51
|
POSH is involved in Eiger-Basket (TNF-JNK) signaling and embryogenesis in Drosophila. J Genet Genomics 2010; 37:605-19. [DOI: 10.1016/s1673-8527(09)60080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/17/2010] [Indexed: 01/08/2023]
|
52
|
Garlena RA, Gonda RL, Green AB, Pileggi RM, Stronach B. Regulation of mixed-lineage kinase activation in JNK-dependent morphogenesis. J Cell Sci 2010; 123:3177-88. [PMID: 20736302 DOI: 10.1242/jcs.063313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Normal cells respond appropriately to various signals, while sustaining proper developmental programs and tissue homeostasis. Inappropriate signal reception, response or attenuation, can upset the normal balance of signaling within cells, leading to dysfunction or tissue malformation. To understand the molecular mechanisms that regulate protein-kinase-based signaling in the context of tissue morphogenesis, we analyzed the domain requirements of Drosophila Slpr, a mixed-lineage kinase (MLK), for Jun N-terminal kinase (JNK) signaling. The N-terminal half of Slpr is involved in regulated signaling whereas the C-terminal half promotes cortical protein localization. The SH3 domain negatively regulates Slpr activity consistent with autoinhibition via a conserved proline motif. Also, like many kinases, conserved residues in the activation segment of the catalytic domain regulate Slpr. Threonine 295, in particular, is essential for function. Slpr activation requires dual input from the MAP4K Misshapen (Msn), through its C-terminal regulatory domain, and the GTPase Rac, which both bind to the LZ-CRIB region of Slpr in vitro. Although Rac is sufficient to activate JNK signaling, our results indicate that there are Slpr-independent functions for Rac in dorsal closure. Finally, expression of various Slpr constructs alone or with upstream activators reveals a wide-ranging response at the cell and tissue level.
Collapse
Affiliation(s)
- Rebecca A Garlena
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
53
|
Blanchard GB, Murugesu S, Adams RJ, Martinez-Arias A, Gorfinkiel N. Cytoskeletal dynamics and supracellular organisation of cell shape fluctuations during dorsal closure. Development 2010; 137:2743-52. [PMID: 20663818 DOI: 10.1242/dev.045872] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluctuations in the shape of amnioserosa (AS) cells during Drosophila dorsal closure (DC) provide an ideal system with which to understand contractile epithelia, both in terms of the cellular mechanisms and how tissue behaviour emerges from the activity of individual cells. Using quantitative image analysis we show that apical shape fluctuations are driven by the medial cytoskeleton, with periodic foci of contractile myosin and actin travelling across cell apices. Shape changes were mostly anisotropic and neighbouring cells were often, but transiently, organised into strings with parallel deformations. During the early stages of DC, shape fluctuations with long cycle lengths produced no net tissue contraction. Cycle lengths shortened with the onset of net tissue contraction, followed by a damping of fluctuation amplitude. Eventually, fluctuations became undetectable as AS cells contracted rapidly. These transitions were accompanied by an increase in apical myosin, both at cell-cell junctions and medially, the latter ultimately forming a coherent, but still dynamic, sheet across cells. Mutants with increased myosin activity or actin polymerisation exhibited precocious cell contraction through changes in the subcellular localisation of myosin. thick veins mutant embryos, which exhibited defects in the actin cable at the leading edge, showed similar timings of fluctuation damping to the wild type, suggesting that damping is an autonomous property of the AS. Our results suggest that cell shape fluctuations are a property of cells with low and increasing levels of apical myosin, and that medial and junctional myosin populations combine to contract AS cell apices and drive DC.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
54
|
Bahri S, Wang S, Conder R, Choy J, Vlachos S, Dong K, Merino C, Sigrist S, Molnar C, Yang X, Manser E, Harden N. The leading edge during dorsal closure as a model for epithelial plasticity: Pak is required for recruitment of the Scribble complex and septate junction formation. Development 2010; 137:2023-32. [DOI: 10.1242/dev.045088] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dorsal closure (DC) of the Drosophila embryo is a model for the study of wound healing and developmental epithelial fusions, and involves the sealing of a hole in the epidermis through the migration of the epidermal flanks over the tissue occupying the hole, the amnioserosa. During DC, the cells at the edge of the migrating epidermis extend Rac- and Cdc42-dependent actin-based lamellipodia and filopodia from their leading edge (LE), which exhibits a breakdown in apicobasal polarity as adhesions are severed with the neighbouring amnioserosa cells. Studies using mammalian cells have demonstrated that Scribble (Scrib), an important determinant of apicobasal polarity that functions in a protein complex, controls polarized cell migration through recruitment of Rac, Cdc42 and the serine/threonine kinase Pak, an effector for Rac and Cdc42, to the LE. We have used DC and the follicular epithelium to study the relationship between Pak and the Scrib complex at epithelial membranes undergoing changes in apicobasal polarity and adhesion during development. We propose that, during DC, the LE membrane undergoes an epithelial-to-mesenchymal-like transition to initiate epithelial sheet migration, followed by a mesenchymal-to-epithelial-like transition as the epithelial sheets meet up and restore cell-cell adhesion. This latter event requires integrin-localized Pak, which recruits the Scrib complex in septate junction formation. We conclude that there are bidirectional interactions between Pak and the Scrib complex modulating epithelial plasticity. Scrib can recruit Pak to the LE for polarized cell migration but, as migratory cells meet up, Pak can recruit the Scrib complex to restore apicobasal polarity and cell-cell adhesion.
Collapse
Affiliation(s)
- Sami Bahri
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | - Simon Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Juliana Choy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | - Stephanie Vlachos
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Kevin Dong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Carlos Merino
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Stephan Sigrist
- Department of Genetics, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Cristina Molnar
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientifícas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Xiaohang Yang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | - Edward Manser
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
- Institute of Medical Biology, 61 Biopolis Drive, 138673, Singapore
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
55
|
Simonova OB, Burdina NV. Morphogenetic movement of cells in embryogenesis of Drosophila melanogaster: Mechanism and genetic control. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409050038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Gorfinkiel N, Blanchard GB, Adams RJ, Martinez Arias A. Mechanical control of global cell behaviour during dorsal closure in Drosophila. Development 2009; 136:1889-98. [PMID: 19403661 PMCID: PMC2680111 DOI: 10.1242/dev.030866] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2009] [Indexed: 12/29/2022]
Abstract
Halfway through embryonic development, the epidermis of Drosophila exhibits a gap at the dorsal side covered by an extraembryonic epithelium, the amnioserosa (AS). Dorsal closure (DC) is the process whereby interactions between the two epithelia establish epidermal continuity. Although genetic and biomechanical analysis have identified the AS as a force-generating tissue, we do not know how individual cell behaviours are transformed into tissue movements. To approach this question we have applied a novel image-analysis method to measure strain rates in local domains of cells and performed a kinematic analysis of DC. Our study reveals spatial and temporal differences in the rate of apical constriction of AS cells. We find a slow phase of DC, during which apical contraction of cells at the posterior end predominates, and a subsequent fast phase, during which all the cells engage in the contraction, which correlates with the zippering process. There is a radial gradient of AS apical contraction, with marginal cells contracting earlier than more centrally located cells. We have applied this analysis to the study of mutant situations and associated a particular genotype with quantitative and reproducible changes in the rate of cell contraction and hence in the overall rate of the process. Our mutant analysis reveals the contribution of mechanical elements to the rate and pattern of DC.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | | | | | |
Collapse
|
57
|
Bertet C, Lecuit T. Planar polarity and short-range polarization in Drosophila embryos. Semin Cell Dev Biol 2009; 20:1006-13. [PMID: 19486946 DOI: 10.1016/j.semcdb.2009.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/17/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Planar cell polarity is a common and probably universal feature of epithelial cells throughout their life. It is not only visible in the external parts of adult animals and plants, but also present in newborn cells such as in the primary Drosophila epithelium. It controls not only cell shape and differentiation, but also cell motility, cell shape changes and it directs how animals are shaped. In this review, we report how planar cell polarity arises in Drosophila embryos and thereby illustrate how general and extensive planar polarity is during development, from the very beginning to the end. We present the main features of planar cell polarization in Drosophila embryos, in particular the fact that it occurs over a short range of just a few cell diameters, and within a very short time window. We contrast these with other systems, such as the adult Drosophila wing where planar cell polarity occurs at longer range.
Collapse
Affiliation(s)
- Claire Bertet
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy case 907, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
58
|
Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. Proc Natl Acad Sci U S A 2009; 106:4764-9. [PMID: 19255422 DOI: 10.1073/pnas.0807875106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Similar selective pressures can lead to independent origin of similar morphological structures in multiple evolutionary lineages. Developmental mechanisms underlying convergent evolution remain poorly understood. In this report, we show that similar sex comb morphology in closely related Drosophila species is produced by different cellular mechanisms. The sex comb is a recently evolved, male-specific array of modified bristles derived from transverse bristle rows found on the first thoracic legs in both sexes. "Longitudinal" sex combs oriented along the proximo-distal leg axis evolved independently in several Drosophila lineages. We show that in some of these lineages, sex combs originate as one or several transverse bristle rows that subsequently rotate 90 degrees and align to form a single longitudinal row. In other species, bristle cells that make up the sex combs arise in their final longitudinal orientation. Thus, sex combs can develop through either sex-specific patterning of bristle precursor cells or male-specific morphogenesis of sexually monomorphic precursors. Surprisingly, the two mechanisms produce nearly identical morphology in some species. Phylogenetic analysis shows that each of these mechanisms has probably evolved repeatedly in different Drosophila lineages, suggesting that selection can recruit different cellular processes to produce similar functional solutions.
Collapse
|
59
|
Sasikumar S, Roy JK. Developmental expression of Rab11, a small GTP-binding protein inDrosophilaepithelia. Genesis 2009; 47:32-9. [DOI: 10.1002/dvg.20441] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
60
|
Homem CCF, Peifer M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 2008; 135:1005-18. [PMID: 18256194 DOI: 10.1242/dev.016337] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Formins are key regulators of actin nucleation and elongation. Diaphanous-related formins, the best-known subclass, are activated by Rho and play essential roles in cytokinesis. In cultured cells, Diaphanous-related formins also regulate cell adhesion, polarity and microtubules, suggesting that they may be key regulators of cell shape change and migration during development. However, their essential roles in cytokinesis hamper our ability to test this hypothesis. We used loss- and gain-of-function approaches to examine the role of Diaphanous in Drosophila morphogenesis. We found that Diaphanous has a dynamic expression pattern consistent with a role in regulating cell shape change. We used constitutively active Diaphanous to examine its roles in morphogenesis and its mechanisms of action. This revealed an unexpected role in regulating myosin levels and activity at adherens junctions during cell shape change, suggesting that Diaphanous helps coordinate adhesion and contractility of the underlying actomyosin ring. We tested this hypothesis by reducing Diaphanous function, revealing striking roles in stabilizing adherens junctions and inhibiting cell protrusiveness. These effects also are mediated through coordinated effects on myosin activity and adhesion, suggesting a common mechanism for Diaphanous action during morphogenesis.
Collapse
Affiliation(s)
- Catarina C F Homem
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
61
|
Abstract
Living organisms exhibit tremendous diversity, evident in the large repertoire of forms and considerable size range. Scientists have discovered that conserved mechanisms control the development of all organisms. Drosophila has proved to be a particularly powerful model system with which to identify the signalling pathways that organize tissue patterns. More recently, much has been learned about the control of tissue growth, tissue shape and their coordination at the cellular and tissue levels. New models integrate how specific signals and mechanical forces shape tissues and may also control their size.
Collapse
Affiliation(s)
- Thomas Lecuit
- Université de la Méditerranée, Institut de Biologie du Développement de Marseille Luminy (IBDML), Marseille Cedex 09, France.
| | | |
Collapse
|
62
|
Gorfinkiel N, Arias AM. Requirements for adherens junction components in the interaction between epithelial tissues during dorsal closure in Drosophila. J Cell Sci 2007; 120:3289-98. [PMID: 17878238 DOI: 10.1242/jcs.010850] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dynamic interactions between epithelial sheets are a regular feature of morphogenetic processes. Dorsal closure in Drosophila relies on the coordinated movements of two epithelia, the epidermis and the amnioserosa, and provides an excellent model system for a genetic and cell biological approach. Here, we have analyzed the contribution of junctional organization of these epithelia to dorsal closure. We observe a stringent requirement for adherens junctions at the leading edge, the interface between the amnioserosa and the epidermis, for the transmission of the forces generated during the process. We also find that interactions between Armadillo and E-cadherin play an important role in maintaining the adhesion at the leading edge, revealing the particular dynamics of this interface. Our results show that regulated cell adhesion is a crucial element of the interactions that shape epithelial sheets in morphogenetic processes.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | | |
Collapse
|
63
|
Fernández BG, Arias AM, Jacinto A. Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis. Mech Dev 2007; 124:884-97. [PMID: 17950580 DOI: 10.1016/j.mod.2007.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 01/16/2023]
Abstract
During the final stages of embryogenesis, the Drosophila embryo exhibits a dorsal hole covered by a simple epithelium of large cells termed the amnioserosa (AS). Dorsal closure is the process whereby this hole is closed through the coordination of cellular activities within both the AS and the epidermis. Genetic analysis has shown that signalling through Jun N-terminal Kinase (JNK) and Decapentaplegic (Dpp), a Drosophila member of the BMP/TGF-beta family of secreted factors, controls these activities. JNK activates the expression of dpp in the dorsal-most epidermal cells, and subsequently Dpp acts as a secreted signal to control the elongation of lateral epidermis. Our analysis shows that Dpp function not only affects the epidermal cells, but also the AS. Embryos defective in Dpp signalling display defects in AS cell shape changes, specifically in the reduction of their apical surface areas, leading to defective AS contraction. Our data also demonstrate that Dpp regulates adhesion between epidermis and AS, and mediates expression of the transcription factor U-shaped in a gradient across both the AS and the epidermis. In summary, we show that Dpp plays a crucial role in coordinating the activity of the AS and its interactions with the LE cells during dorsal closure.
Collapse
|
64
|
Boettner B, Van Aelst L. The Rap GTPase activator Drosophila PDZ-GEF regulates cell shape in epithelial migration and morphogenesis. Mol Cell Biol 2007; 27:7966-80. [PMID: 17846121 PMCID: PMC2169160 DOI: 10.1128/mcb.01275-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial morphogenesis is characterized by an exquisite control of cell shape and position. Progression through dorsal closure in Drosophila gastrulation depends on the ability of Rap1 GTPase to signal through the adherens junctional multidomain protein Canoe. Here, we provide genetic evidence that epithelial Rap activation and Canoe effector usage are conferred by the Drosophila PDZ-GEF (dPDZ-GEF) exchange factor. We demonstrate that dPDZ-GEF/Rap/Canoe signaling modulates cell shape and apicolateral cell constriction in embryonic and wing disc epithelia. In dPDZ-GEF mutant embryos with strong dorsal closure defects, cells in the lateral ectoderm fail to properly elongate. Postembryonic dPDZ-GEF mutant cells generated in mosaic tissue display a striking extension of lateral cell perimeters in the proximity of junctional complexes, suggesting a loss of normal cell contractility. Furthermore, our data indicate that dPDZ-GEF signaling is linked to myosin II function. Both dPDZ-GEF and cno show strong genetic interactions with the myosin II-encoding gene, and myosin II distribution is severely perturbed in epithelia of both mutants. These findings provide the first insight into the molecular machinery targeted by Rap signaling to modulate epithelial plasticity. We propose that dPDZ-GEF-dependent signaling functions as a rheostat linking Rap activity to the regulation of cell shape in epithelial morphogenesis at different developmental stages.
Collapse
Affiliation(s)
- Benjamin Boettner
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
65
|
Lin HP, Chen HM, Wei SY, Chen LY, Chang LH, Sun YJ, Huang SY, Hsu JC. Cell adhesion molecule Echinoid associates with unconventional myosin VI/Jaguar motor to regulate cell morphology during dorsal closure in Drosophila. Dev Biol 2007; 311:423-33. [PMID: 17936269 DOI: 10.1016/j.ydbio.2007.08.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/10/2007] [Accepted: 08/23/2007] [Indexed: 11/24/2022]
Abstract
Echinoid (Ed) is a homophilic immunoglobulin domain-containing cell adhesion molecule (CAM) that localizes to adherens junctions (AJs) and cooperates with Drosophila melanogaster epithelial (DE)-cadherin to mediate cell adhesion. Here we show that Ed takes part in many processes of dorsal closure, a morphogenetic movement driven by coordinated cell shape changes and migration of epidermal cells to cover the underlying amnioserosa. Ed is differentially expressed, appearing in epidermis but not in amnioserosa cells. Ed functions independently from the JNK signaling pathway and is required to regulate cell morphology, and for assembly of actomyosin cable, filopodial protrusion and coordinated cell migration in dorsal-most epidermal cells. The effect of Ed on cell morphology requires the presence of the intracellular domain (Ed(intra)). Interestingly, Ed forms homodimers in vivo and Ed(intra) monomer directly associates with unconventional myosin VI/Jaguar (Jar) motor protein. We further show that ed genetically interacts with jar to control cell morphology. It has previously been shown that myosin VI is monomeric in vitro and that its dimeric form can associate with and travel processively along actin filaments. Thus, we propose that Ed mediates the dimerization of myosin VI/Jar in vivo which in turn regulates the reorganization and/or contraction of actin filaments to control changes in cell shape. Consistent with this, we found that ectopic ed expression in the amnioserosa induces myosin VI/Jar-dependent apical constriction of this tissue.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Molecular Medicine, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30034, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Fiehler RW, Wolff T. Drosophila Myosin II, Zipper, is essential for ommatidial rotation. Dev Biol 2007; 310:348-62. [PMID: 17826761 PMCID: PMC2110880 DOI: 10.1016/j.ydbio.2007.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 06/20/2007] [Accepted: 08/01/2007] [Indexed: 01/17/2023]
Abstract
The adult Drosophila retina is a highly polarized epithelium derived from a precursor tissue that is initially symmetric across its dorsoventral axis. Specialized 90 degrees rotational movements of subsets of cells, the ommatidial precursors, establish mirror symmetry in the retinal epithelium. Myosin II, or Zipper (Zip), a motor protein, regulates the rate at which ommatidia rotate: in zip mutants, the rate of rotation is significantly slowed. Zip is concentrated in the cells that we show to be at the likely interface between rotating and non-rotating cells: the boundary between differentiated and undifferentiated cells. Zip is also robust in newly added ommatidial cells, consistent with our model that the machinery that drives rotation should shift to newly recruited cells as they are added to the growing ommatidium. Finally, cell death genes and canonical Wnt signaling pathway members genetically modify the zip phenotype.
Collapse
Affiliation(s)
- Ryan W Fiehler
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
67
|
Muñoz-Descalzo S, Belacortu Y, Paricio N. Identification and analysis of cabut orthologs in invertebrates and vertebrates. Dev Genes Evol 2007; 217:289-98. [PMID: 17333257 DOI: 10.1007/s00427-007-0144-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 02/16/2007] [Indexed: 01/02/2023]
Abstract
Cabut (cbt) is a Drosophila melanogaster gene involved in epidermal dorsal closure (DC). Its expression is dependent on the Jun N-terminal kinase (JNK) cascade, and it functions downstream of Jun regulating dpp expression in the leading edge cells. The Cbt protein contains three C(2)H(2)-type zinc fingers and a serine-rich domain, suggesting that it functions as a transcription factor. We have identified single cbt orthologs in other Drosophila species, as well as in other insects and invertebrate organisms like ascidians and echinoderms, but not in nematodes. Gene structure and protein sequence are highly conserved among Drosophilidae, but are more diverged in the other species of invertebrates analyzed. According to this, we demonstrate that cbt expression is detected in the embryonic lateral epidermis in several Drosophila species, as it occurs in D. melanogaster, thus suggesting that the cbt orthologs may have a conserved role in these species during DC. We have also analyzed the genomes of several vertebrate species, finding that the cbt orthologous genes in these organisms encode proteins that belong to the TIEG family of Sp1-like/Krüppel-like transcription factors. Phylogenetic analysis of the invertebrate and vertebrate proteins identified indicates that they mainly follow the expected phylogeny of the species, and that the cbt gene was duplicated during vertebrate evolution. Because we were not able to identify cbt orthologous genes neither in yeast nor in plants, our results suggest that this gene has been probably conserved throughout metazoans and that it may play a fundamental role in animal biology.
Collapse
Affiliation(s)
- Silvia Muñoz-Descalzo
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain
| | | | | |
Collapse
|
68
|
Asai N, Fukuda T, Wu Z, Enomoto A, Pachnis V, Takahashi M, Costantini F. Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development 2006; 133:4507-16. [PMID: 17050626 DOI: 10.1242/dev.02616] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RET receptor tyrosine kinase plays a critical role in the development of the enteric nervous system (ENS) and the kidney. Upon glial-cell-line-derived neurotrophic factor (GDNF) stimulation, RET can activate a variety of intracellular signals, including the Ras/mitogen-activated protein kinase, phosphatidylinositol 3-kinase (PI3K)/AKT, and RAC1/JUN NH(2)-terminal kinase (JNK) pathways. We recently demonstrated that the RAC1/JNK pathway is regulated by serine phosphorylation at the juxtamembrane region of RET in a cAMP-dependent manner. To determine the importance of cAMP-dependent modification of the RET signal in vivo, we generated mutant mice in which serine residue 697, a putative protein kinase A (PKA) phosphorylation site, was replaced with alanine (designated S697A mice). Homozygous S697A mutant mice lacked the ENS in the distal colon, resulting from a migration defect of enteric neural crest cells (ENCCs). In vitro organ culture showed an impaired chemoattractant response of the mutant ENCCs to GDNF. JNK activation by GDNF but not ERK, AKT and SRC activation was markedly reduced in neurons derived from the mutant mice. The JNK inhibitor SP600125 and the PKA inhibitor KT5720 suppressed migration of the ENCCs in cultured guts from wild-type mice to comparable degrees. Thus, these findings indicated that cAMP-dependent modification of RET function regulates the JNK signaling responsible for proper migration of the ENCCs in the developing gut.
Collapse
Affiliation(s)
- Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Köppen M, Fernández BG, Carvalho L, Jacinto A, Heisenberg CP. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 2006; 133:2671-81. [PMID: 16794032 DOI: 10.1242/dev.02439] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial morphogenesis depends on coordinated changes in cell shape, a process that is still poorly understood. During zebrafish epiboly and Drosophila dorsal closure, cell-shape changes at the epithelial margin are of critical importance. Here evidence is provided for a conserved mechanism of local actin and myosin 2 recruitment during theses events. It was found that during epiboly of the zebrafish embryo, the movement of the outer epithelium (enveloping layer) over the yolk cell surface involves the constriction of marginal cells. This process depends on the recruitment of actin and myosin 2 within the yolk cytoplasm along the margin of the enveloping layer. Actin and myosin 2 recruitment within the yolk cytoplasm requires the Ste20-like kinase Msn1, an orthologue of Drosophila Misshapen. Similarly, in Drosophila, actin and myosin 2 localization and cell constriction at the margin of the epidermis mediate dorsal closure and are controlled by Misshapen. Thus, this study has characterized a conserved mechanism underlying coordinated cell-shape changes during epithelial morphogenesis.
Collapse
Affiliation(s)
- Mathias Köppen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr.108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
70
|
Jankovics F, Brunner D. Transiently Reorganized Microtubules Are Essential for Zippering during Dorsal Closure in Drosophila melanogaster. Dev Cell 2006; 11:375-85. [PMID: 16908221 DOI: 10.1016/j.devcel.2006.07.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 07/21/2006] [Accepted: 07/26/2006] [Indexed: 01/05/2023]
Abstract
There is emerging evidence that microtubules in nondividing cells can be employed to remodel the intracellular space. Here, we demonstrate an essential role for microtubules in dorsal closure, which occurs toward the end of Drosophila melanogaster embryogenesis. Dorsal closure is a morphogenetic process similar to wound healing, whereby a gap in the epithelium is closed through the coordinated action of different cell types. Surprisingly, this complex process requires microtubule function exclusively in epithelial cells and only for the last step, the zippering, which seals the gap. Preceding zippering, the epithelial microtubules reorganize to attain an unusual spatial distribution, which we describe with subcellular resolution in the intact, living organism. We provide a clearly defined example where cells of a developing organism transiently reorganize their microtubules to fulfill a specialized morphogenetic task.
Collapse
Affiliation(s)
- Ferenc Jankovics
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
71
|
Polaski S, Whitney L, Barker BW, Stronach B. Genetic analysis of slipper/mixed lineage kinase reveals requirements in multiple Jun-N-terminal kinase-dependent morphogenetic events during Drosophila development. Genetics 2006; 174:719-33. [PMID: 16888342 PMCID: PMC1602089 DOI: 10.1534/genetics.106.056564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mixed lineage kinases (MLKs) function as Jun-N-terminal kinase (JNK) kinase kinases to transduce extracellular signals during development and homeostasis in adults. slipper (slpr), which encodes the Drosophila homolog of mammalian MLKs, has previously been implicated in activation of the JNK pathway during embryonic dorsal epidermal closure. To further define the specific functions of SLPR, we analyzed the phenotypic consequences of slpr loss and gain of function throughout development, using a semiviable maternal-effect allele and wild-type or dominant-negative transgenes. From these analyses we confirm that failure of dorsal closure is the null phenotype in slpr germline clones. In addition, there is a functional maternal contribution, which can suffice for embryogenesis in the zygotic null mutant, but rarely suffices for pupal metamorphosis, revealing later functions for slpr as the maternal contribution is depleted. Zygotic null mutants that eclose as adults display an array of morphological defects, many of which are shared by hep mutant animals, deficient in the JNK kinase (JNKK/MKK7) substrate for SLPR, suggesting that the defects observed in slpr mutants primarily reflect loss of hep-dependent JNK activation. Consistent with this, the maternal slpr contribution is sensitive to the dosage of positive and negative JNK pathway regulators, which attenuate or potentiate SLPR-dependent signaling in development. Although SLPR and TAK1, another JNKKK family member, are differentially used in dorsal closure and TNF/Eiger-stimulated apoptosis, respectively, a Tak1 mutant shows dominant genetic interactions with slpr, suggesting potential redundant or combinatorial functions. Finally, we demonstrate that SLPR overexpression can induce ectopic JNK signaling and that the SLPR protein is enriched at the epithelial cell cortex.
Collapse
Affiliation(s)
- Stephanie Polaski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
72
|
Murray MJ, Davidson CM, Hayward NM, Brand AH. The Fes/Fer non-receptor tyrosine kinase cooperates with Src42A to regulate dorsal closure in Drosophila. Development 2006; 133:3063-73. [PMID: 16831834 DOI: 10.1242/dev.02467] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fes/Fer non-receptor tyrosine kinases regulate cell adhesion and cytoskeletal reorganisation through the modification of adherens junctions. Unregulated Fes/Fer kinase activity has been shown to lead to tumours in vivo. Here, we show that Drosophila Fer localises to adherens junctions in the dorsal epidermis and regulates a major morphological event, dorsal closure. Mutations in Src42A cause defects in dorsal closure similar to those seen in dfer mutant embryos. Furthermore, Src42A mutations enhance the dfer mutant phenotype, suggesting that Src42A and DFer act in the same cellular process. We show that DFer is required for the formation of the actin cable in leading edge cells and for normal rates of dorsal closure. We have isolated a gain-of-function mutation in dfer (dfergof) that expresses an N-terminally fused form of the protein, similar to oncogenic forms of vertebrate Fer. dfergof blocks dorsal closure and causes axon misrouting. We find that in dfer loss-of-function mutants beta-catenin is hypophosphorylated, whereas in dfergof beta-catenin is hyperphosphorylated. Phosphorylated beta-catenin is removed from adherens junctions and degraded, thus implicating DFer in the regulation of adherens junctions.
Collapse
Affiliation(s)
- Michael J Murray
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | |
Collapse
|
73
|
Zhang D, Zhou W, Yin C, Chen W, Ozawa R, Ang LH, Anandan L, Aigaki T, Hing H. Misexpression screen for genes altering the olfactory map in Drosophila. Genesis 2006; 44:189-201. [PMID: 16607613 DOI: 10.1002/dvg.20202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the identification of a number of guidance molecules, a comprehensive picture has yet to emerge to explain the precise anatomy of the olfactory map. From a misexpression screen of 1,515 P{GS} lines, we identified 23 genes that, when forcibly expressed in the olfactory receptor neurons, disrupted the stereotyped anatomy of the Drosophila antennal lobes. These genes, which have not been shown previously to control olfactory map development, encode novel proteins as well as proteins with known roles in axonal outgrowth and cytoskeletal remodeling. We analyzed Akap200, which encodes a Protein Kinase A-binding protein. Overexpression of Akap200 resulted in fusion of the glomeruli, while its loss resulted in misshapen and ectopic glomeruli. The requirement of Akap200 validates our screen as an effective approach for recovering genes controlling glomerular map patterning. Our finding of diverse classes of genes reveals the complexity of the mechanisms that underlie olfactory map development.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Goldstein B, Takeshita H, Mizumoto K, Sawa H. Wnt signals can function as positional cues in establishing cell polarity. Dev Cell 2006; 10:391-6. [PMID: 16516841 PMCID: PMC2221774 DOI: 10.1016/j.devcel.2005.12.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 11/18/2022]
Abstract
Wnt signaling plays important roles in cell polarization in diverse organisms, and loss of cell polarity is an early event in tumorigenesis caused by mutations in Wnt pathway genes. Despite this, the precise roles of Wnt proteins in cell polarization have remained elusive. In no organism has it been shown that the asymmetric position of a Wnt signal is essential to establishing a cell's polarity. Attempts to test this by ubiquitous expression of Wnt genes have suggested that Wnt signals might act only as permissive factors in cell polarization. Here we find, by using cell manipulations and ectopic gene expression in C. elegans, that the position from which Wnt signals are presented can determine the polarity of both embryonic and postembryonic cells. Furthermore, the position from which a Wnt signal is presented can determine the polarity of Frizzled receptor localization, suggesting that the polarizing effect of Wnt is likely to be direct. These results demonstrate that Wnt proteins can function as positional cues in establishing cell polarity.
Collapse
Affiliation(s)
- Bob Goldstein
- Biology Department, 616 Fordham Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Hisako Takeshita
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Kota Mizumoto
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe 650-0047, Japan
- Division of Bioinformation, Department of Biosystems Science, Graduate School of Science and Technology, Kobe University, Japan
| | - Hitoshi Sawa
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe 650-0047, Japan
- Division of Bioinformation, Department of Biosystems Science, Graduate School of Science and Technology, Kobe University, Japan
| |
Collapse
|
75
|
Homsy JG, Jasper H, Peralta XG, Wu H, Kiehart DP, Bohmann D. JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev Dyn 2006; 235:427-34. [PMID: 16317725 DOI: 10.1002/dvdy.20649] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial movements are key morphogenetic events in animal development. They are driven by multiple mechanisms, including signal-dependent changes in cytoskeletal organization and in cell adhesion. Such processes must be controlled precisely and coordinated to accurately sculpt the three-dimensional form of the developing organism. By observing the Drosophila epidermis during embryonic development using confocal time-lapse microscopy, we have investigated how signaling through the Jun-N-terminal kinase (JNK) pathway governs the tissue sheet movements that result in dorsal closure (DC). We find that JNK controls the polymerization of actin into a cable at the epidermal leading edge as previously suggested, as well as the joining (zipping) of the contralateral epithelial cell sheets. Here, we show that zipping is mediated by regulation of the integrins myospheroid and scab. Our data demonstrate that JNK signaling regulates a set of target genes that cooperate to facilitate epithelial movement and closure.
Collapse
Affiliation(s)
- Jason G Homsy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
76
|
Price MH, Roberts DM, McCartney BM, Jezuit E, Peifer M. Cytoskeletal dynamics and cell signaling during planar polarity establishment in theDrosophilaembryonic denticle. J Cell Sci 2006; 119:403-15. [PMID: 16418222 DOI: 10.1242/jcs.02761] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many epithelial cells are polarized along the plane of the epithelium, a property termed planar cell polarity. The Drosophila wing and eye imaginal discs are the premier models of this process. Many proteins required for polarity establishment and its translation into cytoskeletal polarity were identified from studies of those tissues. More recently, several vertebrate tissues have been shown to exhibit planar cell polarity. Striking similarities and differences have been observed when different tissues exhibiting planar cell polarity are compared. Here we describe a new tissue exhibiting planar cell polarity – the denticles, hair-like projections of the Drosophila embryonic epidermis. We describe in real time the changes in the actin cytoskeleton that underlie denticle development, and compare this with the localization of microtubules, revealing new aspects of cytoskeletal dynamics that may have more general applicability. We present an initial characterization of the localization of several actin regulators during denticle development. We find that several core planar cell polarity proteins are asymmetrically localized during the process. Finally, we define roles for the canonical Wingless and Hedgehog pathways and for core planar cell polarity proteins in denticle polarity.
Collapse
Affiliation(s)
- Meredith H Price
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | |
Collapse
|
77
|
Abstract
Recent studies have demonstrated that mitogen-activated protein kinases (MAPKs), including Jun N-terminus kinase (JNK), p38 and Erk, play crucial roles in cell migration. JNK, for example, regulates cell migration by phosphorylating paxillin, DCX, Jun and microtubule-associated proteins. Studies of p38 show that this MAPK modulates migration by phosphorylating MAPK-activated protein kinase 2/3 (MAPKAP 2/3), which appears to be important for directionality of migration. Erk governs cell movement by phosphorylating myosin light chain kinase (MLCK), calpain or FAK. Thus, the different kinases in the MAPK family all seem able to regulate cell migration but by distinct mechanisms.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
78
|
Muñoz-Descalzo S, Terol J, Paricio N. Cabut, a C2H2 zinc finger transcription factor, is required during Drosophila dorsal closure downstream of JNK signaling. Dev Biol 2005; 287:168-79. [PMID: 16198331 DOI: 10.1016/j.ydbio.2005.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 11/29/2022]
Abstract
During dorsal closure, the lateral epithelia on each side of the embryo migrate dorsally over the amnioserosa and fuse at the dorsal midline. Detailed genetic studies have revealed that many molecules are involved in this epithelial sheet movement, either with a signaling function or as structural or motor components of the process. Here, we report the characterization of cabut (cbt), a new Drosophila gene involved in dorsal closure. cbt is expressed in the yolk sac nuclei and in the lateral epidermis. The Cbt protein contains three C2H2-type zinc fingers and a serine-rich domain, suggesting that it functions as a transcription factor. cbt mutants die as embryos with dorsal closure defects. Such embryos show defects in the elongation of the dorsal-most epidermal cells as well as in the actomyosin cable assembly at the leading edge. A combination of molecular and genetic analyses demonstrates that cbt expression is dependent on the JNK cascade during dorsal closure, and it functions downstream of Jun regulating dpp expression in the leading edge cells.
Collapse
Affiliation(s)
- Silvia Muñoz-Descalzo
- Departamento de Genética, Facultad CC Biológicas, University of Valencia, Dr. Moliner 50, 46100 Burjasot, Spain
| | | | | |
Collapse
|
79
|
Abstract
Epithelial cells are patterned not only along their apical-basolateral axis, but also along the plane of the epithelial sheet; the latter event is regulated by the planar cell polarity (PCP) pathway. PCP regulates diverse outputs, such as the distal placement of a hair in all cells of the Drosophila wing, and convergent extension movements during gastrulation in the vertebrate embryo. This primer describes the molecular mechanisms that initiate and establish PCP, as well as biochemical pathways that translate PCP signaling to cell type-specific patterning events. The primer concludes with a discussion of current topics in the field with two PCP researchers, Matt Kelley, Ph.D., and Helen McNeill, Ph.D.
Collapse
Affiliation(s)
- Julie C Kiefer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
80
|
Woolner S, Jacinto A, Martin P. The small GTPase Rac plays multiple roles in epithelial sheet fusion—dynamic studies of Drosophila dorsal closure. Dev Biol 2005; 282:163-73. [PMID: 15936337 DOI: 10.1016/j.ydbio.2005.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 03/05/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
The coordinated migration and fusion of epithelial sheets is a crucial morphogenetic tool used on numerous occasions during the normal development of an embryo and re-activated as part of the wound healing response. Drosophila dorsal closure, whereby a hole in the embryonic epithelium is zipped closed late in embryogenesis, serves as an excellent, genetically tractable model for epithelial migration. Using live confocal imaging, we have dissected multiple roles for the small GTPase Rac in this process. We show that constitutive activation of Rac1 leads to excessive assembly of lamellipodia and precocious halting of epithelial sweeping, possibly through premature activation of contact-inhibition machinery. Conversely, blocking Rac activity, either by loss-of-function mutations or expression of dominant negative Rac1, disables the assembly of both actin cable and protrusions by epithelial cells. Movies of mutant embryos show that continued contraction of the amnioserosa is sufficient to draw the epithelial edges towards one another, allowing the zipper machinery to bypass non-functioning regions of leading edge. In addition to illustrating the key role of Rac in organization of leading edge actin, loss-of-function mutants also provide substantive proof that Rac acts upstream in the Jun N-terminal kinase (JNK) cascade to direct epithelial cell shape changes during dorsal closure.
Collapse
Affiliation(s)
- Sarah Woolner
- Department of Anatomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
81
|
Park FD, Tenlen JR, Priess JR. C. elegans MOM-5/frizzled functions in MOM-2/Wnt-independent cell polarity and is localized asymmetrically prior to cell division. Curr Biol 2005; 14:2252-8. [PMID: 15620652 DOI: 10.1016/j.cub.2004.12.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Revised: 10/20/2004] [Accepted: 10/21/2004] [Indexed: 11/18/2022]
Abstract
C. elegans embryonic cells have a common anterior/posterior (a/p) polarity that is apparent in the localization of the transcription factor POP-1. The level of nuclear POP-1 remains high in the anterior daughters of dividing cells but is lowered in the posterior daughters. To generate POP-1 asymmetry, most early embryonic cells require contact with signaling cells that express the ligand MOM-2/Wnt; the point of cell contact specifies the daughter with low nuclear POP-1. In contrast, slightly older embryonic cells that have no apparent prior exposure to Wnt signaling can generate POP-1 asymmetry, provided these cells express MOM-5/Frizzled. We show here that MOM-5::GFP is enriched at the posterior pole of cells prior to division and that a similar asymmetry is observed in cultured cells with no apparent prior exposure to Wnt signaling. While depleting these latter cells of MOM-5/Frizzled causes both daughter cells to have high levels of POP-1, we show that both daughter cells have low levels of POP-1 in embryos with atypically high levels of MOM-5::GFP. These results suggest that MOM-5/Frizzled asymmetry leads to POP-1 asymmetry. In later embryogenesis, we find that MOM-5::GFP localizes to the leading edges of epidermal cells during ventral enclosure. These localization patterns suggest a parallel between MOM-5/Frizzled and the roles of Drosophila Frizzled in planar polarity and dorsal enclosure.
Collapse
Affiliation(s)
- Frederick D Park
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
82
|
Denholm B, Brown S, Ray RP, Ruiz-Gómez M, Skaer H, Hombría JCG. crossveinless-c is a RhoGAP required for actin reorganisation during morphogenesis. Development 2005; 132:2389-400. [PMID: 15843408 DOI: 10.1242/dev.01829] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Members of the Rho family of small GTPases are required for many of the morphogenetic processes required to shape the animal body. The activity of this family is regulated in part by a class of proteins known as RhoGTPase Activating Proteins (RhoGAPs) that catalyse the conversion of RhoGTPases to their inactive state. In our search for genes that regulate Drosophila morphogenesis, we have isolated several lethal alleles of crossveinless-c (cv-c). Molecular characterisation reveals that cv-c encodes the RhoGAP protein RhoGAP88C. During embryonic development, cv-c is expressed in tissues undergoing morphogenetic movements; phenotypic analysis of the mutants reveals defects in the morphogenesis of these tissues. Genetic interactions between cv-c and RhoGTPase mutants indicate that Rho1, Rac1 and Rac2 are substrates for Cv-c, and suggest that the substrate specificity might be regulated in a tissue-dependent manner. In the absence of cv-c activity, tubulogenesis in the renal or Malpighian tubules fails and they collapse into a cyst-like sack. Further analysis of the role of cv-c in the Malpighian tubules demonstrates that its activity is required to regulate the reorganisation of the actin cytoskeleton during the process of convergent extension. In addition, overexpression of cv-c in the developing tubules gives rise to actin-associated membrane extensions. Thus, Cv-c function is required in tissues actively undergoing morphogenesis, and we propose that its role is to regulate RhoGTPase activity to promote the coordinated organisation of the actin cytoskeleton, possibly by stabilising plasma membrane/actin cytoskeleton interactions.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | | | | | |
Collapse
|
83
|
Takahashi M, Takahashi F, Ui-Tei K, Kojima T, Saigo K. Requirements of genetic interactions between Src42A, armadillo and shotgun, a gene encoding E-cadherin, for normal development in Drosophila. Development 2005; 132:2547-59. [PMID: 15857910 DOI: 10.1242/dev.01850] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Src42A is one of the two Src homologs in Drosophila. Src42A protein accumulates at sites of cell-cell or cell-matrix adhesion. Anti-Engrailed antibody staining of Src42A protein-null mutant embryos indicated that Src42A is essential for proper cell-cell matching during dorsal closure. Src42A, which is functionally redundant to Src64, was found to interact genetically with shotgun, a gene encoding E-cadherin, and armadillo, a Drosophila beta-catenin. Immunoprecipitation and a pull-down assay indicated that Src42A forms a ternary complex with E-cadherin and Armadillo, and that Src42A binds to Armadillo repeats via a 14 amino acid region, which contains the major autophosphorylation site. The leading edge of Src mutant embryos exhibiting the dorsal open phenotype was frequently kinked and associated with significant reduction in E-cadherin, Armadillo and F-actin accumulation, suggesting that not only Src signaling but also Src-dependent adherens-junction stabilization would appear likely to be essential for normal dorsal closure. Src42A and Src64 were required for Armadillo tyrosine residue phosphorylation but Src activity may not be directly involved in Armadillo tyrosine residue phosphorylation at the adherens junction.
Collapse
Affiliation(s)
- Mayuko Takahashi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
84
|
Abstract
Specificity in signal transduction is essential to ensure distinct and appropriate cellular responses to extracellular cues. Determining the mechanisms that mediate specificity is key to understanding complex cell behaviors in development, when multiple pathways fire simultaneously and individual pathways are used recurrently. Jun kinase (JNK) signal transduction exemplifies a pathway that is used multiple times in animal development and homeostasis. Indeed, molecular genetic analysis of JNK signaling in Drosophila has shown that a core signaling module consisting of Hep (JNKK), Bsk (JNK), and Jun regulates various processes, including tissue morphogenesis, wound repair, stress response, innate immune response, and others. Six putative JNKK kinase (JNKKK) family members are present in the fly genome, which could activate the core module in response to distinct stimuli. The diversity of kinases at this level of the signaling hierarchy could substantially increase the number of possible signals that feed into activation of the core module. Recent studies have described the distinct phenotypic consequences of mutations in three of the genes, Slpr (dMLK), Tak1, and Mekk1. These data, together with Drosophila cell culture and genomic array analyses support the contention that the choice of JNKKK may contribute to signaling specificity in vivo. Whether this is achieved by individual JNKKKs or by means of a combinatorial mechanism will require a systematic characterization of compound mutants and a toolbox of transcriptional reporters specific for distinct JNK-dependent processes.
Collapse
Affiliation(s)
- Beth Stronach
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA.
| |
Collapse
|
85
|
Conder R, Yu H, Ricos M, Hing H, Chia W, Lim L, Harden N. dPak is required for integrity of the leading edge cytoskeleton during Drosophila dorsal closure but does not signal through the JNK cascade. Dev Biol 2004; 276:378-90. [PMID: 15581872 DOI: 10.1016/j.ydbio.2004.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/27/2004] [Accepted: 08/30/2004] [Indexed: 12/25/2022]
Abstract
The Pak kinases are effectors for the small GTPases Rac and Cdc42 and are divided into two subfamilies. Group I Paks possess an autoinhibitory domain that can suppress their kinase activity in trans. In Drosophila, two Group I kinases have been identified, dPak and Pak3. Rac and Cdc42 participate in dorsal closure of the embryo, a process in which a hole in the dorsal epidermis is sealed through migration of the epidermal flanks over a tissue called the amnioserosa. Dorsal closure is driven in part by an actomyosin contractile apparatus at the leading edge of the epidermis, and is regulated by a Jun amino terminal kinase (JNK) cascade. Impairment of dPak function using either loss-of-function mutations or expression of a transgene encoding the autoinhibitory domain of dPak led to disruption of the leading edge cytoskeleton and defects in dorsal closure but did not affect the JNK cascade. Group I Pak kinase activity in the amnioserosa is required for correct morphogenesis of the epidermis, and may be a component of the signaling known to occur between these two tissues. We conclude that dorsal closure requires Group I Pak function in both the amnioserosa and the epidermis.
Collapse
Affiliation(s)
- Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | | | |
Collapse
|
86
|
Xia Y, Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol 2004; 14:94-101. [PMID: 15102441 DOI: 10.1016/j.tcb.2003.12.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Originally identified as stress-activated protein kinases that control cell survival and proliferation through transcription factor c-Jun, the Jun N-terminal kinase (JNK) subgroup of MAP kinases (MAPKs) have recently emerged as crucial regulators of cell migration and the morphogenetic movement of epithelial sheets. In Drosophila, a well-orchestrated JNK signaling pathway controls formation of actin stress fibers and cell shape changes, which are required for the sealing of embryonic epidermis in a process known as dorsal closure. The JNK pathway is also involved in morphogenetic processes in mice including closure of the eyelid, neural tube and optic fissure. This article focuses on recent advances in understanding the role of JNK pathway in the regulation of cell migration, cytoskeleton rearrangement and the morphogenesis of epithelial sheets.
Collapse
Affiliation(s)
- Ying Xia
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, 123 East Shields Street, Cincinnati, OH 45267-0056, USA.
| | | |
Collapse
|
87
|
Moeller MJ, Soofi A, Braun GS, Li X, Watzl C, Kriz W, Holzman LB. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J 2004; 23:3769-79. [PMID: 15343270 PMCID: PMC522787 DOI: 10.1038/sj.emboj.7600380] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 08/03/2004] [Indexed: 11/09/2022] Open
Abstract
Cell migration requires integration of cellular processes resulting in cell polarization and actin dynamics. Previous work using tools of Drosophila genetics suggested that protocadherin fat serves in a pathway necessary for determining cell polarity in the plane of a tissue. Here we identify mammalian FAT1 as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin-dependent cell motility. FAT1 is localized to the leading edge of lamellipodia, filopodia, and microspike tips where FAT1 directly interacts with Ena/VASP proteins that regulate the actin polymerization complex. When targeted to mitochondrial outer leaflets, FAT1 cytoplasmic domain recruits components of the actin polymerization machinery sufficient to induce ectopic actin polymerization. In an epithelial cell wound model, FAT1 knockdown decreased recruitment of endogenous VASP to the leading edge and resulted in impairment of lamellipodial dynamics, failure of polarization, and an attenuation of cell migration. FAT1 may play an integrative role regulating cell migration by participating in Ena/VASP-dependent regulation of cytoskeletal dynamics at the leading edge and by transducing an Ena/VASP-independent polarity cue.
Collapse
Affiliation(s)
- Marcus J Moeller
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abdulsalam Soofi
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gerald S Braun
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Xiaodong Li
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carsten Watzl
- Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Wilhelm Kriz
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Lawrence B Holzman
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- University of Michigan Medical School, 1560 MSRB II, Ann Arbor, MI 48109-0676, USA. Tel.: +1 734 764 3157; Fax: +1 734 763 0982; E-mail:
| |
Collapse
|
88
|
Morel V, Arias AM. Armadillo/beta-catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 2004; 131:3273-83. [PMID: 15226252 DOI: 10.1242/dev.01217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the end of germband retraction, the dorsal epidermis of the Drosophila embryo exhibits a discontinuity that is covered by the amnioserosa. The process of dorsal closure (DC) involves a coordinated set of cell-shape changes within the epidermis and the amnioserosa that result in epidermal continuity. Polarisation of the dorsal-most epidermal (DME) cells in the plane of the epithelium is an important aspect of DC. The DME cells of embryos mutant for wingless or dishevelled exhibit polarisation defects and fail to close properly. We have investigated the role of the Wingless signalling pathway in the polarisation of the DME cells and DC. We find that the beta-catenin-dependent Wingless signalling pathway is required for polarisation of the DME cells. We further show that although the DME cells are polarised in the plane of the epithelium and present polarised localisation of proteins associated with the process of planar cell polarity (PCP) in the wing, e.g. Flamingo, PCP Wingless signalling is not involved in DC.
Collapse
Affiliation(s)
- Véronique Morel
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
89
|
Lawrence N, Morel V. Dorsal closure and convergent extension: two polarised morphogenetic movements controlled by similar mechanisms? Mech Dev 2004; 120:1385-93. [PMID: 14623444 DOI: 10.1016/j.mod.2003.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coordinated cell movements contribute to the shaping of developing organisms during morphogenesis. Understanding the molecular basis of these directed movements is a crucial part of understanding the mechanisms in action during development. We present here a cellular description of two morphogenetic processes: dorsal closure of the Drosophila embryo and convergent extension in two vertebrate models, Xenopus laevis and Danio rerio. Both processes are characterised by polarised cell movements and increasing evidence suggests that they involve a common group of planar cell polarity genes. We propose that the comparison of dorsal closure and convergent extension will shed light on underlying mechanisms that are shared between the two processes.
Collapse
Affiliation(s)
- Nicola Lawrence
- Department of Genetics, University of Cambridge, Downing street, CB2 3EH Cambridge, UK.
| | | |
Collapse
|
90
|
MacCorkle RA, Tan TH. Inhibition of JNK2 disrupts anaphase and produces aneuploidy in mammalian cells. J Biol Chem 2004; 279:40112-21. [PMID: 15262983 DOI: 10.1074/jbc.m405481200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The JNK family members JNK1 and JNK2 regulate tumor growth and are essential for transformation by oncogenes such as constitutively activated Ras. The mechanisms downstream of JNK that regulate cell cycle progression and transformation are unclear. Here we show that inhibition of JNK2, but not JNK1, with either a dominant-negative mutant, a pharmacological inhibitor, or RNA interference caused an accumulation of mammalian cells with 4N DNA content. When observed by immunofluorescence, these cells progressed to metaphase without apparent defects in spindle formation or chromosome alignment to the metaphase plate, suggesting that the 4N accumulation is a result of postmetaphase defects. Consistent with this prediction, when JNK activity was suppressed, we observed defects in central spindle formation and chromosome segregation during anaphase. In contrast, cyclin-dependent kinase 1 activity, cyclin B1 protein, and Polo-like kinase 1 protein turnover remained intact when JNK was inhibited. In addition, continued inhibition of JNK activity did not block reentry into subsequent cell cycles but instead resulted in polyploidy. This evidence suggests that JNK2 functions in maintaining the genomic stability of mammalian cells by signaling that is independent of cyclin-dependent kinase 1/cyclin B1 down-regulation.
Collapse
Affiliation(s)
- Rebecca A MacCorkle
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
91
|
|
92
|
Affiliation(s)
- Antonio Jacinto
- Instituto Gulbenkian de Ciencia, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
93
|
Abstract
A key aspect of animal development is the appropriate polarisation of different cell types in the right place at the right time. Such polarisation is often precisely coordinated relative to the axes of a tissue or organ, but the mechanisms underlying this coordination are still poorly understood. Nevertheless, genetic analysis of animal development has revealed some of the pathways involved. For example, a non-canonical Frizzled signalling pathway has been found to coordinate cell polarity throughout the insect cuticle, and recent work has implicated an analogous pathway in coordinated polarisation of cells during vertebrate development. This review discusses recent findings regarding non-canonical Frizzled signalling and cell polarisation.
Collapse
Affiliation(s)
- David Strutt
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
94
|
Omelchenko T, Vasiliev JM, Gelfand IM, Feder HH, Bonder EM. Rho-dependent formation of epithelial "leader" cells during wound healing. Proc Natl Acad Sci U S A 2003; 100:10788-93. [PMID: 12960404 PMCID: PMC196881 DOI: 10.1073/pnas.1834401100] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The motile behavior of epithelial cells located at the edge of a large wound in a monolayer of cultured cells was analyzed. The initial cellular response is alignment of the edge with an accompanying formation of tangential marginal actin bundles within individual cells positioned along the wound edge. Later, coherent out-growths of cell masses occur by the formation of special "leader" cells at the tops of outgrowths and "follower" cells along the sides. Leader cells exhibit profound cytoskeletal reorganization, including disassembly of marginal bundles, the realignment of actin filament bundles, and penetration of microtubules into highly active lamellae. Additionally, cell-cell contacts acquire radial geometry indicative of increased contractile tension. Interestingly, leader cells acquire a cytoskeletal organization and motility typical of fibroblasts. IAR-2 cultures stably transfected with a dominant-negative mutant of RhoA or treated with Rho-kinase inhibitor Y-27632 transformed most edge cells into leader-like cells. Alternatively, transfection of cells with constitutively active RhoA suppressed formation of leaders. Thus, expansion of the epithelial sheet involves functional differentiation into two distinct types of edge cells. The transition between these two patterns is controlled by Rho activity, which in turn controls the dynamic distribution and activity of actin filament bundles, myosin II, and microtubules.
Collapse
Affiliation(s)
- T Omelchenko
- Program in Cellular and Molecular Biodynamics and Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | | | | | | | | |
Collapse
|
95
|
Affiliation(s)
- Paul Martin
- Department of Anatomy, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
96
|
Abstract
To date, the role of transport and insertion of membrane in the control of membrane remodelling during cell and tissue morphogenesis has received little attention. In contrast, the contributions of cytoskeletal rearrangements and both intercellular and cell-substrate attachments have been the focus of many studies. Here, we review work from many developmental systems that highlights the importance of polarized membrane growth and suggests a general model for the role of endocytic recycling during cell morphogenesis. We also address how the spatio-temporal control of membrane insertion during development can account for various classes of tissue rearrangements. We suggest that tubulogenesis, tissue spreading and cell intercalation stem mostly from a remarkably small number of cell intrinsic surface remodelling events that confer on cells different modes of migratory behaviours.
Collapse
Affiliation(s)
- Thomas Lecuit
- Laboratoire de Génétique et de Physiologie du Developpement, Institut de Biologie du Développement de Marseille, CNRS-Université de la Méditerrannée, Campus de Luminy, Case 907 13288 Marseille Cedex 09, France.
| | | |
Collapse
|