51
|
Stajkovska A, Mehandziska S, Stavrevska M, Jakovleva K, Nikchevska N, Mitrev Z, Kungulovski I, Zafiroski G, Tasic V, Kungulovski G. Trio Clinical Exome Sequencing in a Patient With Multicentric Carpotarsal Osteolysis Syndrome: First Case Report in the Balkans. Front Genet 2018; 9:113. [PMID: 29675035 PMCID: PMC5895704 DOI: 10.3389/fgene.2018.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
Exome sequencing can interrogate thousands of genes simultaneously and it is becoming a first line diagnostic tool in genomic medicine. Herein, we applied trio clinical exome sequencing (CES) in a patient presenting with undiagnosed skeletal disorder, minor facial abnormalities, and kidney hypoplasia; her parents were asymptomatic. Testing the proband and her parents led to the identification of a de novo mutation c.188C>T (p.Pro63Leu) in the MAFB gene, which is known to cause multicentric carpotarsal osteolysis syndrome (MCTO). The c.188C>T mutation lies in a hotspot amino acid stretch within the transactivation domain of MAFB, which is a negative regulator of RANKL-induced osteoclastogenesis. MCTO is an extremely rare autosomal dominant (AD) disorder that typically arises spontaneously and causes carpotarsal osteolysis, often followed by nephropathy. To the best of our knowledge, this is the first study reporting genetically diagnosed MCTO in the Balkans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Velibor Tasic
- Department of Pediatric Nephrology, Medical Faculty of Skopje, University Children's Hospital, Skopje, Macedonia
| | | |
Collapse
|
52
|
Freed EF, Pines G, Eckert CA, Gill RT. Trackable Multiplex Recombineering (TRMR) and Next-Generation Genome Design Technologies: Modifying Gene Expression inE. coliby Inserting Synthetic DNA Cassettes and Molecular Barcodes. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Affiliation(s)
- Emily F. Freed
- Biosciences Center, National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401 USA
| | - Gur Pines
- University of Colorado; Chemical and Biological Engineering; 3415 Colorado Ave Boulder CO 80303 USA
- University of Colorado; Renewable and Sustainable Energy Institute; 4001 Discovery Dr Boulder CO 80303 USA
| | - Carrie A. Eckert
- Biosciences Center, National Renewable Energy Laboratory; 15013 Denver West Parkway Golden CO 80401 USA
- University of Colorado; Renewable and Sustainable Energy Institute; 4001 Discovery Dr Boulder CO 80303 USA
| | - Ryan T. Gill
- University of Colorado; Chemical and Biological Engineering; 3415 Colorado Ave Boulder CO 80303 USA
- University of Colorado; Renewable and Sustainable Energy Institute; 4001 Discovery Dr Boulder CO 80303 USA
| |
Collapse
|
53
|
Kretz CA, Tomberg K, Van Esbroeck A, Yee A, Ginsburg D. High throughput protease profiling comprehensively defines active site specificity for thrombin and ADAMTS13. Sci Rep 2018; 8:2788. [PMID: 29434246 PMCID: PMC5809430 DOI: 10.1038/s41598-018-21021-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
We have combined random 6 amino acid substrate phage display with high throughput sequencing to comprehensively define the active site specificity of the serine protease thrombin and the metalloprotease ADAMTS13. The substrate motif for thrombin was determined by >6,700 cleaved peptides, and was highly concordant with previous studies. In contrast, ADAMTS13 cleaved only 96 peptides (out of >107 sequences), with no apparent consensus motif. However, when the hexapeptide library was substituted into the P3-P3' interval of VWF73, an exosite-engaging substrate of ADAMTS13, 1670 unique peptides were cleaved. ADAMTS13 exhibited a general preference for aliphatic amino acids throughout the P3-P3' interval, except at P2 where Arg was tolerated. The cleaved peptides assembled into a motif dominated by P3 Leu, and bulky aliphatic residues at P1 and P1'. Overall, the P3-P2' amino acid sequence of von Willebrand Factor appears optimally evolved for ADAMTS13 recognition. These data confirm the critical role of exosite engagement for substrates to gain access to the active site of ADAMTS13, and define the substrate recognition motif for ADAMTS13. Combining substrate phage display with high throughput sequencing is a powerful approach for comprehensively defining the active site specificity of proteases.
Collapse
Affiliation(s)
- Colin A Kretz
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada.
| | - Kärt Tomberg
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Van Esbroeck
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Yee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute and Departments of Internal Medicine and Pediatrics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
54
|
Zhang H, Shao M, Huang H, Wang S, Ma L, Wang H, Hu L, Wei K, Zhu R. The Dynamic Distribution of Small-Tail Han Sheep Microbiota across Different Intestinal Segments. Front Microbiol 2018; 9:32. [PMID: 29445360 PMCID: PMC5797768 DOI: 10.3389/fmicb.2018.00032] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
The sheep intestinal tract is characterized by a diverse microbial ecosystem that is vital for the host to digest diet material. The importance of gut microbiota (GM) of animals has also been widely acknowledged because of its pivotal roles in the health and well-being of animals. However, there are no relevant studies on GM of small-tail Han sheep, a superior mutton variety domestic in China. In this study, the structure and distribution of gut microflora were studied by high-throughput sequencing technology. Results showed a significant difference between jejunum and cecum, jejunum, and rectum. Meanwhile, the cecum and rectum not only display higher species richness but also exhibit higher similarity of the bacterial diversity than that of the jejunum based on the results of abundance-based coverage estimator (ACE), Chao1, and Shannon indexes. Firmicutes and Bacteroidetes were the predominant phyla in cecum and rectum, while higher relative abundances of Firmicutes and Cyanobacteria were observed in jejunum. At the genus level, Bacteroidetes, Ruminococcus, Lactobacillus, Flavonifractor, and Clostridium were the dominant genera in the cecum and rectum. An obvious dynamic distribution of Lactobacillus is continuously decreasing from the jejunum to the cecum, then to the rectum, whereas the result of Bacteroides is completely inverse. In addition, this study also found many kinds of bacteria associated with the production of volatile fatty acids (VFA) colonized in the large intestine. This study is the first to investigate the distribution of intestinal flora in small-tail Han sheep. The findings provide an important indication for diagnosis and treatment of intestinal diseases in small-tail Han sheep, as well as offer a direction for the development of intestinal microecological preparations.
Collapse
Affiliation(s)
- Hao Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Mingxu Shao
- Lianyungang Entry-Exit Inspection and Quarantine Bureau, Lianyungang, China
| | - He Huang
- Shandong New Hope Liuhe Co., Ltd., New Hope Group, Qingdao, China
| | - Shujuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Lili Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Huining Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Liping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Jinan, China
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
55
|
Barcoded sequencing workflow for high throughput digitization of hybridoma antibody variable domain sequences. J Immunol Methods 2018; 455:88-94. [PMID: 29357282 DOI: 10.1016/j.jim.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Since the invention of Hybridoma technology by Milstein and Köhler in 1975, its application has greatly advanced the antibody discovery process. The technology enables both functional screening and long-term archival of the immortalized monoclonal antibody producing B cells. Despite the dependable cryopreservation technology for hybridoma cells, practicality of long-term storage has been outpaced by recent progress in robotics and automations, which enables routine identification of thousands of antigen specific hybridoma clones. Such throughput increase imposes two nascent challenges in the antibody discovery process, namely limited cryopreservation storage space and limited throughput in conventional antibody sequencing. We herein provide a barcoded sequencing workflow that utilizes next generation sequencing to expand the conventional sequencing capacity. Accompanied with the bioinformatics tools we describe, the barcoded sequencing workflow robustly reports unambiguous antibody sequences as confirmed with Sanger sequencing controls. In complement with the commonly accessible recombinant DNA technology, the barcoded sequencing workflow allows for high throughput digitization of the antibody sequences and provides an effective solution to the limitations imposed by physical storage and sequencing capacity.
Collapse
|
56
|
Abstract
The majority of cancer-related deaths result from metastasis, the process by which cancer cells escape the primary tumor site and enter into the blood circulation in order to disseminate to secondary locations throughout the body. Tumor cells found within the circulation are referred to as circulating tumor cells (CTCs), and their detection and enumeration correlate with poor prognosis. The epithelial-to-mesenchymal transition (EMT) is a dynamic process that imparts epithelial cells with mesenchymal-like properties, thus facilitating tumor cell dissemination and contributing to metastasis. However, EMT also results in the downregulation of various epithelial proteins typically utilized by CTC technologies for enrichment and detection of these rare cells, resulting in reduced detection of some CTCs, potentially those with a more metastatic phenotype. In addition to the current clinical role of CTCs as a prognostic biomarker, they also have potential as a predictive biomarker via CTC characterization. However, CTC characterization is complicated by the unknown biological significance of CTCs possessing an EMT-like phenotype, and the ability to capture and understand this CTC subpopulation is an essential step in the utilization of CTCs for patient management. This chapter will review the process of EMT and its contribution to metastasis; discusses current and future clinical applications of CTCs; and describes both traditional and novel methods for CTC enrichment, detection, and characterization with a specific focus on CTCs with an EMT phenotype.
Collapse
|
57
|
Moraes LE, Blow MJ, Hawley ER, Piao H, Kuo R, Chiniquy J, Shapiro N, Woyke T, Fadel JG, Hess M. Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production. AMB Express 2017; 7:42. [PMID: 28211005 PMCID: PMC5313495 DOI: 10.1186/s13568-017-0338-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/03/2017] [Indexed: 01/13/2023] Open
Abstract
Cyanobacteria have the potential to produce bulk and fine chemicals and members belonging to Nostoc sp. have received particular attention due to their relatively fast growth rate and the relative ease with which they can be harvested. Nostoc punctiforme is an aerobic, motile, Gram-negative, filamentous cyanobacterium that has been studied intensively to enhance our understanding of microbial carbon and nitrogen fixation. The genome of the type strain N. punctiforme ATCC 29133 was sequenced in 2001 and the scientific community has used these genome data extensively since then. Advances in bioinformatics tools for sequence annotation and the importance of this organism prompted us to resequence and reanalyze its genome and to make both, the initial and improved annotation, available to the scientific community. The new draft genome has a total size of 9.1 Mbp and consists of 65 contiguous pieces of DNA with a GC content of 41.38% and 7664 protein-coding genes. Furthermore, the resequenced genome is slightly (5152 bp) larger and contains 987 more genes with functional prediction when compared to the previously published version. We deposited the annotation of both genomes in the Department of Energy's IMG database to facilitate easy genome exploration by the scientific community without the need of in-depth bioinformatics skills. We expect that an facilitated access and ability to search the N. punctiforme ATCC 29133 for genes of interest will significantly facilitate metabolic engineering and genome prospecting efforts and ultimately the synthesis of biofuels and natural products from this keystone organism and closely related cyanobacteria.
Collapse
Affiliation(s)
- Luis E. Moraes
- Department of Animal Science, University of California, Davis, 2251 Meyer Hall, Davis, CA 95616 USA
| | - Matthew J. Blow
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | | | - Hailan Piao
- Washington State University, Richland, WA 99354 USA
| | - Rita Kuo
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Jennifer Chiniquy
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Nicole Shapiro
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - James G. Fadel
- Department of Animal Science, University of California, Davis, 2251 Meyer Hall, Davis, CA 95616 USA
| | - Matthias Hess
- Department of Animal Science, University of California, Davis, 2251 Meyer Hall, Davis, CA 95616 USA
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598 USA
| |
Collapse
|
58
|
Shukla V, Jena NK, Grigoriev A, Ahuja R. Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39945-39952. [PMID: 29099165 DOI: 10.1021/acsami.7b06827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in solid-state nano-device-based DNA sequencing are at the helm of the development of a new paradigm, commonly referred to as personalized medicines. Paying heed to a timely need for standardizing robust nanodevices for cheap, fast, and scalable DNA detection, in this article, the nanogap formed by the lateral heterostructure of graphene and hexagonal boron nitride (hBN) is explored as a potential architecture. These heterostructures have been realized experimentally, and our study boasts the idea that the passivation of the edge of the graphene electrode with hBN will solve many of practical problems, such as high reactivity of the graphene edge and difficulty in controlled engineering of the graphene edge structure, while retaining the nanogap setup as a useful nanodevice for sensing applications. Employing first-principle density-functional-theory-based nonequilibrium Green's function methods, we identify that the DNA building blocks, nucleobases, uniquely couple with the states of the nanogap, and the resulting induced states can be attributed as leaving a fingerprint of the DNA sequence in the computed current-voltage (I-V) characteristic. Two bias windows are put forward: lower (1-1.2 V) and higher (2.7-3 V), where unique identification of all four bases is possible from the current traces, although higher sensitivity is obtained at the higher voltage window. Our study can be a practical guide for experimentalists toward development of a nanodevice DNA sensor based on graphene-hBN heterostructures.
Collapse
Affiliation(s)
- Vivekanand Shukla
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| | - Naresh K Jena
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| | - Anton Grigoriev
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
- Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH) , SE-100 44 Stockholm, Sweden
| |
Collapse
|
59
|
Szigeti B, Roth YD, Sekar JAP, Goldberg AP, Pochiraju SC, Karr JR. A blueprint for human whole-cell modeling. ACTA ACUST UNITED AC 2017; 7:8-15. [PMID: 29806041 DOI: 10.1016/j.coisb.2017.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole-cell dynamical models of human cells are a central goal of systems biology. Such models could help researchers understand cell biology and help physicians treat disease. Despite significant challenges, we believe that human whole-cell models are rapidly becoming feasible. To develop a plan for achieving human whole-cell models, we analyzed the existing models of individual cellular pathways, surveyed the biomodeling community, and reflected on our experience developing whole-cell models of bacteria. Based on these analyses, we propose a plan for a project, termed the Human Whole-Cell Modeling Project, to achieve human whole-cell models. The foundations of the plan include technology development, standards development, and interdisciplinary collaboration.
Collapse
Affiliation(s)
- Balázs Szigeti
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Yosef D Roth
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - John A P Sekar
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Arthur P Goldberg
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Saahith C Pochiraju
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Jonathan R Karr
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| |
Collapse
|
60
|
Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40: past, present and future. Nature 2017; 550:345-353. [DOI: 10.1038/nature24286] [Citation(s) in RCA: 552] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
|
61
|
Kechris K, Ghosh D. Discussion on ‘Statistical contributions to bioinformatics: Design, modelling, structure learning and integration’ by Jeffrey S. Morris and Veerabhadran Baladandayuthapani. STAT MODEL 2017. [DOI: 10.1177/1471082x17702958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, CO, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, CO, USA
| |
Collapse
|
62
|
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 2017; 45:3615-3626. [PMID: 28334756 PMCID: PMC5397182 DOI: 10.1093/nar/gkx070] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the ‘start codons’ for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation of green fluorescent protein and nanoluciferase in E. coli from all 64 triplet codons and across a range of DNA copy number. We detected initiation of protein synthesis above measurement background for 47 codons. Translation from non-canonical start codons ranged from 0.007 to 3% relative to translation from AUG. Translation from 17 non-AUG codons exceeded the highest reported rates of non-cognate codon recognition. Translation initiation from non-canonical start codons may contribute to the synthesis of peptides in both natural and synthetic biological systems.
Collapse
Affiliation(s)
- Ariel Hecht
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jeff Glasgow
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Paul R Jaschke
- Department of Bioengineering, Stanford, CA 94305, USA.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lukmaan A Bawazer
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Matthew S Munson
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jennifer R Cochran
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Drew Endy
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| |
Collapse
|
63
|
Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, Silverstein KAT, Mudge J. Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics 2017; 18:578. [PMID: 28778149 PMCID: PMC5545040 DOI: 10.1186/s12864-017-3971-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Third generation sequencing technologies, with sequencing reads in the tens- of kilo-bases, facilitate genome assembly by spanning ambiguous regions and improving continuity. This has been critical for plant genomes, which are difficult to assemble due to high repeat content, gene family expansions, segmental and tandem duplications, and polyploidy. Recently, high-throughput mapping and scaffolding strategies have further improved continuity. Together, these long-range technologies enable quality draft assemblies of complex genomes in a cost-effective and timely manner. Results Here, we present high quality genome assemblies of the model legume plant, Medicago truncatula (R108) using PacBio, Dovetail Chicago (hereafter, Dovetail) and BioNano technologies. To test these technologies for plant genome assembly, we generated five assemblies using all possible combinations and ordering of these three technologies in the R108 assembly. While the BioNano and Dovetail joins overlapped, they also showed complementary gains in continuity and join numbers. Both technologies spanned repetitive regions that PacBio alone was unable to bridge. Combining technologies, particularly Dovetail followed by BioNano, resulted in notable improvements compared to Dovetail or BioNano alone. A combination of PacBio, Dovetail, and BioNano was used to generate a high quality draft assembly of R108, a M. truncatula accession widely used in studies of functional genomics. As a test for the usefulness of the resulting genome sequence, the new R108 assembly was used to pinpoint breakpoints and characterize flanking sequence of a previously identified translocation between chromosomes 4 and 8, identifying more than 22.7 Mb of novel sequence not present in the earlier A17 reference assembly. Conclusions Adding Dovetail followed by BioNano data yielded complementary improvements in continuity over the original PacBio assembly. This strategy proved efficient and cost-effective for developing a quality draft assembly compared to traditional reference assemblies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3971-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen M Moll
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA.,Montana State University, Center for Biofilm Engineering, Bozeman, MT, 59717, USA
| | - Peng Zhou
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, USA
| | - Thiruvarangan Ramaraj
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA
| | - Diego Fajardo
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA
| | - Nicholas P Devitt
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA
| | - Michael J Sadowsky
- Department of Soil, Water & Climate, Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | | | - Nevin D Young
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | | | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, USA.
| |
Collapse
|
64
|
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir Res 2017; 18:149. [PMID: 28774304 PMCID: PMC5543452 DOI: 10.1186/s12931-017-0631-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease precision medicine.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| |
Collapse
|
65
|
Rodríguez-Castillo JG, Pino C, Niño LF, Rozo JC, Llerena-Polo C, Parra-López CA, Tauch A, Murcia-Aranguren MI. Comparative genomic analysis of Mycobacterium tuberculosis Beijing-like strains revealed specific genetic variations associated with virulence and drug resistance. INFECTION GENETICS AND EVOLUTION 2017; 54:314-323. [PMID: 28734764 DOI: 10.1016/j.meegid.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
Abstract
Isolates of the Mycobacterium tuberculosis lineage 2/East-Asian are considered one of the most successful strains due to their increased pathogenicity, hyper-virulence associated with drug resistance, and high transmission. Recent studies in Colombia have shown that the Beijing-like genotype is associated with multidrug-resistance and high prevalence in the southwest of the country, but the genetic basis of its success in dissemination is unknown. In contribution to this matter, we obtained the whole sequences of six genomes of clinical isolates assigned to the Beijing-like genotype. The genomes were compared with the reference genome of M. tuberculosis H37Rv and 53 previously published M. tuberculosis genomes. We found that the six Beijing-like isolates belong to a modern Beijing sub-lineage and share specific genomic variants: i.e. deletion in the PPE8 gene, in Rv3806c (ubiA) responsible of high ethambutol resistance and in Rv3862c (whiB6) which is involved in granuloma formation and virulence, are some of them. Moreover, each isolated has exclusively single nucleotide polymorphisms (SNPs) in genes related with cell wall processes and cell metabolism. We identified polymorphisms in genes related to drug resistance that could explain the drug-resistant phenotypes found in the six isolates from Colombia. We hypothesize that changes due to these genetic variations contribute to the success of these strains. Finally, we analyzed the IS6110 insertion sequences finding very low variance between them, suggesting that SNPs is the major cause of variability found in Beijing-like strains circulating in Colombia.
Collapse
Affiliation(s)
- Juan Germán Rodríguez-Castillo
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Camilo Pino
- Facultad de Ingeniería, Grupo BioLISI, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Luis Fernando Niño
- Facultad de Ingeniería, Grupo BioLISI, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Rozo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali 760031, Colombia
| | | | - Carlos A Parra-López
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andreas Tauch
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany
| | - Martha Isabel Murcia-Aranguren
- Departamento de Microbiología, Grupo MICOBACUN, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
66
|
Abstract
Since the sequence of the human genome is complete, the main issue is how to understand the information written in the DNA sequence. Despite numerous genome-wide studies that have already been performed, the challenge to determine the function of genes, gene products, and also their interaction is still open. As changes in the human genome are highly likely to cause pathological conditions, functional analysis is vitally important for human health. For many years there have been a variety of technologies and tools used in functional genome analysis. However, only in the past decade there has been rapid revolutionizing progress and improvement in high-throughput methods, which are ranging from traditional real-time polymerase chain reaction to more complex systems, such as next-generation sequencing or mass spectrometry. Furthermore, not only laboratory investigation, but also accurate bioinformatic analysis is required for reliable scientific results. These methods give an opportunity for accurate and comprehensive functional analysis that involves various fields of studies: genomics, epigenomics, proteomics, and interactomics. This is essential for filling the gaps in the knowledge about dynamic biological processes at both cellular and organismal level. However, each method has both advantages and limitations that should be taken into account before choosing the right method for particular research in order to ensure successful study. For this reason, the present review paper aims to describe the most frequent and widely-used methods for the comprehensive functional analysis.
Collapse
Affiliation(s)
- Evelina Gasperskaja
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University Vilnius, Lithuania
| |
Collapse
|
67
|
Orth T, Paré J, Froehlich JE. CURRENT CONCEPTS ON THE GENETIC FACTORS IN ROTATOR CUFF PATHOLOGY AND FUTURE IMPLICATIONS FOR SPORTS PHYSICAL THERAPISTS. Int J Sports Phys Ther 2017; 12:273-285. [PMID: 28515982 PMCID: PMC5380870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
CONTEXT Recent advances within the field of genetics are currently changing many of the methodologies in which medicine is practiced. These advances are also beginning to influence the manner in which physical therapy services are rendered. Rotator cuff pathology is one of the most common diagnoses treated by the sports physical therapist. The purpose of this commentary is to educate sports physical therapists on the recent advances regarding how genetics influences rotator cuff pathology, including rotator cuff tears, and provide a perspective on how this information will likely influence post-operative shoulder rehabilitation in the near future. EVIDENCE ACQUISITION A comprehensive review of the literature was completed using the Medline database along with individual searches of relevant physical therapy, surgical, cell biology, and sports medicine journals. Search terms included: shoulder, rotator cuff pathology, genetics, apoptosis, and physical therapy. Search results were compiled and evaluated; relevant primary studies and review articles were gathered; the results from this comprehensive review are summarized here. STUDY DESIGN Clinical Commentary, Review of the Literature. RESULTS Recent advances within the understanding of rotator cuff pathology have further elucidated the cellular and molecular mechanisms associated with rotator cuff tears. There appears to be a hypoxic-induced apoptotic cellular pathway that contributes to rotator cuff tears. Activation of specific proteins termed matrix metalloproteinases appear to be involved in not only primary rotator cuff tears, but also may influence the re-tear rate after surgical intervention. Further advancements in the understanding of the cellular mechanisms contributing to rotator cuff tears and postoperative techniques to help prevent re-tears, may soon influence the methodology in which physical therapy services are provided to patients sustaining a rotator cuff injury. CONCLUSIONS At this time continued research is required to more fully develop a comprehensive understanding of the role of genetic variables both within primary rotator cuff tears and their influences on post-operative rehabilitation from rotator cuff repair surgery. LEVEL OF EVIDENCE Level 5.
Collapse
Affiliation(s)
- Travis Orth
- Athletico Physical Therapy, Wheaton, IL, USA
| | - Jessica Paré
- Lake Washington Physical Therapy, Kirkland, WA, USA
| | | |
Collapse
|
68
|
Kienzler AK, Hargreaves CE, Patel SY. The role of genomics in common variable immunodeficiency disorders. Clin Exp Immunol 2017; 188:326-332. [PMID: 28236292 DOI: 10.1111/cei.12947] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 01/16/2023] Open
Abstract
The advent of next-generation sequencing (NGS) and 'omic' technologies has revolutionized the field of genetics, and its implementation in health care has the potential to realize precision medicine. Primary immunodeficiencies (PID) are a group of rare diseases which have benefited from NGS, with a massive increase in causative genes identified in the past few years. Common variable immunodeficiency disorders (CVID) are a heterogeneous form of PID and the most common form of antibody failure in children and adults. While a monogenic cause of disease has been identified in a small subset of CVID patients, a genomewide association study and whole genome sequencing have found that, in the majority, a polygenic cause is likely. Other NGS technologies such as RNA sequencing and epigenetic studies have contributed further to our understanding of the contribution of altered gene expression in CVID pathogenesis. We believe that to unravel further the complexities of CVID, a multi-omic approach, combining DNA sequencing with gene expression, methylation, proteomic and metabolomics data, will be essential to identify novel disease-associated pathways and therapeutic targets.
Collapse
Affiliation(s)
- A-K Kienzler
- NIHR Oxford Biomedical Research Centre, Clinical Immunology Group, Oxford, UK
| | - C E Hargreaves
- NIHR Oxford Biomedical Research Centre, Clinical Immunology Group, Oxford, UK
| | - S Y Patel
- NIHR Oxford Biomedical Research Centre, Clinical Immunology Group, Oxford, UK
| |
Collapse
|
69
|
Chan HF, Ma S, Tian J, Leong KW. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets. NANOSCALE 2017; 9:3485-3495. [PMID: 28239692 PMCID: PMC5428077 DOI: 10.1039/c6nr08224f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The rapid advances in synthetic biology and biotechnology are increasingly demanding high-throughput screening technology, such as screening of the functionalities of synthetic genes for optimization of protein expression. Compartmentalization of single cells in water-in-oil (W/O) emulsion droplets allows screening of a vast number of individualized assays, and recent advances in automated microfluidic devices further help realize the potential of droplet technology for high-throughput screening. However these single-emulsion droplets are incompatible with aqueous phase analysis and the inner droplet environment cannot easily communicate with the external phase. We present a high-throughput, miniaturized screening platform for microchip-synthesized genes using microfluidics-generated water-in-oil-in-water (W/O/W) double emulsion (DE) droplets that overcome these limitations. Synthetic gene variants of fluorescent proteins are synthesized with a custom-built microarray inkjet synthesizer, which are then screened for expression in Escherichia coli (E. coli) cells. Bacteria bearing individual fluorescent gene variants are encapsulated as single cells into DE droplets where fluorescence signals are enhanced by 100 times within 24 h of proliferation. Enrichment of functionally-correct genes by employing an error correction method is demonstrated by screening DE droplets containing fluorescent clones of bacteria with the red fluorescent protein (rfp) gene. Permeation of isopropyl β-d-1-thiogalactopyranoside (IPTG) through the thin oil layer from the external solution initiates target gene expression. The induced expression of the synthetic fluorescent proteins from at least ∼100 bacteria per droplet generates detectable fluorescence signals to enable fluorescence-activated cell sorting (FACS) of the intact droplets. This technology obviates time- and labor-intensive cell culture typically required in conventional bulk experiment.
Collapse
Affiliation(s)
- H F Chan
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - S Ma
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and General Biosystems, Inc. Morrisville, 27560 USA
| | - J Tian
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and General Biosystems, Inc. Morrisville, 27560 USA and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - K W Leong
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and Department of Biomedical Engineering, Columbia University, New York, 10027, USA and Department of Systems Biology, Columbia University, New York, 10027, USA
| |
Collapse
|
70
|
Vardi O, Shamir I, Javasky E, Goren A, Simon I. Biases in the SMART-DNA library preparation method associated with genomic poly dA/dT sequences. PLoS One 2017; 12:e0172769. [PMID: 28235101 PMCID: PMC5325289 DOI: 10.1371/journal.pone.0172769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/09/2017] [Indexed: 01/19/2023] Open
Abstract
Avoiding biases in next generation sequencing (NGS) library preparation is crucial for obtaining reliable sequencing data. Recently, a new library preparation method has been introduced which has eliminated the need for the ligation step. This method, termed SMART (switching mechanism at the 5' end of the RNA transcript), is based on template switching reverse transcription. To date, there has been no systematic analysis of the additional biases introduced by this method. We analysed the genomic distribution of sequenced reads prepared from genomic DNA using the SMART methodology and found a strong bias toward long (≥12bp) poly dA/dT containing genomic loci. This bias is unique to the SMART-based library preparation and does not appear when libraries are prepared with conventional ligation based methods. Although this bias is obvious only when performing paired end sequencing, it affects single end sequenced samples as well. Our analysis demonstrates that sequenced reads originating from SMART-DNA libraries are heavily skewed toward genomic poly dA/dT tracts. This bias needs to be considered when deciding to use SMART based technology for library preparation.
Collapse
Affiliation(s)
- Oriya Vardi
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Elisheva Javasky
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alon Goren
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
71
|
Farmanbar A, Firouzi S, Park SJ, Nakai K, Uchimaru K, Watanabe T. Multidisciplinary insight into clonal expansion of HTLV-1-infected cells in adult T-cell leukemia via modeling by deterministic finite automata coupled with high-throughput sequencing. BMC Med Genomics 2017; 10:4. [PMID: 28137248 PMCID: PMC5282739 DOI: 10.1186/s12920-016-0241-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Background Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of leukemic cells. Therefore, monitoring clonal expansion of HTLV-1–infected cells via isolation of integration sites assists in analyzing infected individuals from early infection to the final stage of ATL development. However, because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified. Combining computational/mathematical modeling with experimental and clinical data of integration site–based clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to achieve a better understanding of ATL development. Methods As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory experiments, in silico analysis and empirical modeling. Results We analyzed clinical samples from HTLV-1–infected individuals with a broad range of proviral loads using a high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the size of infected clones. We categorized clones into four size groups, “very small”, “small”, “big”, and “very big”, based on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion. Conclusions Through the developed model, we have translated biological data of clonal expansion into the formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This kind of modeling provides a basic understanding as well as a unique perspective for clarifying the mechanisms of clonal expansion in ATL. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0241-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amir Farmanbar
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Functional Analysis in silico, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sanaz Firouzi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Sung-Joon Park
- Laboratory of Functional Analysis in silico, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Functional Analysis in silico, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,Hematology/Oncology, Research Hospital, Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan. .,Department of Advanced Medical Innovation, St. Marianna University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
72
|
Kariuki CM, Brascamp EW, Komen H, Kahi AK, van Arendonk JAM. Economic evaluation of progeny-testing and genomic selection schemes for small-sized nucleus dairy cattle breeding programs in developing countries. J Dairy Sci 2017; 100:2258-2268. [PMID: 28109609 DOI: 10.3168/jds.2016-11816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
Abstract
In developing countries minimal and erratic performance and pedigree recording impede implementation of large-sized breeding programs. Small-sized nucleus programs offer an alternative but rely on their economic performance for their viability. We investigated the economic performance of 2 alternative small-sized dairy nucleus programs [i.e., progeny testing (PT) and genomic selection (GS)] over a 20-yr investment period. The nucleus was made up of 453 male and 360 female animals distributed in 8 non-overlapping age classes. Each year 10 active sires and 100 elite dams were selected. Populations of commercial recorded cows (CRC) of sizes 12,592 and 25,184 were used to produce test daughters in PT or to create a reference population in GS, respectively. Economic performance was defined as gross margins, calculated as discounted revenues minus discounted costs following a single generation of selection. Revenues were calculated as cumulative discounted expressions (CDE, kg) × 0.32 (€/kg of milk) × 100,000 (size commercial population). Genetic superiorities, deterministically simulated using pseudo-BLUP index and CDE, were determined using gene flow. Costs were for one generation of selection. Results show that GS schemes had higher cumulated genetic gain in the commercial cow population and higher gross margins compared with PT schemes. Gross margins were between 3.2- and 5.2-fold higher for GS, depending on size of the CRC population. The increase in gross margin was mostly due to a decreased generation interval and lower running costs in GS schemes. In PT schemes many bulls are culled before selection. We therefore also compared 2 schemes in which semen was stored instead of keeping live bulls. As expected, semen storage resulted in an increase in gross margins in PT schemes, but gross margins remained lower than those of GS schemes. We conclude that implementation of small-sized GS breeding schemes can be economically viable for developing countries.
Collapse
Affiliation(s)
- C M Kariuki
- Department of Animal Sciences, Chuka University, PO Box 109-60400, Chuka, Kenya; Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - E W Brascamp
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - H Komen
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - A K Kahi
- Animal Breeding and Genomics Group, Department of Animal Sciences, Egerton University, PO Box 536-20115, Egerton, Kenya
| | - J A M van Arendonk
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
73
|
Pu D, Xiao P. A real-time decoding sequencing technology—new possibility for high throughput sequencing. RSC Adv 2017. [DOI: 10.1039/c7ra06202h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The challenges and corresponding solutions for a decoding sequencing to be compatible with high throughput sequencing (HTS) technologies are provided.
Collapse
Affiliation(s)
- Dan Pu
- School of Bioinformatics
- Chongqing University of Posts and Telecommunications
- Chongqing
- China
- State Key Laboratory of Bioelectronics
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
74
|
Yang X, Hartman MR, Harrington KT, Etson CM, Fierman MB, Slonim DK, Walt DR. Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom. CBE LIFE SCIENCES EDUCATION 2017; 16:16/2/ar22. [PMID: 28408407 PMCID: PMC5459240 DOI: 10.1187/cbe.16-09-0281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023]
Abstract
With the development of new sequencing and bioinformatics technologies, concepts relating to personal genomics play an increasingly important role in our society. To promote interest and understanding of sequencing and bioinformatics in the high school classroom, we developed and implemented a laboratory-based teaching module called "The Genetics of Race." This module uses the topic of race to engage students with sequencing and genetics. In the experimental portion of this module, students isolate their own mitochondrial DNA using standard biotechnology techniques and collect next-generation sequencing data to determine which of their classmates are most and least genetically similar to themselves. We evaluated the efficacy of this module by administering a pretest/posttest evaluation to measure student knowledge related to sequencing and bioinformatics, and we also conducted a survey at the conclusion of the module to assess student attitudes. Upon completion of our Genetics of Race module, students demonstrated significant learning gains, with lower-performing students obtaining the highest gains, and developed more positive attitudes toward scientific research.
Collapse
Affiliation(s)
- Xinmiao Yang
- Department of Chemistry, Tufts University, Medford, MA 02155
| | - Mark R Hartman
- Department of Chemistry, Tufts University, Medford, MA 02155
| | | | - Candice M Etson
- Department of Chemistry, Tufts University, Medford, MA 02155
| | | | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155
| | - David R Walt
- Department of Chemistry, Tufts University, Medford, MA 02155
| |
Collapse
|
75
|
Worley KC, Richards S, Rogers J. The value of new genome references. Exp Cell Res 2016; 358:433-438. [PMID: 28017728 DOI: 10.1016/j.yexcr.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022]
Abstract
Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence data is restricted in fundamental ways. In contrast, even access to an initial draft quality genome (see below for definitions) opens a wide range of opportunities that are simply not available without that reference genome assembly. Although a complete discussion of the impact of genome sequencing and assembly is beyond the scope of this short paper, the goal of this review is to summarize the most common and highest impact contributions that whole genome sequencing and assembly has had on comparative and evolutionary biology.
Collapse
Affiliation(s)
- Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
76
|
Greb JE, Goldminz AM, Elder JT, Lebwohl MG, Gladman DD, Wu JJ, Mehta NN, Finlay AY, Gottlieb AB. Psoriasis. Nat Rev Dis Primers 2016; 2:16082. [PMID: 27883001 DOI: 10.1038/nrdp.2016.82] [Citation(s) in RCA: 586] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic, immune-mediated disorder with cutaneous and systemic manifestations and substantial negative effects on patient quality of life. Psoriasis has a strong, albeit polygenic, genetic basis. Whereas approximately half of the accountable genetic effect of psoriasis maps to the major histocompatibility complex, >70 other loci have been identified, many of which implicate nuclear factor-κB, interferon signalling and the IL-23-IL-23 receptor axis. Psoriasis pathophysiology is characterized by abnormal keratinocyte proliferation and immune cell infiltration in the dermis and epidermis involving the innate and adaptive immune systems, with important roles for dendritic cells and T cells, among other cells. Frequent comorbidities are rheumatological and cardiovascular in nature, in particular, psoriatic arthritis. Current treatments for psoriasis include topical agents, photo-based therapies, traditional systemic drugs and biologic agents. Treatments can be used in combination or as monotherapy. Biologic therapies that target specific disease mediators have become a mainstay in the treatment of moderate-to-severe disease, whereas advances in the treatment of mild-to-moderate disease have been limited.
Collapse
Affiliation(s)
- Jacqueline E Greb
- Tufts University School of Medicine, Boston, Massachusetts, USA.,Tufts Medical Center, Department of Dermatology, Boston, Massachusetts, USA
| | - Ari M Goldminz
- Tufts Medical Center, Department of Dermatology, Boston, Massachusetts, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Mark G Lebwohl
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dafna D Gladman
- University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jashin J Wu
- Department of Dermatology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, California, USA
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Y Finlay
- Department of Dermatology and Wound Healing, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Alice B Gottlieb
- Department of Dermatology, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, New York 10595, USA
| |
Collapse
|
77
|
Hartman MR, Harrington KT, Etson CM, Fierman MB, Slonim DK, Walt DR. Personal microbiomes and next-generation sequencing for laboratory-based education. FEMS Microbiol Lett 2016; 363:fnw266. [PMID: 27856569 DOI: 10.1093/femsle/fnw266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/12/2016] [Accepted: 11/16/2016] [Indexed: 12/30/2022] Open
Abstract
Sequencing and bioinformatics technologies have advanced rapidly in recent years, driven largely by developments in next-generation sequencing (NGS) technology. Given the increasing importance of these advances, there is a growing need to incorporate concepts and practices relating to NGS into undergraduate and high school science curricula. We believe that direct access to sequencing and bioinformatics will improve the ability of students to understand the information obtained through these increasingly ubiquitous research tools. In this commentary, we discuss approaches and challenges for bringing NGS into the classroom based on our experiences in developing and running a microbiome project in high school and undergraduate courses. We describe strategies for maximizing student engagement through establishing personal relevance and utilizing an inquiry-based structure. Additionally, we address the practical issues of incorporating cutting edge technologies into an established curriculum. Looking forward, we anticipate that NGS educational experiments will become more commonplace as sequencing costs continue to decrease and the workflow becomes more user friendly.
Collapse
Affiliation(s)
- Mark R Hartman
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | | | - Candice M Etson
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | | | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA
| | - David R Walt
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
78
|
Song C, Liu Y, Fontana R, Makrigiorgos A, Mamon H, Kulke MH, Makrigiorgos GM. Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. Nucleic Acids Res 2016; 44:e146. [PMID: 27431322 PMCID: PMC5100565 DOI: 10.1093/nar/gkw650] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022] Open
Abstract
Presence of excess unaltered, wild-type (WT) DNA providing no information of biological or clinical value often masks rare alterations containing diagnostic or therapeutic clues in cancer, prenatal diagnosis, infectious diseases or organ transplantation. With the surge of high-throughput technologies there is a growing demand for removing unaltered DNA over large pools-of-sequences. Here we present nuclease-assisted minor-allele enrichment with probe-overlap (NaME-PrO), a single-step approach with broad genome coverage that can remove WT-DNA from numerous sequences simultaneously, prior to genomic analysis. NaME-PrO employs a double-strand-DNA-specific nuclease and overlapping oligonucleotide-probes interrogating WT-DNA targets and guiding nuclease digestion to these sites. Mutation-containing DNA creates probe-DNA mismatches that inhibit digestion, thus subsequent DNA-amplification magnifies DNA-alterations at all selected targets. We demonstrate several-hundred-fold mutation enrichment in diverse human samples on multiple clinically relevant targets including tumor samples and circulating DNA in 50-plex reactions. Enrichment enables routine mutation detection at 0.01% abundance while by adjusting conditions it is possible to sequence mutations down to 0.00003% abundance, or to scan tumor-suppressor genes for rare mutations. NaME-PrO introduces a simple and highly parallel process to remove un-informative DNA sequences and unmask clinically and biologically useful alterations.
Collapse
Affiliation(s)
- Chen Song
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yibin Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel Fontana
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harvey Mamon
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew H Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
79
|
Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array. Proc Natl Acad Sci U S A 2016; 113:E6749-E6756. [PMID: 27729524 DOI: 10.1073/pnas.1608271113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin-polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform.
Collapse
|
80
|
Escalona M, Rocha S, Posada D. A comparison of tools for the simulation of genomic next-generation sequencing data. Nat Rev Genet 2016; 17:459-69. [PMID: 27320129 PMCID: PMC5224698 DOI: 10.1038/nrg.2016.57] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Computer simulation of genomic data has become increasingly popular for assessing and validating biological models or for gaining an understanding of specific data sets. Several computational tools for the simulation of next-generation sequencing (NGS) data have been developed in recent years, which could be used to compare existing and new NGS analytical pipelines. Here we review 23 of these tools, highlighting their distinct functionality, requirements and potential applications. We also provide a decision tree for the informed selection of an appropriate NGS simulation tool for the specific question at hand.
Collapse
Affiliation(s)
- Merly Escalona
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Sara Rocha
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
- Institute of Biomedical Research of Vigo (IBIV), University of Vigo, Vigo 36310, Spain
| |
Collapse
|
81
|
Miyazato P, Katsuya H, Fukuda A, Uchiyama Y, Matsuo M, Tokunaga M, Hino S, Nakao M, Satou Y. Application of targeted enrichment to next-generation sequencing of retroviruses integrated into the host human genome. Sci Rep 2016; 6:28324. [PMID: 27321866 PMCID: PMC4913254 DOI: 10.1038/srep28324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
The recent development and advancement of next-generation sequencing (NGS) technologies have enabled the characterization of the human genome at extremely high resolution. In the retrovirology field, NGS technologies have been applied to integration-site analysis and deep sequencing of viral genomes in combination with PCR amplification using virus-specific primers. However, virus-specific primers are not available for some epigenetic analyses, like chromatin immunoprecipitation sequencing (ChIP-seq) assays. Viral sequences are poorly detected without specific PCR amplification because proviral DNA is very scarce compared to human genomic DNA. Here, we have developed and evaluated the use of biotinylated DNA probes for the capture of viral genetic fragments from a library prepared for NGS. Our results demonstrated that viral sequence detection was hundreds or thousands of times more sensitive after enrichment, enabling us to reduce the economic burden that arises when attempting to analyze the epigenetic landscape of proviruses by NGS. In addition, the method is versatile enough to analyze proviruses that have mismatches compared to the DNA probes. Taken together, we propose that this approach is a powerful tool to clarify the mechanisms of transcriptional and epigenetic regulation of retroviral proviruses that have, until now, remained elusive.
Collapse
Affiliation(s)
- Paola Miyazato
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Hiroo Katsuya
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Asami Fukuda
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Yoshikazu Uchiyama
- Department of Medical Physics, Faculty of Life Sciences, Kumamoto University, Japan
| | - Misaki Matsuo
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Michiyo Tokunaga
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute for Molecular Biology and Embryology, Kumamoto University, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute for Molecular Biology and Embryology, Kumamoto University, Japan.,Core Research for Evolutionary Science and Technology (CREST), Japan Science of Technology Agency, Tokyo, Japan
| | - Yorifumi Satou
- Center for AIDS Research, Kumamoto University, Japan.,International Research Center for Medical Sciences, Kumamoto University, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, Japan
| |
Collapse
|
82
|
Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T, Hatzigeorgiou AG. DIANA-mirExTra v2.0: Uncovering microRNAs and transcription factors with crucial roles in NGS expression data. Nucleic Acids Res 2016; 44:W128-34. [PMID: 27207881 PMCID: PMC4987956 DOI: 10.1093/nar/gkw455] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/11/2016] [Indexed: 11/20/2022] Open
Abstract
Differential expression analysis (DEA) is one of the main instruments utilized for revealing molecular mechanisms in pathological and physiological conditions. DIANA-mirExTra v2.0 (http://www.microrna.gr/mirextrav2) performs a combined DEA of mRNAs and microRNAs (miRNAs) to uncover miRNAs and transcription factors (TFs) playing important regulatory roles between two investigated states. The web server uses as input miRNA/RNA-Seq read count data sets that can be uploaded for analysis. Users can combine their data with 350 small-RNA-Seq and 65 RNA-Seq in-house analyzed libraries which are provided by DIANA-mirExTra v2.0. The web server utilizes miRNA:mRNA, TF:mRNA and TF:miRNA interactions derived from extensive experimental data sets. More than 450 000 miRNA interactions and 2 000 000 TF binding sites from specific or high-throughput techniques have been incorporated, while accurate miRNA TSS annotation is obtained from microTSS experimental/in silico framework. These comprehensive data sets enable users to perform analyses based solely on experimentally supported information and to uncover central regulators within sequencing data: miRNAs controlling mRNAs and TFs regulating mRNA or miRNA expression. The server also supports predicted miRNA:gene interactions from DIANA-microT-CDS for 4 species (human, mouse, nematode and fruit fly). DIANA-mirExTra v2.0 has an intuitive user interface and is freely available to all users without any login requirement.
Collapse
Affiliation(s)
- Ioannis S Vlachos
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', Medical School of Athens, University of Athens, Athens 11527, Greece
| | | | - Maria D Paraskevopoulou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece
| | | | - Georgios Georgakilas
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece
| | - Penny Georgiou
- 'Athena' Research and Innovation Center, 11524 Athens, Greece
| | | | - Dimitra Karagkouni
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece
| | | | | | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 38221 Volos, Greece Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
83
|
|
84
|
Zhirnov V, Zadegan RM, Sandhu GS, Church GM, Hughes WL. Nucleic acid memory. NATURE MATERIALS 2016; 15:366-70. [PMID: 27005909 PMCID: PMC6361517 DOI: 10.1038/nmat4594] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nucleic acid memory has a retention time far exceeding electronic memory. As an alternative storage media, DNA surpasses the information density and energy of operation offered by flash memory.
Collapse
Affiliation(s)
- Victor Zhirnov
- Semiconductor Research Corporation, 1101 Slater Road, Durham, North Carolina 27703, USA
| | - Reza M Zadegan
- Department of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, USA
| | - Gurtej S Sandhu
- Micron Technology, Inc., PO Box 6, 8000 South Federal Way, Boise, Idaho 83707-0006, USA
| | - George M Church
- Department of Genetics, Harvard University, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - William L Hughes
- Department of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, USA
| |
Collapse
|
85
|
Understanding Spatial Genome Organization: Methods and Insights. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:7-20. [PMID: 26876719 PMCID: PMC4792841 DOI: 10.1016/j.gpb.2016.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advances in both microscopic and nucleic acid-based approaches to map genome architecture, and the application of these approaches to the dissection of higher-order chromosomal structures has yielded much new information. It is becoming increasingly clear, for example, that interphase chromosomes form stable, multilevel hierarchical structures. Among them, self-associating domains like so-called topologically associating domains (TADs) appear to be building blocks for large-scale genomic organization. This review describes features of these broadly-defined hierarchical structures, insights into the mechanisms underlying their formation, our current understanding of how interactions in the nuclear space are linked to gene regulation, and important future directions for the field.
Collapse
|
86
|
Beerenwinkel N, Greenman CD, Lagergren J. Computational Cancer Biology: An Evolutionary Perspective. PLoS Comput Biol 2016; 12:e1004717. [PMID: 26845763 PMCID: PMC4742235 DOI: 10.1371/journal.pcbi.1004717] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail: (NB); (CDG); (JL)
| | - Chris D. Greenman
- School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail: (NB); (CDG); (JL)
| | - Jens Lagergren
- Science for Life Laboratory, School of Computer Science and Communication, Swedish E-Science Research Center, KTH Royal Institute of Technology, Solna, Sweden
- * E-mail: (NB); (CDG); (JL)
| |
Collapse
|
87
|
Liu F, Hu Z, Liu W, Li J, Wang W, Liang Z, Wang F, Sun X. Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development. Sci Rep 2016; 6:18947. [PMID: 26732855 PMCID: PMC4702172 DOI: 10.1038/srep18947] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii.
Collapse
Affiliation(s)
- Fuli Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zimin Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenhui Liu
- Qinghai Environment Monitoring Centre, Xining, 810007, China
| | - Jingjing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenjun Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhourui Liang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Feijiu Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiutao Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| |
Collapse
|
88
|
Lee S, Wang C, Song J, Kim DG, Oh Y, Ko W, Lee J, Park J, Lee HS, Jo K. Investigation of various fluorescent protein–DNA binding peptides for effectively visualizing large DNA molecules. RSC Adv 2016. [DOI: 10.1039/c6ra08683g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-molecule DNA visualization with fluorescent protein DNA binding peptides.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Cong Wang
- Department of Mechanical Engineering
- Sogang University
- Seoul
- Korea
| | - Junghyun Song
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Do-geun Kim
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Yeeun Oh
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Wooseok Ko
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Jinyong Lee
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Jungyul Park
- Department of Mechanical Engineering
- Sogang University
- Seoul
- Korea
| | - Hyun Soo Lee
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| | - Kyubong Jo
- Department of Chemistry and Program of Integrated Biotech
- Sogang University
- Seoul
- Korea
| |
Collapse
|
89
|
Lun ATL, Chen Y, Smyth GK. It's DE-licious: A Recipe for Differential Expression Analyses of RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR. Methods Mol Biol 2016; 1418:391-416. [PMID: 27008025 DOI: 10.1007/978-1-4939-3578-9_19] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
RNA sequencing (RNA-seq) is widely used to profile transcriptional activity in biological systems. Here we present an analysis pipeline for differential expression analysis of RNA-seq experiments using the Rsubread and edgeR software packages. The basic pipeline includes read alignment and counting, filtering and normalization, modelling of biological variability and hypothesis testing. For hypothesis testing, we describe particularly the quasi-likelihood features of edgeR. Some more advanced downstream analysis steps are also covered, including complex comparisons, gene ontology enrichment analyses and gene set testing. The code required to run each step is described, along with an outline of the underlying theory. The chapter includes a case study in which the pipeline is used to study the expression profiles of mammary gland cells in virgin, pregnant and lactating mice.
Collapse
Affiliation(s)
- Aaron T L Lun
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Yunshun Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| |
Collapse
|
90
|
RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping. Genetics 2015; 202:389-400. [PMID: 26715661 DOI: 10.1534/genetics.115.183665] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Massively parallel sequencing has revolutionized many areas of biology, but sequencing large amounts of DNA in many individuals is cost-prohibitive and unnecessary for many studies. Genomic complexity reduction techniques such as sequence capture and restriction enzyme-based methods enable the analysis of many more individuals per unit cost. Despite their utility, current complexity reduction methods have limitations, especially when large numbers of individuals are analyzed. Here we develop a much improved restriction site-associated DNA (RAD) sequencing protocol and a new method called Rapture ( R: AD c APTURE: ). The new RAD protocol improves versatility by separating RAD tag isolation and sequencing library preparation into two distinct steps. This protocol also recovers more unique (nonclonal) RAD fragments, which improves both standard RAD and Rapture analysis. Rapture then uses an in-solution capture of chosen RAD tags to target sequencing reads to desired loci. Rapture combines the benefits of both RAD and sequence capture, i.e., very inexpensive and rapid library preparation for many individuals as well as high specificity in the number and location of genomic loci analyzed. Our results demonstrate that Rapture is a rapid and flexible technology capable of analyzing a very large number of individuals with minimal sequencing and library preparation cost. The methods presented here should improve the efficiency of genetic analysis for many aspects of agricultural, environmental, and biomedical science.
Collapse
|
91
|
Suter B, Zhang X, Pesce CG, Mendelsohn AR, Dinesh-Kumar SP, Mao JH. Next-Generation Sequencing for Binary Protein-Protein Interactions. Front Genet 2015; 6:346. [PMID: 26734059 PMCID: PMC4681833 DOI: 10.3389/fgene.2015.00346] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022] Open
Abstract
The yeast two-hybrid (Y2H) system exploits host cell genetics in order to display binary protein-protein interactions (PPIs) via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS), and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.
Collapse
Affiliation(s)
| | | | | | - Andrew R Mendelsohn
- Next Interactions, Inc., RichmondCA, USA; Regenerative Sciences Institute, SunnyvaleCA, USA
| | | | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, USA
| |
Collapse
|
92
|
Liang L, Shen JW, Zhang Z, Wang Q. DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosens Bioelectron 2015; 89:280-292. [PMID: 26711358 DOI: 10.1016/j.bios.2015.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, two-dimensional (2D) materials (mainly including graphene, boron nitride, MoS2 etc.) have stimulated exploding interests in sensor applications. 2D-material based nanoscale DNA sequencing is a single-molecule technique with revolutionary potential. In this paper, we review the methodology of DNA sequencing based on the measurements of ionic current, force peak, and transverse electrical currents etc. by 2D materials. The advantages and disadvantages of DNA sequencing by 2D materials are discussed. Besides the recent development of experiments, we will focus on the theoretical calculations of DNA sequencing, which have been played a critical role in the development of this field. Special emphasis will focus on the disagreements between experiments and theoretical calculations, and the explanations for the discrepancy will be highlighted. Finally, some new plausible sequencing methods from computational studies will be discussed, which may be applied in the realistic DNA sequencing experiments in future.
Collapse
Affiliation(s)
- Lijun Liang
- Department of Chemistry and §Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jia-Wei Shen
- School of Medicine, Hangzhou Normal University, Hangzhou 310016, People's Republic of China
| | - Zhisen Zhang
- Research Institute for Soft Matter and Biomimetics, Department of Physics, Xiamen University, Xiamen 361005, People' s Republic of China
| | - Qi Wang
- Department of Chemistry and §Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
93
|
Continuously tunable nucleic acid hybridization probes. Nat Methods 2015; 12:1191-6. [PMID: 26480474 PMCID: PMC4666732 DOI: 10.1038/nmeth.3626] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
Abstract
In silico designed nucleic acid probes and primers often fail to achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. Here, we present a novel, on-the-fly method of tuning probe affinity and selectivity via the stoichiometry of auxiliary species, allowing independent and decoupled adjustment of hybridization yield for different probes in multiplexed assays. Using this method, we achieve near-continuous tuning of probe effective free energy (0.03 kcal·mol−1 granularity). As applications, we enforced uniform capture efficiency of 31 DNA molecules (GC content 0% – 100%), maximized signal difference for 11 pairs of single nucleotide variants, and performed tunable hybrid-capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples (FFPE).
Collapse
|
94
|
Abstract
Genomics has recently celebrated reaching the $1000 genome milestone, making affordable DNA sequencing a reality. With this goal successfully completed, the next goal of the sequencing revolution can be sequencing sensors--miniaturized sequencing devices that are manufactured for real-time applications and deployed in large quantities at low costs. The first part of this manuscript envisions applications that will benefit from moving the sequencers to the samples in a range of domains. In the second part, the manuscript outlines the critical barriers that need to be addressed in order to reach the goal of ubiquitous sequencing sensors.
Collapse
Affiliation(s)
- Yaniv Erlich
- Department of Computer Science, Columbia University, New York, New York 10027, USA; New York Genome Center, New York, New York 10013, USA
| |
Collapse
|
95
|
De novo sequencing and variant calling with nanopores using PoreSeq. Nat Biotechnol 2015; 33:1087-91. [PMID: 26352647 PMCID: PMC4877053 DOI: 10.1038/nbt.3360] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/28/2015] [Indexed: 11/08/2022]
Abstract
The accuracy of sequencing single DNA molecules with nanopores is continually improving, but de novo genome sequencing and assembly using only nanopore data remain challenging. Here we describe PoreSeq, an algorithm that identifies and corrects errors in nanopore sequencing data and improves the accuracy of de novo genome assembly with increasing coverage depth. The approach relies on modeling the possible sources of uncertainty that occur as DNA transits through the nanopore and finds the sequence that best explains multiple reads of the same region. PoreSeq increases nanopore sequencing read accuracy of M13 bacteriophage DNA from 85% to 99% at 100× coverage. We also use the algorithm to assemble Escherichia coli with 30× coverage and the λ genome at a range of coverages from 3× to 50×. Additionally, we classify sequence variants at an order of magnitude lower coverage than is possible with existing methods.
Collapse
|
96
|
de la Escosura A, Briones C, Ruiz-Mirazo K. The systems perspective at the crossroads between chemistry and biology. J Theor Biol 2015; 381:11-22. [DOI: 10.1016/j.jtbi.2015.04.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/26/2015] [Indexed: 01/21/2023]
|
97
|
Kell DB, Lurie-Luke E. The virtue of innovation: innovation through the lenses of biological evolution. J R Soc Interface 2015; 12:rsif.2014.1183. [PMID: 25505138 PMCID: PMC4305420 DOI: 10.1098/rsif.2014.1183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We rehearse the processes of innovation and discovery in general terms, using as our main metaphor the biological concept of an evolutionary fitness landscape. Incremental and disruptive innovations are seen, respectively, as successful searches carried out locally or more widely. They may also be understood as reflecting evolution by mutation (incremental) versus recombination (disruptive). We also bring a platonic view, focusing on virtue and memory. We use 'virtue' as a measure of efforts, including the knowledge required to come up with disruptive and incremental innovations, and 'memory' as a measure of their lifespan, i.e. how long they are remembered. Fostering innovation, in the evolutionary metaphor, means providing the wherewithal to promote novelty, good objective functions that one is trying to optimize, and means to improve one's knowledge of, and ability to navigate, the landscape one is searching. Recombination necessarily implies multi- or inter-disciplinarity. These principles are generic to all kinds of creativity, novel ideas formation and the development of new products and technologies.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Princess St., Manchester M1 7DN, UK
| | - Elena Lurie-Luke
- Life Sciences Open Innovation, Procter and Gamble, Procter and Gamble Technical Centres Limited, Whitehall Lane, Egham TW20 9NW, UK
| |
Collapse
|
98
|
High-throughput determination of RNA structure by proximity ligation. Nat Biotechnol 2015; 33:980-4. [PMID: 26237516 PMCID: PMC4564351 DOI: 10.1038/nbt.3289] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Abstract
We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA Proximity Ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle, and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.
Collapse
|
99
|
Zutter MM, Bloom KJ, Cheng L, Hagemann IS, Kaufman JH, Krasinskas AM, Lazar AJ, Leonard DGB, Lindeman NI, Moyer AM, Nikiforova MN, Nowak JA, Pfeifer JD, Sepulveda AR, Willis JE, Yohe SL. The Cancer Genomics Resource List 2014. Arch Pathol Lab Med 2015; 139:989-1008. [PMID: 25436904 DOI: 10.5858/arpa.2014-0330-cp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Genomic sequencing for cancer is offered by commercial for-profit laboratories, independent laboratory networks, and laboratories in academic medical centers and integrated health networks. The variability among the tests has created a complex, confusing environment. OBJECTIVE To address the complexity, the Personalized Health Care (PHC) Committee of the College of American Pathologists proposed the development of a cancer genomics resource list (CGRL). The goal of this resource was to assist the laboratory pathology and clinical oncology communities. DESIGN The PHC Committee established a working group in 2012 to address this goal. The group consisted of site-specific experts in cancer genetic sequencing. The group identified current next-generation sequencing (NGS)-based cancer tests and compiled them into a usable resource. The genes were annotated by the working group. The annotation process drew on published knowledge, including public databases and the medical literature. RESULTS The compiled list includes NGS panels offered by 19 laboratories or vendors, accompanied by annotations. The list has 611 different genes for which NGS-based mutation testing is offered. Surprisingly, of these 611 genes, 0 genes were listed in every panel, 43 genes were listed in 4 panels, and 54 genes were listed in 3 panels. In addition, tests for 393 genes were offered by only 1 or 2 institutions. Table 1 provides an example of gene mutations offered for breast cancer genomic testing with the annotation as it appears in the CGRL 2014. CONCLUSIONS The final product, referred to as the Cancer Genomics Resource List 2014, is available as supplemental digital content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sophia L Yohe
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee (Dr Zutter); the Department of Pathology, Clarient Diagnostic Services, Aliso Viejo, California (Dr Bloom); the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis (Dr Cheng); the Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (Drs Hagemann and Pfeifer); Surveys, College of American Pathologists, Northfield, Illinois (Dr Kaufman); the Department of Pathology, Emory University, Atlanta, Georgia (Dr Krasinskas); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Lazar); the Department of Pathology and Laboratory Medicine, Fletcher Allen Health Care, Burlington, Vermont (Dr Leonard); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Lindeman); the Department of Pathology, Mayo Clinic, Rochester, Minnesota (Dr Moyer); Molecular and Genomic Pathology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Nikiforova); the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Dr Nowak); the Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (Dr Sepulveda); the Department of Pathology, Case Medical Center/Case Western Reserve University, Cleveland, Ohio (Dr Willis); and the Department of Molecular Pathology and Hematopathology, University of Minnesota, Minneapolis (Dr Yohe)
| |
Collapse
|
100
|
Tsang JS. Utilizing population variation, vaccination, and systems biology to study human immunology. Trends Immunol 2015; 36:479-93. [PMID: 26187853 PMCID: PMC4979540 DOI: 10.1016/j.it.2015.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/27/2022]
Abstract
The move toward precision medicine has highlighted the importance of understanding biological variability within and across individuals in the human population. In particular, given the prevalent involvement of the immune system in diverse pathologies, an important question is how much and what information about the state of the immune system is required to enable accurate prediction of future health and response to medical interventions. Towards addressing this question, recent studies using vaccination as a model perturbation and systems-biology approaches are beginning to provide a glimpse of how natural population variation together with multiplexed, high-throughput measurement and computational analysis can be used to uncover predictors of immune response quality in humans. Here I discuss recent developments in this emerging field, with emphasis on baseline correlates of vaccination responses, sources of immune-state variability, as well as relevant features of study design, data generation, and computational analysis.
Collapse
Affiliation(s)
- John S Tsang
- Systems Genomics and Bioinformatics Unit, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA; Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|