51
|
Füngerlings A, Wohlgemuth M, Antipin D, van der Minne E, Kiens EM, Villalobos J, Risch M, Gunkel F, Pentcheva R, Baeumer C. Crystal-facet-dependent surface transformation dictates the oxygen evolution reaction activity in lanthanum nickelate. Nat Commun 2023; 14:8284. [PMID: 38092726 PMCID: PMC10719283 DOI: 10.1038/s41467-023-43901-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Electrocatalysts are the cornerstone in the transition to sustainable energy technologies and chemical processes. Surface transformations under operation conditions dictate the activity and stability. However, the dependence of the surface structure and transformation on the exposed crystallographic facet remains elusive, impeding rational catalyst design. We investigate the (001), (110) and (111) facets of a LaNiO3-δ electrocatalyst for water oxidation using electrochemical measurements, X-ray spectroscopy, and density functional theory calculations with a Hubbard U term. We reveal that the (111) overpotential is ≈ 30-60 mV lower than for the other facets. While a surface transformation into oxyhydroxide-like NiOO(H) may occur for all three orientations, it is more pronounced for (111). A structural mismatch of the transformed layer with the underlying perovskite for (001) and (110) influences the ratio of Ni2+ and Ni3+ to Ni4+ sites during the reaction and thereby the binding energy of reaction intermediates, resulting in the distinct catalytic activities of the transformed facets.
Collapse
Affiliation(s)
- Achim Füngerlings
- Department of Physics, Theoretical Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany
| | - Marcus Wohlgemuth
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
| | - Denis Antipin
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Emma van der Minne
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Hallenweg 15, Enschede, 7522, Netherlands
| | - Ellen Marijn Kiens
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Hallenweg 15, Enschede, 7522, Netherlands
| | - Javier Villalobos
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Felix Gunkel
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
| | - Rossitza Pentcheva
- Department of Physics, Theoretical Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstraße 1, Duisburg, 47057, Germany.
| | - Christoph Baeumer
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Hallenweg 15, Enschede, 7522, Netherlands.
| |
Collapse
|
52
|
Wei Y, Hu Y, Da P, Weng Z, Xi P, Yan CH. Triggered lattice-oxygen oxidation with active-site generation and self-termination of surface reconstruction during water oxidation. Proc Natl Acad Sci U S A 2023; 120:e2312224120. [PMID: 38051768 PMCID: PMC10723130 DOI: 10.1073/pnas.2312224120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 12/07/2023] Open
Abstract
To master the activation law and mechanism of surface lattice oxygen for the oxygen evolution reaction (OER) is critical for the development of efficient water electrolysis. Herein, we propose a strategy for triggering lattice-oxygen oxidation and enabling non-concerted proton-electron transfers during OER conditions by substituting Al in La0.3Sr0.7CoO3-δ. According to our experimental data and density functional theory calculations, the substitution of Al can have a dual effect of promoting surface reconstruction into active Co oxyhydroxides and activating deprotonation on the reconstructed oxyhydroxide, inducing negatively charged oxygen as an active site. This leads to a significant improvement in the OER activity. Additionally, Al dopants facilitate the preoxidation of active cobalt metal, which introduces great structural flexibility due to elevated O 2p levels. As OER progresses, the accumulation of oxygen vacancies and lattice-oxygen oxidation on the catalyst surface leads to the termination of Al3+ leaching, thereby preventing further reconstruction. We have demonstrated a promising approach to achieving tunable electrochemical reconstruction by optimizing the electronic structure and gained a fundamental understanding of the activation mechanism of surface oxygen sites.
Collapse
Affiliation(s)
- Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou014030, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University-The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| |
Collapse
|
53
|
Kakati N, Anderson L, Li G, Sua-An DM, Karmakar A, Ocon JD, Chuang PYA. Indispensable Nafion Ionomer for High-Efficiency and Stable Oxygen Evolution Reaction in Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55559-55569. [PMID: 38058109 DOI: 10.1021/acsami.3c08377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Addressing the challenge of sluggish kinetics and limited stability in alkaline oxygen evolution reactions, recent exploration of novel electrochemical catalysts offers improved prospects. To expedite the assessment of these catalysts, a half-cell rotating disk electrode is often favored for its simplicity. However, the actual catalyst performance strongly depends on the fabricated catalyst layers, which encounter mass transport overpotentials. We systematically investigate the role and sequence of electrode drop-casting methods onto a glassy carbon electrode regarding the efficiency of the oxygen evolution reaction. The catalyst layer without Nafion experiences nearly 50% activity loss post stability test, while those with Nafion exhibit less than 5% activity loss. Additionally, the sequence of application of the catalyst and Nafion also shows a significant effect on catalyst stability. The catalyst activity increases by roughly 20% after the stability test when the catalyst layer is coated first with an ionomer layer, followed by drop-casting the catalysts. Based on the half-cell results, the Nafion ionomer not only acts as a binder in the catalyst layer but also enhances the interfacial interaction between the catalyst and electrolyte, promoting performance and stability. This study provides new insights into the efficient and accurate evaluation of electrocatalyst performance and stability as well as the role of Nafion ionomer in the catalyst layer.
Collapse
Affiliation(s)
- Nitul Kakati
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Lawrence Anderson
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Guangfu Li
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Desiree Mae Sua-An
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
- Laboratory of Electrochemical Engineering, Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Ayon Karmakar
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| | - Joey D Ocon
- Laboratory of Electrochemical Engineering, Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Po-Ya Abel Chuang
- Department of Mechanical Engineering, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
54
|
Yang W, Bai Y, Peng L, Qu M, Wang Z, Sun K. Iron substitution enabled lattice oxygen oxidation and cation leaching for promoting surface reconstruction in electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 656:15-23. [PMID: 37980720 DOI: 10.1016/j.jcis.2023.11.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The low-cost transition metal oxides have drawn widespread interest as alternatives to noble metal-based electrocatalysts for oxygen evolution reaction (OER). Transition metal oxides usually undergo surface reconstruction during electrochemical reaction to form the actual active species. However, in-depth understanding and regulating of the surface reconstruction of active phases for oxides in OER remains an onerous challenge. Herein, we report a simple Fe element substitution strategy to facilitate the surface reconstruction of spinel oxide NiCr2O4 to generate active (oxy)hydroxides. The activated Fe-doped NiCr2O4 (Act-Fe-NCO) exhibits a lower OER overpotential of 259 mV at 10 mA cm-2 than activated NiCr2O4 (Act-NCO, 428 mV), and shows excellent stability for 120 h. The electrochemically activated CV measurement and nanostructure characterizations reveal that Fe substitution could promote the consumption of lattice oxygen during electrochemical activation to induce the leaching of soluble Cr cations, thereby facilitating the reconstruction of remaining Ni cations on the surface into (oxy)hydroxide active species. Moreover, theoretical calculations further demonstrate that the O 2p band center of NiCr2O4 moves towards the Fermi level due to Fe substitution, thus promoting lattice oxygen oxidation and providing greater structural flexibility for surface reconstruction. This work shows a promising way to regulate the surface reconstruction kinetics and OER electrocatalytic activity of transition metal oxides.
Collapse
Affiliation(s)
- Weiwei Yang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China; Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Bai
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China; Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Lin Peng
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Meixiu Qu
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zhenhua Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
55
|
Wang H, Pei Y, Wang K, Zuo Y, Wei M, Xiong J, Zhang P, Chen Z, Shang N, Zhong D, Pei P. First-Row Transition Metals for Catalyzing Oxygen Redox. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304863. [PMID: 37469215 DOI: 10.1002/smll.202304863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Rechargeable zinc-air batteries are widely recognized as a highly promising technology for energy conversion and storage, offering a cost-effective and viable alternative to commercial lithium-ion batteries due to their unique advantages. However, the practical application and commercialization of zinc-air batteries are hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Recently, extensive research has focused on the potential of first-row transition metals (Mn, Fe, Co, Ni, and Cu) as promising alternatives to noble metals in bifunctional ORR/OER electrocatalysts, leveraging their high-efficiency electrocatalytic activity and excellent durability. This review provides a comprehensive summary of the recent advancements in the mechanisms of ORR/OER, the performance of bifunctional electrocatalysts, and the preparation strategies employed for electrocatalysts based on first-row transition metals in alkaline media for zinc-air batteries. The paper concludes by proposing several challenges and highlighting emerging research trends for the future development of bifunctional electrocatalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Hengwei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Pei
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Keliang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| | - Yayu Zuo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Manhui Wei
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pengfei Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhuo Chen
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuo Shang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Daiyuan Zhong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Pucheng Pei
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
56
|
Wang Y, Li L, Shi J, Xie M, Nie J, Huang G, Li B, Hu W, Pan A, Huang W. Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal-Based (oxy)Hydroxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303321. [PMID: 37814357 PMCID: PMC10646268 DOI: 10.1002/advs.202303321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Indexed: 10/11/2023]
Abstract
The oxygen evolution reaction (OER) activity of transition metal (TM)-based (oxy)hydroxide is dominated by the number and nature of surface active sites, which are generally considered to be TM atoms occupying less than half of surface sites, with most being inactive oxygen atoms. Herein, based on an in situ competing growth strategy of bimetallic ions and OH- ions, a facile one-step method is proposed to modulate oxygen defects in NiFe-layered double hydroxide (NiFe-LDH)/FeOOH heterostructure, which may trigger the single lattice oxygen mechanism (sLOM). Interestingly, by only varying the addition of H2 O2 , one can simultaneously regulate the concentration of oxygen defects, the valence of metal sites, and the ratio of components. The proper oxygen defects promote synergy between the adsorbate evolution mechanism (AEM, metal redox chemistry) and sLOM (oxygen redox chemistry) of OER in NiFe-based (oxy)hydroxide, practically maximizing the use of surface TM and oxygen atoms as active sites. Consequently, the optimal NiFe-LDH/FeOOH heterostructure outperforms the reported non-noble OER catalysts in electrocatalytic activity, with an overpotential of 177 mV to deliver a current density of 20 mA cm-2 and high stability. The novel strategy exemplifies a facile and versatile approach to designing highly active TM-LDH-based OER electrocatalysts for energy and environmental applications.
Collapse
Affiliation(s)
- Yu‐Han Wang
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Lei Li
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Jinghui Shi
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Meng‐Yuan Xie
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Jianhang Nie
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Gui‐Fang Huang
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Bo Li
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Wangyu Hu
- School of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Anlian Pan
- School of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Wei‐Qing Huang
- Department of Applied PhysicsSchool of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| |
Collapse
|
57
|
Dinu LA, Kurbanoglu S. Enhancing electrochemical sensing through the use of functionalized graphene composites as nanozymes. NANOSCALE 2023; 15:16514-16538. [PMID: 37815527 DOI: 10.1039/d3nr01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Graphene-based nanozymes possess inherent nanomaterial properties that offer not only a simple substitute for enzymes but also a versatile platform capable of bonding with complex biochemical environments. The current review discusses the replacement of enzymes in developing biosensors with nanozymes. Functionalization of graphene-based materials with various nanoparticles can enhance their nanozymatic properties. Graphene oxide functionalization has been shown to yield graphene-based nanozymes that closely mimic several natural enzymes. This review provides an overview of the classification, current state-of-the-art development, synthesis routes, and types of functionalized graphene-based nanozymes for the design of electrochemical sensors. Furthermore, it includes a summary of the application of functionalized graphene-based nanozymes for constructing electrochemical sensors for pollutants, drugs, and various water and food samples. Challenges related to nanozymes as electrocatalytic materials are discussed, along with potential solutions and approaches for addressing these shortcomings.
Collapse
Affiliation(s)
- Livia Alexandra Dinu
- National Institute for Research and Development in Microtechnologies (IMT Bucharest), 126A Erou Iancu Nicolae Street, 077190 Voluntari, Ilfov, Romania
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Tandogan, Ankara, Türkiye.
| |
Collapse
|
58
|
Kim Y, Choi E, Kim S, Byon HR. Layered transition metal oxides (LTMO) for oxygen evolution reactions and aqueous Li-ion batteries. Chem Sci 2023; 14:10644-10663. [PMID: 37829040 PMCID: PMC10566458 DOI: 10.1039/d3sc03220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
This perspective paper comprehensively explores recent electrochemical studies on layered transition metal oxides (LTMO) in aqueous media and specifically encompasses two topics: catalysis of the oxygen evolution reaction (OER) and cathodes of aqueous lithium-ion batteries (LiBs). They involve conflicting requirements; OER catalysts aim to facilitate water dissociation, while for cathodes in aqueous LiBs it is essential to suppress water dissociation. The interfacial reactions taking place at the LTMO in these two distinct systems are of particular significance. We show various strategies for designing LTMO materials for each desired aim based on an in-depth understanding of electrochemical interfacial reactions. This paper sheds light on how regulating the LTMO interface can contribute to efficient water splitting and economical energy storage, all with a single material.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Eunjin Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Seunggu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
59
|
Ye K, Zhang Y, Mourdikoudis S, Zuo Y, Liang J, Wang M. Application of Oxygen-Group-Based Amorphous Nanomaterials in Electrocatalytic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302341. [PMID: 37337384 DOI: 10.1002/smll.202302341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Indexed: 06/21/2023]
Abstract
Environmentally friendly energy sources (e.g., hydrogen) require an urgent development targeting to address the problem of energy scarcity. Electrocatalytic water splitting is being explored as a convenient catalytic reaction in this context, and promising amorphous nanomaterials (ANMs) are receiving increasing attention due to their excellent catalytic properties.Oxygen group-based amorphous nanomaterials (O-ANMs) are an important component of the broad family of ANMs due to their unique amorphous structure, large number of defects, and abundant randomly oriented bonds, O-ANMs induce the generation of a larger number of active sites, which favors a better catalytic activity. Meanwhile, amorphous materials can disrupt the inherent features of conventional crystalline materials regarding electron transfer paths, resulting in higher flexibility. O-ANMs mainly include VIA elements such as oxygen, sulfur, selenium, tellurium, and other transition metals, most of which are reported to be free of noble metals and have comparable performance to commercial catalysts Pt/C or IrO2 and RuO2 in electrocatalysis. This review covers the features and reaction mechanism of O-ANMs, the synthesis strategies to prepare O-ANMs, as well as the application of O-ANMs in electrocatalytic water splitting. Last, the challenges and prospective remarks for future development in O-ANMs for electrocatalytic water splitting are concluded.
Collapse
Affiliation(s)
- Kang Ye
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Stefanos Mourdikoudis
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Yunpeng Zuo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengye Wang
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
60
|
Yang Z, Wang L, Dhas JA, Engelhard MH, Bowden ME, Liu W, Zhu Z, Wang C, Chambers SA, Sushko PV, Du Y. Guided anisotropic oxygen transport in vacancy ordered oxides. Nat Commun 2023; 14:6068. [PMID: 37770428 PMCID: PMC10539514 DOI: 10.1038/s41467-023-40746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
Anisotropic and efficient transport of ions under external stimuli governs the operation and failure mechanisms of energy-conversion systems and microelectronics devices. However, fundamental understanding of ion hopping processes is impeded by the lack of atomically precise materials and probes that allow for the monitoring and control at the appropriate time- and length- scales. In this work, using in-situ transmission electron microscopy, we directly show that oxygen ion migration in vacancy ordered, semiconducting SrFeO2.5 epitaxial thin films can be guided to proceed through two distinctly different diffusion pathways, each resulting in different polymorphs of SrFeO2.75 with different ground electronic properties before reaching a fully oxidized, metallic SrFeO3 phase. The diffusion steps and reaction intermediates are revealed by means of ab-initio calculations. The principles of controlling oxygen diffusion pathways and reaction intermediates demonstrated here may advance the rational design of structurally ordered oxides for tailored applications and provide insights for developing devices with multiple states of regulation.
Collapse
Affiliation(s)
- Zhenzhong Yang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeffrey A Dhas
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wen Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Peter V Sushko
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
61
|
Hao Y, Kang Y, Wang S, Chen Z, Lei C, Cao X, Chen L, Li Y, Liu Z, Gong M. Electrode/Electrolyte Synergy for Concerted Promotion of Electron and Proton Transfers toward Efficient Neutral Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202303200. [PMID: 37278979 DOI: 10.1002/anie.202303200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Neutral water oxidation is a crucial half-reaction for various electrochemical applications requiring pH-benign conditions. However, its sluggish kinetics with limited proton and electron transfer rates greatly impacts the overall energy efficiency. In this work, we created an electrode/electrolyte synergy strategy for simultaneously enhancing the proton and electron transfers at the interface toward highly efficient neutral water oxidation. The charge transfer was accelerated between the iridium oxide and in situ formed nickel oxyhydroxide on the electrode end. The proton transfer was expedited by the compact borate environment that originated from hierarchical fluoride/borate anions on the electrolyte end. These concerted promotions facilitated the proton-coupled electron transfer (PCET) events. Due to the electrode/electrolyte synergy, Ir-O and Ir-OO- intermediates could be directly detected by in situ Raman spectroscopy, and the rate-limiting step of Ir-O oxidation was determined. This synergy strategy can extend the scope of optimizing electrocatalytic activities toward more electrode/electrolyte combinations.
Collapse
Affiliation(s)
- Yaming Hao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yikun Kang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Shaoyan Wang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhe Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Can Lei
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Xueting Cao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Lin Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yefei Li
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhipan Liu
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Ming Gong
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| |
Collapse
|
62
|
Wang Y, Zhao Y, Liu L, Qin W, Liu S, Tu J, Liu Y, Qin Y, Liu J, Wu H, Zhang D, Chu A, Jia B, Qu X, Qin M, Xue J. Facet Engineering and Pore Design Boost Dynamic Fe Exchange in Oxygen Evolution Catalysis to Break the Activity-Stability Trade-Off. J Am Chem Soc 2023; 145:20261-20272. [PMID: 37452768 DOI: 10.1021/jacs.3c03481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The oxygen evolution reaction (OER) plays a vital role in renewable energy technologies, including in fuel cells, metal-air batteries, and water splitting; however, the currently available catalysts still suffer from unsatisfactory performance due to the sluggish OER kinetics. Herein, we developed a new catalyst with high efficiency in which the dynamic exchange mechanism of active Fe sites in the OER was regulated by crystal plane engineering and pore structure design. High-density nanoholes were created on cobalt hydroxide as the catalyst host, and then Fe species were filled inside the nanoholes. During the OER, the dynamic Fe was selectively and strongly adsorbed by the (101̅0) sites on the nanohole walls rather than the (0001) basal plane, and at the same time the space-confining effect of the nanohole slowed down the Fe diffusion from catalyst to electrolyte. As a result, a local high-flux Fe dynamic equilibrium inside the nanoholes for OER was achieved, as demonstrated by the Fe57 isotope labeled mass spectrometry, thereby delivering a high OER activity. The catalyst showed a remarkably low overpotential of 228 mV at a current density of 10 mA cm-2, which is among the best cobalt-based catalysts reported so far. This special protection strategy for Fe also greatly improved the catalytic stability, reducing the Fe leaching amount by 2 orders of magnitude compared with the pure Fe hydroxide catalyst and thus delivering a long-term stability of 130 h. An assembled Zn-air battery was stably cycled for 170 h with a low discharge/charge voltage difference of 0.72 V.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanjun Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Juping Tu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yadong Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunpu Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianfang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Deyin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Aimin Chu
- School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, U.K
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
63
|
Zhai W, Chen Y, Liu Y, Sakthivel T, Ma Y, Qin Y, Qu Y, Dai Z. Enlarging the Ni-O Bond Polarizability in a Phosphorene-Hosted Metal-Organic Framework for Boosted Water Oxidation Electrocatalysis. ACS NANO 2023; 17:17254-17264. [PMID: 37650602 DOI: 10.1021/acsnano.3c05224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The emerging lattice-oxygen oxidation mechanism (LOM) presents attractive opportunities for breaking the scaling relationship to boost oxygen evolution reaction (OER) with the direct OLattice-*O interaction. However, currently the LOM-triggering rationales are still debated, and a streamlined physicochemical paradigm is extremely desirable for the design of LOM-defined OER catalysts. Herein, a Ni metal-organic framework/black phosphorene (NiMOF/BP) heterostructure is theoretically profiled and constructed as a catalytic platform for the LOM-derived OER studies. It is found that the p-type BP host can enlarge the Ni-O bond polarizability of NiMOF through the Ni-O bond stretching and Ni valence declining synergically. Such an enlarged bond polarizability will in principle alleviate the lattice oxygen confinement to benefit the LOM pathway and OER performance. As a result, the optimized NiMOF/BP catalyst exhibits promising OER performance with a low overpotential of 260 mV at 10 mA cm-2 and long-term stability in 1 M KOH electrolyte. Both experiment and calculation results suggest the activated LOM pathway with a more balanced step barrier in the NiMOF/BP OER catalyst. This research puts forward Ni-O bond polarizability as the criterion to design LOM-scaled electrocatalysts for water oxidation.
Collapse
Affiliation(s)
- Wenfang Zhai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuanyuan Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuanbin Qin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
64
|
Tang Y, Wu C, Zhang Q, Zhong H, Zou A, Li J, Ma Y, An H, Yu Z, Xi S, Xue J, Wang X, Wu J. Accelerated Surface Reconstruction through Regulating the Solid-Liquid Interface by Oxyanions in Perovskite Electrocatalysts for Enhanced Oxygen Evolution. Angew Chem Int Ed Engl 2023; 62:e202309107. [PMID: 37470435 DOI: 10.1002/anie.202309107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
A comprehensive understanding of surface reconstruction was critical to developing high performance lattice oxygen oxidation mechanism (LOM) based perovskite electrocatalysts. Traditionally, the primary determining factor of the surface reconstruction process was believed to be the oxygen vacancy formation energy. Hence, most previous studies focused on optimizing composition to reduce the oxygen vacancy formation energy, which in turn facilitated the surface reconstruction process. Here, for the first time, we found that adding oxyanions (SO4 2- , CO3 2- , NO3 - ) into the electrolyte could effectively regulate the solid-liquid interface, significantly accelerating the surface reconstruction process and enhancing oxygen evolution reaction (OER) activities. Further studies indicated that the added oxyanions would adsorb onto the solid-liquid interface layer, disrupting the dynamic equilibrium between the adsorbed OH- ions and the OH- ions generated during surface reconstruction process. As such, the OH- ions generated during surface reconstruction process could be more readily released into the electrolyte, thereby leading to an acceleration of the surface reconstruction. Thus, it was expected that our finding would provide a new layer of understanding to the surface reconstruction process in LOM-based perovskite electrocatalysts.
Collapse
Affiliation(s)
- Ying Tang
- College of Materials Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, 610065, Chengdu, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research, 627833, Singapore, Republic of Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Republic of Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Republic of Singapore
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, 610065, Chengdu, China
| | - Yifan Ma
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Republic of Singapore
| | - Hang An
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Republic of Singapore
| | - Zhigen Yu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research, 627833, Singapore, Republic of Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Republic of Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, 610065, Chengdu, China
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Republic of Singapore
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, 610065, Chengdu, China
| |
Collapse
|
65
|
Hsu BZ, Lai JK, Lee YH. La-based perovskites for capacity enhancement of Li-O 2 batteries. Front Chem 2023; 11:1264593. [PMID: 37720718 PMCID: PMC10502298 DOI: 10.3389/fchem.2023.1264593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Li-O2 batteries are a promising technology for the upcoming energy storage requirements because of their high theoretical specific energy density of 11,680 Wh kg-1. Currently, the actual capacity of Li-O2 batteries is much lower than this theoretical value. In many studies, perovskites have been applied as catalysts to improve the air electrode reactions in Li-O2 batteries. The effects of structure and doping on the catalytic activity of perovskites are still unclear. La1-xSrxCoO3-δ (x = 0.1, 0.3, and 0.5) and La0.9Sr0.1YbO3-δ mixed with carbon black (Vulcan XC500 or Super P) were used as air electrode catalysts. Electrochemical characterizations were conducted using a Swagelok-type cell. The charge-discharge capacity and cyclic voltammetry (CV) performance were investigated in this study. The La1-xSrxCoO3-δ (x = 0.1, 0.3, and 0.5) is a suitable cathode catalyst for Li-O2 batteries. In this study, the La0.5Sr0.5CoO3-δ/Super P cathode demonstrated the highest discharge capacity (6,032 mAh g-1). This excellent performance was attributed to the large reaction area and enhanced Li2CO3 generation.
Collapse
Affiliation(s)
| | | | - Yi-Hsuan Lee
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
66
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
67
|
Wang H, Zhai T, Wu Y, Zhou T, Zhou B, Shang C, Guo Z. High-Valence Oxides for High Performance Oxygen Evolution Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301706. [PMID: 37253121 PMCID: PMC10401147 DOI: 10.1002/advs.202301706] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Valence tuning of transition metal oxides is an effective approach to design high-performance catalysts, particularly for the oxygen evolution reaction (OER) that underpins solar/electric water splitting and metal-air batteries. Recently, high-valence oxides (HVOs) are reported to show superior OER performance, in association with the fundamental dynamics of charge transfer and the evolution of the intermediates. Particularly considered are the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM). High-valence states enhance the OER performance mainly by optimizing the eg -orbital filling, promoting the charge transfer between the metal d band and oxygen p band. Moreover, HVOs usually show an elevated O 2p band, which triggers the lattice oxygen as the redox center and enacts the efficient LOM pathway to break the "scaling" limitation of AEM. In addition, oxygen vacancies, induced by the overall charge-neutrality, also promote the direct oxygen coupling in LOM. However, the synthesis of HVOs suffers from relatively large thermodynamic barrier, which makes their preparation difficult. Hence, the synthesis strategies of the HVOs are discussed to guide further design of the HVO electrocatalysts. Finally, further challenges and perspectives are outlined for potential applications in energy conversion and storage.
Collapse
Affiliation(s)
- Hao Wang
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
- Green Catalysis CenterCollege of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Tingting Zhai
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SAR000000China
| | - Yifan Wu
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Tao Zhou
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic MaterialsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Congxiao Shang
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong SAR000000China
- Department of Mechanical EngineeringThe University of Hong KongHong Kong SAR000000China
- Zhejiang Institute of Research and InnovationThe University of Hong KongHangzhou311300China
| |
Collapse
|
68
|
Han N, Zhang W, Guo W, Pan H, Jiang B, Xing L, Tian H, Wang G, Zhang X, Fransaer J. Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application. NANO-MICRO LETTERS 2023; 15:185. [PMID: 37515746 PMCID: PMC10387042 DOI: 10.1007/s40820-023-01152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/17/2023] [Indexed: 07/31/2023]
Abstract
The electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal-air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O2 to water (H2O) or from O2 to hydrogen peroxide (H2O2). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments (e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ning Han
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Wei Guo
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Hui Pan
- Department of Physics and Astronomy, KU Leuven, 3001, Leuven, Belgium
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Lingbao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Hao Tian
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, People's Republic of China.
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
69
|
Zhao YN, Liu C, Xu S, Min S, Wang W, Mitsuzaki N, Chen Z. A/B-Site Management Strategy to Boost Electrocatalytic Overall Water Splitting on Perovskite Oxides in an Alkaline Medium. Inorg Chem 2023. [PMID: 37480341 DOI: 10.1021/acs.inorgchem.3c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
In this paper, Pr0.7Sr0.3Co1-xRuxO3 perovskite oxides were synthesized by the sol-gel method as bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The overpotentials of PSCR0.05 against HER and OER at 10 mA cm-2 were 319 and 321 mV in alkaline medium, respectively. The Tafel slopes of HER and OER were 87.32 and 118.1 mV/dec, respectively. PSCR0.05 showed the largest electrochemical active area, the smallest charge transfer resistance, and excellent long-term durability. Meanwhile, the PSCR0.05 electrocatalyst was applied for overall water splitting and its cell voltage was maintained at 1.77 V at 10 mA cm-2. The super-exchange interaction between adjacent RuO6-CoO6 octahedra in perovskite made of PSCR0.05 contains sufficient active sites (such as Co2+/Co3+, Ru3+/Ru4+, and O22-/O-). The increase of surface oxygen vacancy and active site is the main reason for the improvement of difunctional catalyst performance. In this work, the electrocatalytic performance of perovskite-type oxides was further optimized by the method of A- and B-site cationic doping regulation, which provides a new idea for perovskite-type bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Changhai Liu
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Siqi Xu
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shengkang Min
- School of Materials Science and Engineering, CNPC-CZU Innovation Alliance, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenchang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | | | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
70
|
Zhao C, Tian H, Zou Z, Xu H, Tong SY. Understanding oxygen evolution mechanisms by tracking charge flow at the atomic level. iScience 2023; 26:107037. [PMID: 37426344 PMCID: PMC10329140 DOI: 10.1016/j.isci.2023.107037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Current classifications of oxygen evolution catalysts are based on energy levels of the clean catalysts. It is generally asserted that a LOM-catalyst can only follow LOM chemistry in each electron transfer step and that there can be no mixing between AEM and LOM steps without an external trigger. We use ab initio theory to track the charge flow of the water-on-catalyst system and show that the position of water orbitals is pivotal in determining whether an electron transfer step is water dominated oxidation (WDO), lattice-oxygen dominated oxidation (LoDO), or metal dominated oxidation (MDO). Microscopic photo-catalytic pathways of TiO2 (110), a material whose lattice oxygen bands lie above the metal bands, show that viable OER pathways follow either all AEM steps or mixed AEM-LOM steps. The results provide a correct description of redox chemistries at the atomic level and advance our understanding of how water-splitting catalysts produce desorbed oxygen.
Collapse
Affiliation(s)
- Changming Zhao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Tian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- University of Science and Technology of China, Chemistry and Material Science College, Hefei 230026, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuk-Yin Tong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
71
|
Li SF, Zheng J, Yan D. Cationic Defect Engineering in Perovskite La 2CoMnO 6 for Enhanced Electrocatalytic Oxygen Evolution. Inorg Chem 2023. [PMID: 37384798 DOI: 10.1021/acs.inorgchem.3c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The urgent need to promote the development of sustainable energy conversion requires exploration of highly efficient oxygen evolution reaction (OER) electrocatalysts. Defect engineering is a promising approach to address the inherent low electrical conductivity of metal oxides and limited reaction sites, for use in clean air applications and as electrochemical energy-storage electrocatalysts. In this article, oxygen defects are introduced into La2CoMnO6-δ perovskite oxides through the A-site cation defect strategy. By tuning the content of the A-site cation, oxygen defect concentration and corresponding electrochemical OER performance have been greatly improved. As a result, the defective La1.8CoMnO6-δ (L1.8CMO) catalyst exhibits exceptional OER activity with an overpotential of 350 mV at 10 mA cm-2, approximately 120 mV lower than that of the pristine perovskite. This enhancement can be attributed to the increase in surface oxygen vacancies, optimized eg occupation of transition metal at the B-site, and enlarged Brunauer-Emmett-Teller surface area. The reported strategy facilitates the development of novel defect-mediated perovskites in electrocatalysis.
Collapse
Affiliation(s)
- Shu-Fang Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jie Zheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
72
|
Shang C, Xiao X, Xu Q. Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for oxygen evolution catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
73
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
74
|
Song Z, Wang X, Liu F, Zhou Q, Yin WJ, Wu H, Deng W, Wang J. Distilling universal activity descriptors for perovskite catalysts from multiple data sources via multi-task symbolic regression. MATERIALS HORIZONS 2023; 10:1651-1660. [PMID: 36960653 DOI: 10.1039/d3mh00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing activity descriptors via data-driven machine learning (ML) methods can speed up the design of highly active and low-cost electrocatalysts. Despite the fact that a large amount of activity data for electrocatalysts is stored in the literature, data from different publications are not comparable due to different experimental or computational conditions. In this work, an interpretable ML method, multi-task symbolic regression, was adopted to learn from data in multiple experiments. A universal activity descriptor to evaluate the oxygen evolution reaction (OER) performance of oxide perovskites free of calculations or experiments was constructed and reached high accuracy and generalization ability. Utilizing this descriptor with Bayesian-optimized parameters, a series of compelling double perovskites with excellent OER activity were predicted and further evaluated using first-principles calculations. Finally, the two ML-predicted nickel-based perovskites with the best OER activity were successfully synthesized and characterized experimentally. This work opens a new way to extend machine-learning material design by utilizing multiple data sources.
Collapse
Affiliation(s)
- Zhilong Song
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Fangting Liu
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Qionghua Zhou
- School of Physics, Southeast University, Nanjing, 211189, China.
- Suzhou Laboratory, Suzhou, China
| | - Wan-Jian Yin
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China.
- Light Industry Institute of Electrochemical Power Source, Soochow University, Suzhou, 215006, China
| | - Hao Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China.
- Suzhou Laboratory, Suzhou, China
| |
Collapse
|
75
|
Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. Recent Advances on Transition-Metal-Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207519. [PMID: 36866927 PMCID: PMC10161082 DOI: 10.1002/advs.202207519] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Transition-metal-based layered double hydroxides (TM-LDHs) nanosheets are promising electrocatalysts in the renewable electrochemical energy conversion system, which are regarded as alternatives to noble metal-based materials. In this review, recent advances on effective and facile strategies to rationally design TM-LDHs nanosheets as electrocatalysts, such as increasing the number of active sties, improving the utilization of active sites (atomic-scale catalysts), modulating the electron configurations, and controlling the lattice facets, are summarized and compared. Then, the utilization of these fabricated TM-LDHs nanosheets for oxygen evolution reaction, hydrogen evolution reaction, urea oxidation reaction, nitrogen reduction reaction, small molecule oxidations, and biomass derivatives upgrading is articulated through systematically discussing the corresponding fundamental design principles and reaction mechanism. Finally, the existing challenges in increasing the density of catalytically active sites and future prospects of TM-LDHs nanosheets-based electrocatalysts in each application are also commented.
Collapse
Affiliation(s)
- Yuchen Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Yaoyu Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Zhikeng Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Biying Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Meng Chen
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Guoqing Guan
- Energy Conversion Engineering LaboratoryInstitute of Regional Innovation (IRI)Hirosaki University3‐BunkyochoHirosaki036‐8561Japan
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologySchool of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
76
|
Khaja Hussain S, Bang JH. Overview of the oxygen vacancy effect in bimetallic spinel and perovskite oxide electrode materials for high-performance supercapacitors. Phys Chem Chem Phys 2023; 25:11892-11907. [PMID: 37097013 DOI: 10.1039/d3cp00472d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Bimetallic spinel and perovskite metal oxide materials are advanced electrode materials for supercapacitor (SC) applications because of their low-cost, distinct crystal structures, eco-friendly nature, and high conductivity. However, they suffer from the disadvantages of poor ion-diffusion kinetics and pulverization issues during cyclability tests. Along with a deeper understanding of redox chemistry, the role of oxygen vacancies (OVs) in electrode materials to support the reaction kinetics for excellence in SCs must be clarified. In this review, we highlight for the first time the importance of OVs and summarize various design strategies for the preparation of advanced bimetallic spinel oxides and perovskites with improved electrochemical performances for SC applications. With new insights, we envision that the SC research community would endeavor to utilize the benefits of OVs effectively for the development of high-performance SCs.
Collapse
Affiliation(s)
- Sk Khaja Hussain
- Nanosensor Research Institute, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Jin Ho Bang
- Nanosensor Research Institute, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea.
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
77
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
78
|
Kiens EM, Choi MJ, Wei L, Lu Q, Wang L, Baeumer C. Deeper mechanistic insights into epitaxial nickelate electrocatalysts for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:4562-4577. [PMID: 36920360 PMCID: PMC10100650 DOI: 10.1039/d3cc00325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Mass production of green hydrogen via water electrolysis requires advancements in the performance of electrocatalysts, especially for the oxygen evolution reaction. In this feature article, we highlight how epitaxial nickelates act as model systems to identify atomic-level composition-structure-property-activity relationships, capture dynamic changes under operating conditions, and reveal reaction and failure mechanisms. These insights guide advanced electrocatalyst design with tailored functionality and superior performance. We conclude with an outlook for future developments via operando characterization and multilayer electrocatalyst design.
Collapse
Affiliation(s)
- Ellen M Kiens
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Min-Ju Choi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Luhan Wei
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
| | - Qiyang Lu
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China.
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, P. R. China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Christoph Baeumer
- MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- Peter Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| |
Collapse
|
79
|
Guo H, Yang Y, Yang G, Cao X, Yan N, Li Z, Chen E, Tang L, Peng M, Shi L, Xie S, Tao H, Xu C, Zhu Y, Fu X, Pan Y, Chen N, Lin J, Tu X, Shao Z, Sun Y. Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction. ACS Catal 2023; 13:5007-5019. [PMID: 37066041 PMCID: PMC10088023 DOI: 10.1021/acscatal.2c05684] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/14/2023] [Indexed: 03/31/2023]
Abstract
The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability.
Collapse
|
80
|
Kante M, Weber ML, Ni S, van den Bosch ICG, van der Minne E, Heymann L, Falling LJ, Gauquelin N, Tsvetanova M, Cunha DM, Koster G, Gunkel F, Nemšák S, Hahn H, Velasco Estrada L, Baeumer C. A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation. ACS NANO 2023; 17:5329-5339. [PMID: 36913300 PMCID: PMC10061923 DOI: 10.1021/acsnano.2c08096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides.
Collapse
Affiliation(s)
- Mohana
V. Kante
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Moritz L. Weber
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shu Ni
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Iris C. G. van den Bosch
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Emma van der Minne
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Lisa Heymann
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Lorenz J. Falling
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicolas Gauquelin
- Electron
Microscopy for Materials Research (EMAT), Department of Physics, University of Antwerp, Antwerpen BE-2020, Belgium
- NANOlab Center
of Excellence, University of Antwerp, Antwerpen BE-2020, Belgium
| | - Martina Tsvetanova
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Daniel M. Cunha
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| | - Felix Gunkel
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Slavomír Nemšák
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Physics and Astronomy, University of
California Davis, Davis, California 95616, United States
| | - Horst Hahn
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
- Department
of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Leonardo Velasco Estrada
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Eggenstein-Leopoldshafen 76344, Germany
- Department
of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
- Universidad
Nacional de Colombia sede de La Paz, La Paz, Cesar 202010, Colombia
| | - Christoph Baeumer
- Peter
Gruenberg Institute and JARA-FIT, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7500 AE, Netherlands
| |
Collapse
|
81
|
Siebenhofer M, Nenning A, Wilson GE, Kilner JA, Rameshan C, Kubicek M, Fleig J, Blaha P. Electronic and ionic effects of sulphur and other acidic adsorbates on the surface of an SOFC cathode material. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:7213-7226. [PMID: 37007913 PMCID: PMC10044886 DOI: 10.1039/d3ta00978e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The effects of sulphur adsorbates and other typical solid oxide fuel cell (SOFC) poisons on the electronic and ionic properties of an SrO-terminated (La,Sr)CoO3 (LSC) surface and on its oxygen exchange kinetics have been investigated experimentally with near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), low energy ion scattering (LEIS) and impedance spectroscopy as well as computationally with density functional theory (DFT). The experiment shows that trace amounts of sulphur in measurement atmospheres form SO2- 4 adsorbates and strongly deactivate a pristine LSC surface. They induce a work function increase, indicating a changing surface potential and a surface dipole. DFT calculations reveal that the main participants in these charge transfer processes are not sub-surface transition metals, but surface oxygen atoms. The study further shows that sulphate adsorbates strongly affect oxygen vacancy formation energies in the LSC (sub-)surface, thus affecting defect concentrations and oxygen transport properties. To generalize these results, the investigation was extended to other acidic oxides which are technologically relevant as SOFC cathode poisons, such as CO2 and CrO3. The results unveil a clear correlation of work function changes and redistributed charge with the Smith acidity of the adsorbed oxide and clarify fundamental mechanistic details of atomic surface modifications. The impact of acidic adsorbates on various aspects of the oxygen exchange reaction rate is discussed in detail.
Collapse
Affiliation(s)
- Matthäus Siebenhofer
- Centre for Electrochemistry and Surface Technology, CEST Wr. Neustadt Austria
- Institute of Chemical Technologies and Analytics, TU Wien Vienna Austria
| | - Andreas Nenning
- Institute of Chemical Technologies and Analytics, TU Wien Vienna Austria
| | | | | | | | - Markus Kubicek
- Institute of Chemical Technologies and Analytics, TU Wien Vienna Austria
| | - Jürgen Fleig
- Institute of Chemical Technologies and Analytics, TU Wien Vienna Austria
| | - Peter Blaha
- Institute of Materials Chemistry, TU Wien Vienna Austria
| |
Collapse
|
82
|
Singh AN, Hajibabaei A, Diorizky MH, Ba Q, Nam KW. Remarkably Enhanced Lattice Oxygen Participation in Perovskites to Boost Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:905. [PMID: 36903783 PMCID: PMC10005787 DOI: 10.3390/nano13050905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Enhancing the participation of the lattice oxygen mechanism (LOM) in several perovskites to significantly boost the oxygen evolution reaction (OER) is daunting. With the rapid decline in fossil fuels, energy research is turning toward water splitting to produce usable hydrogen by significantly reducing overpotential for other half-cells' OER. Recent studies have shown that in addition to the conventional adsorbate evolution mechanism (AEM), participation of LOM can overcome their prevalent scaling relationship limitations. Here, we report the acid treatment strategy and bypass the cation/anion doping strategy to significantly enhance LOM participation. Our perovskite demonstrated a current density of 10 mA cm-2 at an overpotential of 380 mV and a low Tafel slope (65 mV dec-1) much lower than IrO2 (73 mV dec-1). We propose that the presence of nitric acid-induced defects regulates the electronic structure and thereby lowers oxygen binding energy, allowing enhanced LOM participation to boost OER significantly.
Collapse
Affiliation(s)
- Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Amir Hajibabaei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Muhammad Hanif Diorizky
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Qiankai Ba
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
- Center for Next Generation Energy and Electronic Materials, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
83
|
Bui TS, Lovell EC, Daiyan R, Amal R. Defective Metal Oxides: Lessons from CO 2 RR and Applications in NO x RR. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2205814. [PMID: 36813733 DOI: 10.1002/adma.202205814] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/09/2023] [Indexed: 06/09/2023]
Abstract
Sluggish reaction kinetics and the undesired side reactions (hydrogen evolution reaction and self-reduction) are the main bottlenecks of electrochemical conversion reactions, such as the carbon dioxide and nitrate reduction reactions (CO2 RR and NO3 RR). To date, conventional strategies to overcome these challenges involve electronic structure modification and modulation of the charge-transfer behavior. Nonetheless, key aspects of surface modification, focused on boosting the intrinsic activity of active sites on the catalyst surface, are yet to be fully understood. Engingeering of oxygen vacancies (OVs) can tune surface/bulk electronic structure and improve surface active sites of electrocatalysts. The continuous breakthroughs and significant progress in the last decade position engineering of OVs as a potential technique for advancing electrocatalysis. Motivated by this, the state-of-the-art findings of the roles of OVs in both the CO2 RR and the NO3 RR are presented. The review starts with a description of approaches to constructing and techniques for characterizing OVs. This is followed by an overview of the mechanistic understanding of the CO2 RR and a detailed discussion on the roles of OVs in the CO2 RR. Then, insights into the NO3 RR mechanism and the potential of OVs on NO3 RR based on early findings are highlighted. Finally, the challenges in designing CO2 RR/NO3 RR electrocatalysts and perspectives in studying OV engineering are provided.
Collapse
Affiliation(s)
- Thanh Son Bui
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
84
|
Shi Z, Li J, Wang Y, Liu S, Zhu J, Yang J, Wang X, Ni J, Jiang Z, Zhang L, Wang Y, Liu C, Xing W, Ge J. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat Commun 2023; 14:843. [PMID: 36792586 PMCID: PMC9932065 DOI: 10.1038/s41467-023-36380-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The poor stability of Ru-based acidic oxygen evolution (OER) electrocatalysts has greatly hampered their application in polymer electrolyte membrane electrolyzers (PEMWEs). Traditional understanding of performance degradation centered on influence of bias fails in describing the stability trend, calling for deep dive into the essential origin of inactivation. Here we uncover the decisive role of reaction route (including catalytic mechanism and intermediates binding strength) on operational stability of Ru-based catalysts. Using MRuOx (M = Ce4+, Sn4+, Ru4+, Cr4+) solid solution as structure model, we find the reaction route, thereby stability, can be customized by controlling the Ru charge. The screened SnRuOx thus exhibits orders of magnitude lifespan extension. A scalable PEMWE single cell using SnRuOx anode conveys an ever-smallest degradation rate of 53 μV h-1 during a 1300 h operation at 1 A cm-2.
Collapse
Affiliation(s)
- Zhaoping Shi
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Ji Li
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yibo Wang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Shiwei Liu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jianbing Zhu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jiahao Yang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Xian Wang
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Jing Ni
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Zheng Jiang
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.9227.e0000000119573309Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201204 China
| | - Lijuan Zhang
- grid.9227.e0000000119573309Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 China ,grid.9227.e0000000119573309Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201204 China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Changpeng Liu
- grid.9227.e0000000119573309State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China ,grid.59053.3a0000000121679639School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026 China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
85
|
Wu YH, Mehta H, Willinger E, Yuwono JA, Kumar PV, Abdala PM, Wach A, Kierzkowska A, Donat F, Kuznetsov DA, Müller CR. Altering Oxygen Binding by Redox-Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System. Angew Chem Int Ed Engl 2023; 62:e202217186. [PMID: 36538473 PMCID: PMC10108258 DOI: 10.1002/anie.202217186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Harshit Mehta
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Elena Willinger
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Jodie A Yuwono
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.,College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Anna Wach
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
86
|
Mi J, Chen J, Chen X, Liu X, Li J. Recent Status and Developments of Vacancies Modulation in the ABO 3 Perovskites for Catalytic Applications. Chemistry 2023; 29:e202202713. [PMID: 36300867 DOI: 10.1002/chem.202202713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Perovskite oxides (ABO3 ) have attracted comprehensive interest for wide range of functional applications (especially for chemical catalysis) due to their high design flexibility, controllable vacancies sites creation, abundant chemical properties, and stable crystal structure. Herein, the previous research and potential development of ABO3 through adjusting the vacancy at different sites (A-site, B-site, and O-site) to enhance catalytic performance are systematically analyzed and generalized. Briefly, the ABO3 with different vacancies sites prepared by multifarious direct and indirect methods, accompanied with the improved physical-chemical properties, endow them with distinct and intensified development of catalysis application. In addition, the impressive optimization proved by the vacancies sites adjustment over the ABO3 is studied to continuously facilitate the advance in some common catalysis reactions, further expanding to other optimized functional applications. At last, the constructive suggestions for fine regulation and analysis of vacancies sites over ABO3 are also put forward.
Collapse
Affiliation(s)
- Jinxing Mi
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China.,School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
87
|
Bai H, Feng J, Liu D, Zhou P, Wu R, Kwok CT, Ip WF, Feng W, Sui X, Liu H, Pan H. Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205638. [PMID: 36417556 DOI: 10.1002/smll.202205638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Rucheng Wu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing, 400054, China
| | - Xulei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hongchao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
88
|
Zhao M, Zheng X, Cao C, Lu Q, Zhang J, Wang H, Huang Z, Cao Y, Wang Y, Deng Y. Lattice oxygen activation in disordered rocksalts for boosting oxygen evolution. Phys Chem Chem Phys 2023; 25:4113-4120. [PMID: 36651810 DOI: 10.1039/d2cp05531g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The recent development of some special oxygen evolution reaction (OER) electrocatalysts shows that the lattice oxygen could participate in the catalysis process via the lattice oxygen oxidation mechanism (LOM), which the provides good possibility of exploring advanced electrocatalysts that could overcome the scaling relationship in conventional catalysis processes through a traditional adsorbate evolution mechanism. In this work, we theoretically predict that, benefiting from the unhybridized O-Li orbitals and the resulting metastable Li-O-Li ligands, the lattice oxygen could be easily activated and oxidized at relatively high oxidation voltages. Thus, lithium-excess disordered rocksalts (DRX) should possess the potential for acting as active OER electrocatalysts, which catalyze through the LOM pathway. The isotope labelling experimental results show that the lattice oxygen in the DRX was activated and participated in the OER process through the LOM pathway. The typical DRX of Li1.2Fe0.4Ti0.5O2 displays obviously pH-dependent OER activity under the LOM process and shows a low overpotential of 263 mV to reach 10 mA cm-2 with long-term stability for 100 hours. The turnover frequency of Li1.2Fe0.4Ti0.5O2 is nearly 9 times that of LiFePO4 at the overpotential of 300 mV. This work opens a new chemical space for exploring efficient electrocatalysts to enhance the OER performance through the LOM pathway.
Collapse
Affiliation(s)
- Menghan Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China.
| | - Xuerong Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China. .,State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.
| | - Chengchi Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.
| | - Qi Lu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China.
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.
| | - Zhong Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.
| | - Yanhui Cao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yang Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, and Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China. .,State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.
| |
Collapse
|
89
|
Ibrahim IAM, Chung CY. Ab initio study of changing the oxygen reduction activity of Co-Fe-based perovskites by tuning the B-site composition. Phys Chem Chem Phys 2023; 25:4236-4242. [PMID: 36661277 DOI: 10.1039/d2cp05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Perovskite oxides are promising low-cost and stable alternative electrocatalysts for the oxygen reduction reaction (ORR), relative to the precious metal-based electrocatalysts. Despite the experimental research on substituting various transition metals into the B-site of perovskite catalysts to improve the ORR performance, the detailed ORR mechanism due to the substitution process is rarely studied. In this paper, the ORR activity of La0.5Sr0.5CoxFe1-xO3 perovskites (x = 0, 0.25, 0.5, 0.75, and 1) is studied by density functional theory (DFT). The ORR mechanism in alkaline solution is theoretically examined as a function of the Co/Fe composition at different potentials. The substitution of Co for Fe at the B-site of the perovskites dramatically changes the theoretical overpotential and enhances the activity. The HOO* formation is the potential-determining step for all the Co/Fe compositions. In comparison with the other compositions, the Co0.5/Fe0.5 composition exhibits the lowest overpotential and bonding with the reaction intermediates moderately. Furthermore, the oxygen binding energy is correlated with the bulk oxygen p-band center relative to the Fermi level. Among all the Co/Fe compositions, the Co0.5/Fe0.5 composition shows neither too low nor too high oxygen p-band center value. These results provide deep insights into the ORR mechanism on B-site substituted perovskites and guidelines for the design of cost-effective and Pt-free electrocatalysts for oxygen reduction.
Collapse
Affiliation(s)
- Ismail A M Ibrahim
- Division of Carbon Neutrality & Materials Digitalization, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, South Korea. .,Department of Chemistry, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | - Chan-Yeup Chung
- Division of Carbon Neutrality & Materials Digitalization, Korea Institute of Ceramic Engineering & Technology, Jinju 52851, South Korea.
| |
Collapse
|
90
|
Banerjee A, Awasthi MK, Maji P, Pal M, Aziz ST, Lahiri GK, Dutta A. Double Perovskite Oxides Bringing a Revelation in Oxygen Evolution Reaction Electrocatalyst Design. ChemElectroChem 2023. [DOI: 10.1002/celc.202201098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anwesha Banerjee
- Chemistry Department Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | | | - Pramathesh Maji
- Chemistry Department University of New Orleans New Orleans LA 70148 USA
| | - Manodip Pal
- Chemistry Department Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sheikh Tarik Aziz
- Chemistry Department Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Goutam K. Lahiri
- Chemistry Department Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Arnab Dutta
- Chemistry Department Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Interdisciplinary Program in Climate Studies Indian Institute of Technology Bombay Powai Mumbai 400076 India
- National Center of Excellence CCU Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
91
|
Raveendran A, Chandran M, Dhanusuraman R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv 2023; 13:3843-3876. [PMID: 36756592 PMCID: PMC9890951 DOI: 10.1039/d2ra07642j] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Electrochemical splitting of water is an appealing solution for energy storage and conversion to overcome the reliance on depleting fossil fuel reserves and prevent severe deterioration of the global climate. Though there are several fuel cells, hydrogen (H2) and oxygen (O2) fuel cells have zero carbon emissions, and water is the only by-product. Countless researchers worldwide are working on the fundamentals, i.e. the parameters affecting the electrocatalysis of water splitting and electrocatalysts that could improve the performance of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and overall simplify the water electrolysis process. Noble metals like platinum for HER and ruthenium and iridium for OER were used earlier; however, being expensive, there are more feasible options than employing these metals for all commercialization. The review discusses the recent developments in metal and metalloid HER and OER electrocatalysts from the s, p and d block elements. The evaluation perspectives for electrocatalysts of electrochemical water splitting are also highlighted.
Collapse
Affiliation(s)
- Asha Raveendran
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| | - Mijun Chandran
- Department of Chemistry, Central University of Tamil Nadu Thiruvarur - 610005 India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab (NEL), Department of Chemistry, National Institute of Technology Puducherry Karaikal - 609609 India
| |
Collapse
|
92
|
Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection. Molecules 2023; 28:molecules28031122. [PMID: 36770789 PMCID: PMC9918915 DOI: 10.3390/molecules28031122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
The harmful effects on the human body from p-phenylenediamine (PPD) in hair dyes can cause allergies and even cancer. Therefore, it is particularly important to accurately control and detect the content of PPD in our daily products and environment. Here, a small amount of non-metallic elemental P doped in perovskite oxide of SrCoO3-δ (SC) forms a good catalytic material, SrCo0.95P0.05O3-δ (SCP), for PPD detection. The improved performance compared with that of the parent SC can be attributed to three contributing factors, including a larger amount of highly oxidative oxygen species O22-/O-, better electrical conductivity, and more active sites on the P5+-oxygen bonds of SCP. Moreover, the lattice oxygen mechanism (LOM) with highly active species of lattice O vacancies and adsorbed -OO for electrocatalytic oxidation of PPD by the SCP/GCE (glass carbon electrode) sensor is proposed in our work. More importantly, the SCP/GCE sensor exhibits good stability, a low limit of detection, and high reliability (error < 5.78%) towards PPD determination in real samples of hair dyes, suggesting the substantial research potential for practical applications.
Collapse
|
93
|
Adiga P, Wang L, Wong C, Matthews BE, Bowden ME, Spurgeon SR, Sterbinsky GE, Blum M, Choi MJ, Tao J, Kaspar TC, Chambers SA, Stoerzinger KA, Du Y. Correlation between oxygen evolution reaction activity and surface compositional evolution in epitaxial La 0.5Sr 0.5Ni 1-xFe xO 3-δ thin films. NANOSCALE 2023; 15:1119-1127. [PMID: 36594352 DOI: 10.1039/d2nr05373j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La0.5Sr0.5Ni1-xFexO3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance, suggesting common motifs of the active surface with high surface area systems.
Collapse
Affiliation(s)
- Prajwal Adiga
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA.
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Cindy Wong
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA.
| | - Bethany E Matthews
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Mark E Bowden
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Steven R Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - George E Sterbinsky
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Monika Blum
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Min-Ju Choi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Jinhui Tao
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Tiffany C Kaspar
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Kelsey A Stoerzinger
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331, USA.
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| |
Collapse
|
94
|
An L, Zhang H, Zhu J, Xi S, Huang B, Sun M, Peng Y, Xi P, Yan CH. Balancing Activity and Stability in Spinel Cobalt Oxides through Geometrical Sites Occupation towards Efficient Electrocatalytic Oxygen Evolution. Angew Chem Int Ed Engl 2023; 62:e202214600. [PMID: 36367220 DOI: 10.1002/anie.202214600] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Designing active and stable oxygen evolution reaction (OER) catalysts are vitally important to various energy conversion devices. Herein, we introduce elements Ni and Mn into (Co)tet (Co2 )oct O4 nanosheets (NSs) at fixed geometrical sites, including Mnoct , Nioct , and Nitet , to optimize the initial geometrical structure and modulate the CoCo2 O4 surface from oxygen-excess to oxygen-deficiency. The pristine (Ni,Mn)-(Co)tet (Co2 )oct O4 NSs shows excellent OER activity with an overpotential of 281.6 mV at a current density of 10 mA cm-2 . Moreover, without damaging their initial activity, the activated (Act)-(Ni,Mn)-(Co)tet (Co2 )oct O4 NSs after surface reconstruction exhibit long-term stability of 100 h under 10 mA cm-2 , 50 mA cm-2 , or even 100 mA cm-2 . The optimal balance between electroactivity and stability leads to remarkable OER performances, providing a pivotal guideline for designing ideal electrocatalysts and inspiring more works to focus on the dynamic change of each occupation site component.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hong Zhang
- Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kow-loon, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kow-loon, Hong Kong SAR, China
| | - Yong Peng
- Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
95
|
Metal oxide Perovskite-Carbon composites as electrocatalysts for zinc-air batteries. Optimization of ball-milling mixing parameters. J Colloid Interface Sci 2023; 630:269-280. [DOI: 10.1016/j.jcis.2022.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
96
|
Chen Z, Xu C, Zhao F, Xi S, Li W, Huang M, Cai B, Gu M, Wang HL, Xiang XD. High-Performance Oxygen Evolution Reaction Electrocatalysts Discovered via High-Throughput Aerogel Synthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhuyang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Fu Zhao
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Weixuan Li
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Mingcheng Huang
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Bijun Cai
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Meng Gu
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Hsing-Lin Wang
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - X.-D. Xiang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| |
Collapse
|
97
|
Jin Y, Huo W, Zhou X, Zhang L, Li Y, Yang S, Qian J, Cai D, Ge Y, Yang Z, Nie H. IrO 2-Stablized La 2IrO 6 perovskite nanotubes via corner-shared interconnections as highly-efficient oxygen evolution electrocatalysts. Chem Commun (Camb) 2022; 59:183-186. [PMID: 36484155 DOI: 10.1039/d2cc05562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
One-dimensional nanotube heterostructures with IrO2-stabilized La2IrO6 is obtained by an electrospinning approach. The La2IrO6/IrO2 catalyst exhibits superior catalytic activity and strong stability for the oxygen evolution reaction. The synergistic cooperation between the two types of Ir as the active sites in La2IrO6/IrO2 is demonstrated by in situ Raman spectrum and DFT calculation.
Collapse
Affiliation(s)
- Yuwei Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Wenjing Huo
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Libin Zhang
- Hangzhou Electric Connector Factory, Hangzhou, 310052, China
| | - Yong Li
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shuo Yang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
98
|
Erdil T, Lokcu E, Yildiz I, Okuyucu C, Kalay YE, Toparli C. Facile Synthesis and Origin of Enhanced Electrochemical Oxygen Evolution Reaction Performance of 2H-Hexagonal Ba 2CoMnO 6-δ as a New Member in Double Perovskite Oxides. ACS OMEGA 2022; 7:44147-44155. [PMID: 36506127 PMCID: PMC9730773 DOI: 10.1021/acsomega.2c05627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Perovskite oxides have been considered promising oxygen evolution reaction (OER) electrocatalysts due to their high intrinsic activity. Yet, their poor long-term electrochemical and structural stability is still controversial. In this work, we apply an A-site management strategy to tune the activity and stability of a new hexagonal double perovskite oxide. We synthesized the previously inaccessible 2H-Ba2CoMnO6-δ (BCM) perovskite oxide via the universal sol-gel method followed by a novel air-quench method. The new 2H-BCM perovskite oxide exhibits outstanding OER activity with an overpotential of 288 mV at 10 mA cm-2 and excellent long-term stability without segregation or structural change. To understand the origin of outstanding OER performance of BCM, we substitute divalent Ba with trivalent La at the A-site and investigate crystal and electronic structure change. Fermi level and valence band analysis presents a decline in the work function with the Ba amount, suggesting a structure-oxygen vacancy-work function-activity relationship for Ba x La2-x CoMnO6-δ (x = 0, 0.5, 1, 1.5, 2) electrocatalysts. Our work suggests a novel production strategy to explore the single-phase new structures and develop enhanced OER catalysts.
Collapse
Affiliation(s)
- Tuncay Erdil
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ersu Lokcu
- Department
of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Ilker Yildiz
- Central
Laboratory, Middle East Technical University, 06800 Ankara, Turkey
| | - Can Okuyucu
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Yunus Eren Kalay
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Cigdem Toparli
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
99
|
Li Z, Yang B, Qian B, Wang S, Zheng Y, Ge L, Chen H. Evaluation of Fe-doped Pr1.8Ba0.2NiO4 as a high-performance air electrode for reversible solid oxide cell. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
100
|
Wang X, Zhong H, Xi S, Lee WSV, Xue J. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107956. [PMID: 35853837 DOI: 10.1002/adma.202107956] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The electron-transfer process during the oxygen evolution reaction (OER) often either proceeds solely via a metal redox chemistry (adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level). Unlike the AEM, the LOM involves oxygen redox chemistry instead of metal redox, which leads to the formation of a direct oxygen-oxygen (OO) bond. As a result, such a process is able to bypass the rate-determining step, that is, OO bonding, in AEM, which highlights the critical advantage of LOM as compared to the conventional AEM. Thus, it has been well reported that LOM-based catalysts are able to demonstrate higher OER activities as compared to AEM-based catalysts. Here, a comprehensive understanding of the oxygen redox in LOM and all documented and possible characterization techniques that can be used to identify the oxygen redox are reviewed. This review will interpret the origins of oxygen redox in the reported LOM-based electrocatalysts and the underlying science of LOM-induced surface reconstruction in transition metal oxides. Finally, perspectives on the future development of LOM electrocatalysts are also provided.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|