51
|
Robinson NJ, Parker KA, Schiemann WP. Epigenetic plasticity in metastatic dormancy: mechanisms and therapeutic implications. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:903. [PMID: 32793747 DOI: 10.21037/atm.2020.02.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The overwhelming majority of cancer-associated morbidity and mortality can be ascribed to metastasis. Metastatic disease frequently presents in a delayed fashion following initial diagnosis and treatment, requiring that disseminated cancer cells (DCCs) spread early in tumor progression and persist in a dormant state at metastatic sites. To accomplish this feat, DCCs exhibit substantial phenotypic plasticity that is mediated by the epigenetic regulation of dormancy programs in response to intrinsic (i.e., cellular) and extrinsic (i.e., microenvironmental) cues. The epigenome is a dynamic landscape that encompasses transcriptional regulation via alteration of chromatin architecture, posttranscriptional RNA processing, and the diverse functions carried out by noncoding RNAs. Signals converging on DCCs are transduced through epigenetic effectors. Conversely, epigenetic regulation of gene expression controls the crosstalk between DCCs and cells of the metastatic niche, a phenomenon that is essential for the institution of dormant phenotypes. Importantly, epigenetic effectors can be targeted therapeutically, and the development of novel epigenetic therapies may provide new inroads to combating recurrent metastatic disease. Here we provide an overview of the dynamics of metastatic dormancy and summarize our current understanding of the intersections between dormancy and the epigenome, both mechanistically and therapeutically.
Collapse
Affiliation(s)
| | - Kimberly A Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
52
|
Perrigue PM, Rakoczy M, Pawlicka KP, Belter A, Giel-Pietraszuk M, Naskręt-Barciszewska M, Barciszewski J, Figlerowicz M. Cancer Stem Cell-Inducing Media Activates Senescence Reprogramming in Fibroblasts. Cancers (Basel) 2020; 12:cancers12071745. [PMID: 32629974 PMCID: PMC7409320 DOI: 10.3390/cancers12071745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023] Open
Abstract
Cellular senescence is a tumor-suppressive mechanism blocking cell proliferation in response to stress. However, recent evidence suggests that senescent tumor cells can re-enter the cell cycle to become cancer stem cells, leading to relapse after cancer chemotherapy treatment. Understanding how the senescence reprogramming process is a precursor to cancer stem cell formation is of great medical importance. To study the interplay between senescence, stemness, and cancer, we applied a stem cell medium (SCM) to human embryonic fibroblasts (MRC5 and WI-38) and cancer cell lines (A549 and 293T). MRC5 and WI-38 cells treated with SCM showed symptoms of oxidative stress and became senescent. Transcriptome analysis over a time course of SCM-induced senescence, revealed a developmental process overlapping with the upregulation of genes for growth arrest and the senescence-associated secretory phenotype (SASP). We demonstrate that histone demethylases jumonji domain-containing protein D3 (Jmjd3) and ubiquitously transcribed tetratricopeptide repeat, X chromosome (Utx), which operate by remodeling chromatin structure, are implicated in the senescence reprogramming process to block stem cell formation in fibroblasts. In contrast, A549 and 293T cells cultured in SCM were converted to cancer stem cells that displayed the phenotype of senescence uncoupled from growth arrest. The direct overexpression of DNA methyltransferases (Dnmt1 and Dnmt3A), ten-eleven translocation methylcytosine dioxygenases (Tet1 and Tet3), Jmjd3, and Utx proteins could activate senescence-associated beta-galactosidase (SA-β-gal) activity in 293T cells, suggesting that epigenetic alteration and chromatin remodeling factors trigger the senescence response. Overall, our study suggests that chromatin machinery controlling senescence reprogramming is significant in cancer stem cell formation.
Collapse
Affiliation(s)
- Patrick M. Perrigue
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
- Correspondence: ; Tel.: +48-61-852-85-03
| | - Magdalena Rakoczy
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
| | - Kamila P. Pawlicka
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
| | - Mirosława Naskręt-Barciszewska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
- NanoBioMed Center, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704 Poznań, Poland; (M.R.); (K.P.P.); (A.B.); (M.G.-P.); (M.N.-B.); (J.B.); (M.F.)
| |
Collapse
|
53
|
Battram AM, Bachiller M, Martín-Antonio B. Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. Int J Mol Sci 2020; 21:ijms21124346. [PMID: 32570952 PMCID: PMC7352478 DOI: 10.3390/ijms21124346] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.
Collapse
Affiliation(s)
- Anthony M. Battram
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
- Department of Hematology, Hospital Clinic, IDIBAPS/Josep Carreras Leukaemia Research Institute, Carrer Rosselló 149-153, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-45-28; Fax: +34-93-312-94-07
| |
Collapse
|
54
|
Wei J, Alfajaro MM, Hanna RE, DeWeirdt PC, Strine MS, Lu-Culligan WJ, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Gasque V, de Miguel F, Chen H, Oguntuyo K, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach B, Politi K, van Dijk D, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR screen reveals host genes that regulate SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.16.155101. [PMID: 32869025 PMCID: PMC7457610 DOI: 10.1101/2020.06.16.155101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Identification of host genes essential for SARS-CoV-2 infection may reveal novel therapeutic targets and inform our understanding of COVID-19 pathogenesis. Here we performed a genome-wide CRISPR screen with SARS-CoV-2 and identified known SARS-CoV-2 host factors including the receptor ACE2 and protease Cathepsin L. We additionally discovered novel pro-viral genes and pathways including the SWI/SNF chromatin remodeling complex and key components of the TGF-β signaling pathway. Small molecule inhibitors of these pathways prevented SARS-CoV-2-induced cell death. We also revealed that the alarmin HMGB1 is critical for SARS-CoV-2 replication. In contrast, loss of the histone H3.3 chaperone complex sensitized cells to virus-induced death. Together this study reveals potential therapeutic targets for SARS-CoV-2 and highlights host genes that may regulate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ruth E. Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter C. DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - William J. Lu-Culligan
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Chemical Biology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Vincent R. Graziano
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Cameron O. Schmitz
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Jennifer S. Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Madeleine C. Mankowski
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Victor Gasque
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fernando de Miguel
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Huacui Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, USA
| | | | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benhur Lee
- Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - David van Dijk
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Chemical Biology Institute, Yale University, West Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
55
|
miR-155 Accelerates the Growth of Human Liver Cancer Cells by Activating CDK2 via Targeting H3F3A. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:471-483. [PMID: 32490171 PMCID: PMC7260613 DOI: 10.1016/j.omto.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
miR-155 is associated with the promotion of tumorigenesis. Herein, we indicate that abnormal miR-155 was negatively correlated with the expression of P21WAF1/Cip1. Our results suggest that miR-155 alters the transcriptome and inhibits the expression of H3F3A in liver cancer cells. Therefore, miR-155 inhibits the methylation modification of histone H3 on the 27th lysine. Notably, on the one hand, miR-155-dependent CTCF loops cause the CDK2 interacting with cyclin E in liver cancer cells; on the other hand, miR-155 promotes the phosphorylation modification of CDK2 by inhibiting H3F3A. Subsequently, miR-155 competitively blocks the binding of RNA polymerase II (RNA Pol II) to the P21WAF1/CIP1 promoter by increasing the phosphorylation of CDK2, inhibiting the transcription and translation of P21WAF1/CIP1. Strikingly, excessive P21WAF1/CIP1 abolishes the cancerous function of miR-155. In conclusion, miR-155 can play a positive role in the development of liver cancer and influence a series of gene expression through epigenetic regulation.
Collapse
|
56
|
Paluvai H, Di Giorgio E, Brancolini C. The Histone Code of Senescence. Cells 2020; 9:cells9020466. [PMID: 32085582 PMCID: PMC7072776 DOI: 10.3390/cells9020466] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Senescence is the end point of a complex cellular response that proceeds through a set of highly regulated steps. Initially, the permanent cell-cycle arrest that characterizes senescence is a pro-survival response to irreparable DNA damage. The maintenance of this prolonged condition requires the adaptation of the cells to an unfavorable, demanding and stressful microenvironment. This adaptation is orchestrated through a deep epigenetic resetting. A first wave of epigenetic changes builds a dam on irreparable DNA damage and sustains the pro-survival response and the cell-cycle arrest. Later on, a second wave of epigenetic modifications allows the genomic reorganization to sustain the transcription of pro-inflammatory genes. The balanced epigenetic dynamism of senescent cells influences physiological processes, such as differentiation, embryogenesis and aging, while its alteration leads to cancer, neurodegeneration and premature aging. Here we provide an overview of the most relevant histone modifications, which characterize senescence, aging and the activation of a prolonged DNA damage response.
Collapse
|
57
|
Chen Y, Bravo JI, Son JM, Lee C, Benayoun BA. Remodeling of the H3 nucleosomal landscape during mouse aging. TRANSLATIONAL MEDICINE OF AGING 2020; 4:22-31. [PMID: 32462102 DOI: 10.1016/j.tma.2019.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and deregulation of gene expression correlates with aging. A key layer in the study of gene regulation mechanisms lies at the level of chromatin: cellular chromatin states (i.e. the 'epigenome') can tune transcriptional profiles, and, in line with the prevalence of transcriptional alterations with aging, accumulating evidence suggests that the chromatin landscape is altered with aging across cell types and species. However, although alterations in the chromatin make-up of cells are considered to be a hallmark of aging, little is known of the genomic loci that are specifically affected by age-related chromatin state remodeling and of their biological significance. Here, we report the analysis of genome-wide profiles of core histone H3 occupancy in aging male mouse tissues (i.e. heart, liver, cerebellum and olfactory bulb) and primary cultures of neural stem cells. We find that, although no drastic changes in H3 levels are observed, local changes in H3 occupancy occur with aging across tissues and cells with both regions of increased or decreased occupancy. These changes are compatible with a general increase in chromatin accessibility at pro-inflammatory genes and may thus mechanistically underlie known shift in gene expression programs during aging.
Collapse
Affiliation(s)
- Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Master of Science in Nutrition, Healthspan, and Longevity, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA.,Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA.,USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
58
|
Strub T, Ballotti R, Bertolotto C. The "ART" of Epigenetics in Melanoma: From histone "Alterations, to Resistance and Therapies". Theranostics 2020; 10:1777-1797. [PMID: 32042336 PMCID: PMC6993228 DOI: 10.7150/thno.36218] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is the most deadly form of skin cancer. It originates from melanocytic cells and can also arise at other body sites. Early diagnosis and appropriate medical care offer excellent prognosis with up to 5-year survival rate in more than 95% of all patients. However, long-term survival rate for metastatic melanoma patients remains at only 5%. Indeed, malignant melanoma is known for its notorious resistance to most current therapies and is characterized by both genetic and epigenetic alterations. In cutaneous melanoma (CM), genetic alterations have been implicated in drug resistance, yet the main cause of this resistance seems to be non-genetic in nature with a change in transcription programs within cell subpopulations. This change can adapt and escape targeted therapy and immunotherapy cytotoxic effects favoring relapse. Because they are reversible in nature, epigenetic changes are a growing focus in cancer research aiming to prevent or revert the drug resistance with current therapies. As such, the field of epigenetic therapeutics is among the most active area of preclinical and clinical research with effects of many classes of epigenetic drugs being investigated. Here, we review the multiplicity of epigenetic alterations, mainly histone alterations and chromatin remodeling in both cutaneous and uveal melanomas, opening opportunities for further research in the field and providing clues to specifically control these modifications. We also discuss how epigenetic dysregulations may be exploited to achieve clinical benefits for the patients, the limitations of these therapies, and recent data exploring this potential through combinatorial epigenetic and traditional therapeutic approaches.
Collapse
Affiliation(s)
- Thomas Strub
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Corine Bertolotto
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| |
Collapse
|
59
|
Papanastasiou M, Mullahoo J, DeRuff KC, Bajrami B, Karageorgos I, Johnston SE, Peckner R, Myers SA, Carr SA, Jaffe JD. Chasing Tails: Cathepsin-L Improves Structural Analysis of Histones by HX-MS. Mol Cell Proteomics 2019; 18:2089-2098. [PMID: 31409669 PMCID: PMC6773551 DOI: 10.1074/mcp.ra119.001325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
The N-terminal regions (tails) of histone proteins are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications present on these regions contribute to transcriptional regulation. Considering their biological significance, relatively few structural details have been established for histone tails, mainly because of their inherently disordered nature. Although hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed in this context, presumably because of the poor N-terminal coverage provided by pepsin. Inspired from histone-clipping events, we profiled the activity of cathepsin-L under HX-MS quench conditions and characterized its specificity employing the four core histones (H2A, H2B, H3 and H4). Cathepsin-L demonstrated cleavage patterns that were substrate- and pH-dependent. Cathepsin-L generated overlapping N-terminal peptides about 20 amino acids long for H2A, H3, and H4 proving its suitability for the analysis of histone tails dynamics. We developed a comprehensive HX-MS method in combination with pepsin and obtained full sequence coverage for all histones. We employed our method to analyze histones H3 and H4. We observe rapid deuterium exchange of the N-terminal tails and cooperative unfolding (EX1 kinetics) in the histone-fold domains of histone monomers in-solution. Overall, this novel strategy opens new avenues for investigating the dynamic properties of histones that are not apparent from the crystal structures, providing insights into the structural basis of the histone code.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis Karageorgos
- Biomolecular Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD;; Institute for Bioscience and Biotechnology Research, Rockville, MD
| | | | - Ryan Peckner
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob D Jaffe
- The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
60
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
61
|
Abstract
Repair of damaged DNA plays a crucial role in maintaining genomic integrity and normal cell function. The base excision repair (BER) pathway is primarily responsible for removing modified nucleobases that would otherwise cause deleterious and mutagenic consequences and lead to disease. The BER process is initiated by a DNA glycosylase, which recognizes and excises the target nucleobase lesion, and is completed via downstream enzymes acting in a well-coordinated manner. A majority of our current understanding about how BER enzymes function comes from in vitro studies using free duplex DNA as a simplified model. In eukaryotes, however, BER is challenged by the packaging of genomic DNA into chromatin. The fundamental structural repeating unit of chromatin is the nucleosome, which presents a more complex substrate context than free duplex DNA for repair. In this chapter, we discuss how BER enzymes, particularly glycosylases, engage in the context of packaged DNA with insights obtained from both in vivo and in vitro studies. Furthermore, we review factors and mechanisms that can modify chromatin architecture and/or influence DNA accessibility to BER machinery, such as the geometric location of the damage site, nucleosomal DNA unwrapping, histone post-translational modifications, histone variant incorporation, and chromatin remodeling.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Chemistry, Brown University, Providence, RI, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
62
|
Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. Semin Cancer Biol 2019; 60:28-40. [PMID: 31400500 DOI: 10.1016/j.semcancer.2019.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is the main cause of cancer-related deaths. Disseminated tumor cells (DTCs), which seed metastasis, can remain undetected in a dormant state for decades after treatment of the primary tumor and their persistence is the main cause of late relapse and death in a substantial proportion of cancer patients. Understanding the mechanisms underlying the survival of dormant DTCs is of utmost importance to develop new therapies that effectively kill DTCs while in a quiescent state, therefore preventing metastatic disease and minimizing the chance of future relapses. Besides key interactions with the local microenvironment, dormant DTCs must integrate survival mechanisms to remain viable for long periods of time. Here, the pro-survival role of autophagy in tumor cell dissemination and dormant DTC maintenance are discussed, as well as the implications of the current knowledge for future research efforts.
Collapse
|
63
|
Abstract
Cellular senescence defines an irreversible cell growth arrest state linked to loss of tissue function and aging in mammals. This transition from proliferation to senescence is typically characterized by increased expression of the cell-cycle inhibitor p16INK4a and formation of senescence-associated heterochromatin foci (SAHF). SAHF formation depends on HIRA-mediated nucleosome assembly of histone H3.3, which is regulated by the serine/threonine protein kinase Pak2. However, it is unknown if Pak2 contributes to cellular senescence. Here, we show that depletion of Pak2 delayed oncogene-induced senescence in IMR90 human fibroblasts and oxidative stress-induced senescence of mouse embryonic fibroblasts (MEFs), whereas overexpression of Pak2 accelerated senescence of IMR90 cells. Importantly, depletion of Pak2 in BubR1 progeroid mice attenuated the onset of aging-associated phenotypes and extended life span. Pak2 is required for expression of genes involved in cellular senescence and regulated the deposition of newly synthesized H3.3 onto chromatin in senescent cells. Together, our results demonstrate that Pak2 is an important regulator of cellular senescence and organismal aging, in part through the regulation of gene expression and H3.3 nucleosome assembly.
Collapse
|
64
|
Ricketts MD, Dasgupta N, Fan J, Han J, Gerace M, Tang Y, Black BE, Adams PD, Marmorstein R. The HIRA histone chaperone complex subunit UBN1 harbors H3/H4- and DNA-binding activity. J Biol Chem 2019; 294:9239-9259. [PMID: 31040182 DOI: 10.1074/jbc.ra119.007480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/01/2019] [Indexed: 02/04/2023] Open
Abstract
The HIRA histone chaperone complex is composed of the proteins HIRA, UBN1, and CABIN1 and cooperates with the histone chaperone ASF1a to specifically bind and deposit H3.3/H4 into chromatin. We recently reported that the UBN1 Hpc2-related domain (HRD) specifically binds to H3.3/H4 over H3.1/H4. However, the mechanism for HIRA complex deposition of H3.3/H4 into nucleosomes remains unclear. Here, we characterize a central region of UBN1 (UBN1 middle domain) that is evolutionarily conserved and predicted to have helical secondary structure. We report that the UBN1 middle domain has dimer formation activity and binds to H3/H4 in a manner that does not discriminate between H3.1 and H3.3. We additionally identify a nearby DNA-binding domain in UBN1, located between the UBN1 HRD and middle domain, which binds DNA through electrostatic contacts involving several conserved lysine residues. Together, these observations suggest a mechanism for HIRA-mediated H3.3/H4 deposition whereby UBN1 associates with DNA and dimerizes to mediate formation of an (H3.3/H4)2 heterotetramer prior to chromatin deposition.
Collapse
Affiliation(s)
- M Daniel Ricketts
- From the Department of Biochemistry and Biophysics and.,the Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nirmalya Dasgupta
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Jiayi Fan
- From the Department of Biochemistry and Biophysics and
| | - Joseph Han
- From the Department of Biochemistry and Biophysics and.,the Department of Chemistry Graduate Group and
| | - Morgan Gerace
- From the Department of Biochemistry and Biophysics and
| | - Yong Tang
- the Wistar Institute, Philadelphia, Pennsylvania 19104, and
| | - Ben E Black
- From the Department of Biochemistry and Biophysics and.,the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Peter D Adams
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Ronen Marmorstein
- From the Department of Biochemistry and Biophysics and .,the Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,the Department of Chemistry Graduate Group and.,the Wistar Institute, Philadelphia, Pennsylvania 19104, and.,the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
65
|
Hernandez-Segura A, Rubingh R, Demaria M. Identification of stable senescence-associated reference genes. Aging Cell 2019; 18:e12911. [PMID: 30710410 PMCID: PMC6413663 DOI: 10.1111/acel.12911] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest activated in response to damaging stimuli. Many hallmarks associated with senescent cells are measured by quantitative real-time PCR (qPCR). As the selection of stable reference genes for interpretation of qPCR data is often overlooked, we performed a systematic review to understand normalization strategies entailed in experiments involving senescent cells. We found that, in violation of the Minimum Information for publication of qPCR Experiments (MIQE) guidelines, most reports used only one reference gene to normalize qPCR data, and that stability of the reference genes was either not tested or not reported. To identify new and more stable reference genes in senescent fibroblasts, we analyzed the Shapiro-Wilk normality test and the coefficient of variation per gene using in public RNAseq datasets. We then compared the new reference gene candidates with commonly used ones by using both RNAseq and qPCR data. Finally, we defined the best reference genes to be used universally or in a strain-dependent manner. This study intends to raise awareness of the instability of classical reference genes in senescent cells and to serve as a first attempt to define guidelines for the selection of more reliable normalization methods.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing, University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Richard Rubingh
- European Research Institute for the Biology of Ageing, University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| |
Collapse
|
66
|
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 2019; 54:61-83. [PMID: 30822165 PMCID: PMC6424622 DOI: 10.1080/10409238.2019.1570075] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.
Collapse
Affiliation(s)
- Alice E. Kane
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - David A. Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
67
|
Wei Z, Guo H, Qin J, Lu S, Liu Q, Zhang X, Zou Y, Gong Y, Shao C. Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. Free Radic Biol Med 2019; 130:267-277. [PMID: 30391675 DOI: 10.1016/j.freeradbiomed.2018.10.457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Cellular senescence, an irreversible proliferative arrest, functions in tissue remodeling during development and is implicated in multiple aging-associated diseases. While senescent cells often manifest an array of senescence-associated phenotypes, such as cell cycle arrest, altered heterochromatin architecture, reprogrammed metabolism and senescence-associated secretory phenotype (SASP), the identification of senescence cells has been hindered by lack of specific and universal biomarkers. To systematically identify universal biomarkers of cellular senescence, we integrated multiple transcriptome data sets of senescent cells obtained through different in vitro manipulation modes as well as age-related gene expression data of human tissues. Our analysis showed that RRAD (Ras-related associated with diabetes) expression is up-regulated in all the manipulation modes and increases with age in human skin and adipose tissues. The elevated RRAD expression was then confirmed in senescent human fibroblasts that were induced by Ras, H2O2, ionizing radiation, hydroxyurea, etoposide and replicative passage, respectively. Further functional study suggests that RRAD up-regulation acts as a negative feedback mechanism to counter cellular senescence by reducing the level of reactive oxygen species. Finally, we found both p53 and NF-κB bind to RRAD genomic regions and modulate RRAD transcription. This study established RRAD to be a biomarker as well as a novel negative regulator of cellular senescence.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China; Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haiyang Guo
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Shihua Lu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
68
|
Abstract
A critical hallmark of aging is cellular senescence, a state of growth arrest and inflammatory cytokine release in cells, caused by a variety of stresses. Recent work has convincingly linked the accumulation of senescent cells in aged tissues to a decline in health and a limit of lifespan, primarily through "inflammaging". Importantly, interventions that clear senescent cells have achieved marked improvements in healthspan and lifespan in mice. A growing list of studies show that environmental stimuli can affect aging and longevity through conserved pathways which, in turn, modulate chromatin states. This review consolidates key findings of chromatin state changes in senescence including histone modifications, histone variants, DNA methylation and changes in three-dimensional genome organization. This information will facilitate the identification of mechanisms and discovery of potential epigenetic targets for therapeutic interventions in aging and age-related disease.
Collapse
Affiliation(s)
- Na Yang
- National Institute on Aging, NIH, Laboratory of Genetics and Genomics, Functional Epigenomics Unit, Baltimore, MD 21224, USA
| | - Payel Sen
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA 19104, USA
| |
Collapse
|
69
|
Abstract
Chromatin is an intelligent building block that can express either external or internal needs through structural changes. To date, three methods to change chromatin structure and regulate gene expression have been well-documented: histone modification, histone exchange, and ATP-dependent chromatin remodeling. Recently, a growing body of literature has suggested that histone tail cleavage is related to various cellular processes including stem cell differentiation, osteoclast differentiation, granulocyte differentiation, mammary gland differentiation, viral infection, aging, and yeast sporulation. Although the underlying mechanisms suggesting how histone cleavage affects gene expression in view of chromatin structure are only beginning to be understood, it is clear that this process is a novel transcriptional epigenetic mechanism involving chromatin dynamics. In this review, we describe the functional properties of the known histone tail cleavage with its proteolytic enzymes, discuss how histone cleavage impacts gene expression, and present future directions for this area of study.
Collapse
Affiliation(s)
- Sun-Ju Yi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Kyunghwan Kim
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
70
|
Azad GK, Swagatika S, Kumawat M, Kumawat R, Tomar RS. Modifying Chromatin by Histone Tail Clipping. J Mol Biol 2018; 430:3051-3067. [DOI: 10.1016/j.jmb.2018.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
|
71
|
Jakhar R, Luijten MN, Wong AX, Cheng B, Guo K, Neo SP, Au B, Kulkarni M, Lim KJ, Maimaiti J, Chong HC, Lim EH, Tan TB, Ong KW, Sim Y, Wong JS, Khoo JB, Ho JT, Chua BT, Sinha I, Wang X, Connolly JE, Gunaratne J, Crasta KC. Autophagy Governs Protumorigenic Effects of Mitotic Slippage–induced Senescence. Mol Cancer Res 2018; 16:1625-1640. [DOI: 10.1158/1541-7786.mcr-18-0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/03/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
|
72
|
Huang M, Garcia JS, Thomas D, Zhu L, Nguyen LXT, Chan SM, Majeti R, Medeiros BC, Mitchell BS. Autophagy mediates proteolysis of NPM1 and HEXIM1 and sensitivity to BET inhibition in AML cells. Oncotarget 2018; 7:74917-74930. [PMID: 27732946 PMCID: PMC5342712 DOI: 10.18632/oncotarget.12493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying activation of the BET pathway in AML cells remain poorly understood. We have discovered that autophagy is activated in acute leukemia cells expressing mutant nucleophosmin 1 (NPMc+) or MLL-fusion proteins. Autophagy activation results in the degradation of NPM1 and HEXIM1, two negative regulators of BET pathway activation. Inhibition of autophagy with pharmacologic inhibitors or through knocking down autophagy-related gene 5 (Atg5) expression increases the expression of both NPM1 and HEXIM1. The Brd4 inhibitors JQ1 and I-BET-151 also inhibit autophagy and increase NPM1 and HEXIM1 expression. We conclude that the degradation of NPM1 and HEXIM1 through autophagy in certain AML subsets contributes to the activation of the BET pathway in these cells.
Collapse
Affiliation(s)
- Min Huang
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Jacqueline S Garcia
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Daniel Thomas
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Steven M Chan
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Bruno C Medeiros
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Beverly S Mitchell
- Stanford Cancer Institute, Stanford University, Stanford, California, USA.,Division of Hematology, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
73
|
Abstract
Histone chaperones are indispensable regulators of chromatin structure and function. Recent work has shown that they are frequently mis-regulated in cancer, which can have profound consequences on tumor growth and survival. Here, we focus on chaperones for the essential H3 histone variants H3.3 and CENP-A, specifically HIRA, DAXX/ATRX, DEK, and HJURP. This review summarizes recent studies elucidating their roles in regulating chromatin and discusses how cancer-specific chromatin interactions can be exploited to target cancer cells.
Collapse
Affiliation(s)
- Jonathan Nye
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniël P Melters
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
74
|
Abstract
Senescence is a durable cell cycle arrest that can be induced in response to various stress factors, such as telomere erosion, DNA damage or the aberrant activation of oncogenes. In addition to its well-established role as a stress response programme, research has revealed important physiological roles of senescence in nondisease settings, such as embryonic development, wound healing, tissue repair and ageing. Senescent cells secrete various cytokines, chemokines, matrix remodelling proteases and growth factors, a phenotype collectively referred to as the senescence-associated secretory phenotype. These factors evoke immune responses that, depending on the pathophysiological context, can either prevent or even fuel disease and tumorigenesis. Remarkably, even the gut microbiota can influence senescence in various organs. In this Review, we provide an introduction to cellular senescence, addressed particularly to gastroenterologists and hepatologists, and discuss the implications of senescence for the pathogenesis of malignant and nonmalignant gastrointestinal and hepatobiliary diseases. We conclude with an outlook on how modulation of cellular senescence might be used for therapeutic purposes.
Collapse
|
75
|
Abstract
As the popular adage goes, all diseases run into old age and almost all physiological changes are associated with alterations in gene expression, irrespective of whether they are causal or consequential. Therefore, the quest for mechanisms that delay ageing and decrease age-associated diseases has propelled researchers to unravel regulatory factors that lead to changes in chromatin structure and function, which ultimately results in deregulated gene expression. It is therefore essential to bring together literature, which until recently has investigated gene expression and chromatin independently. With advances in biomedical research and the emergence of epigenetic regulators as potential therapeutic targets, enhancing our understanding of mechanisms that 'derail' transcription and identification of causal genes/pathways during ageing will have a significant impact. In this context, this chapter aims to not only summarize the key features of age-associated changes in epigenetics and transcription, but also identifies gaps in the field and proposes aspects that need to be investigated in the future.
Collapse
|
76
|
DNA and factor VII-activating protease protect against the cytotoxicity of histones. Blood Adv 2017; 1:2491-2502. [PMID: 29296900 DOI: 10.1182/bloodadvances.2017010959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
Abstract
Circulating histones have been implicated as major mediators of inflammatory disease because of their strong cytotoxic effects. Histones form the protein core of nucleosomes; however, it is unclear whether histones and nucleosomes are equally cytotoxic. Several plasma proteins that neutralize histones are present in plasma. Importantly, factor VII-activating protease (FSAP) is activated upon contact with histones and subsequently proteolyzes histones. We aimed to determine the effect of FSAP on the cytotoxicity of both histones and nucleosomes. Indeed, FSAP protected against histone-induced cytotoxicity of cultured cells in vitro. Upon incubation of serum with histones, endogenous FSAP was activated and degraded histones, which also prevented cytotoxicity. Notably, histones as part of nucleosome complexes were not cytotoxic, whereas DNA digestion restored cytotoxicity. Histones in nucleosomes were inefficiently cleaved by FSAP, which resulted in limited cleavage of histone H3 and removal of the N-terminal tail. The specific isolation of either circulating nucleosomes or free histones from sera of Escherichia coli challenged baboons or patients with meningococcal sepsis revealed that histone H3 was present in the form of nucleosomes, whereas free histone H3 was not detected. All samples showed signs of FSAP activation. Markedly, we observed that all histone H3 in nucleosomes from the patients with sepsis, and most histone H3 from the baboons, was N-terminally truncated, giving rise to a similarly sized protein fragment as through cleavage by FSAP. Taken together, our results suggest that DNA and FSAP jointly limit histone cytotoxicity and that free histone H3 does not circulate in appreciable concentrations in sepsis.
Collapse
|
77
|
Bano D, Piazzesi A, Salomoni P, Nicotera P. The histone variant H3.3 claims its place in the crowded scene of epigenetics. Aging (Albany NY) 2017; 9:602-614. [PMID: 28284043 PMCID: PMC5391221 DOI: 10.18632/aging.101194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
Histones are evolutionarily conserved DNA-binding proteins. As scaffolding molecules, they significantly regulate the DNA packaging into the nucleus of all eukaryotic cells. As docking units, they influence the recruitment of the transcriptional machinery, thus establishing unique gene expression patterns that ultimately promote different biological outcomes. While canonical histones H3.1 and H3.2 are synthetized and loaded during DNA replication, the histone variant H3.3 is expressed and deposited into the chromatin throughout the cell cycle. Recent findings indicate that H3.3 replaces the majority of canonical H3 in non-dividing cells, reaching almost saturation levels in a time-dependent manner. Consequently, H3.3 incorporation and turnover represent an additional layer in the regulation of the chromatin landscape during aging. In this respect, work from our group and others suggest that H3.3 plays an important function in age-related processes throughout evolution. Here, we summarize the current knowledge on H3.3 biology and discuss the implications of its aberrant dynamics in the establishment of cellular states that may lead to human pathology. Critically, we review the importance of H3.3 turnover as part of epigenetic events that influence senescence and age-related processes. We conclude with the emerging evidence that H3.3 is required for proper neuronal function and brain plasticity.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
78
|
Shen J, Xiang X, Chen L, Wang H, Wu L, Sun Y, Ma L, Gu X, Liu H, Wang L, Yu YN, Shao J, Huang C, Chin YE. JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Rep 2017; 18:2131-2143. [PMID: 28982940 DOI: 10.15252/embr.201743892] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
The histone H3 N-terminal protein domain (N-tail) is regulated by multiple posttranslational modifications, including methylation, acetylation, phosphorylation, and by proteolytic cleavage. However, the mechanism underlying H3 N-tail proteolytic cleavage is largely elusive. Here, we report that JMJD5, a Jumonji C (JmjC) domain-containing protein, is a Cathepsin L-type protease that mediates histone H3 N-tail proteolytic cleavage under stress conditions that cause a DNA damage response. JMJD5 clips the H3 N-tail at the carboxyl side of monomethyl-lysine (Kme1) residues. In vitro H3 peptide digestion reveals that JMJD5 exclusively cleaves Kme1 H3 peptides, while little or no cleavage effect of JMJD5 on dimethyl-lysine (Kme2), trimethyl-lysine (Kme3), or unmethyl-lysine (Kme0) H3 peptides is observed. Although H3 Kme1 peptides of K4, K9, K27, and K36 can all be cleaved by JMJD5 in vitro, K9 of H3 is the major cleavage site in vivo, and H3.3 is the major H3 target of JMJD5 cleavage. Cleavage is enhanced at gene promoters bound and repressed by JMJD5 suggesting a role for H3 N-tail cleavage in gene expression regulation.
Collapse
Affiliation(s)
- Jing Shen
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
| | - Xueping Xiang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
| | - Lihan Chen
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Haiyi Wang
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Li Wu
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Yanyun Sun
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Li Ma
- Department of Surgery, Brown University School of Medicine-Rhode Island Hospital, Providence, RI, USA
| | - Xiuting Gu
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Hong Liu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
| | - Lishun Wang
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Ying-Nian Yu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
| | - Jimin Shao
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
| | - Chao Huang
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China .,Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Y Eugene Chin
- Institute of Health Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China .,Department of Surgery, Brown University School of Medicine-Rhode Island Hospital, Providence, RI, USA.,Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
79
|
Fang D, Gan H, Wang H, Zhou H, Zhang Z. Probe the function of histone lysine 36 methylation using histone H3 lysine 36 to methionine mutant transgene in mammalian cells. Cell Cycle 2017; 16:1781-1789. [PMID: 28129023 PMCID: PMC5628648 DOI: 10.1080/15384101.2017.1281483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Chondroblastoma is a cartilaginous tumor that typically arises under 25 y of age (80%). Recent studies have identified a somatic and heterozygous mutation at the H3F3B gene in over 90% chondroblastoma cases, leading to a lysine 36 to methionine replacement (H3.3K36M). In human cells, H3F3B gene is one of 2 genes that encode identical H3.3 proteins. It is not known how H3.3K36M mutant proteins promote tumorigenesis. We and others have shown that, the levels of H3K36 di- and tri-methylation (H3K36me2/me3) are reduced dramatically in chondroblastomas and chondrocytes bearing the H3.3K36M mutation. Mechanistically, H3.3K36M mutant proteins inhibit enzymatic activity of some, but not all H3K36 methyltransferases. Chondrocytes harboring the same H3F3B mutation exhibited the cancer cell associated phenotypes. Here, we discuss the potential effects of H3.3K36M mutation on epigenomes including H3K36 and H3K27 methylation and cellular phenotypes. We suggest that H3.3K36M mutant proteins alter epigenomes of specific progenitor cells, which in turn lead to cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
- Dong Fang
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, NY, USA
| | - Haiyun Gan
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, NY, USA
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, P.R. China
| | - Hui Zhou
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, NY, USA
| |
Collapse
|
80
|
Epigenetic regulation in cell senescence. J Mol Med (Berl) 2017; 95:1257-1268. [DOI: 10.1007/s00109-017-1581-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022]
|
81
|
Kovatcheva M, Liao W, Klein ME, Robine N, Geiger H, Crago AM, Dickson MA, Tap WD, Singer S, Koff A. ATRX is a regulator of therapy induced senescence in human cells. Nat Commun 2017; 8:386. [PMID: 28855512 PMCID: PMC5577318 DOI: 10.1038/s41467-017-00540-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/07/2017] [Indexed: 01/24/2023] Open
Abstract
Senescence is a state of stable cell cycle exit with important implications for development and disease. Here, we demonstrate that the chromatin remodeling enzyme ATRX is required for therapy-induced senescence. ATRX accumulates in nuclear foci and is required for therapy-induced senescence in multiple types of transformed cells exposed to either DNA damaging agents or CDK4 inhibitors. Mobilization into foci depends on the ability of ATRX to interact with H3K9me3 histone and HP1. Foci form soon after cells exit the cell cycle, before other hallmarks of senescence appear. Eliminating ATRX in senescent cells destabilizes the senescence-associated heterochromatic foci. Additionally, ATRX binds to and suppresses expression from the HRAS locus; repression of HRAS is sufficient to promote the transition of quiescent cells into senescence and preventing repression blocks progression into senescence. Thus ATRX is a critical regulator of therapy-induced senescence and acts in multiple ways to drive cells into this state. Therapy induced senescence (TIS) is a growth suppressive program activated by cytostatic agents in some cancer cells. Here the authors show that the chromatin remodeling enzyme ATRX is a regulator of TIS and drives cells into this state via multiple mechanisms.
Collapse
Affiliation(s)
- Marta Kovatcheva
- The Louis V. Gerstner Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, 10065, USA.,Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Will Liao
- The New York Genome Center, New York, 10013, USA
| | - Mary E Klein
- The Louis V. Gerstner Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, 10065, USA.,Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | | | | | - Aimee M Crago
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, 10065, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Mark A Dickson
- Department of Medicine, Weill College of Medicine, Cornell University, New York, 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - William D Tap
- Department of Medicine, Weill College of Medicine, Cornell University, New York, 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Andrew Koff
- The Louis V. Gerstner Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, 10065, USA. .,Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, 10065, USA.
| |
Collapse
|
82
|
MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2398696. [PMID: 28593022 PMCID: PMC5448073 DOI: 10.1155/2017/2398696] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022]
Abstract
Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence.
Collapse
|
83
|
Contrepois K, Coudereau C, Benayoun BA, Schuler N, Roux PF, Bischof O, Courbeyrette R, Carvalho C, Thuret JY, Ma Z, Derbois C, Nevers MC, Volland H, Redon CE, Bonner WM, Deleuze JF, Wiel C, Bernard D, Snyder MP, Rübe CE, Olaso R, Fenaille F, Mann C. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat Commun 2017; 8:14995. [PMID: 28489069 PMCID: PMC5436145 DOI: 10.1038/ncomms14995] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/20/2017] [Indexed: 01/02/2023] Open
Abstract
The senescence of mammalian cells is characterized by a proliferative arrest in response to stress and the expression of an inflammatory phenotype. Here we show that histone H2A.J, a poorly studied H2A variant found only in mammals, accumulates in human fibroblasts in senescence with persistent DNA damage. H2A.J also accumulates in mice with aging in a tissue-specific manner and in human skin. Knock-down of H2A.J inhibits the expression of inflammatory genes that contribute to the senescent-associated secretory phenotype (SASP), and over expression of H2A.J increases the expression of some of these genes in proliferating cells. H2A.J accumulation may thus promote the signalling of senescent cells to the immune system, and it may contribute to chronic inflammation and the development of aging-associated diseases.
Collapse
Affiliation(s)
- Kévin Contrepois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
| | - Clément Coudereau
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Bérénice A. Benayoun
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, California 94305-5120, USA
| | - Nadine Schuler
- Department of Radiation Oncology, Saarland University, 66421 Homburg (Saar), Germany
| | - Pierre-François Roux
- Institut Pasteur/INSERM U933, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, 75015 Paris, France
| | - Oliver Bischof
- Institut Pasteur/INSERM U933, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, 75015 Paris, France
| | - Régis Courbeyrette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Cyril Carvalho
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Yves Thuret
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Zhihai Ma
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
| | | | - Marie-Claire Nevers
- CEA, Service de Pharmacologie et Immunoanalyse (SPI), INRA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hervé Volland
- CEA, Service de Pharmacologie et Immunoanalyse (SPI), INRA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, C.C.R., N.C.I., N.I.H., Bethesda, Maryland 20892, USA
| | - William M. Bonner
- Laboratory of Molecular Pharmacology, C.C.R., N.C.I., N.I.H., Bethesda, Maryland 20892, USA
| | | | - Clotilde Wiel
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Centre Léon Bérard, Université de Lyon 69008, Lyon, France
| | - David Bernard
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Centre Léon Bérard, Université de Lyon 69008, Lyon, France
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
| | - Claudia E. Rübe
- Department of Radiation Oncology, Saarland University, 66421 Homburg (Saar), Germany
| | | | - François Fenaille
- CEA, IBITECS, Service de Pharmacologie et d'Immunoanalyse, UMR 0496, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Université Paris Saclay, F-91191 Gif-sur-Yvette cedex, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
84
|
Coradin M, Karch KR, Garcia BA. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Rev Proteomics 2017; 14:409-418. [PMID: 28395554 DOI: 10.1080/14789450.2017.1316977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.
Collapse
Affiliation(s)
- Mariel Coradin
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Kelly R Karch
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
85
|
Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 2017; 18:299-314. [DOI: 10.1038/nrm.2016.166] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Salmina K, Huna A, Inashkina I, Belyayev A, Krigerts J, Pastova L, Vazquez-Martin A, Erenpreisa J. Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells. Nucleus 2017; 8:205-221. [PMID: 28068183 DOI: 10.1080/19491034.2017.1279775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The role of the nucleolus and autophagy in maintenance of nuclear integrity is poorly understood. In addition, the mechanisms of nuclear destruction in cancer cells senesced after conventional chemotherapy are unclear. In an attempt to elucidate these issues, we studied teratocarcinoma PA1 cells treated with Etoposide (ETO), focusing on the nucleolus. Following treatment, most cells enter G2 arrest, display persistent DNA damage and activate p53, senescence, and macroautophagy markers. 2-5 µm sized nucleolar aggresomes (NoA) containing fibrillarin (FIB) and damaged rDNA, colocalized with ubiquitin, pAMPK, and LC3-II emerge, accompanied by heterochromatin fragments, when translocated perinuclearly. Microscopic counts following application of specific inhibitors revealed that formation of FIB-NoA is dependent on deficiency of the ubiquitin proteasome system coupled to functional autophagy. In contrast, the accompanying NoAs release of pericentric heterochromatin, which exceeds their frequency, is favored by debilitation of autophagic flux. Potential survivors release NoA in the cytoplasm during rare mitoses, while exit of pericentric fragments often depleted of H3K9Me3, with or without encompassing by NoA, occurs through the nucleolar protrusions and defects of the nuclear envelope. Foci of LC3-II are accumulated in the nucleoli undergoing cessation of rDNA transcription. As an origin of heterochromatin fragmentation, the unscheduled DNA synthesis and circular DNAs were found in the perinucleolar heterochromatin shell, along with activation and retrotransposition of ALU elements, colocalized with 45S rDNA in NoAs. The data indicate coordination of the basic nucleolar function with autophagy regulation in maintenance of the integrity of the nucleolus associated domains secured by inactivity of retrotransposons.
Collapse
Affiliation(s)
| | - Anda Huna
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Inna Inashkina
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Alexander Belyayev
- b Botanical Institute AS CR , Czech Academy of Science , Prague, Czech Republic
| | - Jekabs Krigerts
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Ladislava Pastova
- b Botanical Institute AS CR , Czech Academy of Science , Prague, Czech Republic
| | | | | |
Collapse
|
87
|
Criscione SW, Teo YV, Neretti N. The Chromatin Landscape of Cellular Senescence. Trends Genet 2016; 32:751-761. [PMID: 27692431 DOI: 10.1016/j.tig.2016.09.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible growth arrest triggered by a variety of stressors, plays important roles in normal physiology and tumor suppression, but accumulation of senescent cells with age contributes to the functional decline of tissues. Senescent cells undergo dramatic alterations to their chromatin landscape that affect genome accessibility and their transcriptional program. These include the loss of DNA-nuclear lamina interactions, the distension of centromeres, and changes in chromatin composition that can lead to the activation of retrotransposons. Here we discuss these findings, as well as recent advances in microscopy and genomics that have revealed the importance of the higher-order spatial organization of the genome in defining and maintaining the senescent state.
Collapse
Affiliation(s)
- Steven W Criscione
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
88
|
Chauhan S, Mandal P, Tomar RS. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease. Biochemistry 2016; 55:5464-82. [PMID: 27586699 DOI: 10.1021/acs.biochem.6b00625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.
Collapse
Affiliation(s)
- Sakshi Chauhan
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Papita Mandal
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| | - Raghuvir S Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462066, India
| |
Collapse
|
89
|
Sandoval-Basilio J, Serafín-Higuera N, Reyes-Hernandez OD, Serafín-Higuera I, Leija-Montoya G, Blanco-Morales M, Sierra-Martínez M, Ramos-Mondragon R, García S, López-Hernández LB, Yocupicio-Monroy M, Alcaraz-Estrada SL. Low Proteolytic Clipping of Histone H3 in Cervical Cancer. J Cancer 2016; 7:1856-1860. [PMID: 27698925 PMCID: PMC5039369 DOI: 10.7150/jca.15605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/10/2016] [Indexed: 11/11/2022] Open
Abstract
Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC.
Collapse
Affiliation(s)
- Jorge Sandoval-Basilio
- Área de investigación clínica, Unidad de Innovación Clínica y Epidemiológica de la Secretaría de Salud del estado de Guerrero, Acapulco, Gro., México.; Laboratorio de Biología Molecular, Universidad Hipócrates, Acapulco, Gro., México
| | - Nicolás Serafín-Higuera
- Laboratorio de Biología Celular, Unidad Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California Mexicali, BC, México
| | - Octavio D Reyes-Hernandez
- Laboratorio de Genética y Diagnóstico Molecular, Unidad de Investigación, Hospital Juárez de México, Ciudad de México, México.; Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Idanya Serafín-Higuera
- Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México
| | - Gabriela Leija-Montoya
- Laboratorio de Bioquímica, Unidad Ciencias de la Salud, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California Mexicali, BC, México
| | - Magali Blanco-Morales
- Área de investigación clínica, Unidad de Innovación Clínica y Epidemiológica de la Secretaría de Salud del estado de Guerrero, Acapulco, Gro., México
| | - Monica Sierra-Martínez
- Laboratorio de Genética y Diagnóstico Molecular, Unidad de Investigación, Hospital Juárez de México, Ciudad de México, México
| | | | - Silvia García
- Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Luz Berenice López-Hernández
- Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Sofia L Alcaraz-Estrada
- Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| |
Collapse
|
90
|
Parry AJ, Narita M. Old cells, new tricks: chromatin structure in senescence. Mamm Genome 2016; 27:320-31. [PMID: 27021489 PMCID: PMC4935760 DOI: 10.1007/s00335-016-9628-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
Cellular senescence is a stable form of cell cycle arrest with roles in many pathophysiological processes including development, tissue repair, cancer, and aging. Senescence does not represent a single entity but rather a heterogeneous phenotype that depends on the trigger and cell type of origin. Such heterogeneous features include alterations to chromatin structure and epigenetic states. New technologies are beginning to unravel the distinct mechanisms regulating chromatin structure during senescence. Here, we describe the multiple levels of chromatin organization associated with senescence: global and focal, linear, and higher order.
Collapse
Affiliation(s)
- Aled John Parry
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE UK
| | - Masashi Narita
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE UK
| |
Collapse
|
91
|
Abstract
Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer.
Collapse
Affiliation(s)
- Sangita Pal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Genes and Development Graduate Program, University of Texas Graduate School of the Biomedical Sciences at Houston, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|
92
|
The Metabolic Impact on Histone Acetylation and Transcription in Ageing. Trends Biochem Sci 2016; 41:700-711. [PMID: 27283514 DOI: 10.1016/j.tibs.2016.05.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022]
Abstract
Loss of cellular homeostasis during aging results in altered tissue functions and leads to a general decline in fitness and, ultimately, death. As animals age, the control of gene expression, which is orchestrated by multiple epigenetic factors, degenerates. In parallel, metabolic activity and mitochondrial protein acetylation levels also change. These two hallmarks of aging are effectively linked through the accumulating evidence that histone acetylation patterns are susceptible to alterations in key metabolites such as acetyl-CoA and NAD(+), allowing chromatin to function as a sensor of cellular metabolism. In this review we discuss experimental data supporting these connections and provide a context for the possible medical and physiological relevance.
Collapse
|
93
|
O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. Proc Natl Acad Sci U S A 2016; 113:E3213-20. [PMID: 27217568 DOI: 10.1073/pnas.1600509113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The histone chaperone HIRA complex, consisting of histone cell cycle regulator (HIRA), Ubinuclein1 (UBN1), and calcineurin binding protein 1 (CABIN1), deposits histone variant H3.3 to genic regions and regulates gene expression in various cellular processes, including cellular senescence. How HIRA-mediated nucleosome assembly of H3.3-H4 is regulated remains not well understood. Here, we show that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), an enzyme that catalyzes O-GlcNAcylation of serine or threonine residues, interacts with UBN1, modifies HIRA, and promotes nucleosome assembly of H3.3. Depletion of OGT or expression of the HIRA S231A O-GlcNAcylation-deficient mutant compromises formation of the HIRA-H3.3 complex and H3.3 nucleosome assembly. Importantly, OGT depletion or expression of the HIRA S231A mutant delays premature cellular senescence in primary human fibroblasts, whereas overexpression of OGT accelerates senescence. Taken together, these results support a model in which OGT modifies HIRA to regulate HIRA-H3.3 complex formation and H3.3 nucleosome assembly and reveal the mechanism by which OGT functions in cellular senescence.
Collapse
|
94
|
Azad GK, Tomar RS. Partial purification of histone H3 proteolytic activity from the budding yeastSaccharomyces cerevisiae. Yeast 2016; 33:217-26. [DOI: 10.1002/yea.3153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gajendra Kumar Azad
- Laboratory of Chromatin Biology; Department of Biological Sciences, Indian Institute of Science Education and Research; Bhopal India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology; Department of Biological Sciences, Indian Institute of Science Education and Research; Bhopal India
| |
Collapse
|
95
|
Anderson LC, Karch KR, Ugrin SA, Coradin M, English AM, Sidoli S, Shabanowitz J, Garcia BA, Hunt DF. Analyses of Histone Proteoforms Using Front-end Electron Transfer Dissociation-enabled Orbitrap Instruments. Mol Cell Proteomics 2016; 15:975-88. [PMID: 26785730 PMCID: PMC4813714 DOI: 10.1074/mcp.o115.053843] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Histones represent a class of proteins ideally suited to analyses by top-down mass spectrometry due to their relatively small size, the high electron transfer dissociation-compatible charge states they exhibit, and the potential to gain valuable information concerning combinatorial post-translational modifications and variants. We recently described new methods in mass spectrometry for the acquisition of high-quality MS/MS spectra of intact proteins (Anderson, L. C., English, A. M., Wang, W., Bai, D. L., Shabanowitz, J., and Hunt, D. F. (2015) Int. J. Mass Spectrom. 377, 617-624). Here, we report an extension of these techniques. Sequential ion/ion reactions carried out in a modified Orbitrap Velos Pro/Elite(TM) capable of multiple fragment ion fills of the C-trap, in combination with data-dependent and targeted HPLC-MS experiments, were used to obtain high resolution MS/MS spectra of histones from butyrate-treated HeLa cells. These spectra were used to identify several unique intact histone proteoforms with up to 81% sequence coverage. We also demonstrate that parallel ion parking during ion/ion proton transfer reactions can be used to separate species of overlapping m/z that are not separated chromatographically, revealing previously indiscernible signals. Finally, we characterized several truncated forms of H2A and H2B found within the histone fractions analyzed, achieving up to 93% sequence coverage by electron transfer dissociation MS/MS. Results of follow-up in vitro experiments suggest that some of the truncated histone H2A proteoforms we observed can be generated by cathepsin L, an enzyme known to also catalyze clipping of histone H3.
Collapse
Affiliation(s)
- Lissa C Anderson
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Kelly R Karch
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - Scott A Ugrin
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Mariel Coradin
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - A Michelle English
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Simone Sidoli
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - Jeffrey Shabanowitz
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Benjamin A Garcia
- the §Epigenetics Program and Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; and
| | - Donald F Hunt
- From the ‡Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904; the ¶Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
96
|
Blum R. Stepping inside the realm of epigenetic modifiers. Biomol Concepts 2016; 6:119-36. [PMID: 25915083 DOI: 10.1515/bmc-2015-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
The ability to regulate gene expression in response to environmental alterations is vital for the endurance of all cells. However, unlike bacteria and unicellular organisms, cells of multicellular eukaryotes have developed this competency in a highly sophisticated manner, which ultimately allows for multiple lineages of differentiated cells. To maintain stability and generate progeny, differentiated cells must remain lineage-committed through numerous cell generations, and therefore their transcriptional modus operandi ought to be memorized and transmittable. To preserve the specialized characteristics of differentiated cells, it is crucial that transcriptional alterations that are triggered by specific external or intrinsic stimuli can last also after stimuli fading and propagate onto daughter cells. The unique composition of DNA and histones, and their ability to acquire a variety of epigenetic modifications, enables eukaryotic chromatin to assimilate cellular plasticity and molecular memory. The most well-studied types of epigenetic modifiers are covalently modifying DNA or histones, mostly in a reversible manner. Additional epigenetic mechanisms include histone variant replacement, energy-utilizing remodeling factors, and noncoding transcripts assembled with modifying complexes. Working with multifunctional complexes including transcription factors, epigenetic modifiers have the potential to dictate a variety of transcriptional programs underlying all cellular lineages, while utilizing in each the same source DNA as their substrates.
Collapse
|
97
|
Histone variants: nuclear function and disease. Curr Opin Genet Dev 2016; 37:82-89. [PMID: 26826795 DOI: 10.1016/j.gde.2015.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/23/2022]
Abstract
Histone variants have emerged as important contributors to the regulation of chromatin structure and therefore of almost all DNA-based processes. Hence, these specialized proteins play important roles in transcriptional regulation, cell cycle progression, DNA repair, chromatin stability, chromosome segregation and apoptosis. Due to their evident biological significance, it is not surprising that mutations or the deregulation of their expression levels can have severe implications for cellular functions that ultimately might contribute to or even drive disease development, most notably cancer. Besides the histones themselves, their respective chaperone/remodeling complexes needed for precise variant chromatin deposition, are consequently frequent targets in neoplasms and diverse diseases. In this review, we briefly summarize current understanding on the function of human/mammalian histone variants and their regulatory networks and highlight their roles in cancer development.
Collapse
|
98
|
Kim K, Punj V, Kim JM, Lee S, Ulmer TS, Lu W, Rice JC, An W. MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis. Genes Dev 2016; 30:208-19. [PMID: 26744418 PMCID: PMC4719310 DOI: 10.1101/gad.268714.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022]
Abstract
Kim et al. discovered that histone H3 N-terminal tail (H3NT) proteolysis is selectively targeted near transcription start sites of a small group of genes and that most H3NT-cleaved genes displayed significant expression changes during osteoclastogenesis. The principal H3NT protease of osteoclastogenesis is matrix metalloproteinase 9 (MMP-9). Although limited proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during mammalian differentiation, the specific genomic sites targeted for H3NT proteolysis and the functional significance of H3NT cleavage remain largely unknown. Here we report the first method to identify and examine H3NT-cleaved regions in mammals, called chromatin immunoprecipitation (ChIP) of acetylated chromatin (ChIPac). By applying ChIPac combined with deep sequencing (ChIPac-seq) to an established cell model of osteoclast differentiation, we discovered that H3NT proteolysis is selectively targeted near transcription start sites of a small group of genes and that most H3NT-cleaved genes displayed significant expression changes during osteoclastogenesis. We also discovered that the principal H3NT protease of osteoclastogenesis is matrix metalloproteinase 9 (MMP-9). In contrast to other known H3NT proteases, MMP-9 primarily cleaved H3K18-Q19 in vitro and in cells. Furthermore, our results support CBP/p300-mediated acetylation of H3K18 as a central regulator of MMP-9 H3NT protease activity both in vitro and at H3NT cleavage sites during osteoclastogenesis. Importantly, we found that abrogation of H3NT proteolysis impaired osteoclastogenic gene activation concomitant with defective osteoclast differentiation. Our collective results support the necessity of MMP-9-dependent H3NT proteolysis in regulating gene pathways required for proficient osteoclastogenesis.
Collapse
Affiliation(s)
- Kyunghwan Kim
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California at Los Angeles, Los Angeles, California 90089, USA; Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Vasu Punj
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California at Los Angeles, Los Angeles, California 90089, USA
| | - Jin-Man Kim
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California at Los Angeles, Los Angeles, California 90089, USA
| | - Sunyoung Lee
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California at Los Angeles, Los Angeles, California 90089, USA
| | - Tobias S Ulmer
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, University of Southern California at Los Angeles, Los Angeles, California 90089, USA
| | - Wange Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Biochemistry and Molecular Biology, University of Southern California at Los Angeles, Los Angeles, California 90089, USA
| | - Judd C Rice
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California at Los Angeles, Los Angeles, California 90089, USA
| | - Woojin An
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California at Los Angeles, Los Angeles, California 90089, USA
| |
Collapse
|
99
|
Tvardovskiy A, Wrzesinski K, Sidoli S, Fey SJ, Rogowska-Wrzesinska A, Jensen ON. Top-down and Middle-down Protein Analysis Reveals that Intact and Clipped Human Histones Differ in Post-translational Modification Patterns. Mol Cell Proteomics 2015; 14:3142-53. [PMID: 26424599 DOI: 10.1074/mcp.m115.048975] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) of histone proteins play a fundamental role in regulation of DNA-templated processes. There is also growing evidence that proteolytic cleavage of histone N-terminal tails, known as histone clipping, influences nucleosome dynamics and functional properties. Using top-down and middle-down protein analysis by mass spectrometry, we report histone H2B and H3 N-terminal tail clipping in human hepatocytes and demonstrate a relationship between clipping and co-existing PTMs of histone H3. Histones H2B and H3 undergo proteolytic processing in primary human hepatocytes and the hepatocellular carcinoma cell line HepG2/C3A when grown in spheroid (3D) culture, but not in a flat (2D) culture. Using tandem mass spectrometry we localized four different clipping sites in H3 and one clipping site in H2B. We show that in spheroid culture clipped H3 proteoforms are mainly represented by canonical histone H3, whereas in primary hepatocytes over 90% of clipped H3 correspond to the histone variant H3.3. Comprehensive analysis of histone H3 modifications revealed a series of PTMs, including K14me1, K27me2/K27me3, and K36me1/me2, which are differentially abundant in clipped and intact H3. Analysis of co-existing PTMs revealed negative crosstalk between H3K36 methylation and H3K23 acetylation in clipped H3. Our data provide the first evidence of histone clipping in human hepatocytes and demonstrate that clipped H3 carry distinct co-existing PTMs different from those in intact H3.
Collapse
Affiliation(s)
- Andrey Tvardovskiy
- From the ‡Department of Biochemistry and Molecular Biology and §Center for Epigenetics, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK - 5230 Odense M, Denmark
| | | | - Simone Sidoli
- From the ‡Department of Biochemistry and Molecular Biology and §Center for Epigenetics, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK - 5230 Odense M, Denmark
| | - Stephen J Fey
- From the ‡Department of Biochemistry and Molecular Biology and
| | - Adelina Rogowska-Wrzesinska
- From the ‡Department of Biochemistry and Molecular Biology and §Center for Epigenetics, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK - 5230 Odense M, Denmark
| | - Ole N Jensen
- From the ‡Department of Biochemistry and Molecular Biology and §Center for Epigenetics, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK - 5230 Odense M, Denmark
| |
Collapse
|
100
|
Gallagher SJ, Tiffen JC, Hersey P. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers (Basel) 2015; 7:1959-82. [PMID: 26426052 PMCID: PMC4695870 DOI: 10.3390/cancers7040870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| |
Collapse
|