51
|
An efficient method for organic acetylation and use of dl-phosphinothricin as a negative selection agent in argE transgenic rice. Biochem Biophys Res Commun 2013; 441:243-8. [DOI: 10.1016/j.bbrc.2013.10.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
|
52
|
Singh AK, Rai GK, Singh M, Dubey SK. Bacterial community structure in the rhizosphere of a Cry1Ac Bt-brinjal crop and comparison to its non-transgenic counterpart in the tropical soil. MICROBIAL ECOLOGY 2013; 66:927-39. [PMID: 24046073 DOI: 10.1007/s00248-013-0287-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/30/2013] [Indexed: 05/26/2023]
Abstract
To elucidate whether the transgenic crop alters the rhizospheric bacterial community structure, a 2-year study was performed with Cry1Ac gene-inserted brinjal crop (Bt) and their near isogenic non-transformed trait (non-Bt). The event of Bt crop (VRBT-8) was screened using an insect bioassay and enzyme-linked immunosorbent assay. Soil moisture, NH4 (+)-N, NO3 (-)-N, and PO4 (-)-P level had non-significant variation. Quantitative polymerase chain reaction revealed that abundance of bacterial 16S rRNA gene copies were lower in soils associated with Bt brinjal. Microbial biomass carbon (MBC) showed slight reduction in Bt brinjal soils. Higher MBC values in the non-Bt crop soil may be attributed to increased root activity and availability of readily metabolizable carbon compounds. The restriction fragment length polymorphism of PCR-amplified rRNA gene fragments detected 13 different bacterial groups with the exclusive presence of β-Proteobacteria, Chloroflexus, Planctomycetes, and Fusobacteria in non-Bt, and Cyanobacteria and Bacteroidetes in Bt soils, respectively, reflecting minor changes in the community structure. Despite the detection of Cry1Ac protein in the rhizospheric soil, the overall impact of Cry1Ac expressing Bt brinjal was less compared to that due to seasonal changes.
Collapse
|
53
|
Bala A, Roy A, Das A, Chakraborti D, Das S. Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination. BMC Biotechnol 2013; 13:88. [PMID: 24144281 PMCID: PMC3819271 DOI: 10.1186/1472-6750-13-88] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/08/2013] [Indexed: 01/12/2023] Open
Abstract
Background Antibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for selectable marker gene (SMG) elimination has previously been demonstrated by different groups in several plants including Brassica. In the present study exploiting Cre/lox mediated recombination strategy, attempt has been made for selectable marker gene elimination from Allium sativum leaf agglutinin (ASAL) expressing Brassica plants with hemipteran insect resistant phenotype. Results Allium sativum leaf agglutinin (ASAL) linked with lox flanked hygromycin resistant (hpt) gene was introduced in mustard. Cre recombinase gene cassette was also integrated in separate event. A Cre/lox mediated recombination using crossing strategy was adopted to remove the hpt gene from the subsequent generation of selected hybrid events. Reciprocal crosses were made between T1ASAL-lox-hpt-lox and cre-bar plants. Marker gene elimination was confirmed in the resulting F1 hybrid progenies by PCR analysis, using hpt, cre and ASAL specific primers followed by Southern hybridization. In marker free plants, expression of ASAL was also confirmed by western blotting and ELISA analysis. Retention of functionality of expressed ASAL was investigated by agglutination assay using rabbit erythrocytes. Expressed ASAL was also found to be thermo-sensitive. In planta insect bioassay on F1 hybrid progenies exhibited detrimental effect on the performance of devastating target pest, Lipaphis erysimi. The F1 hybrid hpt negative, ASAL positive plants were allowed to self- fertilize to obtain F2 progeny plants. In some of these plants cre gene was found to be segregated out of the ASAL gene by genetic segregation yielding completely marker free plants. Conclusions The present study establishes the efficient expression of the newly introduced insect resistant ASAL gene even after Cre/lox mediated recombination resulting in elimination of selectable marker gene.
Collapse
Affiliation(s)
| | | | | | | | - Sampa Das
- Division of Plant Biology, Bose Institute, P1/12, C, I, T Scheme VIIM, Kolkata 700054, WB, India.
| |
Collapse
|
54
|
Niu L, Ma Y, Mannakkara A, Zhao Y, Ma W, Lei C, Chen L. Impact of single and stacked insect-resistant Bt-cotton on the honey bee and silkworm. PLoS One 2013; 8:e72988. [PMID: 24039838 PMCID: PMC3767790 DOI: 10.1371/journal.pone.0072988] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Transgenic insect-resistant cotton (Bt cotton) has been extensively planted in China, but its effects on non-targeted insect species such as the economically important honey bee (Apis mellifera) and silkworm (Bombyx mori) currently are unknown. In this study, pollen from two Bt cotton cultivars, one expressing Cry1Ac/EPSPS and the other expressing Cry1Ac/Cry2Ab, were used to evaluate the effects of Bt cotton on adult honey bees and silkworm larvae. Laboratory feeding studies showed no adverse effects on the survival, cumulative consumption, and total hemocyte count (THC) of A. mellifera fed with Bt pollen for 7 days. No effects on the survival or development of B. mori larvae were observed either. A marginally significant difference between Cry1Ac/Cry2Ab cotton and the conventional cotton on the THC of the 3(rd) day of 5(th) B. mori instar larvae was observed only at the two highest pollen densities (approximately 900 and 8000 grains/cm(2)), which are much higher than the pollen deposition that occurs under normal field conditions. The results of this study show that pollen of the tested Bt cotton varieties carried no lethal or sublethal risk for A. mellifera, and the risk for B. mori was negligible.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Ma
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Amani Mannakkara
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Yao Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail: (LC); (CL)
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail: (LC); (CL)
| |
Collapse
|
55
|
Jiang Y, Sun L, Jiang M, Li K, Song Y, Zhu C. Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi. J Biosci 2013; 38:573-81. [PMID: 23938389 DOI: 10.1007/s12038-013-9349-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A twin T-DNA system is a convenient strategy for creating selectable marker-free transgenic plants. The standard transformation plasmid, pCAMBIA 1300, was modified into a binary vector consisting of two separate T-DNAs, one of which contained the hygromycin phosphotransferase (hpt) marker gene. Using this binary vector, we constructed two vectors that expressed inverted-repeat (IR) structures targeting the rice stripe virus (RSV) coat protein (CP) gene and the special-disease protein (SP) gene. Transgenic rice lines were obtained via Agrobacterium-mediated transformation. Seven independent clones harbouring both the hpt marker gene and the target genes (RSV CP or SP) were obtained in the primary transformants of pDTRSVCP and pDTRSVSP, respectively. The segregation frequencies of the target gene and the marker gene in the T1 plants were 8.72 percent for pDTRSVCP and 12.33 percent for pDTRSVSP. Two of the pDTRSVCP lines and three pDTRSVSP lines harbouring the homozygous target gene, but not the hpt gene, were strongly resistant to RSV. A molecular analysis of the resistant transgenic plants confirmed the stable integration and expression of the target genes. The resistant transgenic plants displayed lower levels of the transgene transcripts and specific small interfering RNAs, suggesting that RNAi induced the viral resistance.
Collapse
Affiliation(s)
- Yayuan Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P.R. China, 271018
| | | | | | | | | | | |
Collapse
|
56
|
Rastogi Verma S. Genetically modified plants: public and scientific perceptions. ISRN BIOTECHNOLOGY 2013; 2013:820671. [PMID: 25937981 PMCID: PMC4393037 DOI: 10.5402/2013/820671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/10/2013] [Indexed: 12/02/2022]
Abstract
The potential of genetically modified plants to meet the requirements of growing population is not being recognized at present. This is a consequence of concerns raised by the public and the critics about their applications and release into the environment. These include effect on human health and environment, biosafety, world trade monopolies, trustworthiness of public institutions, integrity of regulatory agencies, loss of individual choice, and ethics as well as skepticism about the real potential of the genetically modified plants, and so on. Such concerns are enormous and prevalent even today. However, it should be acknowledged that most of them are not specific for genetically modified plants, and the public should not forget that the conventionally bred plants consumed by them are also associated with similar risks where no information about the gene(s) transfer is available. Moreover, most of the concerns are hypothetical and lack scientific background. Though a few concerns are still to be disproved, it is viewed that, with proper management, these genetically modified plants have immense potential for the betterment of mankind. In the present paper, an overview of the raised concerns and wherever possible reasons assigned to explain their intensity or unsuitability are reviewed.
Collapse
Affiliation(s)
- Smita Rastogi Verma
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
57
|
Zapiola ML, Mallory-Smith CA. Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population. Mol Ecol 2012; 21:4672-80. [PMID: 22625177 DOI: 10.1111/j.1365-294x.2012.05627.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral-regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off-type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes.
Collapse
Affiliation(s)
- María L Zapiola
- Department of Crop and Soil Science, Oregon State University, 107 Crop Science Bldg., Corvallis, OR 97331, USA
| | | |
Collapse
|
58
|
Transgenic Cry1Ab rice does not impact ecological fitness and predation of a generalist spider. PLoS One 2012; 7:e35164. [PMID: 22511982 PMCID: PMC3325204 DOI: 10.1371/journal.pone.0035164] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022] Open
Abstract
Background The commercial release of rice genetically engineered to express a Cry1Ab protein from Bacillus thuringiensis (Bt) for control of Lepidoptera in China is a subject of debate. One major point of the debate has focused on the ecological safety of Bt rice on nontarget organisms, especially predators and parasitoids that help control populations of insect pests. Methodology/Principal Findings A tritrophic bioassay was conducted to evaluate the potential impact of Cry1Ab-expressing rice on fitness parameters of a predaceous ground spider (Pardosa pseudoannulata (Bösenberg et Strand)) that had fed on Bt rice-fed brown planthopper (Nilaparvata lugens (Stål)) nymphs. Survival, development time and fecundity of this spider were not different when they were fed with Bt rice-fed or non-Bt rice-fed prey. Furthermore, ELISA and PCR gut assays, as well as a functional response trial, indicated that predation by P. pseudoannulata was not significantly different in Bt rice or non-Bt rice fields. Conclusions/Significance The transgenic Cry1Ab rice lines tested in this study had no adverse effects on the survival, developmental time and fecundity of P. pseudoannulata in the laboratory or on predation under field conditions. This suggests that this important predator would not be harmed if transgenic Cry1Ab rice were commercialized.
Collapse
|
59
|
Wang X, Singer SD, Liu Z. Silencing of meiosis-critical genes for engineering male sterility in plants. PLANT CELL REPORTS 2012; 31:747-56. [PMID: 22120011 DOI: 10.1007/s00299-011-1193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/07/2011] [Accepted: 11/14/2011] [Indexed: 05/20/2023]
Abstract
The potential for pollen-mediated transgene flow into wild or closely related species has provoked unease in terms of transgenic modification of agricultural plant species. One approach to remedy this situation in species whose seeds and fruits are not of particular value is to engineer male sterility into the transgenic lines. In this study, three meiosis-critical genes, namely AHP2, AtRAD51C and SWITCH1 (SWI), were chosen as silencing targets to test the feasibility of incorporating sterility into plants using an RNAi-based approach. Our results indicated that the silencing of each of these genes via hairpin RNA (termed AHPi, RAD51Ci and SWIi lines) in Arabidopsis thaliana yielded a proportion of transgenic plants exhibiting a similar 'partially sterile' phenotype in which less than 50% of pollen was viable. In addition, a 'sterile' phenotype was also evident in a minority of RAD51Ci and SWIi, but not AHPi, lines in which plants yielded no seeds and either produced inviable pollen (RAD51Ci lines) or displayed a complete absence of pollen (SWIi lines). This suggests that AtRAD51C and SWI may function at distinct stages of meiosis. Further analyses of SWIi lines demonstrated that the 'sterile' phenotype was associated with a substantial reduction in the level of targeted gene transcript in floral tissues and resulted from sterility of the male, but not female gametes. This work demonstrates that generating male sterility through the silencing of key genes involved in the regulation of meiosis is feasible, and its advantages and potential applications for transgene containment are discussed.
Collapse
Affiliation(s)
- Xiping Wang
- USDA-ARS Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | | | | |
Collapse
|
60
|
Gene deletor: a new tool to address gene flow and food safety concerns over transgenic crop plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1195-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
61
|
Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy INBL. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. J Biosci 2012; 37:167-97. [PMID: 22357214 DOI: 10.1007/s12038-012-9187-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | | | |
Collapse
|
62
|
Biddle JM, Linde C, Godfree RC. Co-infection patterns and geographic distribution of a complex pathosystem targeted by pathogen-resistant plants. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:35-52. [PMID: 22471074 DOI: 10.1890/11-0341.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Increasingly, pathogen-resistant (PR) plants are being developed to reduce the agricultural impacts of disease. However PR plants also have the potential to result in increased invasiveness of nontarget host populations and so pose a potential threat to nontarget ecosystems. In this paper we use a new framework to investigate geographical variation in the potential risk associated with unintended release of genetically modified alfalfa mosaic virus (AMV)-resistant Trifolium repens (white clover) into nontarget host populations containing AMV, clover yellow vein virus (ClYVV), and white clover mosaic virus (WCIMV) in southeastern Australia. Surveys of 213 sites in 37 habitat types over a 300 000-km2 study region showed that T. repens is a significant weed of many high-conservation-value habitats in southeastern Australia and that AMV, ClYVV, and WClMV occur in 15-97% of nontarget host populations. However, T. repens abundance varied with site disturbance, habitat conservation value, and proximity to cropping, and all viral pathogens had distinct geographic distributions and infection patterns. Virus species frequently co-infected host plants and displayed nonindependent distributions within host populations, although co-infection patterns varied across the study region. Our results clearly illustrate the complexity of conducting environmental risk assessments that involve geographically widespread, invasive pasture species and demonstrate the general need for targeted, habitat- and pathosystem-specific studies prior to the process of tiered risk assessment.
Collapse
Affiliation(s)
- J M Biddle
- Black Mountain Laboratories, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | |
Collapse
|
63
|
|
64
|
Kalinina O, Zeller SL, Schmid B. Competitive performance of transgenic wheat resistant to powdery mildew. PLoS One 2011; 6:e28091. [PMID: 22132219 PMCID: PMC3223217 DOI: 10.1371/journal.pone.0028091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 11/01/2011] [Indexed: 11/26/2022] Open
Abstract
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes.
Collapse
Affiliation(s)
- Olena Kalinina
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
65
|
Schafer MG, Ross AA, Londo JP, Burdick CA, Lee EH, Travers SE, Van de Water PK, Sagers CL. The establishment of genetically engineered canola populations in the U.S. PLoS One 2011; 6:e25736. [PMID: 21998689 PMCID: PMC3187797 DOI: 10.1371/journal.pone.0025736] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/09/2011] [Indexed: 11/18/2022] Open
Abstract
Concerns regarding the commercial release of genetically engineered (GE) crops include naturalization, introgression to sexually compatible relatives and the transfer of beneficial traits to native and weedy species through hybridization. To date there have been few documented reports of escape leading some researchers to question the environmental risks of biotech products. In this study we conducted a systematic roadside survey of canola (Brassica napus) populations growing outside of cultivation in North Dakota, USA, the dominant canola growing region in the U.S. We document the presence of two escaped, transgenic genotypes, as well as non-GE canola, and provide evidence of novel combinations of transgenic forms in the wild. Our results demonstrate that feral populations are large and widespread. Moreover, flowering times of escaped populations, as well as the fertile condition of the majority of collections suggest that these populations are established and persistent outside of cultivation.
Collapse
Affiliation(s)
- Meredith G. Schafer
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Andrew A. Ross
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jason P. Londo
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Connie A. Burdick
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon, United States of America
| | - E. Henry Lee
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon, United States of America
| | - Steven E. Travers
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Peter K. Van de Water
- Earth and Environmental Sciences Department, California State University, Fresno, California, United States of America
| | - Cynthia L. Sagers
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
66
|
Ramana Rao MV, Parameswari C, Sripriya R, Veluthambi K. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. PLANT CELL REPORTS 2011; 30:1241-1252. [PMID: 21327387 DOI: 10.1007/s00299-011-1033-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 05/27/2023]
Abstract
Rice chitinase (chi11) and tobacco osmotin (ap24) genes, which cause disruption of fungal cell wall and cell membrane, respectively, were stacked in transgenic rice to develop resistance against the sheath blight disease. The homozygous marker-free transgenic rice line CoT23 which harboured the rice chi11 transgene was sequentially re-transformed with a second transgene ap24 by co-transformation using an Agrobacterium tumefaciens strain harbouring a single-copy cointegrate vector pGV2260::pSSJ1 and a multi-copy binary vector pBin19∆nptII-ap24 in the same cell. pGV2260::pSSJ1 T-DNA carried the hygromycin phosphotransferase (hph) and β-glucuronidase (gus) genes. pBin19∆nptII-ap24 T-DNA harboured the tobacco osmotin (ap24) gene. Co-transformation of the gene of interest (ap24) with the selectable marker gene (SMG, hph) occurred in 12 out of 18 T(0) plants (67%). Segregation of hph from ap24 was accomplished in the T(1) generation in one (line 11) of the four analysed co-transformed plants. The presence of ap24 and chi11 transgenes and the absence of the hph gene in the SMG-eliminated T(1) plants of the line 11 were confirmed by DNA blot analyses. The SMG-free transgenic plants of the line 11 harboured a single copy of the ap24 gene. Homozygous, SMG-free T(2) plants of the transgenic line 11 harboured stacked transgenes, chi11 and ap24. Northern blot analysis of the SMG-free plants revealed constitutive expression of chi11 and ap24. The transgenic plants with stacked transgenes displayed high levels of resistance against Rhizoctonia solani. Thus, we demonstrate the development of transgene-stacked and marker-free transgenic rice by sequential Agrobacterium-mediated co-transformation with the same SMG.
Collapse
Affiliation(s)
- Mangu Venkata Ramana Rao
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | | | | |
Collapse
|
67
|
Chen F, Wu G, Ge F, Parajulee MN. Relationships between exogenous-toxin quantity and increased biomass of transgenic Bt crops under elevated carbon dioxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1074-1080. [PMID: 21349582 DOI: 10.1016/j.ecoenv.2011.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 11/18/2010] [Accepted: 02/05/2011] [Indexed: 05/30/2023]
Abstract
Field-OTC experiments were conducted with the goals of ascertaining if increased biomass in Bt transgenic cotton and rice grown under elevated CO(2) results in diminished exogenous-Bt toxin, and assessing the effectiveness of Bt transgenes against lepidopteran pests. Bt cotton responded differently, in terms of Bt-toxin quantity, than Bt rice, and both indicated differences among developmental stages. Dramatic biomass increase significantly diluted Bt-toxin content in 45-DAS ("days after seedling") petioles and shoots and 90-DAS Bt cotton squares, and in the 50-DAS tissues and 100-DAS leaf sheaths of Bt rice. Moreover, the dilution effect was partially responsible for decreased Bt-toxin in these tissues, but not responsible for significant decreases in Bt-toxin in 90-DAS Bt cotton leaves and bolls. Furthermore, elevated CO(2) significantly affected the fitness and performance of Chilo suppressalis, and the susceptible and resistant colonies of Helicoverpa armigera, although adversely affected Bt-gene expression for the transgenic cotton and rice.
Collapse
Affiliation(s)
- Fajun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | |
Collapse
|
68
|
Chun YJ, Kim DI, Park KW, Kim HJ, Jeong SC, An JH, Cho KH, Back K, Kim HM, Kim CG. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. PLANTA 2011; 233:807-815. [PMID: 21212977 DOI: 10.1007/s00425-010-1339-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
Gene flow from genetically modified (GM) crops to non-GM cultivars or weedy relatives may lead to the development of more aggressive weeds. We quantified the amount of gene flow from herbicide-tolerant GM rice (Protox GM, derived from the cultivar Dongjin) to three cultivars (Dongjin, Aranghyangchal and Hwaseong) and a weedy rice line. Gene flow frequency generally decreased with increasing distance from the pollen donor. At the shortest distance (0.5 m), we observed a maximum frequency (0.039%) of gene flow. We found that the cultivar Dongjin received the greatest amount of gene flow, with the second being weedy rice. Heterosis of F2 inbred progeny was also examined between Protox GM and weedy rice. We compared growth and reproduction between F2 progeny (homozygous or hemizygous for the Protox gene) and parental rice lines (GM and weedy rice). Here, transgene-homozygous F2 progeny was significantly taller and produced more seeds than the transgene-hemizygous F2 progeny and parental lines. Although the gene flow frequency was generally low, our results suggest that F2 progeny between GM and weedy relatives may exhibit heterosis.
Collapse
Affiliation(s)
- Young Jin Chun
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, 685-1 Yangcheong-ri, Ochang-eup, Cheongwon-gun, Chungcheongbuk-do, 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Ellis EC. Anthropogenic transformation of the terrestrial biosphere. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:1010-35. [PMID: 21282158 DOI: 10.1098/rsta.2010.0331] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.
Collapse
Affiliation(s)
- Erle C Ellis
- Department of Geography and Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
70
|
Chifflet R, Klein EK, Lavigne C, Le Féon V, Ricroch AE, Lecomte J, Vaissière BE. Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. J Appl Ecol 2010. [DOI: 10.1111/j.1365-2664.2010.01904.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
71
|
Han P, Niu CY, Lei CL, Cui JJ, Desneux N. Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1452-9. [PMID: 20700762 PMCID: PMC2995320 DOI: 10.1007/s10646-010-0530-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2010] [Indexed: 05/03/2023]
Abstract
Transgenic Cry1Ac + CpTI cotton (CCRI41) is increasingly planted throughout China. However, negative effects of this cultivar on the honey bee Apis mellifera L., the most important pollinator for cultivated ecosystem, remained poorly investigated. The objective of our study was to evaluate the potential side effects of transgenic Cry1Ac + CpTI pollen from cotton on young adult honey bees A. mellifera L. Two points emphasized the significance of our study: (1) A higher expression level of insecticidal protein Cry1Ac in pollen tissues was detected (when compared with previous reports). In particular, Cry1Ac protein was detected at 300 ± 4.52 ng g(-1) [part per billion (ppb)] in pollen collected in July, (2) Effects on chronic mortality and feeding behaviour in honey bees were evaluated using a no-choice dietary feeding protocol with treated pollen, which guarantee the highest exposure level to bees potentially occurring in natural conditions (worst case scenario). Tests were also conducted using imidacloprid-treated pollen at a concentration of 48 ppb as positive control for sublethal effect on feeding behaviour. Our results suggested that Cry1Ac + CpTI pollen carried no lethal risk for honey bees. However, during a 7-day oral exposure to the various treatments (transgenic, imidacloprid-treated and control), honey bee feeding behaviour was disturbed and bees consumed significantly less CCRI41 cotton pollen than in the control group in which bees were exposed to conventional cotton pollen. It may indicate an antifeedant effect of CCRI41 pollen on honey bees and thus bees may be at risk because of large areas are planted with transgenic Bt cotton in China. This is the first report suggesting a potential sublethal effect of CCRI41 cotton pollen on honey bees. The implications of the results are discussed in terms of risk assessment for bees as well as for directions of future work involving risk assessment of CCRI41 cotton.
Collapse
Affiliation(s)
- Peng Han
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Shizi Moutain Road, Wuhan, 430070 China
| | - Chang-Ying Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Shizi Moutain Road, Wuhan, 430070 China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Shizi Moutain Road, Wuhan, 430070 China
| | - Jin-Jie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, China
| | - Nicolas Desneux
- Unité de Recherches Intégrées en Horticulture, French National Institute for Agricultural Research (INRA), 400 Route des Chappes, 06903 Sophia-Antipolis, France
| |
Collapse
|
72
|
Bravo AG, Wildi W, Poté J. Kinetics of plant material mass loss and DNA release in freshwater column. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1548-1552. [PMID: 20570352 DOI: 10.1016/j.ecoenv.2010.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 05/29/2023]
Abstract
In situ microcosm study investigated both the kinetics of plant material mass loss and qualitative and quantitative aspects of DNA content by researching leaf degradation of two specific varieties of tomato (Admiro and Palmiro) in freshwater column incubated for 40 days. A two-compartment first order model fitted both tomato dry matter and DNA content mass loss well. The composite half-decrease times were, respectively, 1.13 ± 0.51 and 1.16 ± 0.47 days for Palmiro and Admiro. The composite half-disappearance times of total DNA in Palmiro and Admiro tomato leaves were, respectively, 0.92 ± 0.31 and 0.88 ± 0.26 days. Genomic analysis indicates that before having been released, a significant amount of DNA may be degraded in plant tissues decomposing in water column. The results of this study confirm the hypothesis that release of plant DNA in aquatic environments can be caused by intracellular nuclease activities in the plants cells and by enzymatic degradation of cell structures by residual microbial activities in leaves.
Collapse
Affiliation(s)
- Andrea Garcia Bravo
- University of Geneva, Institute F.A. Forel, 10 route de Suisse, CP 416, 1290 Versoix, Switzerland
| | | | | |
Collapse
|
73
|
Raybould A, Vlachos D. Non-target organism effects tests on Vip3A and their application to the ecological risk assessment for cultivation of MIR162 maize. Transgenic Res 2010; 20:599-611. [DOI: 10.1007/s11248-010-9442-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|
74
|
Yi H, Kim CG. Effects of transgenic watermelon with CGMMV resistance on the diversity of soil microbial communities using PLFA. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.504344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
75
|
Bt crops and food security in developing countries: realised benefits, sustainable use and lowering barriers to adoption. Food Secur 2010. [DOI: 10.1007/s12571-010-0066-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
76
|
Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food Chem Toxicol 2010; 48:1773-90. [DOI: 10.1016/j.fct.2010.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/03/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
|
77
|
Kuroda Y, Kaga A, Tomooka N, Vaughan D. The origin and fate of morphological intermediates between wild and cultivated soybeans in their natural habitats in Japan. Mol Ecol 2010; 19:2346-60. [PMID: 20444080 DOI: 10.1111/j.1365-294x.2010.04636.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spread of transgenes into the genome of wild soybean is a concern when transgenic and wild soybeans are planted sympatrically. The objectives of this study were to investigate the origin and fate of morphological intermediates between wild and cultivated soybeans in their natural habitats in Japan. Twenty nuclear microsatellite and two chloroplast dCAPS markers were used to evaluate genetic variation of 468 wild, 17 intermediate, and 12 cultivated soybean samples collected from six sites between 2003 and 2006. Allelic differentiation of microsatellite markers between wild and cultivated soybeans was sufficient to detect their hybrids. Based on levels of observed heterozygosity, intermediate soybean plants were from two generations: either F(1) or an early segregating generation. Genetic admixture analysis and parentage assignment analysis revealed that the parents of all intermediate soybean plants could be assigned to a particular wild soybean plant and late-maturing cultivar. The chloroplast DNA haplotypes revealed that all intermediate soybean plants originated from gene flow from cultivated to wild soybeans at all sites. Based on monitoring at both the phenotypic and molecular levels, hybrids quickly disappeared from natural habitats, and secondary gene flow from these plants to wild soybean was not detected. Thus, while gene flow from transgenic soybean into wild soybean can occur, gene introgression appears to be rare in natural habitats in Japan. This is the first report on the detection of gene flow from cultivated to wild soybean at the molecular level.
Collapse
Affiliation(s)
- Y Kuroda
- Genebank, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
78
|
Lu Y, Wu K, Jiang Y, Xia B, Li P, Feng H, Wyckhuys KAG, Guo Y. Mirid Bug Outbreaks in Multiple Crops Correlated with Wide-Scale Adoption of Bt Cotton in China. Science 2010; 328:1151-4. [DOI: 10.1126/science.1187881] [Citation(s) in RCA: 476] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
79
|
RamanaRao MV, Veluthambi K. Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection. PLANT CELL REPORTS 2010; 29:473-83. [PMID: 20204372 DOI: 10.1007/s00299-010-0836-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/15/2010] [Accepted: 02/15/2010] [Indexed: 05/28/2023]
Abstract
Transient selection involving the bar gene and non-conditional negative selection against stable T-DNA integration through the use of the Mungbean yellow mosaic virus (MYMV) transcriptional activator protein gene (TrAP) were used in a novel co-transformation strategy to generate selectable marker gene (SMG)-eliminated transgenic tobacco plants in the T(0) generation itself. Two compatible binary plasmids, pCam-bar-TrAP-gus harbouring bar as an SMG and the MYMV TrAP gene as a non-conditional negative selectable marker, and pGA472 with the nptII gene as an unselected experimental gene of interest (GOI) were placed in the Agrobacterium tumefaciens strain EHA105 and used for co-transformation. Transient selection with 5 mg l(-1) phosphinothricin (PPT) for 2-4 weeks and subsequent establishment in a PPT-minus medium yielded 114 plants from 200 leaf discs. The unselected nptII gene was detected by Southern blot analysis in 13 plants, revealing a co-transformation efficiency of 11.5%. Five of these plants harboured only the nptII gene (GOI) and not the bar gene (SMG). Thus, SMG elimination was achieved in the T(0) generation itself in 4.4% (5/114) of plants, which were transiently selected for 2-4 weeks on PPT. MYMV TrAP, a non-conditional negative selectable marker, effectively reduced the recovery of plants with stable integration of the SMG (bar).
Collapse
Affiliation(s)
- Mangu Venkata RamanaRao
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | |
Collapse
|
80
|
Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK. An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). PLANT CELL REPORTS 2010; 29:495-502. [PMID: 20217416 DOI: 10.1007/s00299-010-0838-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 05/28/2023]
Abstract
Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation for selecting the primary transgenic events. However, these become redundant once the transgenic plants have been developed and identified. Although, there is no evidence that the selectable marker genes are unsafe for consumers and the environment, it would be desirable if the marker genes can be eliminated from the final transgenic events. The availability of efficient transformation methods can enable the possibility of developing transgenic events that are devoid of the marker gene/s upfront. Taking advantage of the high and consistent transformation potential of peanut, we report a technique for developing its transgenics without the use of any selectable marker gene. Marker-free binary vectors harboring either the phytoene synthase gene from maize (Zmpsy1) or the chitinase gene from rice (Rchit) were constructed and used for Agrobacterium tumefaciens-mediated transformation of peanut. The putative transgenic events growing in vitro were initially identified by PCR and further confirmed for gene integration and expression by dot blots assays, Southern blots, and RT-PCR where they showed a transformation frequency of over 75%. This system is simple, efficient, rapid, and does not require the complex segregation steps and analysis for selection of the transgenic events. This approach for generation of marker-free transgenic plants minimizes the risk of introducing unwanted genetic changes, allows stacking of multiple genes and can be applicable to other plant species that have high shoot regeneration efficiencies.
Collapse
Affiliation(s)
- Madhurima Bhatnagar
- Genetic Transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India
| | | | | | | | | | | |
Collapse
|
81
|
von Burg S, Müller CB, Romeis J. Transgenic disease-resistant wheat does not affect the clonal performance of the aphid Metopolophium dirhodum Walker. Basic Appl Ecol 2010. [DOI: 10.1016/j.baae.2010.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
82
|
Imura O, Shi K, Iimura K, Takamizo T. Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods. ENVIRONMENTAL BIOSAFETY RESEARCH 2010; 9:101-12. [PMID: 21288465 DOI: 10.1051/ebr/2010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/12/2010] [Indexed: 11/14/2022]
Abstract
We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods.
Collapse
Affiliation(s)
- Osamu Imura
- Nasu Research Center, National Institute of Livestock and Grassland Science, National Agriculture and Food Organization, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan.
| | | | | | | |
Collapse
|
83
|
Yang Y, Singer SD, Liu Z. Two similar but distinct second intron fragments from tobacco AGAMOUS homologs confer identical floral organ-specific expression sufficient for generating complete sterility in plants. PLANTA 2010; 231:1159-69. [PMID: 20182740 DOI: 10.1007/s00425-010-1120-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/03/2010] [Indexed: 05/28/2023]
Abstract
The carpel- and stamen-specific AtAGIP promoter derived from the Arabidopsis AGAMOUS (AG) second intron/enhancer is ideal for engineering complete sterility but it is highly host-specific. To ascertain whether a chimeric promoter with similar tissue specificity can be created for species other than Arabidopsis, we isolated two similar but distinct AG second intron/enhancers from tobacco (NtAGI-1 and NtAGI-2) and analyzed their ability to drive floral organ-specific expression in plants through the creation of forward- and reverse-oriented chimeric promoters, fNtAGIP1, rNtAGIP1, fNtAGIP2 and rNtAGIP2. Analyses of transgenic plants bearing each respective promoter fused to the beta-glucuronidase (GUS) reporter gene showed that all four promoters are able, like the AtAGIP, to drive very similar carpel- and stamen-specific expression without any leaky activity in vegetative tissues. These results indicate that unlike their counterparts in rice and maize, the tobacco NtAGI-1 and NtAGI-2 enhancers share a highly conserved regulatory function. Interestingly, all four promoters display additional tissue specificity in petals, and their activity is influenced by the orientation of the incorporated enhancer, with reverse-oriented enhancers exhibiting approximately double the effectiveness of forward-oriented enhancers. These properties are novel and have not been observed with the AtAGIP promoter in Arabidopsis. As expected, these highly specific promoters can also direct the expression of the DT-A cytotoxic gene exclusively in carpels, stamens and petals, resulting in complete sterility through the precise ablation of targeted floral organs. Further analyses demonstrated that the resulting trait is mitotically stable, which is critical for the long-term containment of seed-, pollen- and fruit-mediated gene flow in field conditions.
Collapse
Affiliation(s)
- Yazhou Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | |
Collapse
|
84
|
Genetically engineered virus-resistant plants in developing countries: current status and future prospects. Adv Virus Res 2010; 75:185-220. [PMID: 20109667 DOI: 10.1016/s0065-3527(09)07506-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plant viruses cause severe crop losses worldwide. Conventional control strategies, such as cultural methods and biocide applications against arthropod, nematode, and plasmodiophorid vectors, have limited success at mitigating the impact of plant viruses. Planting resistant cultivars is the most effective and economical way to control plant virus diseases. Natural sources of resistance have been exploited extensively to develop virus-resistant plants by conventional breeding. Non-conventional methods have also been used successfully to confer virus resistance by transferring primarily virus-derived genes, including viral coat protein, replicase, movement protein, defective interfering RNA, non-coding RNA sequences, and protease, into susceptible plants. Non-viral genes (R genes, microRNAs, ribosome-inactivating proteins, protease inhibitors, dsRNAse, RNA modifying enzymes, and scFvs) have also been used successfully to engineer resistance to viruses in plants. Very few genetically engineered (GE) virus resistant (VR) crops have been released for cultivation and none is available yet in developing countries. However, a number of economically important GEVR crops, transformed with viral genes are of great interest in developing countries. The major issues confronting the production and deregulation of GEVR crops in developing countries are primarily socio-economic and related to intellectual property rights, biosafety regulatory frameworks, expenditure to generate GE crops and opposition by non-governmental activists. Suggestions for satisfactory resolution of these factors, presumably leading to field tests and deregulation of GEVR crops in developing countries, are given.
Collapse
|
85
|
de Souza DR, Martins ML, Carmo FMS. A multiscale model for plant invasion through allelopathic suppression. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9567-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
86
|
Poté J, Ackermann R, Wildi W. Plant leaf mass loss and DNA release in freshwater sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1378-1383. [PMID: 19419763 DOI: 10.1016/j.ecoenv.2009.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 05/27/2023]
Abstract
This work constitutes a part of a wider study examining the degradation and release of plant DNA into the environment. Microcosm studies investigated the kinetics of leaf and DNA content degradation in a specific variety of tomato (Admiro) after incubation in sediments over 30 days at 20, 10, and 4 degrees C. Temperature and microorganisms have been found to play a key role in the decomposition of plant material in freshwater sediment. A two-compartment first-order function fitted well both tomato leaf matter degradation and DNA content mass loss. Genomic analysis indicated that before having been released, an important part of DNA may be degraded inside plant tissues during decomposition in sediments. PCR amplification demonstrated that, after having been released, DNA can both be rapidly adsorbed onto sediment particles and persist as dissolved extracellular DNA in the water column.
Collapse
Affiliation(s)
- John Poté
- University of Geneva, Institute FA Forel, Versoix, Switzerland.
| | | | | |
Collapse
|
87
|
Liu B, Shu C, Xue K, Zhou K, Li X, Liu D, Zheng Y, Xu C. The oral toxicity of the transgenic Bt+CpTI cotton pollen to honeybees (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1163-9. [PMID: 19285343 DOI: 10.1016/j.ecoenv.2009.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 05/03/2023]
Abstract
Transgenic insect-resistant cotton has been planted in China in a large scale and may have adverse impacts on honeybees. Pollens from the transgenic Cry1Ac+CpTI cotton Zhong-41 and the parental cotton Zhong-23 were collected from the field and their impacts on adult worker bees were assessed. Experimental results showed that Zhong-41 pollen had no acute oral toxic effect on worker bees. No significant differences were observed in the superoxide dismutase activity or in the longevity of worker bees fed with diets containing the two cotton pollens. The main reasons for the outcome may be the low expression level of the transgenic proteins Cry1Ac and CpTI in the pollen of Zhong-41 as well as the substantial equivalence in the amounts of gross protein and soluble saccharides for the two cotton pollens. The implications of these results are discussed and further work to be carried out is put forward.
Collapse
Affiliation(s)
- Biao Liu
- State Key Biosafety Laboratory, Nanjing Institute of Environmental Sciences (NIES), Ministry of Environmental Protection of China, Nanjing, Jiangsu 210042, China.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Douville M, Gagné F, André C, Blaise C. Occurrence of the transgenic corn cry1Ab gene in freshwater mussels (Elliptio complanata) near corn fields: evidence of exposure by bacterial ingestion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:17-25. [PMID: 18397807 DOI: 10.1016/j.ecoenv.2008.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/30/2008] [Accepted: 02/02/2008] [Indexed: 05/26/2023]
Abstract
The purpose of this study was to examine the contamination of cry1 and cry1Ab genes from Bacillus thuringiensis and transgenic corn in feral freshwater mussels collected from sites located in proximity of corn fields. In addition, mussels were transplanted for 2 months to a site in the Huron River, upstream to the Richelieu River, which is subject to intensive corn farming. Mussels were significantly contaminated by both genes in their gills, digestive glands, and gonads, as determined by qPCR methodology. Gene sequence analysis confirmed the presence of transgenic corn cry1Ab gene in mussel tissues. In an attempt to explain the presence of the transgene in mussel tissues, heterotrophic bacteria were grown from surface water and sediment samples on agar plates in the Richelieu River in May and August. The transgene was found at two out of six surface water samples and in one sediment sample. The study revealed that exposure to transgenic corn cry1Ab gene in mussels seems to proceed by ingestion of microorganisms during feeding.
Collapse
Affiliation(s)
- M Douville
- Fluvial Ecosystem Research, Environment Canada, 105 McGill Street, Montréal, Québec, Canada H2Y 2E7
| | - F Gagné
- Fluvial Ecosystem Research, Environment Canada, 105 McGill Street, Montréal, Québec, Canada H2Y 2E7.
| | - C André
- Fluvial Ecosystem Research, Environment Canada, 105 McGill Street, Montréal, Québec, Canada H2Y 2E7
| | - C Blaise
- Fluvial Ecosystem Research, Environment Canada, 105 McGill Street, Montréal, Québec, Canada H2Y 2E7
| |
Collapse
|
89
|
Lohtander K, Pasonen HL, Aalto MK, Palva T, Pappinen A, Rikkinen J. Phylogeny of chitinases and its implications for estimating horizontal gene transfer from chitinase-transgenic silver birch (Betula pendula). ACTA ACUST UNITED AC 2008; 7:227-39. [PMID: 19081010 DOI: 10.1051/ebr:2008019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chitinases are hydrolytic enzymes that have been employed in biotechnology in attempts to increase plants' resistance against fungal pathogens. Genetically modified plants have given rise to concerns of the spreading of transgenes into the environment through vertical or horizontal gene transfer (HGT). In this study, chitinase-like sequences from silver birch (Betula pendula) EST-libraries were identified and their phylogenetic relationships to other chitinases were studied. Phylogenetic analyses were used to estimate the frequency of historical gene transfer events of chitinase genes between plants and other organisms, and the usefulness of phylogenetic analyses as a source of information for the risk assessment of transgenic silver birch carrying a sugar beet chitinase IV gene was evaluated. Thirteen partial chitinase-like sequences, with an approximate length of 600 bp, were obtained from the EST-libraries. The sequences belonged to five chitinase classes. Some bacterial chitinases from Streptomyces and Burkholderia, as well as a chitinase from an oomycete, Phytophthora infestans, grouped together with the class IV chitinases of plants, supporting the hypothesis that some class IV chitinases in bacteria have evolved from eukaryotic chitinases via horizontal gene transfer. According to our analyses, HGT of a chitinase IV gene from eukaryotes to bacteria has presumably occurred only once. Based on this, the likelihood for the HGT of chitinase IV gene from transgenic birch to other organisms is extremely low. However, as risk is a function of both the likelihood and consequences of an event, the effects of rare HGT event(s) will finally determine the level of the risk.
Collapse
|
90
|
Sripriya R, Raghupathy V, Veluthambi K. Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. PLANT CELL REPORTS 2008; 27:1635-1644. [PMID: 18663452 DOI: 10.1007/s00299-008-0586-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
Co-transformation of Oryza sativa L. var. Pusa Basmati1 was done using an Agrobacterium tumefaciens strain harbouring a single-copy cointegrate vector and a multi-copy binary vector in the same cell. The T-DNA of the cointegrate vector pGV2260::pSSJ1 carried the hygromycin phosphotransferase (hph) and beta-glucuronidase (gus) genes. The binary vector pCam-chi11, without a plant selectable marker gene, harboured the rice chitinase (chi11) gene under maize ubiquitin promoter. Co-transformation of the gene of interest (chi11) with the selectable marker gene (hph) occurred in 4 out of 20 T(0) plants (20%). Segregation of hph from chi11 was accomplished in two (CoT6 and CoT23) of the four co-transformed plants in the T(1) generation. The selectable marker-free (SMF) lines CoT6 and CoT23 harboured single copies of chi11. Homozygous SMF T(2) plants were established in the lines CoT6 and CoT23. Northern and Western blot analysis of the homozygous SMF lines showed high level of transgene expression. In comparison to untransformed controls, chitinase specific activity was 66- and 22-fold higher in the homozygous SMF T(2) plants of lines CoT6 and CoT23, respectively. The lines CoT6 and CoT23 exhibited 38 and 40% reduction in sheath blight disease, respectively.
Collapse
Affiliation(s)
- Rajasekaran Sripriya
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | | |
Collapse
|
91
|
Abstract
Plant genetic manipulation has led to the development of genetically modified plants (GMPs) expressing various traits. Since their first commercial use in 1996, GMPs have been increasingly used, reaching a global cultivating production area of 114.3 million hectares in 2007. The rapid development of agricultural biotechnology and release of GMPs have provided many agronomic and economic benefits, but has also raised concerns over the potential impact these plants might have on the environment. Among these environmental concerns, the unintentional impact that GMPs might have on soil‐associated microbes, especially rhizosphere‐inhabiting bacteria or rhizobacteria, represents one of the least studied and understood areas. As rhizobacteria are responsible for numerous key functions including nutrient cycling and decomposition, they have been defined as good indicator organisms to assess the general impact that GMPs might have on the soil environment. This minireview summarizes the results of various experiments that have been conducted to date on the impact of GMPs on rhizobacteria. Both biological and technical parameters are discussed and an attempt is made to determine if specific rhizobacterial responses exist for the different categories of GMPs developed to date.
Collapse
Affiliation(s)
- Martin Filion
- Department of Biology, Université de Moncton, Moncton, Canada.
| |
Collapse
|
92
|
Zhang GF, Wan FH, Murphy ST, Guo JY, Liu WX. Reproductive biology of two nontarget insect species, Aphis gossypii (Homoptera: Aphididae) and Orius sauteri (Hemiptera: Anthocoridae), on Bt and non-Bt cotton cultivars. ENVIRONMENTAL ENTOMOLOGY 2008; 37:1035-1042. [PMID: 18801270 DOI: 10.1603/0046-225x(2008)37[1035:rbotni]2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transgenic Bt cotton, engineered to continuously produce activated delta-endotoxins of the soil bacteria Bacillus thuringiensis, holds great promise in controlling Helicoverpa armigera and other lepidopteran pests. However, it also may impact the invertebrate community, which needs to be clarified. The effects of Bt cotton on two nontarget insects, Aphis gossypii and Orius sauteri, were assessed under semifield and laboratory conditions. Mean total duration of nymphal stages of A. gossypii was shorter (5.9 versus 6.3 d), and rm was higher (0.418 versus 0.394) on conventional Simian 3 (the most frequently planted non-Bt cotton in northern China) than on Bt transgenic NuCOTN 33B (the first Bt cotton commercially planted in China). Mean duration of fourth-instar O. sauteri was significantly longer on transgenic GK-12 (3.7 d) than on NuCOTN 33B (3.2 d), but no different from Simian 3. Mean total mortality was significantly lower on Simian 3 (3.7%) than on GK-12 (14.8%). During the fourth instar, the predator consumed a significantly higher number of prey on Simian 3 (202.3 prey) than on NuCOTN 33B (159.0), whereas the mean total number of A. gossypii prey consumed during the nymphal stage was significantly higher on Simian 3 (336.8 prey) and GK-12 (330.3 prey) than on NuCOTN 33B (275.7). No detrimental effects were detected on development (nymphs, adults, and progeny eggs), fecundity, longevity, and egg viability of O. sauteri on Bt cotton aphids compared with non-Bt cotton aphids. These results suggest that Bt cotton cultivars GK-12 and NuCOTN 33B have no direct effect on nontargets A. gossypii and O. sauteri. Germplasm divergence may account for the negative effects observed on A. gossypii and O. sauteri when reared on NuCOTN 33B or NuCOTN 33B-fed aphids. The biological meanings of the small difference observed between GK-12 and Simian 3 on survival of O. sauteri will require close monitoring over longer time periods.
Collapse
Affiliation(s)
- Gui-Fen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, CAAS, Beijing 100094, China
| | | | | | | | | |
Collapse
|
93
|
Cohen MB, Arpaia S, Lan LP, Chau LM, Snow AA. Shared flowering phenology, insect pests, and pathogens among wild, weedy, and cultivated rice in the Mekong Delta, Vietnam: implications for transgenic rice. ACTA ACUST UNITED AC 2008; 7:73-85. [PMID: 18549769 DOI: 10.1051/ebr:2008011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Many varieties of transgenic rice are under development in countries where wild and weedy relatives co-occur with the crop. To evaluate possible risks associated with pollen-mediated transgene dispersal, we conducted a two-year survey in Vietnam to examine overlapping flowering periods of rice (Oryza sativa L.), weedy rice (O. sativa), and wild rice (O. rufipogon Griff.), all of which are inter-fertile. We surveyed populations in two regions of the Mekong Delta, northern and southern, and at three sites in each of three habitats per region: fresh water, saline water, and acid sulfate soil. Weedy rice frequently flowered simultaneously with neighboring cultivated rice plants. Flowering was more seasonal in wild rice and often peaked in November and December. Peak flowering times of wild rice overlapped with adjacent rice fields at all of the saline sites and half of the acid sulfate sites. The longer flowering season of wild rice ensured that crop-to-wild gene flow was possible in fresh water habitats as well. Our second objective was to determine whether wild and weedy rice populations are exposed to pests that could be targeted by future transgenes, which may then provide fitness benefits. These populations shared many pathogen and insect herbivore species with cultivated rice (leaffolder, locust, cricket, planthoppers, rice bug, stem borer, sheath blight, blast, bacterial leaf blight, and brown spot). Damage by leaffolders and locusts was the most frequently observed insect feeding damage on all three rice types. Indicator species analysis revealed that most of the insect herbivores were associated with particular habitats, demonstrating the importance of broad geographic sampling for transgenic rice risk assessment. These survey data and the strong likelihood of gene flow from cultivated rice suggest that further studies are needed to examine the effects of transgenic traits such as resistance to pests on the abundance of wild and weedy rice.
Collapse
Affiliation(s)
- Michael B Cohen
- International Rice Research Institute (IRRI), DAPO 7777, Metro Manila, Los Baños, Philippines.
| | | | | | | | | |
Collapse
|
94
|
Yao HW, Jiang CY, Ye GY, Hu C, Peng YF. Toxicological assessment of pollen from different bt rice lines on Bombyx mori (Lepidoptera: Bombyxidae). ENVIRONMENTAL ENTOMOLOGY 2008; 37:825-837. [PMID: 18559190 DOI: 10.1603/0046-225x(2008)37[825:taopfd]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The relative toxicity of Bt rice pollen to domestic silkworm, Bombyx mori Linnaeus (Lepidoptera: Bombycidae), was assessed by a leaf-dip bioassay under laboratory conditions. Silkworm first instars were sensitive to pollen from Bt rice lines, B1 and KMD1, but were not sensitive to pollen from Bt rice line TT9-3. First instars were 1.34-2.12 times more sensitive to B1 pollen than older instars. Bioassays of subacute toxicity under a worst-case scenario suggested that continuous exposure to a sublethal dose of B1 pollen or equivalent doses of non-Bt rice pollen affected silkworm survival and development. Young larvae were more affected by continuous exposure to Bt pollen than older larvae but less affected by non-Bt pollen. Ultrastructural observations showed that Cry proteins associated with Bt pollen were released into the larval lumen and resulted in pathological midgut changes and negative impacts on silkworm survival and development. However, considering that the sublethal dose of Bt pollen (LC15) used in this study is equivalent to the highest detected density of rice pollen on mulberry leaf under field conditions and that the likelihood of such high density of rice pollen occurring in the fields is extremely low, we suggest that the risk of Bt rice pollen on silkworm rearing is negligible.
Collapse
Affiliation(s)
- Hong-Wei Yao
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
95
|
Liu Z, Liu Z. The second intron of AGAMOUS drives carpel- and stamen-specific expression sufficient to induce complete sterility in Arabidopsis. PLANT CELL REPORTS 2008; 27:855-63. [PMID: 18256838 DOI: 10.1007/s00299-008-0511-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 05/05/2023]
Abstract
Gene containment technologies that prevent transgene dispersal through pollen, fruit and seed are in immediate demand to address concerns of gene flow from transgenic crops into wild species or close relatives. In this study, we isolated the enhancer element of Arabidopsis AGAMOUS that drives gene expression specifically in stamens and carpels. By fusing this AG enhancer to a minimal 35S promoter fragment, two tissue-specific promoters, fAGIP and rAGIP in forward and reverse orientations, respectively, were created and fused to the GUS reporter. Transgenic Arabidopsis plants harboring either fAGIP::GUS or rAGIP::GUS displayed similar GUS expression specifically in carpel and stamen tissues and their primordial cells. To test their utility for engineering sterility, the promoters were fused to the Diphtheria toxin A (DT-A) gene coding for a ribosome inactivating protein as well as the Barnase gene coding for an extracellular ribonuclease, and tested for tissue-specific ablation. Over 89% of AGIP::DT-A and 68% of AGIP::Barnase transgenic plants displayed specific and precise ablation of stamens and carpels and are completely sterile. These transgenic plants showed normal vegetative development with prolonged vegetative growth. To evaluate the stability of the sterile phenotype, 16 AGIP::DT-A lines underwent two consecutive cutback generations and showed no reversion of the floral phenotype. This study demonstrates a simple, precise and efficient approach to achieve absolute sterility through irreversible ablation of both male and female floral organs. This approach should have a practical application for transgene containment in ornamental, landscaping, and woody species, whose seeds and fruits are of no economic value.
Collapse
Affiliation(s)
- Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA.
| | | |
Collapse
|
96
|
Impact of transgenic Bt-cotton on the diversity of pink-pigmented facultative methylotrophs. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9713-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
97
|
Bale JS, van Lenteren JC, Bigler F. Biological control and sustainable food production. Philos Trans R Soc Lond B Biol Sci 2008; 363:761-76. [PMID: 17827110 PMCID: PMC2610108 DOI: 10.1098/rstb.2007.2182] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentative control has been successfully applied against a range of open-field and greenhouse pests, and conservation biological control schemes have been developed with indigenous predators and parasitoids. The cost-benefit ratio for classical biological control is highly favourable (1:250) and for augmentative control is similar to that of insecticides (1:2-1:5), with much lower development costs. Over the past 120 years, more than 5000 introductions of approximately 2000 non-native control agents have been made against arthropod pests in 196 countries or islands with remarkably few environmental problems. Biological control is a key component of a 'systems approach' to integrated pest management, to counteract insecticide-resistant pests, withdrawal of chemicals and minimize the usage of pesticides. Current studies indicate that genetically modified insect-resistant Bt crops may have no adverse effects on the activity or function of predators or parasitoids used in biological control. The introduction of rational approaches for the environmental risk assessment of non-native control agents is an essential step in the wider application of biological control, but future success is strongly dependent on a greater level of investment in research and development by governments and related organizations that are committed to a reduced reliance on chemical control.
Collapse
Affiliation(s)
- J S Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
98
|
Wang HZ, Hu B, Chen GP, Shi NN, Zhao Y, Yin QC, Liu JJ. Application of Arabidopsis AGAMOUS second intron for the engineered ablation of flower development in transgenic tobacco. PLANT CELL REPORTS 2008; 27:251-9. [PMID: 17934737 DOI: 10.1007/s00299-007-0450-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/24/2007] [Accepted: 09/04/2007] [Indexed: 05/25/2023]
Abstract
To explore a new approach to generating reproductive sterility in transgenic plants, the barnase gene from Bacillus amyloliquefaciens was placed under the control of an 1853-bp nucleotide sequence from the 3'end of the second intron of Arabidopsis AGAMOUS and CaMV 35S (-60) minimal promoter [AG-I-35S (-60)::Barnase], and was introduced into tobacco through transformation mediated by Agrobacterium tumefaciens. All AG-I-35S (-60)::Barnase transgenic plants showed normal vegetative growth and 28% of the transgenic lines displayed complete ablation of flowering. Two transgenic lines, Bar-5 and Bar-15, were 98.1 and 98.4% sterile, respectively, as determined by seed production and germination. When controlled by AG-I-35S (-60) chimeric promoter, barnase mRNA was detected in the reproductive tissues of transgenic tobacco plants, but not in vegetative parts. This study presents the first application of an AG intron sequence in the engineered ablation of sexual reproduction in plants. The AG-I-35S (-60)::Barnase construct can be useful in diminishing pollen and seed formation in plants, providing a novel bisexual sterility strategy for interception of transgene escape and has other potentially commercial use for transgenic engineering.
Collapse
Affiliation(s)
- Hui-Zhong Wang
- Key Laboratory of Biochemistry and Molecular Biology, Hangzhou Normal University, Hangzhou 310018, China.
| | | | | | | | | | | | | |
Collapse
|
99
|
Singh DP, Jermakow AM, Swain SM. Preliminary development of a genetic strategy to prevent transgene escape by blocking effective pollen flow from transgenic plants. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1055-1060. [PMID: 32689435 DOI: 10.1071/fp06323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 10/15/2007] [Indexed: 06/11/2023]
Abstract
Genetic modification (GM) of plants has great potential in the production of food and industrial compounds, and in molecular pharming. One of the greatest public concerns regarding this technology is effective pollen flow, in which wind- or insect-borne transgenic pollen is able to fertilise either non-GM crops of the same species, or closely related weed species, and lead to viable seed formation. In this paper we describe a novel concept, based on epigenetic inheritance (imprinting) and post-transcriptional gene silencing (PTGS)/RNA interference (RNAi), designed to prevent transgene escape via pollen flow from transgenic plants. A key advantage of this strategy is that it would allow all seeds from self-pollinated transgenic plants to be harvested and re-sown, without the need for specific treatments, while retaining all of the transgenes present in the parent. Thus, this strategy is not a Genetic Use Restriction Technology (GURT) and if implemented would not prevent seed saving by end-users.
Collapse
|
100
|
Yoshida H, Itoh JI, Ohmori S, Miyoshi K, Horigome A, Uchida E, Kimizu M, Matsumura Y, Kusaba M, Satoh H, Nagato Y. superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:835-46. [PMID: 17764519 DOI: 10.1111/j.1467-7652.2007.00291.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cleistogamy is an efficient strategy for preventing gene flow from genetically modified (GM) crops. We identified a cleistogamous mutant of rice harbouring a missense mutation (the 45th residue isoleucine to threonine; I45T) in the class-B MADS-box gene SUPERWOMAN1 (SPW1), which specifies the identities of lodicules (equivalent to petals) and stamens. In the mutant, spw1-cls, the stamens are normal, but the lodicules are transformed homeotically to lodicule-glume mosaic organs, thereby engendering cleistogamy. Since this mutation does not affect other agronomic traits, it can be used in crosses to produce transgenic lines that do not cause environmental perturbation. Molecular analysis revealed that the reduced heterodimerization ability of SPW1(I45T) with its counterpart class-B proteins OsMADS2 and OsMADS4 caused altered lodicule identity. spw1-cls is the first useful mutant for practical gene containment in GM rice. Cleistogamy is possible in many cereals by engineering class-B floral homeotic genes and thereby inducing lodicule identity changes.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Hokuriku Research Center, National Agricultural Research Center, Niigata 943-0193, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|