51
|
Festuccia WT. Regulation of Adipocyte and Macrophage Functions by mTORC1 and 2 in Metabolic Diseases. Mol Nutr Food Res 2020; 65:e1900768. [DOI: 10.1002/mnfr.201900768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- William T. Festuccia
- Department of Physiology and Biophysics Institute of Biomedical Sciences University of Sao Paulo Sao Paulo 05508000 Brazil
| |
Collapse
|
52
|
Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30:300-314. [PMID: 32132672 PMCID: PMC7118080 DOI: 10.1038/s41422-020-0291-z] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
The growing field of immunometabolism has taught us how metabolic cellular reactions and processes not only provide a means to generate ATP and biosynthetic precursors, but are also a way of controlling immunity and inflammation. Metabolic reprogramming of immune cells is essential for both inflammatory as well as anti-inflammatory responses. Four anti-inflammatory therapies, DMF, Metformin, Methotrexate and Rapamycin all work by affecting metabolism and/or regulating or mimicking endogenous metabolites with anti-inflammatory effects. Evidence is emerging for the targeting of specific metabolic events as a strategy to limit inflammation in different contexts. Here we discuss these recent developments and speculate on the prospect of targeting immunometabolism in the effort to develop novel anti-inflammatory therapeutics. As accumulating evidence for roles of an intricate and elaborate network of metabolic processes, including lipid, amino acid and nucleotide metabolism provides key focal points for developing new therapies, we here turn our attention to glycolysis and the TCA cycle to provide examples of how metabolic intermediates and enzymes can provide potential novel therapeutic targets.
Collapse
|
53
|
Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med 2020; 7:22. [PMID: 32158768 PMCID: PMC7052117 DOI: 10.3389/fcvm.2020.00022] [Citation(s) in RCA: 633] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
54
|
Carloni S, Balduini W. Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 2020; 324:113117. [DOI: 10.1016/j.expneurol.2019.113117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
|
55
|
Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:69-80. [PMID: 32030685 DOI: 10.1007/978-3-030-35582-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.
Collapse
|
56
|
Harb H, Chatila TA. Mechanisms of Dupilumab. Clin Exp Allergy 2020; 50:5-14. [PMID: 31505066 PMCID: PMC6930967 DOI: 10.1111/cea.13491] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
The Th2 cytokines interleukin 4 (IL-4) and IL-13 and the heterodimeric IL-4 receptor (IL-4R) complexes that they interact with play a key role in the pathogenesis of allergic disorders. Dupilumab is a humanized IgG4 monoclonal antibody that targets the IL-4 receptor alpha chain (IL-4Rα), common to both IL-4R complexes: type 1 (IL-4Rα/γc; IL-4 specific) and type 2 (IL-4Rα/IL-13Rα1; IL-4 and IL-13 specific). In this review, we detail the current state of knowledge of the different signalling pathways coupled to the IL-4R complexes and examine the possible mechanisms of Dupilumab action and survey its clinical efficacy in different allergic disorders. The development of Dupilumab and the widening spectrum of its clinical applications is relevant to the current emphasis on precision medicine approaches to the blockade of pathways involved in allergic diseases.
Collapse
Affiliation(s)
- Hani Harb
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
57
|
Souza-Moreira L, Soares VC, Dias SDSG, Bozza PT. Adipose-derived Mesenchymal Stromal Cells Modulate Lipid Metabolism and Lipid Droplet Biogenesis via AKT/mTOR -PPARγ Signalling in Macrophages. Sci Rep 2019; 9:20304. [PMID: 31889120 PMCID: PMC6937267 DOI: 10.1038/s41598-019-56835-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a potential therapy for many chronic inflammatory diseases due to their regenerative, immunologic and anti-inflammatory properties. The two-way dialogue between MSCs and macrophages is crucial to tissue regeneration and repair. Previous research demonstrated that murine adipose-derived MSC conditioned medium (ASCcm) reprograms macrophages to an M2-like phenotype which protects from experimental colitis and sepsis. Here, our focus was to determine the molecular mechanism of lipid droplet biogenesis in macrophages re-educated using ASCcm. Adipose-derived MSC conditioned medium promotes phosphorylation of AKT/mTOR pathway proteins in macrophages. Furthermore, increased expression of PPARγ, lipid droplet biogenesis and PGE2 synthesis were observed in M2-like phenotype macrophages (high expression of arginase 1 and elevated IL-10). Treatment with mTOR inhibitor rapamycin or PPARγ inhibitor GW9662 suppressed lipid droplets and PGE2 secretion. However, these inhibitors had no effect on arginase-1 expression. Rapamycin, but not GW9662, inhibit IL-10 secretion. In conclusion, we demonstrate major effects of ASCcm to reprogram macrophage immunometabolism through mTOR and PPARγ dependent and independent pathways.
Collapse
Affiliation(s)
- Luciana Souza-Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz/IOC, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz/IOC, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Suelen da Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz/IOC, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz/IOC, Fundação Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, 21045-900, RJ, Brazil.
| |
Collapse
|
58
|
Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK, Muthukumar T, Choi AM, Akchurin OM, Choi ME. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 2019; 4:132826. [PMID: 31639106 DOI: 10.1172/jci.insight.132826] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Mitophagy, by maintaining mitochondrial quality control, plays a key role in maintaining kidney function and is impaired in pathologic states. Macrophages are well known for their pathogenic role in kidney fibrosis. Here, we report that PINK1/Parkin-mediated mitophagy in macrophages is compromised in experimental and human kidney fibrosis. We demonstrate downregulation of mitophagy regulators mitofusin-2 (MFN2) and Parkin downstream of PINK1 in kidney fibrosis. Loss of either Pink1 or Prkn promoted renal extracellular matrix accumulation and frequency of profibrotic/M2 macrophages. Pink1-/- or Prkn-/- BM-derived macrophages (BMDMs) showed enhanced expression of rictor. Mitochondria from TGF-β1-treated Pink1-/- BMDMs exhibited increased superoxide levels, along with reduced respiration and ATP production. In addition, mitophagy in macrophages involves PINK1-mediated phosphorylation of downstream MFN2, MFN2-facilitated recruitment of Parkin to damaged mitochondria, and macrophage-specific deletion of Mfn2 aggravates kidney fibrosis. Moreover, mitophagy regulators were downregulated in human CKD kidney and TGF-β1-treated human renal macrophages, whereas Mdivi1 treatment suppressed mitophagy mediators and promoted fibrotic response. Taken together, our study is the first to our knowledge to demonstrate that macrophage mitophagy plays a protective role against kidney fibrosis via regulating the PINK1/MFN2/Parkin-mediated pathway.
Collapse
Affiliation(s)
| | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital, New York, New York, USA
| | - Oleh M Akchurin
- NewYork-Presbyterian Hospital, New York, New York, USA.,Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension and.,NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
59
|
Wang H, Zhang CS, Fang BB, Li ZD, Li L, Bi XJ, Li WD, Zhang N, Lin RY, Wen H. Thioredoxin peroxidase secreted by Echinococcus granulosus (sensu stricto) promotes the alternative activation of macrophages via PI3K/AKT/mTOR pathway. Parasit Vectors 2019; 12:542. [PMID: 31727141 PMCID: PMC6857240 DOI: 10.1186/s13071-019-3786-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Larvae of Echinococcus granulosus (sensu lato) dwell in host organs for a long time but elicit only a mild inflammatory response, which indicates that the resolution of host inflammation is necessary for parasite survival. The recruitment of alternatively activated macrophages (AAMs) has been observed in a variety of helminth infections, and emerging evidence indicates that AAMs are critical for the resolution of inflammation. However, whether AAMs can be induced by E. granulosus (s.l.) infection or thioredoxin peroxidase (TPx), one of the important molecules secreted by the parasite, remains unclear. METHODS The activation status of peritoneal macrophages (PMs) derived from mice infected with E. granulosus (sensu stricto) was analyzed by evaluating the expression of phenotypic markers. PMs were then treated in vivo and in vitro with recombinant EgTPx (rEgTPx) and its variant (rvEgTPx) in combination with parasite excretory-secretory (ES) products, and the resulting activation of the PMs was evaluated by flow cytometry and real-time PCR. The phosphorylation levels of various molecules in the PI3K/AKT/mTOR pathway after parasite infection and antigen stimulation were also detected. RESULTS The expression of AAM-related genes in PMs was preferentially induced after E. granulosus (s.s.) infection, and phenotypic differences in cell morphology were detected between PMs isolated from E. granulosus (s.s.)-infected mice and control mice. The administration of parasite ES products or rEgTPx induced the recruitment of AAMs to the peritoneum and a notable skewing of the ratio of PM subsets, and these effects are consistent with those obtained after E. granulosus (s.s.) infection. ES products or rEgTPx also induced PMs toward an AAM phenotype in vitro. Interestingly, this immunomodulatory property of rEgTPx was dependent on its antioxidant activity. In addition, the PI3K/AKT/mTOR pathway was activated after parasite infection and antigen stimulation, and the activation of this pathway was suppressed by pre-treatment with an AKT/mTOR inhibitor. CONCLUSIONS This study demonstrates that E. granulosus (s.s.) infection and ES products, including EgTPx, can induce PM recruitment and alternative activation, at least in part, via the PI3K/AKT/mTOR pathway. These results suggest that EgTPx-induced AAMs might play a key role in the resolution of inflammation and thereby favour the establishment of hydatid cysts in the host.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, 831100, Xinjiang, People's Republic of China.,Basic Medical College, Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Chuan-Shan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China.,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Zhi-De Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Xiao-Juan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Wen-Ding Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China
| | - Ren-Yong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, People's Republic of China. .,Xinjiang Key Laboratory of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830054, Xinjiang, China.
| |
Collapse
|
60
|
Cox N, Geissmann F. Macrophage ontogeny in the control of adipose tissue biology. Curr Opin Immunol 2019; 62:1-8. [PMID: 31670115 DOI: 10.1016/j.coi.2019.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Macrophages are found in large numbers in the adipose tissue where they closely associate with the adipocytes and the vasculature. Adipose tissue macrophages are a heterogenous population of cells with 'hard wired' diversity brought upon by distinct developmental lineages. The purpose of this review is to provide a brief history of macrophages in control of adipose tissue metabolism with the emphasis on the importance of macrophage ontogeny.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
61
|
Wu H, Reimann S, Siddiqui S, Haag R, Siegmund B, Dernedde J, Glauben R. dPGS Regulates the Phenotype of Macrophages via Metabolic Switching. Macromol Biosci 2019; 19:e1900184. [PMID: 31631571 DOI: 10.1002/mabi.201900184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/16/2019] [Indexed: 11/09/2022]
Abstract
The synthetic compound dendritic polyglycerol sulfate (dPGS) is a pleiotropic acting molecule but shows a high binding affinity to immunological active molecules as L-/P-selectin or complement proteins leading to well described anti-inflammatory properties in various mouse models. In order to make a comprehensive evaluation of the direct effect on the innate immune system, macrophage polarization is analyzed in the presence of dPGS on a phenotypic but also metabolic level. dPGS administered macrophages show a significant increase of MCP1 production paralleled by a reduction of IL-10 secretion. Metabolic analysis reveals that dPGS could potently enhance the glycolysis and mitochondrial respiration in M0 macrophages as well as decrease the mitochondrial respiration of M2 macrophages. In summary the data indicate that dPGS polarizes macrophages into a pro-inflammatory phenotype in a metabolic pathway-dependent manner.
Collapse
Affiliation(s)
- Hao Wu
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12200, Berlin, Germany.,Institut für Systemimmunologie, Julius-Maximilians Universität Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Sabine Reimann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sophiya Siddiqui
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Britta Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedzin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Rainer Glauben
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12200, Berlin, Germany
| |
Collapse
|
62
|
Katholnig K, Schütz B, Fritsch SD, Schörghofer D, Linke M, Sukhbaatar N, Matschinger JM, Unterleuthner D, Hirtl M, Lang M, Herac M, Spittler A, Bergthaler A, Schabbauer G, Bergmann M, Dolznig H, Hengstschläger M, Magnuson MA, Mikula M, Weichhart T. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis. JCI Insight 2019; 4:124164. [PMID: 31619583 PMCID: PMC6824305 DOI: 10.1172/jci.insight.124164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC.
Collapse
Affiliation(s)
- Karl Katholnig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Birgit Schütz
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | - David Schörghofer
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | | | | | - Martin Hirtl
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Michaela Lang
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology
| | | | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, and
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mario Mikula
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| |
Collapse
|
63
|
Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, Qin Y, Kühl AA, Qin Z, Siegmund B, Glauben R. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med 2019; 11:e10698. [PMID: 31602788 PMCID: PMC6835560 DOI: 10.15252/emmm.201910698] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor‐associated macrophages (TAMs) promote tumor growth and metastasis by suppressing tumor immune surveillance. Herein, we provide evidence that the immunosuppressive phenotype of TAMs is controlled by long‐chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate. Consequently, en‐route enriched lipid droplets were identified as essential organelles, which represent effective targets for chemical inhibitors to block in vitro polarization of TAMs and tumor growth in vivo. In line, analysis of human tumors revealed that myeloid cells infiltrating colon cancer but not gastric cancer tissue indeed accumulate lipid droplets. Mechanistically, our data indicate that oleate‐induced polarization of myeloid cells depends on the mammalian target of the rapamycin pathway. Thus, our findings reveal an alternative therapeutic strategy by targeting the pro‐tumoral myeloid cells on a metabolic level.
Collapse
Affiliation(s)
- Hao Wu
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Yijie Han
- Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yasmina Rodriguez Sillke
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hongzhang Deng
- Department of Polymer Science and Engineering, Key Laboratory of Systems, Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Sophiya Siddiqui
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christoph Treese
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Franziska Schmidt
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marie Friedrich
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jacqueline Keye
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jiajia Wan
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yue Qin
- National Center for Nanoscience and Technology, Beijing, China
| | - Anja A Kühl
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,iPATH.Berlin - Core Unit of the Charité, Berlin Institute of Health, Berlin, Germany
| | - Zhihai Qin
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Britta Siegmund
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany
| | - Rainer Glauben
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
64
|
Caputa G, Castoldi A, Pearce EJ. Metabolic adaptations of tissue-resident immune cells. Nat Immunol 2019; 20:793-801. [DOI: 10.1038/s41590-019-0407-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
|
65
|
Mathur R, Alam MM, Zhao XF, Liao Y, Shen J, Morgan S, Huang T, Lee H, Lee E, Huang Y, Zhu X. Induction of autophagy in Cx3cr1 + mononuclear cells limits IL-23/IL-22 axis-mediated intestinal fibrosis. Mucosal Immunol 2019; 12:612-623. [PMID: 30765845 PMCID: PMC6927046 DOI: 10.1038/s41385-019-0146-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/04/2023]
Abstract
Intestinal fibrosis is an excessive proliferation of myofibroblasts and deposition of collagen, a condition frequently seen in Crohn's disease (CD). The mechanism underlying myofibroblast hyper-proliferation in CD needs to be better understood. In this report, we found that mTOR inhibitor rapamycin or mTOR deletion in CX3Cr1+ mononuclear phagocytes inhibits expression of interleukin (IL)-23, accompanied by reduced intestinal production of IL-22 and ameliorated fibrosis in the TNBS-induced fibrosis mouse model. This inhibition of IL-23 expression is associated with elevated autophagy activity. Ablating the autophagy gene Atg7 increases the expression of IL-23, leading to increased expression of IL-22 and increased fibrosis. Both induction of IL-22 and intestinal fibrosis occurred in RAG-/- mice and depletion of innate lymphoid cells (ILCs) attenuates the fibrotic reaction, suggesting that the pro-fibrotic process is independent of T and B cells. Moreover, IL-22 facilitates the transformation of fibroblasts into myofibroblasts. Finally, the fibrotic reaction was attenuated upon neutralization of either IL-23 or IL-22. Altogether, this study elucidated a signaling cascade underlying intestinal fibrosis in which altered mTOR/autophagy in CX3Cr1+ mononuclear phagocytes up-regulates the IL-23/IL-22 axis, leading to an excessive fibrotic response. Thus, our findings suggest that this cascade could be a therapeutic target for alleviation of CD fibrosis.
Collapse
Affiliation(s)
- Ramkumar Mathur
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
- The IBD Center, Division of Gastroenterology, Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| | - Mahabub Maraj Alam
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Xiao-Feng Zhao
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Yuan Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Jeffrey Shen
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Shannon Morgan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Tingting Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - HwaJeong Lee
- Department of Pathology, Albany Medical College, Albany, NY, 12208, USA
| | - Edward Lee
- Department of Surgery, Albany Medical College, Albany, NY, 12208, USA
| | - Yunfei Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Xinjun Zhu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
- The IBD Center, Division of Gastroenterology, Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
66
|
Wang Z, Vaughan TY, Zhu W, Chen Y, Fu G, Medrzycki M, Nishio H, Bunting ST, Hankey-Giblin PA, Nusrat A, Parkos CA, Wang D, Wen R, Bunting KD. Gab2 and Gab3 Redundantly Suppress Colitis by Modulating Macrophage and CD8 + T-Cell Activation. Front Immunol 2019; 10:486. [PMID: 30936879 PMCID: PMC6431666 DOI: 10.3389/fimmu.2019.00486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multi-factorial chronic inflammation of the gastrointestinal tract prognostically linked to CD8+ T-cells, but little is known about their mechanism of activation during initiation of colitis. Here, Grb2-associated binding 2/3 adaptor protein double knockout mice (Gab2/3−/−) were generated. Gab2/3−/− mice, but not single knockout mice, developed spontaneous colitis. To analyze the cellular mechanism, reciprocal bone marrow (BM) transplantation demonstrated a Gab2/3−/− hematopoietic disease-initiating process. Adoptive transfer showed individual roles for macrophages and T-cells in promoting colitis development in vivo. In spontaneous disease, intestinal intraepithelial CD8+ but much fewer CD4+, T-cells from Gab2/3−/− mice with rectal prolapse were more proliferative. To analyze the molecular mechanism, reduced PI3-kinase/Akt/mTORC1 was observed in macrophages and T-cells, with interleukin (IL)-2 stimulated T-cells showing increased pSTAT5. These results illustrate the importance of Gab2/3 collectively in signaling responses required to control macrophage and CD8+ T-cell activation and suppress chronic colitis.
Collapse
Affiliation(s)
- Zhengqi Wang
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Tamisha Y Vaughan
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Wandi Zhu
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Yuhong Chen
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Guoping Fu
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Magdalena Medrzycki
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Hikaru Nishio
- Department of Pathology, Emory University, Atlanta, GA, United States
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Pamela A Hankey-Giblin
- Department of Veterinary Science, Pennsylvania State University, University Park, PA, United States
| | - Asma Nusrat
- Department of Pathology, Emory University, Atlanta, GA, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Charles A Parkos
- Department of Pathology, Emory University, Atlanta, GA, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Demin Wang
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Renren Wen
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Kevin D Bunting
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
67
|
Caputa G, Flachsmann LJ, Cameron AM. Macrophage metabolism: a wound-healing perspective. Immunol Cell Biol 2019; 97:268-278. [PMID: 30779212 DOI: 10.1111/imcb.12237] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are a critical component of the innate immune response, and compose the first response to perturbations in tissue homeostasis. Their unique ability to dynamically integrate diverse stimuli underlies their important role in the healing response from first insult to re-establishment of tissue homeostasis. While the roles of macrophages in tissue repair have been well-described in vitro and in vivo, the influence of cellular metabolism on macrophage function during tissue repair remains an unexplored area of immunometabolism. In this review, we will explore the unique metabolic requirements of inflammatory and anti-inflammatory macrophages and the potential contribution of macrophage metabolism to each phase of wound healing.
Collapse
Affiliation(s)
- George Caputa
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Lea J Flachsmann
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alanna M Cameron
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
68
|
Lee DE, Bareja A, Bartlett DB, White JP. Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 2019; 8:cells8020183. [PMID: 30791569 PMCID: PMC6406986 DOI: 10.3390/cells8020183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle has remarkable regenerative capacity, relying on precise coordination between resident muscle stem cells (satellite cells) and the immune system. The age-related decline in skeletal muscle regenerative capacity contributes to the onset of sarcopenia, prolonged hospitalization, and loss of autonomy. Although several age-sensitive pathways have been identified, further investigation is needed to define targets of cellular dysfunction. Autophagy, a process of cellular catabolism, is emerging as a key regulator of muscle regeneration affecting stem cell, immune cell, and myofiber function. Muscle stem cell senescence is associated with a suppression of autophagy during key phases of the regenerative program. Macrophages, a key immune cell involved in muscle repair, also rely on autophagy to aid in tissue repair. This review will focus on the role of autophagy in various aspects of the regenerative program, including adult skeletal muscle stem cells, monocytes/macrophages, and corresponding age-associated dysfunction. Furthermore, we will highlight rejuvenation strategies that alter autophagy to improve muscle regenerative function.
Collapse
Affiliation(s)
- David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
| |
Collapse
|
69
|
Ieronymaki E, Theodorakis EM, Lyroni K, Vergadi E, Lagoudaki E, Al-Qahtani A, Aznaourova M, Neofotistou-Themeli E, Eliopoulos AG, Vaporidi K, Tsatsanis C. Insulin Resistance in Macrophages Alters Their Metabolism and Promotes an M2-Like Phenotype. THE JOURNAL OF IMMUNOLOGY 2019; 202:1786-1797. [PMID: 30718296 DOI: 10.4049/jimmunol.1800065] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Obesity and insulin resistance influences metabolic processes, but whether it affects macrophage metabolism is not known. In this study, we demonstrate that chronic exposure of macrophages to insulin either in culture or in vivo in diet-induced, glucose-intolerant mice rendered them resistant to insulin signals marked by failure to induce Akt2 phosphorylation. Similarly, macrophages lacking Akt2 or IGF1 receptor were also resistant to insulin signals. Insulin-resistant macrophages had increased basal mTORC1 activity, possessed an M2-like phenotype, and reduced LPS responses. Moreover, they exhibited increased glycolysis and increased expression of key glycolytic enzymes. Inhibition of mTORC1 reversed the M2-like phenotype and suppressed glycolysis in insulin-resistant macrophages. In the context of polymicrobial sepsis, mice harboring insulin-resistant macrophages exhibited reduced sepsis-induced lung injury. Thus, macrophages obtain resistance to insulin characterized by increased glycolysis and a unique M2-like phenotype, termed M-insulin resistant, which accounts for obesity-related changes in macrophage responses and a state of trained immunity.
Collapse
Affiliation(s)
- Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| | - Emmanouel M Theodorakis
- Laboratory of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Konstantina Lyroni
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| | - Eleni Vergadi
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| | - Eleni Lagoudaki
- Laboratory of Pathology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Ahmed Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; and
| | - Marina Aznaourova
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Elpida Neofotistou-Themeli
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Aristides G Eliopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece.,Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Katerina Vaporidi
- Laboratory of Intensive Care Medicine, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; .,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, 71110 Crete, Greece
| |
Collapse
|
70
|
Legionella pneumophila infection-mediated regulation of RICTOR via miR-218 in U937 macrophage cells. Biochem Biophys Res Commun 2019; 508:608-613. [PMID: 30509489 DOI: 10.1016/j.bbrc.2018.11.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Inhalation of aerosolized Legionella pneumophila, a Gram-negative bacterium, can cause severe pneumonia. During infection, L. pneumophila replicates intracellularly in macrophages. The involvement of host microRNAs (miRNAs) in L. pneumophila infection is not fully understood. METHODS The human macrophage-like cell line U937 was infected with L. pneumophila. The levels of miRNA and messenger RNA (mRNA) were measured using reverse transcriptase polymerase chain reaction. Release of lactate dehydrogenase was used to evaluate cytotoxicity. The expression of RICTOR and related proteins was examined by western blotting of cell lysates. RESULTS L. pneumophila infection upregulated the expression of miR-218 and the host genes SLIT2 and SLIT3 in U937 cells. The expression of RICTOR, a component of the mechanistic target of rapamycin complex 2 (mTORC2), decreased during L. pneumophila infection. RICTOR protein expression was inhibited by the overexpression of miR-218, whereas knockdown of miR-218 restored the downregulation of RICTOR by L. pneumophila. L. pneumophila infection induced the expression of the proinflammatory cytokines IL-6 and TNF-alpha, which was modulated by knockdown of miR-218 or RICTOR. CONCLUSIONS Our study revealed the involvement of miR-218 in regulating the inflammatory response of macrophages against L. pneumophila infection. These findings suggest potential novel roles for miR-218 and RICTOR as therapeutic targets of L. pneumophila infection.
Collapse
|
71
|
Moyat M, Coakley G, Harris NL. The interplay of type 2 immunity, helminth infection and the microbiota in regulating metabolism. Clin Transl Immunology 2019; 8:e01089. [PMID: 31719981 PMCID: PMC6837856 DOI: 10.1002/cti2.1089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 immunity has recently emerged as a critical player in metabolic status, with numerous studies investigating the role of type 2 immune cells within adipose tissue. Metabolic dysfunction is often characterised as a low-grade or chronic inflammatory state within tissues, and type 2 immunity may facilitate a return to metabolic homeostasis. A complex network of type 2 resident cells including M2 macrophages, eosinophils and ILC2s has been identified within adipose tissue. Although the effector cells in this equilibrium have not been clearly identified, any alteration of the type 2 microenvironment resulted in an altered metabolic state. Historically, the type 2 immune response has been associated with helminth infection. The type 2 immune response drives host resistance and plays an important role in promoting tissue repair following the migration of helminth larvae through tissues. Although helminths are largely eradicated in developed countries, infection rates remain high in poor communities within the developing world. Interestingly, there is strong evidence that helminth infection is inversely correlated with autoimmune or inflammatory disorders. Recently, an increasing amount of epidemiological and field studies suggest that it could be the same for obesity and metabolic syndrome. In the current review, we summarise the literature linking type 2 immunity to improved adipose tissue function. We then discuss more recent evidence indicating that helminth infection can provide protection against metabolic syndrome. Lastly, we explore the possible contributions of altered nutrient uptake, adipose tissue function and/or the intestinal microbiota with the ability of helminths to alter metabolic status.
Collapse
Affiliation(s)
- Mati Moyat
- Department of Immunology and PathologyMonash University Central Clinical SchoolMelbourneVICAustralia
| | - Gillian Coakley
- Department of Immunology and PathologyMonash University Central Clinical SchoolMelbourneVICAustralia
| | - Nicola L Harris
- Department of Immunology and PathologyMonash University Central Clinical SchoolMelbourneVICAustralia
| |
Collapse
|
72
|
Borst K, Schwabenland M, Prinz M. Microglia metabolism in health and disease. Neurochem Int 2018; 130:104331. [PMID: 30423423 DOI: 10.1016/j.neuint.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
In the last decade tremendous progress has been made in understanding how the immune system reacts to insults. During this progress it became obvious that those immune responses are tightly regulated and cross-linked with distinct metabolic changes in immune cells. Extensive research has been conducted mainly on subtypes of T cells, which use different metabolic pathways during differentiation processes and activation states. In addition, it has also been established later, that the innate immune cell lineage of myeloid cells includes a variety of different subsets of bone marrow-derived as well as tissue-specific macrophages, which elicit much more functions than simply killing bacteria. To execute this high variety of functions, also macrophages use different metabolic pathways and are tightly regulated by key metabolic regulators, such as the mechanistic target of rapamycin (mTOR). Upon activation, metabolic changes within the cell occur to meet the requirements of the phenotypic switch. In addition, metabolic changes correlate with the ability of innate immune cells to show hallmarks of adaptive immune responses. Little is known about specific metabolic changes of myeloid cells and specifically microglia in vivo. Microglia are key players in neurodegenerative and neuroinflammatory diseases and have become a major target of medical research. Here, we review the existing data on microglia metabolism and the connection of microglia phenotypes with neuroinflammatory and neurodegenerative diseases. Lastly, we will discuss how our knowledge about the cellular metabolism might be used to develop new treatment options for neurological diseases.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
73
|
Identification of MΦ specific POTEE expression: Its role in mTORC2 activation via protein-protein interaction in TAMs. Cell Immunol 2018; 335:30-40. [PMID: 30420269 DOI: 10.1016/j.cellimm.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023]
Abstract
POTE is known as cancer antigen, expressed in many cancers, along with very few normal tissues like prostate, ovary, testes and embryo. Till date, POTEE identified as majorly expressed POTE paralog. Functionally, POTEF regulates TLR signaling which play important role in innate immunity provided clue about expression of POTE in immune cells. We have chosen three Thp1monocytes, Jurkat T1 and MΦ cells as a model. Here, first time we report expression of POTEE in immune cells specifically only in MΦ but not in monocytes or T-cells. In addition, expression level remains unaltered in MΦ subtypes M1 and M2 and MΦ subjected to various stresses, except MΦs treated with Hyp-CM where MΦs acquires properties of TAMs. In TAMs, POTEE was involved differential protein-protein interaction with mTOR, RICTOR, and Rad51 indicating its biological role in cell invasion through mTORC2 activation. siRNA mediated knockdown of POTEE suggests its importance in cell survival of MΦs as well as TAMs.
Collapse
|
74
|
Zhao X, Huang XH, Dong XH, Wang YH, Yang HX, Wang Y, He Y, Liu S, Zhou J, Wang C, Jiang XX. Deubiquitinase Mysm1 regulates macrophage survival and polarization. Mol Biol Rep 2018; 45:2393-2401. [PMID: 30386973 DOI: 10.1007/s11033-018-4405-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
Macrophages play pivotal roles in innate and adaptive immune response, tissue homeostasis and cancer development. Their development and heterogeneity are tightly controlled by epigenetic program and transcription factors. Deubiquitinase Mysm1 plays crucial roles in regulating stem cell maintenance and immune cell development. Here we show that Mysm1 expression is up regulated during bone marrow macrophage development. Mysm1 deficient cells exhibit accelerating proliferation with more cells going to S phase and higher cyclin D1, cyclin D2 and c-Myc expression. However, compared to WT counterparts, more cell death is also detected in Mysm1 deficient cells no matter M-CSF deprived or not. In LPS-condition medium, Mysm1-/- macrophages show more pro-inflammatory factors IL-1β, TNFα and iNOS production. In addition, much higher expression of surface marker CD86 is detected in Mysm1-/- macrophages. In vivo tumor model data demonstrate that in contrast to WT macrophages promoting tumor growth, Mysm1-/- macrophages inhibit tumor growth, showing the properties of M1 macrophages. Collectively, these data indicate that Mysm1 is essential for macrophage survival and plays an important role in macrophage polarization and might be a target for cell therapy.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Xiao-Hui Huang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Xiao-Hui Dong
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yu-Han Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 305-764, South Korea
| | - Hui-Xin Yang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yan Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Youdi He
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Shuang Liu
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Jin Zhou
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| | - Xiao-Xia Jiang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| |
Collapse
|
75
|
Vekariya U, Saxena R, Singh P, Rawat K, Kumar B, Kumari S, Agnihotri SK, Kaur S, Sachan R, Nazir A, Bhadauria S, Sachdev M, Tripathi RK. HIV-1 Nef-POTEE; A novel interaction modulates macrophage dissemination via mTORC2 signaling pathway. Life Sci 2018; 214:158-166. [PMID: 30391463 DOI: 10.1016/j.lfs.2018.10.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
AIMS Human immunodeficiency virus -1 [HIV-1] Nef, localizes in different cellular compartments and modulates several cellular pathways. Nef promotes virus pathogenicity through alteration in cell surface receptor expression, apoptosis, protein trafficking etc. Nef regulates viral pathogenesis through interaction with different host proteins. Thus, molecular mechanisms of pathogenesis could be deciphered by identifying novel Nef interacting proteins. MAIN METHODS HIV-1 Nef interacting proteins were identified by pull down assay and MALDI-TOF analysis. The interaction was further validated through mammalian two hybrid assay. Functional role of this interaction was identified by immunoprecipitation assay, cell invasion and cell migration studies. Fold Change in mRNA levels of CD163, CD206, CCL17 and CCL18 was analyzed using qPCR. KEY FINDINGS In current study, C. elegans protein ACT4C and its human homolog POTEE was identified to be interacting with Nef. This interaction activates mTORC2 complex, which in-turn activates AKT and PKC-α. The activation of mTORC2 complex was found to be initiated by the interaction of Nef, mTORC2, Rictor to POTEE. The cellular phenotype and functions affected by Nef-POTEE interaction resulted in significant increase in cell invasion and migration of macrophages (MΦ). SIGNIFICANCE MΦ is primary target of HIV-1 infection where HIV-1 replicates and polarizes immunosuppressive M2 phenotype. Combine effect of M2 phenotype and Viral-host protein interactions compromise the MΦ associated physiological functions. Infected MΦ dissemination into other system also leads to HIV-1 induced malignancies. Therefore, targeting POTEE-Nef interaction can lead to formulating better therapeutic strategy against HIV-1.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Reshu Saxena
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Poonam Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Kavita Rawat
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Balawant Kumar
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sushila Kumari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | - Supinder Kaur
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rekha Sachan
- Department of Obstetrics & Gynecology, King George Medical University, Lucknow, UP, India
| | - Aamir Nazir
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Smrati Bhadauria
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Monika Sachdev
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Raj Kamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
76
|
Role of mTOR Signaling in Tumor Microenvironment: An Overview. Int J Mol Sci 2018; 19:ijms19082453. [PMID: 30126252 PMCID: PMC6121402 DOI: 10.3390/ijms19082453] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates major processes by integrating a variety of exogenous cues, including diverse environmental inputs in the tumor microenvironment (TME). In recent years, it has been well recognized that cancer cells co-exist and co-evolve with their TME, which is often involved in drug resistance. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both the tumor immunity and angiogenesis. The activation of mTOR signaling is associated with these pro-oncogenic cellular processes, making mTOR a promising target for new combination therapies. This review highlights the role of mTOR signaling in the characterization and the activity of the TME’s elements and their implications in cancer immunotherapy.
Collapse
|
77
|
Lange C, Alghamdi WA, Al-Shaer MH, Brighenti S, Diacon AH, DiNardo AR, Grobbel HP, Gröschel MI, von Groote-Bidlingmaier F, Hauptmann M, Heyckendorf J, Köhler N, Kohl TA, Merker M, Niemann S, Peloquin CA, Reimann M, Schaible UE, Schaub D, Schleusener V, Thye T, Schön T. Perspectives for personalized therapy for patients with multidrug-resistant tuberculosis. J Intern Med 2018; 284:163-188. [PMID: 29806961 DOI: 10.1111/joim.12780] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to the World Health Organization (WHO), tuberculosis is the leading cause of death attributed to a single microbial pathogen worldwide. In addition to the large number of patients affected by tuberculosis, the emergence of Mycobacterium tuberculosis drug-resistance is complicating tuberculosis control in many high-burden countries. During the past 5 years, the global number of patients identified with multidrug-resistant tuberculosis (MDR-TB), defined as bacillary resistance at least against rifampicin and isoniazid, the two most active drugs in a treatment regimen, has increased by more than 20% annually. Today we experience a historical peak in the number of patients affected by MDR-TB. The management of MDR-TB is characterized by delayed diagnosis, uncertainty of the extent of bacillary drug-resistance, imprecise standardized drug regimens and dosages, very long duration of therapy and high frequency of adverse events which all translate into a poor prognosis for many of the affected patients. Major scientific and technological advances in recent years provide new perspectives through treatment regimens tailor-made to individual needs. Where available, such personalized treatment has major implications on the treatment outcomes of patients with MDR-TB. The challenge now is to bring these adances to those patients that need them most.
Collapse
Affiliation(s)
- C Lange
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - W A Alghamdi
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M H Al-Shaer
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - S Brighenti
- Department of Medicine, Center for Infectious Medicine (CIM), Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A H Diacon
- Task Applied Science, Bellville, South Africa
- Division of Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - A R DiNardo
- Section of Global and Immigrant Health, Baylor College of Medicine, Houston, TX, USA
| | - H P Grobbel
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - M I Gröschel
- Department of Pumonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | | | - M Hauptmann
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - J Heyckendorf
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - N Köhler
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - T A Kohl
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - M Merker
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - S Niemann
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - C A Peloquin
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M Reimann
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - U E Schaible
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
- Biochemical Microbiology & Immunochemistry, University of Lübeck, Lübeck, Germany
- LRA INFECTIONS'21, Borstel, Germany
| | - D Schaub
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - V Schleusener
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - T Thye
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - T Schön
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Linköping University, Linköping, Sweden
| |
Collapse
|
78
|
Who does TORC2 talk to? Biochem J 2018; 475:1721-1738. [PMID: 29794170 DOI: 10.1042/bcj20180130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The target of rapamycin (TOR) is a protein kinase that, by forming complexes with partner proteins, governs diverse cellular signalling networks to regulate a wide range of processes. TOR thus plays central roles in maintaining normal cellular functions and, when dysregulated, in diverse diseases. TOR forms two distinct types of multiprotein complexes (TOR complexes 1 and 2, TORC1 and TORC2). TORC1 and TORC2 differ in their composition, their control and their substrates, so that they play quite distinct roles in cellular physiology. Much effort has been focused on deciphering the detailed regulatory links within the TOR pathways and the structure and control of TOR complexes. In this review, we summarize recent advances in understanding mammalian (m) TORC2, its structure, its regulation, and its substrates, which link TORC2 signalling to the control of cell functions. It is now clear that TORC2 regulates several aspects of cell metabolism, including lipogenesis and glucose transport. It also regulates gene transcription, the cytoskeleton, and the activity of a subset of other protein kinases.
Collapse
|
79
|
Keegan AD, Zamorano J, Keselman A, Heller NM. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Front Immunol 2018; 9:1037. [PMID: 29868002 PMCID: PMC5962649 DOI: 10.3389/fimmu.2018.01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States.,Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jose Zamorano
- Unidad Investigacion, Complejo Hospitalario Universitario, Caceres, Spain
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
80
|
Oh MH, Collins SL, Sun IH, Tam AJ, Patel CH, Arwood ML, Chan-Li Y, Powell JD, Horton MR. mTORC2 Signaling Selectively Regulates the Generation and Function of Tissue-Resident Peritoneal Macrophages. Cell Rep 2018; 20:2439-2454. [PMID: 28877476 DOI: 10.1016/j.celrep.2017.08.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident macrophages play critical roles in sentinel and homeostatic functions as well as in promoting inflammation and immunity. It has become clear that the generation of these cells is highly dependent upon tissue-specific cues derived from the microenvironment that, in turn, regulate unique differentiation programs. Recently, a role for GATA6 has emerged in the differentiation programming of resident peritoneal macrophages. We identify a critical role for mTOR in integrating cues from the tissue microenvironment in regulating differentiation and metabolic reprogramming. Specifically, inhibition of mTORC2 leads to enhanced GATA6 expression in a FOXO1 dependent fashion. Functionally, inhibition of mTORC2 promotes peritoneal resident macrophage generation in the resolution phase during zymosan-induced peritonitis. Also, mTORC2-deficient peritoneal resident macrophages displayed increased functionality and metabolic reprogramming. Notably, mTORC2 activation distinguishes tissue-resident macrophage proliferation and differentiation from that of M2 macrophages. Overall, our data implicate a selective role for mTORC2 in the differentiation of tissue-resident macrophages.
Collapse
Affiliation(s)
- Min-Hee Oh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Im-Hong Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ada J Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chirag H Patel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Matthew L Arwood
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan D Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
81
|
Zhao Y, Chen S, Lan P, Wu C, Dou Y, Xiao X, Zhang Z, Minze L, He X, Chen W, Li XC. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. Am J Transplant 2018; 18:604-616. [PMID: 29044999 PMCID: PMC5820161 DOI: 10.1111/ajt.14543] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
Macrophages infiltrating the allografts are heterogeneous, consisting of proinflammatory (M1 cells) as well as antiinflammatory and fibrogenic phenotypes (M2 cells); they affect transplantation outcomes via diverse mechanisms. Here we found that macrophage polarization into M1 and M2 subsets was critically dependent on tumor necrosis factor receptor-associated factor 6 (TRAF6) and mammalian target of rapamycin (mTOR), respectively. In a heart transplant model we showed that macrophage-specific deletion of TRAF6 (LysMCre Traf6 fl/fl ) or mTOR (LysMCre Mtorfl/fl ) did not affect acute allograft rejection. However, treatment of LysMCre Mtorfl/fl recipients with CTLA4-Ig induced long-term allograft survival (>100 days) without histological signs of chronic rejection, whereas the similarly treated LysMCre Traf6 fl/fl recipients developed severe transplant vasculopathy (chronic rejection). The presentation of chronic rejection in CTLA4-Ig-treated LysMCre Traf6 fl/fl mice was similar to that of CTLA4-Ig-treated wild-type B6 recipients. Mechanistically, we found that the graft-infiltrating macrophages in LysMCre Mtorfl/fl recipients expressed high levels of PD-L1, and that PD-L1 blockade readily induced rejection of otherwise survival grafts in the LysMCre Mtorfl/fl recipients. Our findings demonstrate that targeting mTOR-dependent M2 cells is critical for preventing chronic allograft rejection, and that graft survival under such conditions is dependent on the PD-1/PD-L1 coinhibitory pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Song Chen
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Peixiang Lan
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Chenglin Wu
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Sun Yet-sun University first affiliated hospital, Guangzhou, China
| | - Yaling Dou
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Zhiqiang Zhang
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Laurie Minze
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Xiaoshun He
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Sun Yet-sun University first affiliated hospital, Guangzhou, China
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY
| | - Xian C. Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY,Address correspondence to: Xian C. Li, MD, PhD. Houston Methodist Research Institute, Texas Medical Center, 6670 Bertner Avenue, R7-211, Houston, Texas 77030,
| |
Collapse
|
82
|
Rojas Márquez JD, Ana Y, Baigorrí RE, Stempin CC, Cerban FM. Mammalian Target of Rapamycin Inhibition in Trypanosoma cruzi-Infected Macrophages Leads to an Intracellular Profile That Is Detrimental for Infection. Front Immunol 2018. [PMID: 29515594 PMCID: PMC5826284 DOI: 10.3389/fimmu.2018.00313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The causative agent of Chagas’ disease, Trypanosoma cruzi, affects approximately 10 million people living mainly in Latin America, with macrophages being one of the first cellular actors confronting the invasion during T. cruzi infection and their function depending on their proper activation and polarization into distinct M1 and M2 subtypes. Macrophage polarization is thought to be regulated not only by cytokines and growth factors but also by environmental signals. The metabolic checkpoint kinase mammalian target of rapamycin (mTOR)-mediated sensing of environmental and metabolic cues influences macrophage polarization in a complex and as of yet incompletely understood manner. Here, we studied the role of the mTOR pathway in macrophages during T. cruzi infection. We demonstrated that the parasite activated mTOR, which was beneficial for its replication since inhibition of mTOR in macrophages by different inhibitors decreased parasite replication. Moreover, in rapamycin pretreated and infected macrophages, we observed a decreased arginase activity and expression, reduced IL-10 and increased interleukin-12 production, compared to control infected macrophages treated with DMSO. Surprisingly, we also found a reduced iNOS activity and expression in these macrophages. Therefore, we investigated possible alternative mechanisms involved in controlling parasite replication in rapamycin pretreated and infected macrophages. Although, cytoplasmic ROS and the enzyme indoleamine 2, 3-dioxygenase (IDO) were not involved, we observed a significant increase in IL-6, TNF-α, and IL-1β production. Taking into account that IL-1β is produced by activation of the cytoplasmic receptor NLRP3, which is one of the main components of the inflammasome, we evaluated NLRP3 expression during mTOR inhibition and T. cruzi infection. We observed that rapamycin-pretreated and infected macrophages showed a significant increase in NLRP3 expression and produced higher levels of mitochondrial ROS (mtROS) compared with control cells. Moreover, inhibition of mtROS production partially reversed the effect of rapamycin on parasite replication, with there being a significant increase in parasite load in rapamycin pretreated and infected macrophages from NLRP3 KO mice compared to wild-type control cells. Our findings strongly suggest that mTOR inhibition during T. cruzi infection induces NLRP3 inflammasome activation and mtROS production, resulting in an inflammatory-like macrophage profile that controls T. cruzi replication.
Collapse
Affiliation(s)
- Jorge David Rojas Márquez
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Yamile Ana
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ruth Eliana Baigorrí
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Fabio Marcelo Cerban
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
83
|
Babaev VR, Huang J, Ding L, Zhang Y, May JM, Linton MF. Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 2018; 9:215. [PMID: 29487597 PMCID: PMC5816794 DOI: 10.3389/fimmu.2018.00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 12/23/2022] Open
Abstract
Background Rictor is an essential component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2), a conserved serine/threonine kinase that may play a role in cell proliferation, survival and innate or adaptive immune responses. Genetic loss of Rictor inactivates mTORC2, which directly activates Akt S473 phosphorylation and promotes pro-survival cell signaling and proliferation. Methods and results To study the role of mTORC2 signaling in monocytes and macrophages, we generated mice with myeloid lineage-specific Rictor deletion (MRictor−/−). These MRictor−/− mice exhibited dramatic reductions of white blood cells, B-cells, T-cells, and monocytes but had similar levels of neutrophils compared to control Rictor flox-flox (Rictorfl/fl) mice. MRictor−/− bone marrow monocytes and peritoneal macrophages expressed reduced levels of mTORC2 signaling and decreased Akt S473 phosphorylation, and they displayed significantly less proliferation than control Rictorfl/fl cells. In addition, blood monocytes and peritoneal macrophages isolated from MRictor−/− mice were significantly more sensitive to pro-apoptotic stimuli. In response to LPS, MRictor−/− macrophages exhibited the M1 phenotype with higher levels of pro-inflammatory gene expression and lower levels of Il10 gene expression than control Rictorfl/fl cells. Further suppression of LPS-stimulated Akt signaling with a low dose of an Akt inhibitor, increased inflammatory gene expression in macrophages, but genetic inactivation of Raptor reversed this rise, indicating that mTORC1 mediates this increase of inflammatory gene expression. Next, to elucidate whether mTORC2 has an impact on atherosclerosis in vivo, female and male Ldlr null mice were reconstituted with bone marrow from MRictor−/− or Rictorfl/fl mice. After 10 weeks of the Western diet, there were no differences between the recipients of the same gender in body weight, blood glucose or plasma lipid levels. However, both female and male MRictor−/− → Ldlr−/− mice developed smaller atherosclerotic lesions in the distal and proximal aorta. These lesions contained less macrophage area and more apoptosis than lesions of control Rictorfl/fl → Ldlr−/− mice. Thus, loss of Rictor and, consequently, mTORC2 significantly compromised monocyte/macrophage survival, and this markedly diminished early atherosclerosis in Ldlr−/− mice. Conclusion Our results demonstrate that mTORC2 is a key signaling regulator of macrophage survival and its depletion suppresses early atherosclerosis.
Collapse
Affiliation(s)
- Vladimir R Babaev
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jiansheng Huang
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lei Ding
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Youmin Zhang
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - James M May
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - MacRae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
84
|
Shrivastava R, Singh V, Asif M, Negi MPS, Bhadauria S. Oncostatin M upregulates HIF-1α in breast tumor associated macrophages independent of intracellular oxygen concentration. Life Sci 2017; 194:59-66. [PMID: 29246543 DOI: 10.1016/j.lfs.2017.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
AIMS HIF is an important transcription-regulator for adaptation to cellular stress in cells of myeloid origin. Classically, expression and activity of HIF1-α is regulated by oxygen-concentration within cell. However, there exists an alternative regulatory mechanism affecting HIF1-α levels independent of oxygen concentration particularly in inflammatory cells like macrophages. Here we report the mechanism of HIF1-α upregulation in TAMs by Oncostatin-M (OSM) independent of cellular oxygen concentration. MAIN METHODS THP-1 derived macrophages were treated with OSM. HIF1-α levels and interaction with pVHL were evaluated via immunoblot-analysis and Co-immunoprecipitation. Translocation of HIF1-α to nucleus was visualized using confocal-microscopy. Fold change in mRNA levels of ARG-1 and COX-2 was analyzed using RT-PCR. KEY FINDINGS Current study demonstrates that OSM treatment to TAMs led to an increased expression of HIF1-α under normoxic conditions via activation of mTORC2. This HIF1-α upregulation was dependent on both de novo synthesis of HIF1-α and its enhanced stability due to disruption of its binding to pVHL. Furthermore, we evaluated that OSM not only enhances the expression of HIF1-α but also increases its localization to nucleus where it acts as a transcription factor regulating expression of genes like ARG-1 and COX-2. SIGNIFICANCE Inflammation is a critical hallmark of cancer as tumor microenvironment is largely infiltrated with macrophages. These tumor associated macrophages (TAMs) display a M2 skewed phenotype. Many target genes of TAMs are HIF1-α responsive. These TAMs are involved in tumor progression, metastasis and angiogenesis. Targeting of HIF1-α/OSM can lead to devising of better therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Richa Shrivastava
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, (CSIR), Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Varsha Singh
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Mohammad Asif
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Mahendra Pal Singh Negi
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Smrati Bhadauria
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, (CSIR), Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India.
| |
Collapse
|
85
|
Riffelmacher T, Richter FC, Simon AK. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy 2017; 14:199-206. [PMID: 28806133 PMCID: PMC5902226 DOI: 10.1080/15548627.2017.1362525] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of macroautophagy/autophagy, a conserved lysosomal degradation pathway, during cellular differentiation has been well studied over the last decade. In particular, evidence for its role during immune cell differentiation is growing. Despite the description of a variety of dramatic immune phenotypes in tissue-specific autophagy knockout models, the underlying mechanisms are still under debate. One of the proposed mechanisms is the impact of autophagy on the altered metabolic states during immune cell differentiation. This concept is strengthened through novel molecular insights into how AMPK and MTOR signaling cascades affect both autophagy and metabolism. In this review, we discuss direct and indirect evidence linking autophagy, metabolic pathways and immune cell differentiation including T, B, and innate lymphocytes as well as in myeloid cells that are direct mediators of inflammation. Herein, we propose a model for autophagy-driven immunometabolism controlling immune cell differentiation.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- a MRC Weatherall Institute of Molecular Medicine , Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital , Headington , Oxford , UK
| | - Felix Clemens Richter
- b Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences , University of Oxford , Oxford , UK
| | - Anna Katharina Simon
- b Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences , University of Oxford , Oxford , UK
| |
Collapse
|
86
|
Jones RG, Pearce EJ. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity 2017; 46:730-742. [PMID: 28514674 DOI: 10.1016/j.immuni.2017.04.028] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts.
Collapse
Affiliation(s)
- Russell G Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
87
|
SOCS molecules: the growing players in macrophage polarization and function. Oncotarget 2017; 8:60710-60722. [PMID: 28948005 PMCID: PMC5601173 DOI: 10.18632/oncotarget.19940] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
The concept of macrophage polarization is defined in terms of macrophage phenotypic heterogeneity and functional diversity. Cytokines signals are thought to be required for the polarization of macrophage populations toward different phenotypes at different stages in development, homeostasis and disease. The suppressors of cytokine signaling family of proteins contribute to the magnitude and duration of cytokines signaling, which ultimately control the subtle adjustment of the balance between divergent macrophage phenotypes. This review highlights the specific roles and mechanisms of various cytokines family and their negative regulators link to the macrophage polarization programs. Eventually, breakthrough in the identification of these molecules will provide the novel therapeutic approaches for a host of diseases by targeting macrophage phenotypic shift.
Collapse
|
88
|
Pelgrom LR, Everts B. Metabolic control of type 2 immunity. Eur J Immunol 2017; 47:1266-1275. [DOI: 10.1002/eji.201646728] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Leonard R. Pelgrom
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| | - Bart Everts
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
89
|
Harnett MM, Harnett W. Can Parasitic Worms Cure the Modern World's Ills? Trends Parasitol 2017; 33:694-705. [PMID: 28606411 DOI: 10.1016/j.pt.2017.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
Abstract
There has been increasing recognition that the alarming surge in allergy and autoimmunity in the industrialised and developing worlds shadows the rapid eradication of pathogens, such as parasitic helminths. Appreciation of this has fuelled an explosion in research investigating the therapeutic potential of these worms. This review considers the current state-of-play with a particular focus on exciting recent advances in the identification of potential novel targets for immunomodulation that can be exploited therapeutically. Furthermore, we contemplate the prospects for designing worm-derived immunotherapies for an ever-widening range of inflammatory diseases, including, for example, obesity, cardiovascular disease, and ageing as well as neurodevelopmental disorders like autism.
Collapse
Affiliation(s)
- Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
90
|
Zhou D, Yang K, Chen L, Zhang W, Xu Z, Zuo J, Jiang H, Luan J. Promising landscape for regulating macrophage polarization: epigenetic viewpoint. Oncotarget 2017; 8:57693-57706. [PMID: 28915705 PMCID: PMC5593677 DOI: 10.18632/oncotarget.17027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Macrophages are critical myeloid cells with the hallmark of phenotypic heterogeneity and functional plasticity. Macrophages phenotypes are commonly described as classically-activated M1 and alternatively-activated M2 macrophages which play an essential role in the tissues homeostasis and diseases pathogenesis. Alternations of macrophage polarization and function states require precise regulation of target-gene expression. Emerging data demonstrate that epigenetic mechanisms and transcriptional factors are becoming increasingly appreciated in the orchestration of macrophage polarization in response to local environmental signals. This review is to focus on the advanced concepts of epigenetics changes involved with the macrophage polarization, including microRNAs, DNA methylation and histone modification, which are responsible for the altered cellular signaling and signature genes expression during M1 or M2 polarization. Eventually, the persistent investigation and understanding of epigenetic mechanisms in tissue macrophage polarization and function will enhance the potential to develop novel therapeutic targets for various diseases.
Collapse
Affiliation(s)
- Dexi Zhou
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Kui Yang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Lu Chen
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen Zhang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Zuo
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Hui Jiang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jiajie Luan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|