51
|
Zhao P, Li H, Sun B, Wang C, Lv G, Chen C, Ying L, He X, Jin D, Bu W. Carbon Free Radical (R⋅) Inactivates NF-κB for Radical Capping Therapy. Angew Chem Int Ed Engl 2024; 63:e202405913. [PMID: 38683647 DOI: 10.1002/anie.202405913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
Inactivating hyperactivated transcription factors can overcome tumor therapy resistance, but their undruggable features limit the development of conventional inhibitors. Here, we report that carbon-centered free radicals (R⋅) can inactivate NF-κB transcription by capping the active sites in both NF-κB and DNA. We construct a type of thermosensitive R⋅ initiator loaded amphiphilic nano-micelles to facilitate intracellular delivery of R⋅. At a temperature of 43 °C, the generated R⋅ engage in electrophilic radical addition towards double bonds in nucleotide bases, and simultaneously cap the sulfhydryl residues in NF-κB through radical chain reaction. As a result, both NF-κB nuclear translocation and NF-κB-DNA binding are suppressed, leading to a remarkable NF-κB inhibition of up to 94.1 %. We have further applied R⋅ micelles in a clinical radiofrequency ablation tumor therapy model, showing remarkable NF-κB inactivation and consequently tumor metastasis inhibition. Radical capping strategy not only provides a method to solve the heat-sink effect in clinic tumor hyperthermia, but also suggests a new perspective for controllable modification of biomacromolecules in cancer therapy.
Collapse
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Bingxia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Chaochao Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Guanglei Lv
- Center for Biotechnology and Biomedical Engineering, Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Chao Chen
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center and department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Leilei Ying
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center and department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinhong He
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center and department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
52
|
He R, Feng B, Zhang Y, Li Y, Wang D, Yu L. IGFBP7 promotes endothelial cell repair in the recovery phase of acute lung injury. Clin Sci (Lond) 2024; 138:797-815. [PMID: 38840498 PMCID: PMC11196208 DOI: 10.1042/cs20240179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
IGFBP7 has been found to play an important role in inflammatory diseases, such as acute lung injury (ALI). However, the role of IGFBP7 in different stages of inflammation remains unclear. Transcriptome sequencing was used to identify the regulatory genes of IGFBP7, and endothelial IGFBP7 expression was knocked down using Aplnr-Dre mice to evaluate the endothelial proliferation capacity. The expression of proliferation-related genes was detected by Western blotting and RT-PCR assays. In the present study, we found that knockdown of IGFBP7 in endothelial cells significantly decreases the expression of endothelial cell proliferation-related genes and cell number in the recovery phase but not in the acute phase of ALI. Mechanistically, using bulk-RNA sequencing and CO-IP, we found that IGFBP7 promotes phosphorylation of FOS and subsequently up-regulates YAP1 molecules, thereby promoting endothelial cell proliferation. This study indicated that IGFBP7 has diverse roles in different stages of ALI, which extends the understanding of IGFBP7 in different stages of ALI and suggests that IGFBP7 as a potential therapeutic target in ALI needs to take into account the period specificity of ALI.
Collapse
Affiliation(s)
- Rui He
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Feng
- Department of Respiratory Medicine, People’s Hospital of Tongnan District, Chongqing, China
| | - Yuezhou Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Li
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxing Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Commission Key Laboratory for Respiratory Inflammation Damage and Precision Medicine
| | - Linchao Yu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Commission Key Laboratory for Respiratory Inflammation Damage and Precision Medicine
| |
Collapse
|
53
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
54
|
Chen S, Yi W, Zhou H, Jiang H, Lan P, Chen Z. FOS+ Macrophages Promote Chronic Rejection of Cardiac Transplantation. EXP CLIN TRANSPLANT 2024; 22:540-550. [PMID: 39223812 DOI: 10.6002/ect.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Chronic rejection remains the leading cause of progressive decline in graft function. Accumulating evidence indicates that macrophages participate in chronic rejection dependent on CD40-CD40L. The FOS family members are critical in inflammatory and immune responses. However, the mechanisms underlying the role of FOS family members in chronic rejection remain unclear. In this study, we aimed to elucidate the role and underlying mechanisms of FOS-positive macrophages regulated by CD40 that mediate chronic allograft rejection. MATERIALS AND METHODS We downloaded publicly accessible chronic rejection kidney transplant single-cell sequencing datasets from the gene expression omnibus database. Differentially expressed genes between the CD40hi and CD40low macrophage chronic rejection groups were analyzed. We established a chronic rejection mouse model by using CTLA-4-Ig. We treated bone marrow-derived macrophages with an anti-CD40 antibody. We assessed expression of the FOS family by flow cytometry, real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. We identified altered signaling pathways by using RNA sequencing analysis. We detected DNA specifically bound to transcription factors by using ChIP-sequencing, with detection of the degree of graft fibrosis and survival. RESULTS FOS was highly expressed on CD40hi macrophages in patients with chronic transplantrejection. Mechanistically, we showed that CD40 activated NF-κB2 translocation into the nucleus to upregulate c-Fos and FosB expression, thus promoting chronic rejection of cardiac transplant.We showed thatNF-κB2 regulated c-Fos and FosB expression by binding to the c-fos and fosb promoter regions. Inhibition of c-Fos/activator protein-1 decreased graft fibrosis and prolonged graft survival. CONCLUSIONS CD40 may activate transcription factor NF-κB2 translocation into the nucleus of macrophages to upregulate c-Fos and FosB expression, thus promoting chronic rejection of cardiac transplant. Inhibition of c-Fos/activator protein-1 decreased grafts fibrosis and prolonged graft survival.
Collapse
Affiliation(s)
- Shi Chen
- >From the Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China Key Laboratory of Organ Transplantation, Ministry of Education; the NHC Key Laboratory of Organ Transplantation; and the Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
55
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
56
|
Alhamdan F, Bayarsaikhan G, Yuki K. Toll-like receptors and integrins crosstalk. Front Immunol 2024; 15:1403764. [PMID: 38915411 PMCID: PMC11194410 DOI: 10.3389/fimmu.2024.1403764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Immune system recognizes invading microbes at both pathogen and antigen levels. Toll-like receptors (TLRs) play a key role in the first-line defense against pathogens. Major functions of TLRs include cytokine and chemokine production. TLRs share common downstream signaling pathways with other receptors. The crosstalk revolving around TLRs is rather significant and complex, underscoring the intricate nature of immune system. The profiles of produced cytokines and chemokines via TLRs can be affected by other receptors. Integrins are critical heterodimeric adhesion molecules expressed on many different cells. There are studies describing synergetic or inhibitory interplay between TLRs and integrins. Thus, we reviewed the crosstalk between TLRs and integrins. Understanding the nature of the crosstalk could allow us to modulate TLR functions via integrins.
Collapse
Affiliation(s)
- Fahd Alhamdan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ganchimeg Bayarsaikhan
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia and Immunology, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
57
|
Kim JO, An G, Choi JH. Protective effect of mixture of Acanthopanax sessiliflorum and Chaenomeles sinensis against ultraviolet B-induced photodamage in human fibroblast and hairless mouse. Food Sci Biotechnol 2024; 33:1715-1725. [PMID: 38623430 PMCID: PMC11016041 DOI: 10.1007/s10068-023-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
Skin photoaging, characterized by collagen degradation and upregulation of matrix metalloproteinases (MMPs), is a major concern caused by UVB irradiation. In this study, we investigated the potential of Acanthopanax sessiliflorum extract (ASE) and Chaenomeles sinensis (CSE) extracts to mitigate the effects of UVB-induced photodamage in human fibroblast and hairless mice. Water extracts of AS (ASE) and CS (CSE) were found to inhibit the expression of MMP-1/-3 in vitro. Furthermore, the extract of mixture of AS and CS (ACE) showed more potent inhibitor effect, as compared to ASE and CSE. In UVB-irradiated hairless mice, oral administration of ACE effectively reduced wrinkle formation, skin roughness, and epidermal thickness while promoting the deposition of collagenous fibers. These results indicate that ACE has the potential to protect against skin photoaging by restoring the impaired skin via downregulation of MMP-1/-3 expression and secretion. Our findings highlight the therapeutic potential of ACE in mitigating skin photoaging. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01462-3.
Collapse
Affiliation(s)
- Jin-Ok Kim
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul, 02447 South Korea
| | - Gami An
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul, 02447 South Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul, 02447 South Korea
- College of Pharmacy, Kyung Hee University, Seoul, 02447 South Korea
| |
Collapse
|
58
|
Gülow K, Tümen D, Heumann P, Schmid S, Kandulski A, Müller M, Kunst C. Unraveling the Role of Reactive Oxygen Species in T Lymphocyte Signaling. Int J Mol Sci 2024; 25:6114. [PMID: 38892300 PMCID: PMC11172744 DOI: 10.3390/ijms25116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Reactive oxygen species (ROS) are central to inter- and intracellular signaling. Their localized and transient effects are due to their short half-life, especially when generated in controlled amounts. Upon T cell receptor (TCR) activation, regulated ROS signaling is primarily initiated by complexes I and III of the electron transport chain (ETC). Subsequent ROS production triggers the activation of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2), prolonging the oxidative signal. This signal then engages kinase signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway and increases the activity of REDOX-sensitive transcription factors such as nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). To limit ROS overproduction and prevent oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant proteins such as superoxide dismutases (SODs) finely regulate signal intensity and are capable of terminating the oxidative signal when needed. Thus, oxidative signals, such as T cell activation, are well-controlled and critical for cellular communication.
Collapse
Affiliation(s)
- Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (P.H.); (S.S.); (A.K.); (M.M.); (C.K.)
| | | | | | | | | | | | | |
Collapse
|
59
|
Thiel G, Rössler OG. Signal Transduction of Transient Receptor Potential TRPM8 Channels: Role of PIP5K, Gq-Proteins, and c-Jun. Molecules 2024; 29:2602. [PMID: 38893478 PMCID: PMC11174004 DOI: 10.3390/molecules29112602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Transient receptor potential melastatin-8 (TRPM8) is a cation channel that is activated by cold and "cooling agents" such as menthol and icilin, which induce a cold sensation. The stimulation of TRPM8 activates an intracellular signaling cascade that ultimately leads to a change in the gene expression pattern of the cells. Here, we investigate the TRPM8-induced signaling pathway that links TRPM8 channel activation to gene transcription. Using a pharmacological approach, we show that the inhibition of phosphatidylinositol 4-phosphate 5 kinase α (PIP5K), an enzyme essential for the biosynthesis of phosphatidylinositol 4,5-bisphosphate, attenuates TRPM8-induced gene transcription. Analyzing the link between TRPM8 and Gq proteins, we show that the pharmacological inhibition of the βγ subunits impairs TRPM8 signaling. In addition, genetic studies show that TRPM8 requires an activated Gα subunit for signaling. In the nucleus, the TRPM8-induced signaling cascade triggers the activation of the transcription factor AP-1, a complex consisting of a dimer of basic region leucine zipper (bZIP) transcription factors. Here, we identify the bZIP protein c-Jun as an essential component of AP-1 within the TRPM8-induced signaling cascade. In summary, with PIP5K, Gq subunits, and c-Jun, we identified key molecules in TRPM8-induced signaling from the plasma membrane to the nucleus.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany;
| | | |
Collapse
|
60
|
Chen C, Lee S, Zyner KG, Fernando M, Nemeruck V, Wong E, Marshall LL, Wark JR, Aryamanesh N, Tam PPL, Graham ME, Gonzalez-Cordero A, Yang P. Trans-omic profiling uncovers molecular controls of early human cerebral organoid formation. Cell Rep 2024; 43:114219. [PMID: 38748874 DOI: 10.1016/j.celrep.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
Defining the molecular networks orchestrating human brain formation is crucial for understanding neurodevelopment and neurological disorders. Challenges in acquiring early brain tissue have incentivized the use of three-dimensional human pluripotent stem cell (hPSC)-derived neural organoids to recapitulate neurodevelopment. To elucidate the molecular programs that drive this highly dynamic process, here, we generate a comprehensive trans-omic map of the phosphoproteome, proteome, and transcriptome of the exit of pluripotency and neural differentiation toward human cerebral organoids (hCOs). These data reveal key phospho-signaling events and their convergence on transcriptional factors to regulate hCO formation. Comparative analysis with developing human and mouse embryos demonstrates the fidelity of our hCOs in modeling embryonic brain development. Finally, we demonstrate that biochemical modulation of AKT signaling can control hCO differentiation. Together, our data provide a comprehensive resource to study molecular controls in human embryonic brain development and provide a guide for the future development of hCO differentiation protocols.
Collapse
Affiliation(s)
- Carissa Chen
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Scott Lee
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Katherine G Zyner
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Milan Fernando
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Victoria Nemeruck
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Emilie Wong
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Lee L Marshall
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Anai Gonzalez-Cordero
- Stem Cell and Organoid Facility, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
61
|
Xu J, Song S, Nie C, Chen H, Hao K, Yu F, Zhao Z. Characterization of the Ictalurid herpesvirus 1 immediate-early gene ORF24 and its potential role in transcriptional regulation in yeast. Arch Virol 2024; 169:127. [PMID: 38789713 DOI: 10.1007/s00705-024-06045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/23/2024] [Indexed: 05/26/2024]
Abstract
Herpesviruses adhere to a precise temporal expression model in which immediate-early (IE) genes play a crucial role in regulating the viral life cycle. However, there is a lack of functional research on the IE genes in Ictalurid herpesvirus 1 (IcHV-1). In this study, we identified the IcHV-1 ORF24 as an IE gene via a metabolic inhibition assay, and subcellular analysis indicated its predominant localisation in the nucleus. To investigate its function, we performed yeast reporter assays using an ORF24 fusion protein containing the Gal4-BD domain and found that BD-ORF24 was able to activate HIS3/lacZ reporter genes without the Gal4-AD domain. Our findings provide concrete evidence that ORF24 is indeed an IE gene that likely functions as a transcriptional regulator during IcHV-1 infection. This work contributes to our understanding of the molecular mechanisms underlying fish herpesvirus IE gene expression.
Collapse
Affiliation(s)
- Jiehua Xu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Siyang Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Chunlan Nie
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Hongxun Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Kai Hao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China
| | - Fei Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China.
- College of Oceanography, Hohai University, Nanjing, 210098, P.R. China.
| |
Collapse
|
62
|
Zwick D, Vo MT, Shim YJ, Reijonen H, Do JS. BACH2: The Future of Induced T-Regulatory Cell Therapies. Cells 2024; 13:891. [PMID: 38891024 PMCID: PMC11172166 DOI: 10.3390/cells13110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
BACH2 (BTB Domain and CNC Homolog 2) is a transcription factor that serves as a central regulator of immune cell differentiation and function, particularly in T and B lymphocytes. A picture is emerging that BACH2 may function as a master regulator of cell fate that is exquisitely sensitive to cell activation status. In particular, BACH2 plays a key role in stabilizing the phenotype and suppressive function of transforming growth factor-beta (TGF-β)-derived human forkhead box protein P3 (FOXP3)+ inducible regulatory T cells (iTregs), a cell type that holds great clinical potential as a cell therapeutic for diverse inflammatory conditions. As such, BACH2 potentially could be targeted to overcome the instability of the iTreg phenotype and suppressive function that has hampered their clinical application. In this review, we focus on the role of BACH2 in T cell fate and iTreg function and stability. We suggest approaches to modulate BACH2 function that may lead to more stable and efficacious Treg cell therapies.
Collapse
Affiliation(s)
- Daniel Zwick
- Frederick National Laboratory, Frederick, MD 21701, USA
| | - Mai Tram Vo
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Young Jun Shim
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Helena Reijonen
- Department of Immunology and Theranostics, City of Hope, Duarte, CA 91010, USA;
| | - Jeong-su Do
- Department of Immunology and Theranostics, City of Hope, Duarte, CA 91010, USA;
| |
Collapse
|
63
|
Schulze WJ, Gregory DA, Johnson MC, Lange MJ. Genome-wide CRISPR/Cas9 screen reveals JunB downmodulation of HIV co-receptor CXCR4. Front Microbiol 2024; 15:1342444. [PMID: 38835488 PMCID: PMC11149427 DOI: 10.3389/fmicb.2024.1342444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
HIV-1 relies extensively on host cell machinery for replication. Identification and characterization of these host-virus interactions is vital to our understanding of viral replication and the consequences of infection in cells. Several prior screens have identified host factors important for HIV replication but with limited replication of findings, likely due to differences in experimental design and conditions. Thus, unidentified factors likely exist. To identify novel host factors required for HIV-1 infection, we performed a genome-wide CRISPR/Cas9 screen using HIV-induced cell death as a partitioning method. We created a gene knockout library in TZM-GFP reporter cells using GeCKOv2, which targets 19,050 genes, and infected the library with a lethal dose of HIV-1NL4-3. We hypothesized that cells with a knockout of a gene critical for HIV infection would survive while cells with a knockout of a non-consequential gene would undergo HIV-induced death and be lost from the population. Surviving cells were analyzed by high throughput sequencing of the integrated CRISPR/Cas9 cassette to identify the gene knockout. Of the gene targets, an overwhelming majority of the surviving cells harbored the guide sequence for the AP-1 transcription factor family protein, JunB. Upon the generation of a clonal JunB knockout cell line, we found that HIV-1NL4-3 infection was blocked in the absence of JunB. The phenotype resulted from downregulation of CXCR4, as infection levels were recovered by reintroduction of CXCR4 in JunB KO cells. Thus, JunB downmodulates CXCR4 expression in TZM-GFP cells, reducing CXCR4-tropic HIV infection.
Collapse
Affiliation(s)
| | | | | | - Margaret J. Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
64
|
Váchová L, Plocek V, Maršíková J, Rešetárová S, Hatáková L, Palková Z. Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies. mBio 2024; 15:e0068924. [PMID: 38624209 PMCID: PMC11077963 DOI: 10.1128/mbio.00689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Gcn4p belongs to conserved AP-1 transcription factors involved in many cellular processes, including cell proliferation, stress response, and nutrient availability in yeast and mammals. AP-1 activities are regulated at different levels, such as translational activation or protein degradation, which increases the variability of regulation under different conditions. Gcn4p activity in unstructured yeast liquid cultures increases upon amino acid deficiency and is rapidly eliminated upon amino acid excess. Gcn2p kinase is the major described regulator of Gcn4p that enables GCN4 mRNA translation via the uORFs mechanism. Here, we show that Gcn4p is specifically active in U cells in the upper regions and inactive in L cells in the lower regions of differentiated colonies. Using in situ microscopy in combination with analysis of mutants and strains with GFP at different positions in the translational regulatory region of Gcn4p, we show that cell-specific Gcn4p activity is independent of Gcn2p or other translational or transcriptional regulation. Genetically, biochemically, and microscopically, we identified cell-specific proteasomal degradation as a key mechanism that diversifies Gcn4p function between U and L cells. The identified regulation leading to active Gcn4p in U cells with amino acids and efficient degradation in starved L cells differs from known regulations of Gcn4p in yeast but shows similarities to the activity of AP-1 ATF4 in mammals during insulin signaling. These findings may open new avenues for understanding the parallel activities of Gcn4p/ATF4 and reveal a novel biological role for cell type-specific regulation of proteasome-dependent degradation.IMPORTANCEIn nature, microbes usually live in spatially structured communities and differentiate into precisely localized, functionally specialized cells. The coordinated interplay of cells and their response to environmental changes, such as starvation, followed by metabolic adaptation, is critical for the survival of the entire community. Transcription factor Gcn4p is responsible for yeast adaptation under amino acid starvation in liquid cultures, and its activity is regulated mainly at the level of translation involving Gcn2p kinase. Whether Gcn4p functions in structured communities was unknown. We show that translational regulation of Gcn4p plays no role in the development of colony subpopulations; the main regulation occurs at the level of stabilization of the Gcn4p molecule in the cells of one subpopulation and its proteasomal degradation in the other. This regulation ensures specific spatiotemporal activity of Gcn4p in the colony. Our work highlights differences in regulatory networks in unorganized populations and organized structures of yeast, which in many respects resemble multicellular organisms.
Collapse
Affiliation(s)
- Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic
| | - Vítězslav Plocek
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Jana Maršíková
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Stanislava Rešetárová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic
| | | | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| |
Collapse
|
65
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
66
|
Kumar V, Sabaté-Cadenas X, Soni I, Stern E, Vias C, Ginsberg D, Romá-Mateo C, Pulido R, Dodel M, Mardakheh FK, Shkumatava A, Shaulian E. The lincRNA JUNI regulates the stress-dependent induction of c-Jun, cellular migration and survival through the modulation of the DUSP14-JNK axis. Oncogene 2024; 43:1608-1619. [PMID: 38565943 PMCID: PMC11108773 DOI: 10.1038/s41388-024-03021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Xavier Sabaté-Cadenas
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, 75005, France
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Isha Soni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Esther Stern
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, 9112102, Israel
| | - Carine Vias
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, 75005, France
| | - Doron Ginsberg
- The Mina and Everard Goodman, Faculty of Life Science, Bar-Ilan University, Ramat Gan, Israel
| | - Carlos Romá-Mateo
- Department of Physiology, Facultat de Medicina i Odontologia, Universitat de València & Fundación Instituto de Investigación Sanitaria INCLIVA, 46010, Valencia, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, Barakaldo, 48903 Spain; & Ikerbasque, The Basque Foundation for Science, 48009, Bilbao, Spain
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, 75005, France
- Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Eitan Shaulian
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, 9112102, Jerusalem, Israel.
| |
Collapse
|
67
|
Coleman DJ, Keane P, Chin PS, Ames L, Kellaway S, Blair H, Khan N, Griffin J, Holmes E, Maytum A, Potluri S, Strate L, Koscielniak K, Raghavan M, Bushweller J, Heidenreich O, Rabbitts T, Cockerill PN, Bonifer C. Pharmacological inhibition of RAS overcomes FLT3 inhibitor resistance in FLT3-ITD+ AML through AP-1 and RUNX1. iScience 2024; 27:109576. [PMID: 38638836 PMCID: PMC11024925 DOI: 10.1016/j.isci.2024.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.
Collapse
Affiliation(s)
- Daniel J.L. Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paulynn S. Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, University of Newcastle, Newcastle upon Tyne, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - James Griffin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Elizabeth Holmes
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alexander Maytum
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lara Strate
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Kinga Koscielniak
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - John Bushweller
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, University of Newcastle, Newcastle upon Tyne, UK
- Princess Máxima Centrum of Pediatric Oncology, Utrecht, the Netherlands
| | - Terry Rabbitts
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Peter N. Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
68
|
Fu J, Ling J, Li CF, Tsai CL, Yin W, Hou J, Chen P, Cao Y, Kang Y, Sun Y, Xia X, Jiang Z, Furukawa K, Lu Y, Wu M, Huang Q, Yao J, Hawke DH, Pan BF, Zhao J, Huang J, Wang H, Bahassi EIM, Stambrook PJ, Huang P, Fleming JB, Maitra A, Tainer JA, Hung MC, Lin C, Chiao PJ. Nardilysin-regulated scission mechanism activates polo-like kinase 3 to suppress the development of pancreatic cancer. Nat Commun 2024; 15:3149. [PMID: 38605037 PMCID: PMC11009390 DOI: 10.1038/s41467-024-47242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism.
Collapse
Affiliation(s)
- Jie Fu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ching-Fei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenjuan Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Cao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ya'an Kang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yichen Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xianghou Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhou Jiang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenei Furukawa
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Lu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qian Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bih-Fang Pan
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Zhao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - E I Mustapha Bahassi
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati Cancer Institute, Cincinnati, OH, 45267, USA
| | - Peng Huang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Cancer Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
69
|
Negrón-Piñeiro LJ, Wu Y, Popsuj S, José-Edwards DS, Stolfi A, Di Gregorio A. Cis-regulatory interfaces reveal the molecular mechanisms underlying the notochord gene regulatory network of Ciona. Nat Commun 2024; 15:3025. [PMID: 38589372 PMCID: PMC11001920 DOI: 10.1038/s41467-024-46850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Tissue-specific gene expression is fundamental in development and evolution, and is mediated by transcription factors and by the cis-regulatory regions (enhancers) that they control. Transcription factors and their respective tissue-specific enhancers are essential components of gene regulatory networks responsible for the development of tissues and organs. Although numerous transcription factors have been characterized from different organisms, the knowledge of the enhancers responsible for their tissue-specific expression remains fragmentary. Here we use Ciona to study the enhancers associated with ten transcription factors expressed in the notochord, an evolutionary hallmark of the chordate phylum. Our results illustrate how two evolutionarily conserved transcription factors, Brachyury and Foxa2, coordinate the deployment of other notochord transcription factors. The results of these detailed cis-regulatory analyses delineate a high-resolution view of the essential notochord gene regulatory network of Ciona, and provide a reference for studies of transcription factors, enhancers, and their roles in development, disease, and evolution.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Diana S José-Edwards
- Post-Baccalaureate Premedical Program, Washington University, St. Louis, MO, 63130, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
70
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
71
|
Xian L, Xiong Y, Qin L, Wei L, Zhou S, Wang Q, Fu Q, Chen M, Qin Y. Jun/Fos promotes migration and invasion of hepatocellular carcinoma cells by enhancing BORIS promoter activity. Int J Biochem Cell Biol 2024; 169:106540. [PMID: 38281696 DOI: 10.1016/j.biocel.2024.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The Brother of the Regulator of Imprinted Sites (BORIS), as a specific indicator of hepatocellular carcinoma, exhibits a significant increase in expression. However, its upstream regulatory network remains enigmatic. Previous research has indicated a strong correlation between the Hippo pathway and the progression of hepatocellular carcinoma. It is well established that the Activator Protein-1 (AP-1) frequently engages in interactions with the Hippo pathway. Thus, we attempt to prove whether Jun and Fos, a major member of the AP-1 family, are involved in the regulation of BORIS expression. Bioinformatics analysis revealed the existence of binding sites for Jun and Fos within the BORIS promoter. Through a series of overexpression and knockdown experiments, we corroborated that Jun and Fos have the capacity to augment BORIS expression, thereby fostering the migration and invasion of hepatocellular carcinoma cells. Moreover, Methylation-Specific PCR and Bisulfite Sequencing PCR assays revealed that Jun and Fos do not have a significant impact on the demethylation of the BORIS promoter. However, luciferase reporter and chromatin immunoprecipitation experiments substantiated that Jun and Fos could directly bind to the BORIS promoter, thereby enhancing its transcription. In conclusion, these results suggest that Jun and Fos can promote the development of hepatocellular carcinoma by directly regulating the expression of BORIS. These findings may provide experimental evidence positioning BORIS as a novel target for the clinical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Longjun Xian
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Lu Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Siqi Zhou
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qinda Wang
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Mingmei Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
72
|
Jin T, Lu H, Zhou Q, Chen D, Zeng Y, Shi J, Zhang Y, Wang X, Shen X, Cai X. H 2S-Releasing Versatile Montmorillonite Nanoformulation Trilogically Renovates the Gut Microenvironment for Inflammatory Bowel Disease Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308092. [PMID: 38308198 PMCID: PMC11005690 DOI: 10.1002/advs.202308092] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Abnormal activation of the intestinal mucosal immune system, resulting from damage to the intestinal mucosal barrier and extensive invasion by pathogens, contributes to the pathogenesis of inflammatory bowel disease (IBD). Current first-line treatments for IBD have limited efficacy and significant side effects. An innovative H2S-releasing montmorillonite nanoformulation (DPs@MMT) capable of remodeling intestinal mucosal immune homeostasis, repairing the mucosal barrier, and modulating gut microbiota is developed by electrostatically adsorbing diallyl trisulfide-loaded peptide dendrimer nanogels (DATS@PDNs, abbreviated as DPs) onto the montmorillonite (MMT) surface. Upon rectal administration, DPs@MMT specifically binds to and covers the damaged mucosa, promoting the accumulation and subsequent internalization of DPs by activated immune cells in the IBD site. DPs release H2S intracellularly in response to glutathione, initiating multiple therapeutic effects. In vitro and in vivo studies have shown that DPs@MMT effectively alleviates colitis by eliminating reactive oxygen species (ROS), inhibiting inflammation, repairing the mucosal barrier, and eradicating pathogens. RNA sequencing revealed that DPs@MMT exerts significant immunoregulatory and mucosal barrier repair effects, by activating pathways such as Nrf2/HO-1, PI3K-AKT, and RAS/MAPK/AP-1, and inhibiting the p38/ERK MAPK, p65 NF-κB, and JAK-STAT3 pathways, as well as glycolysis. 16S rRNA sequencing demonstrated that DPs@MMT remodels the gut microbiota by eliminating pathogens and increasing probiotics. This study develops a promising nanoformulation for IBD management.
Collapse
Affiliation(s)
- Ting Jin
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Hongyang Lu
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Qiang Zhou
- Department of OtolaryngologyRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Dongfan Chen
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Youyun Zeng
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Jiayi Shi
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yanmei Zhang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xianwen Wang
- School of Biomedical EngineeringResearch and Engineering Center of Biomedical MaterialsAnhui Medical UniversityHefei230032China
| | - Xinkun Shen
- Department of OtolaryngologyRuian People's HospitalThe Third Affiliated Hospital of Wenzhou Medical UniversityWenzhou325016China
| | - Xiaojun Cai
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
73
|
Groiss S, Viertler C, Kap M, Bernhardt G, Mischinger HJ, Sieuwerts A, Verhoef C, Riegman P, Kruhøffer M, Svec D, Sjöback SR, Becker KF, Zatloukal K. Inter-patient heterogeneity in the hepatic ischemia-reperfusion injury transcriptome: Implications for research and diagnostics. N Biotechnol 2024; 79:20-29. [PMID: 38072306 DOI: 10.1016/j.nbt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Cellular responses induced by surgical procedure or ischemia-reperfusion injury (IRI) may severely alter transcriptome profiles and complicate molecular diagnostics. To investigate this effect, we characterized such pre-analytical effects in 143 non-malignant liver samples obtained from 30 patients at different time points of ischemia during surgery from two individual cohorts treated either with the Pringle manoeuvre or total vascular exclusion. Transcriptomics profiles were analyzed by Affymetrix microarrays and expression of selected mRNAs was validated by RT-PCR. We found 179 mutually deregulated genes which point to elevated cytokine signaling with NFκB as a dominant pathway in ischemia responses. In contrast to ischemia, reperfusion induced pro-apoptotic and pro-inflammatory cascades involving TNF, NFκB and MAPK pathways. FOS and JUN were down-regulated in steatosis compared to their up-regulation in normal livers. Surprisingly, molecular signatures of underlying primary and secondary cancers were present in non-tumor tissue. The reported inter-patient variability might reflect differences in individual stress responses and impact of underlying disease conditions. Furthermore, we provide a set of 230 pre-analytically highly robust genes identified from histologically normal livers (<2% covariation across both cohorts) that might serve as reference genes and could be particularly suited for future diagnostic applications.
Collapse
Affiliation(s)
- Silvia Groiss
- Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Viertler
- Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Marcel Kap
- Pathology Department, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Gerwin Bernhardt
- Division of General Surgery, Department of Surgery, Medical University of Graz, 8010 Graz, Austria; Department of Orthopedics and Trauma Surgery, Medical University of Graz, 8010 Graz, Austria
| | - Hans-Jörg Mischinger
- Division of General Surgery, Department of Surgery, Medical University of Graz, 8010 Graz, Austria
| | - Anieta Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Cees Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Peter Riegman
- Pathology Department, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - David Svec
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 252 50 Vestec, Czech Republic
| | | | | | - Kurt Zatloukal
- Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
74
|
Patra P, Gao YQ. Structural and dynamical aspect of DNA motif sequence specific binding of AP-1 transcription factor. J Chem Phys 2024; 160:115103. [PMID: 38506297 DOI: 10.1063/5.0196508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Activator protein-1 (AP-1) comprises one of the largest and most evolutionary conserved families of ubiquitous eukaryotic transcription factors that act as a pioneer factor. Diversity in DNA binding interaction of AP-1 through a conserved basic-zipper (bZIP) domain directs in-depth understanding of how AP-1 achieves its DNA binding selectivity and consequently gene regulation specificity. Here, we address the structural and dynamical aspects of the DNA target recognition process of AP-1 using microsecond-long atomistic simulations based on the structure of the human AP-1 FosB/JunD bZIP-DNA complex. Our results show the unique role of DNA shape features in selective base specific interactions, characteristic ion population, and solvation properties of DNA grooves to form the motif sequence specific AP-1-DNA complex. The TpG step at the two terminals of the AP-1 site plays an important role in the structural adjustment of DNA by modifying the helical twist in the AP-1 bound state. We addressed the role of intrinsic motion of the bZIP domain in terms of opening and closing gripper motions of DNA binding helices, in target site recognition and binding of AP-1 factors. Our observations suggest that binding to the cognate motif in DNA is mainly accompanied with the precise adjustment of closing gripper motion of DNA binding helices of the bZIP domain.
Collapse
Affiliation(s)
- Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
- Changping Laboratory, Beijing 102200, China
| |
Collapse
|
75
|
Yamaoka S. RelA and mitogen-activated protein kinase kinase kinases potently enhance lentiviral vector production. Biochem Biophys Rep 2024; 37:101637. [PMID: 38328371 PMCID: PMC10847020 DOI: 10.1016/j.bbrep.2024.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
The growing demands for gene therapy have encouraged development of safe and efficient lentiviral vector (LV) preparation. While much progress has been made in this field, it remains to be explored how to boost its production from producer cells. This paper reports that transient co-expression of RelA or several mitogen-activated protein kinase kinase kinases (MAP3Ks) with packaging constructs can potently enhance LV production in HEK293T producer cells. Adding in transfection a small amount of effector plasmid is sufficient to achieve 3- to 4-fold enhancement, which can further be augmented by co-expression of IκB kinase 2 or HIV Tat. It is also shown that expression of RelA or MAP3K1 can increase LV production in HEK293T/17SF cells grown in suspension. These results indicate that stimulation of intracellular signaling pathways in producer cells represents a powerful means for enhancing LV production.
Collapse
Affiliation(s)
- Shoji Yamaoka
- Department of Parasitology and Tropical Medicine, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
76
|
Bartels YL, van Lent PLEM, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ. Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis. Rheumatology (Oxford) 2024; 63:608-618. [PMID: 37788083 PMCID: PMC10907820 DOI: 10.1093/rheumatology/kead493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the production of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutralizing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and challenges of these strategies in the dampening of inflammation in OA.
Collapse
Affiliation(s)
- Yvonne L Bartels
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
77
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
78
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
79
|
Shi MY, Wang Y, Shi Y, Tian R, Chen X, Zhang H, Wang K, Chen Z, Chen R. SETDB1-mediated CD147-K71 di-methylation promotes cell apoptosis in non-small cell lung cancer. Genes Dis 2024; 11:978-992. [PMID: 37692516 PMCID: PMC10491884 DOI: 10.1016/j.gendis.2023.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 09/12/2023] Open
Abstract
Protein post-translational modifications (PTMs) are at the heart status of cellular signaling events and broadly involved in tumor progression. CD147 is a tumor biomarker with various PTMs, promoting tumor metastasis and metabolism reprogramming. Nevertheless, the relationship between the PTMs of CD147 and apoptosis has not been reported. In our study, we produced a specific anti-CD147-K71 di-methylation (CD147-K71me2) antibody by immunizing with a di-methylated peptide and observed that the level of CD147-K71me2 in non-small cell lung cancer (NSCLC) tissues were lower than that in NSCLC adjacent tissues. SETDB1 was identified as the methyltransferase catalyzing CD147 to generate CD147-K71me2. RNA-seq showed that FOSB was the most significant differentially expressed gene (DEG) between wild-type CD147 (CD147-WT) and K71-mutant CD147 (CD147-K71R) groups. Subsequently, we found that CD147-K71me2 promoted the expression of FOSB by enhancing the phosphorylation of p38, leading to tumor cell apoptosis. In vivo experiments showed that CD147-K71me2 significantly inhibited tumor progression by promoting cell apoptosis. Taken together, our findings indicate the inhibitory role of CD147-K71me2 in tumor progression from the perspective of post-translational modification, which is distinct from the pro-cancer function of CD147 itself, broadening our perspective on tumor-associated antigen CD147.
Collapse
Affiliation(s)
| | | | | | - Ruofei Tian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaohong Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hai Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
80
|
Almatroodi SA, Almatroudi A, Alharbi HOA, Khan AA, Rahmani AH. Effects and Mechanisms of Luteolin, a Plant-Based Flavonoid, in the Prevention of Cancers via Modulation of Inflammation and Cell Signaling Molecules. Molecules 2024; 29:1093. [PMID: 38474604 DOI: 10.3390/molecules29051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/β-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
81
|
Guo S, Mohan GS, Wang B, Li T, Daver N, Zhao Y, Reville PK, Hao D, Abbas HA. Paired single-B-cell transcriptomics and receptor sequencing reveal activation states and clonal signatures that characterize B cells in acute myeloid leukemia. J Immunother Cancer 2024; 12:e008318. [PMID: 38418394 PMCID: PMC10910691 DOI: 10.1136/jitc-2023-008318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is associated with a dismal prognosis. Immune checkpoint blockade (ICB) to induce antitumor activity in AML patients has yielded mixed results. Despite the pivotal role of B cells in antitumor immunity, a comprehensive assessment of B lymphocytes within AML's immunological microenvironment along with their interaction with ICB remains rather constrained. METHODS We performed an extensive analysis that involved paired single-cell RNA and B-cell receptor (BCR) sequencing on 52 bone marrow aspirate samples. These samples included 6 from healthy bone marrow donors (normal), 24 from newly diagnosed AML patients (NewlyDx), and 22 from 8 relapsed or refractory AML patients (RelRef), who underwent assessment both before and after azacitidine/nivolumab treatment. RESULTS We delineated nine distinct subtypes of B cell lineage in the bone marrow. AML patients exhibited reduced nascent B cell subgroups but increased differentiated B cells compared with healthy controls. The limited diversity of BCR profiles and extensive somatic hypermutation indicated antigen-driven affinity maturation within the tumor microenvironment of RelRef patients. We established a strong connection between the activation or stress status of naïve and memory B cells, as indicated by AP-1 activity, and their differentiation state. Remarkably, atypical memory B cells functioned as specialized antigen-presenting cells closely interacting with AML malignant cells, correlating with AML stemness and worse clinical outcomes. In the AML microenvironment, plasma cells demonstrated advanced differentiation and heightened activity. Notably, the clinical response to ICB was associated with B cell clonal expansion and plasma cell function. CONCLUSIONS Our findings establish a comprehensive framework for profiling the phenotypic diversity of the B cell lineage in AML patients, while also assessing the implications of immunotherapy. This will serve as a valuable guide for future inquiries into AML treatment strategies.
Collapse
Affiliation(s)
- Shengnan Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Gopi S Mohan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bofei Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tianhao Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuting Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Patrick K Reville
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dapeng Hao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
82
|
Park SM, Choi MS, Kim S, Jegal H, Han HY, Chun HS, Kim SK, Oh JH. Hepa-ToxMOA: a pathway-screening method for evaluating cellular stress and hepatic metabolic-dependent toxicity of natural products. Sci Rep 2024; 14:4319. [PMID: 38383711 PMCID: PMC10881971 DOI: 10.1038/s41598-024-54634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
In the field of drug discovery, natural products have emerged as therapeutic agents for diseases such as cancer. However, their potential toxicity poses significant obstacles in the developing effective drug candidates. To overcome this limitation, we propose a pathway-screening method based on imaging analysis to evaluate cellular stress caused by natural products. We have established a cellular stress sensing system, named Hepa-ToxMOA, which utilizes HepG2 cells expressing green fluorescent protein (GFP) fluorescence under the control of transcription factor response elements (TREs) for transcription factors (AP1, P53, Nrf2, and NF-κB). Additionally, to augment the drug metabolic activity of the HepG2 cell line, we evaluated the cytotoxicity of 40 natural products with and without S9 fraction-based metabolic activity. Our finding revealed different activities of Hepa-ToxMOA depending on metabolic or non-metabolic activity, highlighting the involvement of specific cellular stress pathways. Our results suggest that developing a Hepa-ToxMOA system based on activity of drug metabolizing enzyme provides crucial insights into the molecular mechanisms initiating cellular stress during liver toxicity screening for natural products. The pathway-screening method addresses challenges related to the potential toxicity of natural products, advancing their translation into viable therapeutic agents.
Collapse
Affiliation(s)
- Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34131, Daejeon, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34131, Daejeon, Republic of Korea
| | - Soojin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
| | - Hyun Jegal
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, 34113, Daejeon, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, 34113, Daejeon, Republic of Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, 17546, Anseong, South Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, 34131, Daejeon, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, 34114, Daejeon, Republic of Korea.
- Department of Human and Environmental Toxicology, University of Science & Technology, 34113, Daejeon, Republic of Korea.
| |
Collapse
|
83
|
Liao D, Fan W, Li N, Li R, Wang X, Liu J, Wang H, Hou S. A single cell atlas of circulating immune cells involved in diabetic retinopathy. iScience 2024; 27:109003. [PMID: 38327792 PMCID: PMC10847734 DOI: 10.1016/j.isci.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
This study focused on examining the exact role of circulating immune cells in the development of diabetic retinopathy (DR). In vitro co-culture experiments showed that peripheral blood mononuclear cells (PBMCs) from patients with type 1 DR crucially modulated the biological functions of human retinal microvascular endothelial cells (HRMECs), consequently disrupting their normal functionality. Single-cell RNA sequencing (scRNA-seq) study revealed unique differentially expressed genes and pathways in circulating immune cells among healthy controls, non-diabetic retinopathy (NDR) patients, and DR patients. Of significance was the observed upregulation of JUND in each subset of PBMCs in patients with type 1 DR. Further studies showed that downregulating JUND in DR patient-derived PBMCs led to the amelioration of HRMEC dysfunction. These findings highlighted the notable alterations in the transcriptomic patterns of circulating immune cells in type 1 DR patients and underscored the significance of JUND as a key factor for PBMCs in participating in the pathogenesis of DR.
Collapse
Affiliation(s)
- Dan Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Na Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
| | - Hong Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| |
Collapse
|
84
|
Sarlo Davila KM, Nelli RK, Phadke KS, Ruden RM, Sang Y, Bellaire BH, Gimenez-Lirola LG, Miller LC. How do deer respiratory epithelial cells weather the initial storm of SARS-CoV-2 WA1/2020 strain? Microbiol Spectr 2024; 12:e0252423. [PMID: 38189329 PMCID: PMC10846091 DOI: 10.1128/spectrum.02524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The potential infectivity of severe acute respiratory syndrome associated coronavirus-2 (SARS-CoV-2) in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with the SARS-CoV-2 WA1/2020 strain was assessed throughout 48 h post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to virus infection, with significantly (P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via interleukin-17 (IL-17) and nuclear factor-κB (NF-κB) signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans.IMPORTANCEThis study demonstrated that human and white-tailed deer primary respiratory epithelial cells are susceptible to the SARS-CoV-2 WA1/2020 strain infection. However, the comparative transcriptomic analysis revealed that deer cells could limit viral replication without causing hypercytokinemia by downregulating IL-17 and NF-κB signaling pathways. Identifying differentially expressed genes in human and deer cells that modulate key innate immunity pathways during the early infection will lead to developing targeted therapies toward preventing or mitigating the "cytokine storm" often associated with severe cases of coronavirus disease 19 (COVID-19). Moreover, results from this study will aid in identifying novel prognostic biomarkers in predicting SARS-CoV-2 adaption and transmission in deer and associated cervids.
Collapse
Affiliation(s)
- Kaitlyn M. Sarlo Davila
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Disease Research Unit, National Animal Disease Center , Ames, Iowa, USA
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Kruttika S. Phadke
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Rachel M. Ruden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, Tennessee, USA
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis G. Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Laura C. Miller
- United States Department of Agriculture, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, Iowa, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
85
|
Comarița IK, Tanko G, Anghelache IL, Georgescu A. The siRNA-mediated knockdown of AP-1 restores the function of the pulmonary artery and the right ventricle by reducing perivascular and interstitial fibrosis and key molecular players in cardiopulmonary disease. J Transl Med 2024; 22:137. [PMID: 38317144 PMCID: PMC10845748 DOI: 10.1186/s12967-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH. METHODS Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks. All animal groups received water and standard chow ad libitum for 12 weeks. RESULTS In comparison with the MCT group, siRNA AP-1 treatment had significant beneficial effects on investigated tissues contributing to: (1) a reduction in TGF-β1/ET-1/IL-1β/TNF-α plasma concentrations; (2) a reduced level of cytosolic ROS production in PA, RV and lung and notable improvements regarding the ultrastructure of these tissues; a decrease of inflammatory and fibrotic marker expressions in PA (COL1A/Fibronectin/Vimentin/α-SMA/CTGF/Calponin/MMP-9), RV and lung (COL1A/CTGF/Fibronectin/α-SMA/F-actin/OB-cadherin) and an increase of endothelial marker expressions (CD31/VE-cadherin) in PA; (4) structural and functional recoveries of the PA [reduced Vel, restored vascular reactivity (NA contraction, ACh relaxation)] and RV (enlarged internal cavity diameter in diastole, increased TAPSE and PRVOFs) associated with a decrease in systolic and diastolic blood pressure, and heart rate; (5) a reduced protein expression profile of AP-1S3/ pFAK/FAK/pERK/ERK and a significant decrease in the expression levels of miRNA-145, miRNA-210, miRNA-21, and miRNA-214 along with an increase of miRNA-124 and miRNA-204. CONCLUSIONS The siRNA AP-1-based therapy led to an improvement of pulmonary arterial and right ventricular function accompanied by a regression of perivascular and interstitial fibrosis in PA, RV and lung and a down-regulation of key inflammatory and fibrotic markers in MCT-treated hamsters.
Collapse
Affiliation(s)
- Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | | | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
86
|
Song R, Baker TL, Watters JJ, Kumar S. Obstructive Sleep Apnea-Associated Intermittent Hypoxia-Induced Immune Responses in Males, Pregnancies, and Offspring. Int J Mol Sci 2024; 25:1852. [PMID: 38339130 PMCID: PMC10856042 DOI: 10.3390/ijms25031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Obstructive sleep apnea (OSA), a respiratory sleep disorder associated with cardiovascular diseases, is more prevalent in men. However, OSA occurrence in pregnant women rises to a level comparable to men during late gestation, creating persistent effects on both maternal and offspring health. The exact mechanisms behind OSA-induced cardiovascular diseases remain unclear, but inflammation and oxidative stress play a key role. Animal models using intermittent hypoxia (IH), a hallmark of OSA, reveal several pro-inflammatory signaling pathways at play in males, such as TLR4/MyD88/NF-κB/MAPK, miRNA/NLRP3, and COX signaling, along with shifts in immune cell populations and function. Limited evidence suggests similarities in pregnancies and offspring. In addition, suppressing these inflammatory molecules ameliorates IH-induced inflammation and tissue injury, providing new potential targets to treat OSA-associated cardiovascular diseases. This review will focus on the inflammatory mechanisms linking IH to cardiovascular dysfunction in males, pregnancies, and their offspring. The goal is to inspire further investigations into the understudied populations of pregnant females and their offspring, which ultimately uncover underlying mechanisms and therapeutic interventions for OSA-associated diseases.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Tracy L. Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (R.S.); (T.L.B.); (J.J.W.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
87
|
Mazzeo L, Ghosh S, Di Cicco E, Isma J, Tavernari D, Samarkina A, Ostano P, Youssef MK, Simon C, Dotto GP. ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation bridging androgen receptor loss to AP-1 activation. Nat Commun 2024; 15:1038. [PMID: 38310103 PMCID: PMC10838290 DOI: 10.1038/s41467-024-45308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
There are significant commonalities among several pathologies involving fibroblasts, ranging from auto-immune diseases to fibrosis and cancer. Early steps in cancer development and progression are closely linked to fibroblast senescence and transformation into tumor-promoting cancer-associated fibroblasts (CAFs), suppressed by the androgen receptor (AR). Here, we identify ANKRD1 as a mesenchymal-specific transcriptional coregulator under direct AR negative control in human dermal fibroblasts (HDFs) and a key driver of CAF conversion, independent of cellular senescence. ANKRD1 expression in CAFs is associated with poor survival in HNSCC, lung, and cervical SCC patients, and controls a specific gene expression program of myofibroblast CAFs (my-CAFs). ANKRD1 binds to the regulatory region of my-CAF effector genes in concert with AP-1 transcription factors, and promotes c-JUN and FOS association. Targeting ANKRD1 disrupts AP-1 complex formation, reverses CAF activation, and blocks the pro-tumorigenic properties of CAFs in an orthotopic skin cancer model. ANKRD1 thus represents a target for fibroblast-directed therapy in cancer and potentially beyond.
Collapse
Affiliation(s)
- Luigi Mazzeo
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Soumitra Ghosh
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jovan Isma
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, 13900, Italy
| | - Markus K Youssef
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Christian Simon
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- International Cancer Prevention Institute, Epalinges, Switzerland
| | - G Paolo Dotto
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- ORL service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
- International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
88
|
Wang Y, Qin W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorg Chem 2024; 143:107041. [PMID: 38134520 DOI: 10.1016/j.bioorg.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Protein trafficking is a fundamental process with profound implications for both intracellular and intercellular functions. Proximity labeling (PL) technology has emerged as a powerful tool for capturing precise snapshots of subcellular proteomes by directing promiscuous enzymes to specific cellular locations. These enzymes generate reactive species that tag endogenous proteins, enabling their identification through mass spectrometry-based proteomics. In this comprehensive review, we delve into recent advancements in PL-based methodologies, placing particular emphasis on the label-and-fractionation approach and TransitID, for mapping proteome trafficking. These methodologies not only facilitate the exploration of dynamic intracellular protein trafficking between organelles but also illuminate the intricate web of intercellular and inter-organ protein communications.
Collapse
Affiliation(s)
- Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
89
|
Wang L, Chen QG, Lu H. Jianpi Qinghua Formula Alleviates Diabetic Myocardial Injury Through Inhibiting JunB/c-Fos Expression. Curr Med Sci 2024; 44:144-155. [PMID: 38393526 DOI: 10.1007/s11596-024-2830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) represents a substantial risk factor for heart failure and increased mortality in individuals afflicted with diabetes mellitus (DM). DCM typically manifests as myocardial fibrosis, myocardial hypertrophy, and impaired left ventricular diastolic function. While the clinical utility of the Jianpi Qinghua (JPQH) formula has been established in treating diabetes and insulin resistance, its potential efficacy in alleviating diabetic cardiomyopathy remains uncertain. This study aims to investigate the impact and underlying molecular mechanisms of the JPQH formula (JPQHF) in ameliorating myocardial injury in nonobese diabetic rats, specifically focusing on apoptosis and inflammation. METHODS Wistar rats were assigned as the normal control group (CON), while Goto-Kakizaki (GK) rats were randomly divided into three groups: DM, DM treated with the JPQHF, and DM treated with metformin (MET). Following a 4-week treatment regimen, various biochemical markers related to glucose metabolism, cardiac function, cardiac morphology, and myocardial ultrastructure in GK rats were assessed. RNA sequencing was utilized to analyze differential gene expression and identify potential therapeutic targets. In vitro experiments involved high glucose to induce apoptosis and inflammation in H9c2 cells. Cell viability was evaluated using CCK-8 assay, apoptosis was monitored via flow cytometry, and the production of inflammatory cytokines was measured using quantitative real-time PCR (qPCR) and ELISA. Protein expression levels were determined by Western blotting analysis. The investigation also incorporated the use of MAPK inhibitors to further elucidate the mechanism at both the transcriptional and protein levels. RESULTS The JPQHF group exhibited significant reductions in interventricular septal thickness at end-systole (IVSs) and left ventricular internal diameter at end-systole and end-diastole (LVIDs and LVIDd). JPQHF effectively suppressed high glucose-induced activation of IL-1β and caspase 3 in cardiomyocytes. Furthermore, JPQHF downregulated the expression of myocardial JunB/c-Fos, which was upregulated in both diabetic rats and high glucose-treated H9c2 cells. CONCLUSION The JPQH formula holds promise in mitigating diabetic myocardial apoptosis and inflammation in cardiomyocytes by inhibiting JunB/c-Fos expression through suppressing the MAPK (p38 and ERK1/2) pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Qing-Guang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
90
|
Rampioni Vinciguerra GL, Capece M, Scafetta G, Rentsch S, Vecchione A, Lovat F, Croce CM. Role of Fra-2 in cancer. Cell Death Differ 2024; 31:136-149. [PMID: 38104183 PMCID: PMC10850073 DOI: 10.1038/s41418-023-01248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
Fos-related antigen-2 (Fra-2) is the most recently discovered member of the Fos family and, by dimerizing with Jun proteins, forms the activator protein 1 (AP-1) transcription factor. By inducing or repressing the transcription of several target genes, Fra-2 is critically involved in the modulation of cell response to a variety of extracellular stimuli, stressors and intracellular changes. In physiological conditions, Fra-2 has been found to be ubiquitously expressed in human cells, regulating differentiation and homeostasis of bone, muscle, nervous, lymphoid and other tissues. While other AP-1 members, like Jun and Fos, are well characterized, studies of Fra-2 functions in cancer are still at an early stage. Due to the lack of a trans-activating domain, which is present in other Fos proteins, it has been suggested that Fra-2 might inhibit cell transformation, eventually exerting an anti-tumor effect. In human malignancies, however, Fra-2 activity is enhanced (or induced) by dysregulation of microRNAs, oncogenes and extracellular signaling, suggesting a multifaceted role. Therefore, Fra-2 can promote or prevent transformation, proliferation, migration, epithelial-mesenchymal transition, drug resistance and metastasis formation in a tumor- and context-dependent manner. Intriguingly, recent data reports that Fra-2 is also expressed in cancer associated cells, contributing to the intricate crosstalk between neoplastic and non-neoplastic cells, that leads to the evolution and remodeling of the tumor microenvironment. In this review we summarize three decades of research on Fra-2, focusing on its oncogenic and anti-oncogenic effects in tumor progression and dissemination.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Marina Capece
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Sydney Rentsch
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
91
|
Liu H, Yerevanian A, Westerhoff M, Hastings MH, Guerra JRB, Zhao M, Svensson KJ, Cai B, Soukas AA, Rosenzweig A. Roles of Activin A and Gpnmb in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Diabetes 2024; 73:260-279. [PMID: 37934943 PMCID: PMC10796305 DOI: 10.2337/db23-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as nonalcoholic fatty liver disease [NAFLD]) and metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis [NASH]) are leading chronic liver diseases, driving cirrhosis, hepatocellular carcinoma, and mortality. MASLD/MASH is associated with increased senescence proteins, including Activin A, and senolytics have been proposed as a therapeutic approach. To test the role of Activin A, we induced hepatic expression of Activin A in a murine MASLD/MASH model. Surprisingly, overexpression of hepatic Activin A dramatically mitigated MASLD, reducing liver steatosis and inflammation as well as systemic fat accumulation, while improving insulin sensitivity. Further studies identified a dramatic decrease in the lipid-associated macrophages marker glycoprotein NMB (Gpnmb) by Activin A, and Gpnmb knockdown in the same model produced similar benefits and transcriptional changes to Activin A expression. These studies reveal a surprising protective role for Activin A in MASLD and the potential for SASP proteins to have context-specific beneficial effects. Moreover, they implicate both Activin A and Gpnmb as potential therapeutic targets for this condition. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Huan Liu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Armen Yerevanian
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Margaret H. Hastings
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Justin Ralph Baldovino Guerra
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander A. Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
92
|
Miteva K. On target inhibition of vascular smooth muscle cell phenotypic transition underpins TNF-OXPHOS-AP-1 as a promising avenue for anti-remodelling interventions in aortic dissection and rupture. Eur Heart J 2024; 45:306-308. [PMID: 37997934 DOI: 10.1093/eurheartj/ehad679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Affiliation(s)
- Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland
| |
Collapse
|
93
|
Ouyang X, Li K, Wang J, Zhu W, Yi Q, Zhong J. HMGA2 promotes nasopharyngeal carcinoma progression and is associated with tumor resistance and poor prognosis. Front Oncol 2024; 13:1271080. [PMID: 38304037 PMCID: PMC10830841 DOI: 10.3389/fonc.2023.1271080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), as one of the most prevalent malignancies in the head and neck region, still lacks a complete understanding of its pathogenesis. Presently, radiotherapy, concurrent chemoradiotherapy, and targeted therapy stand as the primary modalities for treating NPC. With advancements in medicine, the cure rates for nasopharyngeal carcinoma have been steadily increasing. Nevertheless, recurrence and metastasis persist as the primary reasons for treatment failure. Consequently, a profound exploration of the molecular mechanisms underlying the occurrence and progression of nasopharyngeal carcinoma, along with the exploration of corresponding therapeutic approaches, becomes particularly imperative in the quest for comprehensive solutions to combat this disease. High mobility group AT-hook 2 (HMGA2) is a pivotal protein capable of altering chromatin structure, regulating gene expression, and influencing transcriptional activity. In the realm of cancer research, HMGA2 exhibits widespread dysregulation, playing a crucial role in nearly all malignant tumors. It is implicated in various tumorigenic processes, including cell cycle regulation, cell proliferation, epithelial-mesenchymal transition, angiogenesis, tumor invasion, metastasis, and drug resistance. Additionally, HMGA2 serves as a molecular marker and an independent prognostic factor in certain malignancies. Recent studies have increasingly unveiled the critical role of HMGA2 in nasopharyngeal carcinoma (NPC), particularly in promoting malignant progression, correlating with tumor resistance, and serving as an independent adverse prognostic factor. This review focuses on elucidating the oncogenic role of HMGA2 in NPC, suggesting its potential association with chemotherapy resistance in NPC, and proposing its candidacy as an independent factor in nasopharyngeal carcinoma prognosis assessment.
Collapse
Affiliation(s)
| | - Kangxin Li
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiaqi Wang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Weijian Zhu
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Yi
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
94
|
Amrane K, Le Meur C, Besse B, Hemon P, Le Noac’h P, Pradier O, Berthou C, Abgral R, Uguen A. HLA-DR expression in melanoma: from misleading therapeutic target to potential immunotherapy biomarker. Front Immunol 2024; 14:1285895. [PMID: 38299143 PMCID: PMC10827890 DOI: 10.3389/fimmu.2023.1285895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Since the advent of anti-PD1 immune checkpoint inhibitor (ICI) immunotherapy, cutaneous melanoma has undergone a true revolution with prolonged survival, as available 5-year updates for progression-free survival and overall survival demonstrate a durable clinical benefit for melanoma patients receiving ICI. However, almost half of patients fail to respond to treatment, or relapse sooner or later after the initial response to therapy. Little is known about the reasons for these failures. The identification of biomarkers seems necessary to better understand this resistance. Among these biomarkers, HLA-DR, a component of MHC II and abnormally expressed in certain tumor types including melanoma for unknown reasons, seems to be an interesting marker. The aim of this review, prepared by an interdisciplinary group of experts, is to take stock of the current literature on the potential interest of HLA-DR expression in melanoma as a predictive biomarker of ICI outcome.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Regional Hospital of Morlaix, Morlaix, France
- Inserm, Unité mixte de recherche (UMR1227), Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx Immunotherapy-Graft-Oncology (IGO), Brest, France
| | - Coline Le Meur
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy Cancer Centre, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre, France
| | - Patrice Hemon
- Inserm, Unité mixte de recherche (UMR1227), Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx Immunotherapy-Graft-Oncology (IGO), Brest, France
| | - Pierre Le Noac’h
- Inserm, Unité mixte de recherche (UMR1227), Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx Immunotherapy-Graft-Oncology (IGO), Brest, France
- Department of Pathology, University Hospital of Brest, Brest, France
| | - Olivier Pradier
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Christian Berthou
- Inserm, Unité mixte de recherche (UMR1227), Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx Immunotherapy-Graft-Oncology (IGO), Brest, France
- Department of Hematology, University Hospital of Brest, Brest, France
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
- UMR Inserm 1304 Groupe d'Étude de la Thrombose de Bretagne Occidentale (GETBO), IFR 148, University of Western Brittany, Brest, France
| | - Arnaud Uguen
- Inserm, Unité mixte de recherche (UMR1227), Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx Immunotherapy-Graft-Oncology (IGO), Brest, France
- Department of Pathology, University Hospital of Brest, Brest, France
| |
Collapse
|
95
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
96
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
97
|
Zhang S, Ren D, Hou H, Yao L, Yuan H. M-CSF secreted by gastric cancer cells exacerbates the progression of gastric cancer by increasing the expression of SHP2 in tumor-associated macrophages. Aging (Albany NY) 2023; 15:15525-15534. [PMID: 38159254 PMCID: PMC10781482 DOI: 10.18632/aging.205390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To investigate the effect of Src homology 2 domain-containing tyrosine phosphatase-2 (SHP2) in tumor-associated macrophages (TAMs), which is mediated by macrophage colony-stimulating factor (M-CSF) secreted by gastric cancer cells, on the development of gastric cancer and its molecular mechanism. METHODS The progression of gastric cancer was detected by nude mouse tumor-bearing experiments. Colony formation assay and cell counting kit-8 (CCK8) assay were used to detect the proliferation capacity of gastric cancer cells. The migration capacity of gastric cancer cells was examined by wound healing assay. Transwell migration and invasion assays were performed on gastric cancer cells. Detection of relevant protein expression using western blotting. RESULTS Overexpression of SHP2 could promote the progression of gastric cancer in nude mice. The results of colony formation assay and CCK8 assay showed that overexpression of SHP2 could enhance the proliferation of gastric cancer cells. It was found by wound healing assay and Transwell assay that overexpression of SHP2 could facilitate the migration and invasion of gastric cancer cells. The results of Western blotting revealed that overexpression of SHP2 could increase the expressions of p-STAT3, s-PD-1, p-Src, p-Lyn, p-PI3K, p-AKT, Arginase-1, MMP1 and MMP3 but decrease the expressions of TBK1 and SOCS1 in TAMs, and also increase the expressions of CD9, TSG101 and s-PD-1 in exosomes. CONCLUSION M-CSF secreted by gastric cancer cells can promote the proliferation, invasion and migration of gastric cancer cells by increasing the expression of SHP2 in TAMs.
Collapse
Affiliation(s)
- Shaohua Zhang
- Eighth People’s Hospital of Hebei Province, Shijiazhuang 050000, China
| | - Dongfei Ren
- Eighth People’s Hospital of Hebei Province, Shijiazhuang 050000, China
| | - Huiyu Hou
- HeBei General Hospital, Shijiazhuang 050000, China
| | - Li Yao
- Handan Central Hospital, Handan 056000, China
| | - Hufang Yuan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
98
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation. mBio 2023; 14:e0233823. [PMID: 38009935 PMCID: PMC10746160 DOI: 10.1128/mbio.02338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
99
|
Su L, Zhang G, Jiang L, Chi C, Bai B, Kang K. The role of c-Jun for beating cardiomycyte formation in prepared embryonic body. Stem Cell Res Ther 2023; 14:371. [PMID: 38110996 PMCID: PMC10729424 DOI: 10.1186/s13287-023-03544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/25/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Morbidity and mortality associated with cardiovascular diseases, such as myocardial infarction, stem from the inability of terminally differentiated cardiomyocytes to regenerate, and thus repair the damaged myocardial tissue structure. The molecular biological mechanisms behind the lack of regenerative capacity for those cardiomyocytes remains to be fully elucidated. Recent studies have shown that c-Jun serves as a cell cycle regulator for somatic cell fates, playing a key role in multiple molecular pathways, including the inhibition of cellular reprogramming, promoting angiogenesis, and aggravation of cardiac hypertrophy, but its role in cardiac development is largely unknown. This study aims to delineate the role of c-Jun in promoting early-stage cardiac differentiation. METHODS The c-Jun gene in mouse embryonic stem cells (mESCs) was knocked out with CRISPR-Cas9, and the hanging drop method used to prepare the resulting embryoid bodies. Cardiac differentiation was evaluated up to 9 days after c-Jun knockout (ko) via immunofluorescence, flow cytometric, and qPCR analyses. RESULTS Compared to the wild-type control group, obvious beating was observed among the c-Jun-ko mESCs after 6 days, which was also associated with significant increases in myocardial marker expression. Additionally, markers associated with mesoderm and endoderm cell layer development, essential for further differentiation of ESCs into cardiomyocytes, were also up-regulated in the c-Jun-ko cell group. CONCLUSIONS Knocking out c-Jun directs ESCs toward a meso-endodermal cell lineage fate, in turn leading to generation of beating myocardial cells. Thus, c-Jun plays an important role in regulating early cardiac cell development.
Collapse
Affiliation(s)
- Lide Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guofu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Lili Jiang
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Chao Chi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Bing Bai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
100
|
Fisher AL, Wang CY, Xu Y, Phillips S, Paulo JA, Małachowska B, Xiao X, Fendler W, Mancias JD, Babitt JL. Quantitative proteomics and RNA-sequencing of mouse liver endothelial cells identify novel regulators of BMP6 by iron. iScience 2023; 26:108555. [PMID: 38125029 PMCID: PMC10730383 DOI: 10.1016/j.isci.2023.108555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hepcidin is the master hormone governing systemic iron homeostasis. Iron regulates hepcidin by activating bone morphogenetic protein (BMP)6 expression in liver endothelial cells (LECs), but the mechanisms are incompletely understood. To address this, we performed proteomics and RNA-sequencing on LECs from iron-adequate and iron-loaded mice. Gene set enrichment analysis identified transcription factors activated by high iron, including Nrf-2, which was previously reported to contribute to BMP6 regulation, and c-Jun. Jun (encoding c-Jun) knockdown blocked Bmp6 but not Nrf-2 pathway induction by iron in LEC cultures. Chromatin immunoprecipitation of mouse livers showed iron-dependent c-Jun binding to predicted sites in Bmp6 regulatory regions. Finally, c-Jun inhibitor blunted induction of Bmp6 and hepcidin, but not Nrf-2 activity, in iron-loaded mice. However, Bmp6 and iron parameters were unchanged in endothelial Jun knockout mice. Our data suggest that c-Jun participates in iron-mediated BMP6 regulation independent of Nrf-2, though the mechanisms may be redundant and/or multifactorial.
Collapse
Affiliation(s)
- Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Albert Einstein College of Medicine, NYC, NY, USA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph D. Mancias
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|