51
|
Konya V, Blättermann S, Jandl K, Platzer W, Ottersbach PA, Marsche G, Gütschow M, Kostenis E, Heinemann A. A Biased Non-Gαi OXE-R Antagonist Demonstrates That Gαi Protein Subunit Is Not Directly Involved in Neutrophil, Eosinophil, and Monocyte Activation by 5-Oxo-ETE. THE JOURNAL OF IMMUNOLOGY 2014; 192:4774-82. [DOI: 10.4049/jimmunol.1302013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
52
|
Zohar Y, Wildbaum G, Novak R, Salzman AL, Thelen M, Alon R, Barsheshet Y, Karp CL, Karin N. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J Clin Invest 2014; 124:2009-22. [PMID: 24713654 DOI: 10.1172/jci71951] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/13/2014] [Indexed: 12/24/2022] Open
Abstract
A single G protein-coupled receptor (GPCR) can activate multiple signaling cascades based on the binding of different ligands. The biological relevance of this feature in immune regulation has not been evaluated. The chemokine-binding GPCR CXCR3 is preferentially expressed on CD4+ T cells, and canonically binds 3 structurally related chemokines: CXCL9, CXCL10, and CXCL11. Here we have shown that CXCL10/CXCR3 interactions drive effector Th1 polarization via STAT1, STAT4, and STAT5 phosphorylation, while CXCL11/CXCR3 binding induces an immunotolerizing state that is characterized by IL-10(hi) (Tr1) and IL-4(hi) (Th2) cells, mediated via p70 kinase/mTOR in STAT3- and STAT6-dependent pathways. CXCL11 binds CXCR3 with a higher affinity than CXCL10, suggesting that CXCL11 has the potential to restrain inflammatory autoimmunity. We generated a CXCL11-Ig fusion molecule and evaluated its use in the EAE model of inflammatory autoimmune disease. Administration of CXCL11-Ig during the first episode of relapsing EAE in SJL/J mice not only led to rapid remission, but also prevented subsequent relapse. Using GFP-expressing effector CD4+ T cells, we observed that successful therapy was associated with reduced accumulation of these cells at the autoimmune site. Finally, we showed that very low doses of CXCL11 rapidly suppress signs of EAE in C57BL/6 mice lacking functional CXCL11.
Collapse
MESH Headings
- Animals
- Chemokine CXCL11/genetics
- Chemokine CXCL11/immunology
- Chemokine CXCL11/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Mice
- Mice, Knockout
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- STAT Transcription Factors/genetics
- STAT Transcription Factors/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
Collapse
|
53
|
Wisler JW, Xiao K, Thomsen ARB, Lefkowitz RJ. Recent developments in biased agonism. Curr Opin Cell Biol 2014; 27:18-24. [PMID: 24680426 PMCID: PMC3971386 DOI: 10.1016/j.ceb.2013.10.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/17/2022]
Abstract
The classic paradigm of G protein-coupled receptor (GPCR) activation was based on the understanding that agonist binding to a receptor induces or stabilizes a conformational change to an 'active' conformation. In the past decade, however, it has been appreciated that ligands can induce distinct 'active' receptor conformations with unique downstream functional signaling profiles. Building on the initial recognition of the existence of such 'biased ligands', recent years have witnessed significant developments in several areas of GPCR biology. These include increased understanding of structural and biophysical mechanisms underlying biased agonism, improvements in characterization and quantification of ligand efficacy, as well as clinical development of these novel ligands. Here we review recent major developments in these areas over the past several years.
Collapse
Affiliation(s)
- James W Wisler
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kunhong Xiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alex R B Thomsen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
54
|
Mertens MD, Schmitz J, Horn M, Furtmann N, Bajorath J, Mareš M, Gütschow M. A coumarin-labeled vinyl sulfone as tripeptidomimetic activity-based probe for cysteine cathepsins. Chembiochem 2014; 15:955-9. [PMID: 24648212 DOI: 10.1002/cbic.201300806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/15/2022]
Abstract
A coumarin-tetrahydroquinoline hydride 8 was synthesized as a chemical tool for fluorescent labeling. The rigidified tricyclic coumarin structure was chosen for its suitable fluorescence properties. The connection of 8 with a vinyl sulfone building block was accomplished by convergent synthesis thereby leading to the coumarin-based, tripeptidomimetic activity-based probe 10, containing a Gly-Phe-Gly motif. Probe 10 was evaluated as inactivator of the therapeutically relevant human cysteine cathepsins S, L, K, and B: it showed particularly strong inactivation of cathepsin S. The detection of recombinant and native cathepsin S was demonstrated by applying 10 to in-gel fluorescence imaging.
Collapse
Affiliation(s)
- Matthias D Mertens
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | | | | | | | | | | | | |
Collapse
|
55
|
Mertens MD, Hinz S, Müller CE, Gütschow M. Alkynyl–coumarinyl ethers as MAO-B inhibitors. Bioorg Med Chem 2014; 22:1916-28. [DOI: 10.1016/j.bmc.2014.01.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/20/2022]
|
56
|
Gore V, Gravel S, Cossette C, Patel P, Chourey S, Ye Q, Rokach J, Powell WS. Inhibition of 5-oxo-6,8,11,14-eicosatetraenoic acid-induced activation of neutrophils and eosinophils by novel indole OXE receptor antagonists. J Med Chem 2014; 57:364-77. [PMID: 24351031 DOI: 10.1021/jm401292m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a 5-lipoxygenase product that is a potent granulocyte chemoattractant, which induces the infiltration of eosinophils into human skin when injected intradermally. It could therefore be an important proinflammatory mediator in eosinophilic diseases such as asthma and allergic rhinitis, and the OXE receptor, which mediates its actions, is therefore an attractive drug target. Using a structure-based approach in which substituents mimicking the essential polar (C1-C5) and hydrophobic (C15-C20) regions of 5-oxo-ETE were incorporated on an indole scaffold, we identified two potent selective OXE antagonists with IC50 values of about 30 nM. Neither compound displayed agonist activity and both inhibited 5-oxo-ETE-induced chemotaxis and actin polymerization and were relatively resistant to metabolism by rat liver homogenates. The active enantiomers of these racemic antagonists were even more potent, with IC50 values of <10 nM. These selective OXE antagonists could potentially be useful therapeutic agents in allergic diseases such as asthma.
Collapse
Affiliation(s)
- Vivek Gore
- Meakins-Christie Laboratories, Department of Medicine, McGill University , 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
57
|
From Three-Dimensional GPCR Structure to Rational Ligand Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:129-57. [DOI: 10.1007/978-94-007-7423-0_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
58
|
Gonzalez A, Cordomí A, Matsoukas M, Zachmann J, Pardo L. Modeling of G Protein-Coupled Receptors Using Crystal Structures: From Monomers to Signaling Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:15-33. [DOI: 10.1007/978-94-007-7423-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
59
|
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 2013; 7:272. [PMID: 24399932 PMCID: PMC3871966 DOI: 10.3389/fncel.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.
Collapse
Affiliation(s)
- David Davila
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Karine Thibault
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Todd A Fiacco
- Department of Cell Biology and Neuroscience, and Center for Glial-Neuronal Interactions and Program in Cellular, Molecular and Developmental Biology, University of California at Riverside Riverside, CA, USA
| | - Cendra Agulhon
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| |
Collapse
|
60
|
Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol 2013; 85:388-96. [PMID: 24302560 DOI: 10.1124/mol.113.090068] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gβγ independently of the classic heterotrimeric Gαβγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gβγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
61
|
Powell WS, Rokach J. The eosinophil chemoattractant 5-oxo-ETE and the OXE receptor. Prog Lipid Res 2013; 52:651-65. [PMID: 24056189 DOI: 10.1016/j.plipres.2013.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is formed from the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). The cofactor NADP(+) is a limiting factor in the synthesis of 5-oxo-ETE because of its low concentrations in unperturbed cells. Activation of the respiratory burst in phagocytic cells, oxidative stress, and cell death all dramatically elevate both intracellular NADP(+) levels and 5-oxo-ETE synthesis. 5-HEDH is widely expressed in inflammatory, structural, and tumor cells. Cells devoid of 5-lipoxygenase can synthesize 5-oxo-ETE by transcellular biosynthesis using inflammatory cell-derived 5-HETE. 5-Oxo-ETE is a chemoattractant for neutrophils, monocytes, and basophils and promotes the proliferation of tumor cells. However, its primary target appears to be the eosinophil, for which it is a highly potent chemoattractant. The actions of 5-oxo-ETE are mediated by the highly selective OXE receptor, which signals by activating various second messenger pathways through the release of the βγ-dimer from Gi/o proteins to which it is coupled. Because of its potent effects on eosinophils, 5-oxo-ETE may be an important mediator in asthma, and, because of its proliferative effects, may also contribute to tumor progression. Selective OXE receptor antagonists, which are currently under development, could be useful therapeutic agents in asthma and other allergic diseases.
Collapse
Key Words
- 12-HHT
- 12-hydroxy-5Z,8E,10E-heptadecatrienoic acid
- 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid
- 5,12-diHETE
- 5,15-diHETE
- 5-HEDH
- 5-HEPE
- 5-HETE
- 5-HETrE
- 5-HODE
- 5-HpETE
- 5-LO
- 5-Lipoxygenase
- 5-Oxo-ETE
- 5-hydroxyeicosanoid dehydrogenase
- 5-lipoxygenase
- 5-oxo-12-HETE
- 5-oxo-12S-hydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid
- 5-oxo-15-HETE
- 5-oxo-15S-hydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid
- 5-oxo-20-HETE
- 5-oxo-20-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5-oxo-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5-oxo-6E,8Z,11Z-eicosatrienoic acid
- 5-oxo-6E,8Z-octadecadienoic acid
- 5-oxo-7-glutathionyl factor-8,11,14-eicosatrienoic acid
- 5-oxo-EPE
- 5-oxo-ETE
- 5-oxo-ETrE
- 5-oxo-ODE
- 5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid
- 5S,15S-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid
- 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5S-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5S-hydroxy-6E,8Z,11Z-eicosatrienoic acid
- 5S-hydroxy-6E,8Z-octadecadienoic acid
- 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5Z,8Z,11Z-eicosatrienoic acid
- 5Z,8Z-octadecadienoic acid
- Asthma
- Chemoattractants
- DHA
- ECL
- EPA
- Eosinophils
- FOG(7)
- G protein-coupled receptor
- GPCR
- Inflammation
- LT
- LXA(4)
- Mead acid
- PAF
- PI3K
- PLC
- PMA
- PUFA
- Sebaleic acid
- StAR
- eosinophil chemotactic lipid
- leukotriene
- lipoxin A(4)
- phorbol myristate acetate
- phosphoinositide-3 kinase
- phospholipase C
- platelet-activating
- polyunsaturated fatty acid
- steroidogenic acute regulatory protein
- uPAR
- urokinase-type plasminogen activator receptor
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | | |
Collapse
|
62
|
Olivella M, Gonzalez A, Pardo L, Deupi X. Relation between sequence and structure in membrane proteins. Bioinformatics 2013; 29:1589-92. [PMID: 23677941 DOI: 10.1093/bioinformatics/btt249] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Integral polytopic membrane proteins contain only two types of folds in their transmembrane domains: α-helix bundles and β-barrels. The increasing number of available crystal structures of these proteins permits an initial estimation of how sequence variability affects the structure conservation in their transmembrane domains. We, thus, aim to determine the pairwise sequence identity necessary to maintain the transmembrane molecular architectures compatible with the hydrophobic nature of the lipid bilayer. RESULTS Root-mean-square deviation (rmsd) and sequence identity were calculated from the structural alignments of pairs of homologous polytopic membrane proteins sharing the same fold. Analysis of these data reveals that transmembrane segment pairs with sequence identity in the so-called 'twilight zone' (20-35%) display high-structural similarity (rmsd < 1.5 Å). Moreover, a large group of β-barrel pairs with low-sequence identity (<20%) still maintain a close structural similarity (rmsd < 2.5 Å). Thus, we conclude that fold preservation in transmembrane regions requires less sequence conservation than for globular proteins. These findings have direct implications in homology modeling of evolutionary-related membrane proteins. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mireia Olivella
- Grup de Recerca en Bioinformàtica i Estadística Mèdica, Departament de Biologia de Sistemes, Escola Politècnica Superior, Universitat de Vic, 08500 Vic, Barcelona, Catalonia, Spain.
| | | | | | | |
Collapse
|
63
|
Evans BA, Hutchinson DS, Summers RJ. β2-Adrenoceptor-mediated regulation of glucose uptake in skeletal muscle--ligand-directed signalling or a reflection of system complexity? Naunyn Schmiedebergs Arch Pharmacol 2013; 386:757-60. [PMID: 23657252 DOI: 10.1007/s00210-013-0879-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 01/14/2023]
Abstract
The capacity of G protein-coupled receptors (GPCRs) to activate multiple G protein isoforms and additional effectors such as β-arrestins has become a well-established paradigm and provides the basis for developing drugs that preferentially activate beneficial signalling pathways. There are many published examples of ligand-directed signalling, and recent studies have provided direct evidence that different agonists stabilise distinct GPCR conformations. This field is rapidly evolving, but a key question is whether signalling bias observed in heterologous cell expression systems can be translated to physiological systems of therapeutic relevance. The paper by Ngala et al. in this issue of the journal addresses the capacity of agonists acting at the β2-adrenoceptor to engender signalling bias in relation to glucose uptake in isolated skeletal muscle, an area of considerable potential interest in targeting insulin-independent pathways for the treatment of type 2 diabetes. The authors show that clenbuterol and BRL37344 have opposite effects on glucose uptake, despite both having agonist actions at β2-adrenoceptors. This study underlines some of the obstacles associated with studies in a complex physiological system but nonetheless highlights the need to consider signalling bias in the relevant target tissue when developing novel drugs.
Collapse
Affiliation(s)
- Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | | | | |
Collapse
|
64
|
Smrcka AV. Molecular targeting of Gα and Gβγ subunits: a potential approach for cancer therapeutics. Trends Pharmacol Sci 2013; 34:290-8. [PMID: 23557963 DOI: 10.1016/j.tips.2013.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
G-Protein-coupled receptors (GPCRs) signal through G protein α and βγ subunit families to regulate a wide range of physiological and pathophysiological processes. As such, GPCRs are major targets for therapeutic drugs. Downstream targets of GPCRs have also gained interest as a therapeutic approach to complex pathologies involving multiple GPCRs. One such approach involves targeting of the G proteins themselves. Several small molecule Gα and Gβγ modulators have been developed and been tested in various animal models of disease. Here we will discuss the requirements for targeting Gα and Gβγ subunits, the mechanisms of action of currently identified inhibitors, and focus on the potential utility of Gα and Gβγ inhibitors in the treatment of various cancers.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
65
|
Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 2013; 67:69-81. [PMID: 23340025 DOI: 10.1016/j.vascn.2013.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Central to drug discovery and development is to comprehend the target(s), potency, efficacy and safety of drug molecules using pharmacological assays. Owing to their ability to provide a holistic view of drug actions in native cells, label-free biosensor-enabled cell phenotypic assays have been emerging as new generation phenotypic assays for drug discovery. Despite the benefits associated with wide pathway coverage, high sensitivity, high information content, non-invasiveness and real-time kinetics, label-free cell phenotypic assays are often viewed to be a blackbox in the era of target-centric drug discovery. METHODS This article first reviews the biochemical and biological complexity of drug-target interactions, and then discusses the key characteristics of label-free cell phenotypic assays and presents a five-step strategy to troubleshooting and deconvoluting the label-free cell phenotypic profiles of drugs. RESULTS Drug-target interactions are intrinsically complicated. Label-free cell phenotypic signatures of drugs mirror the innate complexity of drug-target interactions, and can be effectively deconvoluted using the five-step strategy. DISCUSSION The past decades have witnessed dramatic expansion of pharmacological assays ranging from molecular to phenotypic assays, which is coincident with the realization of the innate complexity of drug-target interactions. The clinical features of a drug are defined by how it operates at the system level and by its distinct polypharmacology, ontarget, phenotypic and network pharmacology. Approaches to examine the biochemical, cellular and molecular mechanisms of action of drugs are essential to increase the efficiency of drug discovery and development. Label-free cell phenotypic assays and the troubleshooting and deconvoluting approach presented here may hold great promise in drug discovery and development.
Collapse
|
66
|
Caltabiano G, Gonzalez A, Cordomí A, Campillo M, Pardo L. The Role of Hydrophobic Amino Acids in the Structure and Function of the Rhodopsin Family of G Protein-Coupled Receptors. Methods Enzymol 2013; 520:99-115. [DOI: 10.1016/b978-0-12-391861-1.00005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
67
|
Systems Analysis of Arrestin Pathway Functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:431-67. [DOI: 10.1016/b978-0-12-394440-5.00017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
68
|
Klein MT, Vinson PN, Niswender CM. Approaches for probing allosteric interactions at 7 transmembrane spanning receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:1-59. [PMID: 23415091 PMCID: PMC5482179 DOI: 10.1016/b978-0-12-394587-7.00001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, allosteric modulation of 7 transmembrane spanning receptors (7TMRs) has become a highly productive and exciting field of receptor pharmacology and drug discovery efforts. Positive and negative allosteric modulators (PAMs and NAMs, respectively) present a number of pharmacological and therapeutic advantages over conventional orthosteric ligands, including improved receptor-subtype selectivity, a lower propensity to induce receptor desensitization, the preservation of endogenous temporal and spatial activation of receptors, greater chemical flexibility for optimization of drug metabolism and pharmacokinetic parameters, and saturability of effect at target receptors, thus improving safety concerns and risk of overdose. Additionally, the relatively new concept of allosteric modulator-mediated receptor signal bias opens up a number of intriguing possibilities for PAMs, NAMs, and allosteric agonists, including the potential to selectively activate therapeutically beneficial signaling cascades, which could yield a superior tissue selectivity and side effect profile of allosteric modulators. However, there are a number of considerations and caveats that must be addressed when screening for and characterizing the properties of 7TMR allosteric modulators. Mode of pharmacology, methodology used to monitor receptor activity, detection of appropriate downstream analytes, selection of orthosteric probe, and assay time-course must all be considered when implementing any high-throughput screening campaign or when characterizing the properties of active compounds. Yet compared to conventional agonist/antagonist drug discovery programs, these elements of assay design are often a great deal more complicated when working with 7TMRs allosteric modulators. Moreover, for classical pharmacological methodologies and analyses, like radioligand binding and the assessment of compound affinity, the properties of allosteric modulators yield data that are more nuanced than orthosteric ligand-receptor interactions. In this review, we discuss the current methodologies being used to identify and characterize allosteric modulators, lending insight into the approaches that have been most successful in accurately and robustly identifying hit compounds. New label-free technologies capable of detecting phenotypic cellular changes in response to receptor activation are powerful tools well suited for assessing subtle or potentially masked cellular responses to allosteric modulation of 7TMRs. Allosteric modulator-induced receptor signal bias and the assay systems available to probe the various downstream signaling outcomes of receptor activation are also discussed.
Collapse
Affiliation(s)
- Michael T Klein
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
69
|
Mining the Potential of Label-Free Biosensors for Seven-Transmembrane Receptor Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:123-42. [DOI: 10.1016/b978-0-12-394587-7.00003-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|