roberto Barrera
- Centers for Disease Control and Prevention, Dengue Branch, San Juan, Puerto Rico, United States of America
| |
Collapse
|