51
|
Sud A, Thomsen H, Law PJ, Försti A, Filho MIDS, Holroyd A, Broderick P, Orlando G, Lenive O, Wright L, Cooke R, Easton D, Pharoah P, Dunning A, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Hoffmann P, Nöthen MM, Jöckel KH, Strandmann EPV, Lightfoot T, Kane E, Roman E, Lake A, Montgomery D, Jarrett RF, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nat Commun 2017; 8:1892. [PMID: 29196614 PMCID: PMC5711884 DOI: 10.1038/s41467-017-00320-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023] Open
Abstract
Several susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and 16,749 controls. We identify risk loci for all classical Hodgkin lymphoma at 6q22.33 (rs9482849, P = 1.52 × 10-8) and for nodular sclerosis Hodgkin lymphoma at 3q28 (rs4459895, P = 9.43 × 10-17), 6q23.3 (rs6928977, P = 4.62 × 10-11), 10p14 (rs3781093, P = 9.49 × 10-13), 13q34 (rs112998813, P = 4.58 × 10-8) and 16p13.13 (rs34972832, P = 2.12 × 10-8). Additionally, independent loci within the HLA region are observed for nodular sclerosis Hodgkin lymphoma (rs9269081, HLA-DPB1*03:01, Val86 in HLA-DRB1) and mixed cellularity Hodgkin lymphoma (rs1633096, rs13196329, Val86 in HLA-DRB1). The new and established risk loci localise to areas of active chromatin and show an over-representation of transcription factor binding for determinants of B-cell development and immune response.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, 221 00, Sweden
| | | | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Oleg Lenive
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Lauren Wright
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Alison Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, M1 3BB, UK
- Division of Health Sciences, Warwick Medical School, Warwick University, Warwick, CV4 7AL, UK
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - Per Hoffmann
- Department of Biomedicine, Division of Medical Genetics, University of Basel, Basel, 4031, Switzerland
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany
| | | | | | - Tracy Lightfoot
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Eve Roman
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Annette Lake
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Dorothy Montgomery
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Ruth F Jarrett
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, 50937, Germany
| | - Nick Orr
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, 221 00, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
52
|
HLA-G+3027 polymorphism is associated with tumor relapse in pediatric Hodgkin's lymphoma. Oncotarget 2017; 8:105957-105970. [PMID: 29285306 PMCID: PMC5739693 DOI: 10.18632/oncotarget.22515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/28/2017] [Indexed: 12/16/2022] Open
Abstract
In this study, we tested whether polymorphisms in human leukocyte antigen G (HLA-G) were associated with event-free survival (EFS) in pediatric Hodgkin's lymphoma (HL). We evaluated the association of HLA-G 3′-UTR polymorphisms with EFS in 113 pediatric HL patients treated using the AIEOP LH-2004 protocol. Patients with the +3027-C/A genotype (rs17179101, UTR-7 haplotype) showed lower EFS than those with the +3027-C/C genotype (HR= 3.23, 95%CI: 0.99-10.54, P=0.012). Female patients and systemic B symptomatic patients with the HLA-G +3027 polymorphism showed lower EFS. Multivariate analysis showed that the +3027-A polymorphism (HR 3.17, 95%CI 1.16-8.66, P=0.025) was an independent prognostic factor. Immunohistochemical analysis showed that HL cells from patients with the +3027-C/A genotype did not express HLA-G. Moreover, HLA-G +3027 polymorphism improved EFS prediction when added to the algorithm for therapeutic group classification of pediatric HL patients. Our findings suggest HLA-G +3027 polymorphism is a prognostic marker in pediatric HL patients undergoing treatment according to LH-2004 protocol.
Collapse
|
53
|
Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. Nat Rev Cancer 2017; 17:692-704. [PMID: 29026206 DOI: 10.1038/nrc.2017.82] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genome-wide association studies (GWAS) provide an agnostic approach for investigating the genetic basis of complex diseases. In oncology, GWAS of nearly all common malignancies have been performed, and over 450 genetic variants associated with increased risks have been identified. As well as revealing novel pathways important in carcinogenesis, these studies have shown that common genetic variation contributes substantially to the heritable risk of many common cancers. The clinical application of GWAS is starting to provide opportunities for drug discovery and repositioning as well as for cancer prevention. However, deciphering the functional and biological basis of associations is challenging and is in part a barrier to fully unlocking the potential of GWAS.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| |
Collapse
|
54
|
Distinct subtype distribution and somatic mutation spectrum of lymphomas in East Asia. Curr Opin Hematol 2017; 24:367-376. [PMID: 28406802 DOI: 10.1097/moh.0000000000000355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Here, we give an updated overview of the subtype distribution of lymphomas in East Asia and also present the genome sequencing data on two major subtypes of these tumors. RECENT FINDINGS The distribution of lymphoma types/subtypes among East Asian countries is very similar, with a lower proportion of B-cell malignancies and a higher proportion of T/natural killer (NK)-cell lymphomas as compared to Western populations. Extranodal NK/T-cell lymphoma is more frequently observed in East Asia, whereas follicular lymphoma and chronic lymphocytic leukemia, are proportionally lower. The incidence rate of lymphoma subtypes in Asians living in the US was generally intermediate to the general rate in US and Asia, suggesting that both genetic and environmental factors may underlie the geographical variations observed.Key cancer driver mutations have been identified in Asian patients with diffuse large B-cell lymphoma or extranodal NK/T-cell lymphoma through genome sequencing. A distinct somatic mutation profile has also been observed in Chinese diffuse large B-cell lymphoma patients. SUMMARY The incidence and distribution of lymphoma subtypes differed significantly between patients from East Asia and Western countries, suggesting subtype-specific etiologic mechanisms. Further studies on the mechanism underlying these geographical variations may give new insights into our understanding of lymphomagenesis.
Collapse
|
55
|
Barturen G, Alarcón-Riquelme ME. SLE redefined on the basis of molecular pathways. Best Pract Res Clin Rheumatol 2017; 31:291-305. [PMID: 29224672 DOI: 10.1016/j.berh.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
The implementation of precision medicine requires the recruiting of patients in statistically enough numbers, the possibility of obtaining enough materials, and the integration of data from various platforms, which are all real limitations. These types of studies have been performed extensively in cancer but barely on systemic lupus erythematosus (SLE) or other rheumatic diseases. To consider the practical use of the information obtained from such studies, we have to take into account the best biological fluid to use, the ease to perform the analysis in clinical practice, and its relevance to clinical practice. Here we review the most relevant studies that have performed analyses that attempt to classify or stratify SLE. We focus on two types of studies: those that stratify individuals diagnosed with SLE and those that compare SLE with other autoimmune diseases, defining differences and similarities that may be clinically relevant in the future.
Collapse
Affiliation(s)
- Guillermo Barturen
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Av de la Ilustración 114, PTS, 18016, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Av de la Ilustración 114, PTS, 18016, Granada, Spain; Unit of Inflammatory Chronic Diseases, Institute of Environmental Medicine, Karolinska Institutet, Solna, 17777, Sweden.
| |
Collapse
|
56
|
Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol 2017; 120:77-85. [PMID: 29198340 DOI: 10.1016/j.critrevonc.2017.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs have emerged as essential mediators of cellular biology, differentiation and malignant transformation. LncRNAs have a broad range of possible functions at the transcriptional, posttranscriptional and protein level and their aberrant expression significantly contributes to the hallmarks of cancer cell biology. In addition, their high tissue- and cell-type specificity makes lncRNAs especially interesting as biomarkers, prognostic factors or specific therapeutic targets. Here, we review current knowledge on lncRNA expression changes during normal B-cell development, indicating essential functions in the differentiation process. In addition we address lncRNA deregulation in B-cell malignancies, the putative prognostic value of this as well as the molecular functions of multiple deregulated lncRNAs. Altogether, the discussed work indicates major roles for lncRNAs in normal and malignant B cells affecting oncogenic pathways as well as the response to common therapeutics.
Collapse
|
57
|
Genetic association with B-cell acute lymphoblastic leukemia in allogeneic transplant patients differs by age and sex. Blood Adv 2017; 1:1717-1728. [PMID: 29296818 DOI: 10.1182/bloodadvances.2017006023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 11/20/2022] Open
Abstract
The incidence and mortality rates of B-cell acute lymphoblastic leukemia (B-ALL) differ by age and sex. To determine if inherited genetic susceptibility contributes to these differences we performed 2 genome-wide association studies (GWAS) by age, sex, and subtype and subsequent meta-analyses. The GWAS included 446 B-ALL cases, and 3027 healthy unrelated blood and marrow transplant (BMT) donors as controls from the Determining the Influence of Susceptibility Conveying Variants Related to One-Year Mortality after BMT (DISCOVeRY-BMT) study. We identified 1 novel variant, rs189434316, significantly associated with odds of normal cytogenetic B-ALL (odds ratio from meta-analysis [ORmeta] = 3.7; 95% confidence interval [CI], 2.5, 6.2; P value from meta-analysis [Pmeta] = 6.0 × 10-9). The previously reported pediatric B-ALL GWAS variant, rs11980379 (IKZF1), replicated in B-ALL pediatric patients (ORmeta = 2.3; 95% CI, 1.5, 3.7; Pmeta = 1.0 × 10-9), with evidence of heterogeneity (P = .02) between males and females. Sex differences in single-nucleotide polymorphism effect were seen in those >15 years (OR = 1.7; 95% CI, 1.4, 2.2, PMales = 6.38 × 10-6/OR = 1.1; 95% CI, 0.8, 1.5; PFemales = .6) but not ≤15 years (OR = 2.3; 95% CI, 1.4, 3.8; PMales = .0007/OR = 1.9; 95% CI, 1.2, 3.2; PFemales = .007). The latter association replicated in independent pediatric B-ALL cohorts. A previously identified adolescent and young-adult onset ALL-associated variant in GATA3 is associated with B-ALL risk in those >40 years. Our findings provide more evidence of the influence of genetics on B-ALL age of onset and we have shown the first evidence that IKZF1 associations with B-ALL may be sex and age specific.
Collapse
|
58
|
|
59
|
Thomsen H, Campo C, Weinhold N, da Silva Filho MI, Pour L, Gregora E, Vodicka P, Vodickova L, Hoffmann P, Nöthen MM, Jöckel KH, Langer C, Hajek R, Goldschmidt H, Hemminki K, Försti A. Genomewide association study on monoclonal gammopathy of unknown significance (MGUS). Eur J Haematol 2017; 99:70-79. [PMID: 28375557 DOI: 10.1111/ejh.12892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify germ line variants contributing to the development of monoclonal gammopathy of undetermined significance (MGUS), an asymptomatic premalignant precursor for multiple myeloma (MM). METHODS We conducted the first genomewide association study (GWAS) on MGUS on 243 German cases with a replication on 294 Czech cases. Identified loci were further analyzed in 1508 German MM patients. New MM loci recently reported in a meta-analysis were also tested in the MGUS GWAS. RESULTS In GWAS, we identified 10 loci contributing to development of MGUS at P-value threshold of 10-5 . The Czech cohort gave support for two associations (6q26, rs6933936; 7p21.3 rs10251201). In GWAS, rs974120 (8p23.2) reached genomewide significance (P=2.94×10-9 ), with a nominal significance in MM. The locus of rs974120 shows marks of transcriptional activity in leukemia according to ENCODE data. rs10251201 (7p21.3), rs9318227 (13q22.1), and rs10405859 (19q13.32) were associated with markers related to leukemogenesis and immune and inflammatory responses. Two newly identified candidate loci for MM, rs1948915 (8q24.21) and rs8058578 (16p11.2), were nominally associated with MGUS. CONCLUSIONS These data allow a cautious first proposal for a germ line architecture of MGUS with links to leukemia and autoimmune conditions, the latter agreeing with a family study showing clustering of MGUS with autoimmune diseases.
Collapse
Affiliation(s)
- Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Campo
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Luděk Pour
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Evžen Gregora
- Department of Hematology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Research Center, University of Bonn, Bonn, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Langer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Roman Hajek
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center of Tumor Diseases, Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| |
Collapse
|
60
|
Guo K, Yao J, Yu Q, Li Z, Huang H, Cheng J, Wang Z, Zhu Y. The expression pattern of long non-coding RNA PVT1 in tumor tissues and in extracellular vesicles of colorectal cancer correlates with cancer progression. Tumour Biol 2017; 39:1010428317699122. [PMID: 28381186 DOI: 10.1177/1010428317699122] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The plasmacytoma variant translocation 1 gene (PVT1) is a large non-coding locus at adjacent of c-Myc, and long non-coding RNA PVT1 is now recognized as a cancerous gene co-amplified with c-Myc in various cancers. But the expression and functional role of PVT1 in colorectal cancer are still unelucidated. In addition, all the reported long non-coding RNAs so far are discovered in either cells or tissues, but no research about long non-coding RNAs detection in extracellular vesicles has been reported yet. In the present study, we firstly investigated the expression of PVT1 in colorectal cancer specimens and its correlation with the expression of c-Myc and other related genes by real-time polymerase chain reaction. Then, we isolated the extracellular vesicles from colorectal cancer cells culturing medium by differential centrifugation and detected the PVT1 expression in extracellular vesicles by using real-time polymerase chain reaction. The PVT1 targeting siRNA was transfected into SW480 and SW620 cells, and 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay and flow cytometry were used to evaluate the cell proliferation and apoptosis. The results showed that the PVT1 expression in tumor tissues was higher than that in normal tissues, which was significantly correlated with the expression of c-Myc and three c-Myc regulating genes FUBP1, EZH2, and NPM1 and also correlated with the expression of two other PVT1-associated transcript factors nuclear factor-κB and myocyte-specific enhancer factor 2A. Here, we reported for the first time that PVT1 as a long non-coding RNA was successfully detected in extracellular vesicles excluded from SW620 and SW480 cells, and the expression level of PVT1 was higher in extracellular vesicles from the more aggressive cell SW620 than from SW480. The results also showed that by down-regulating the PVT1 expression, the c-Myc expression was suppressed, the cell proliferation was inhibited, and cell apoptosis was increased. Taken together, these findings implicated that PVT1 may be a new oncogene co-amplified with c-Myc in colorectal cancer tissues and extracellular vesicles and functionally correlated with the proliferation and apoptosis of colorectal cancer cells.
Collapse
Affiliation(s)
- Kai Guo
- Department of Gastroenterology, The 161th Hospital of PLA, Wuhan, China
| | - Jie Yao
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Qiang Yu
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Zijian Li
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Hu Huang
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Jianguo Cheng
- Department of Gastroenterology, The 161th Hospital of PLA, Wuhan, China
| | - Zhigang Wang
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Yunfeng Zhu
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| |
Collapse
|
61
|
Ma Y, Wang P, Xue Y, Qu C, Zheng J, Liu X, Ma J, Liu Y. PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumour Biol 2017; 39:1010428317694326. [PMID: 28351322 DOI: 10.1177/1010428317694326] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vigorous angiogenesis is one of the reasons for the poor prognosis of glioma. A number of studies have shown that long non-coding RNA can affect a variety of biological behaviors of tumors. However, the influence of long non-coding RNAs on glioma vascular endothelial cells remains unclear. To simulate the glioma microenvironment, we applied glioma-conditioned medium to human cerebral microvascular endothelial cells. The long non-coding RNA PVT1 was found to be highly expressed in glioma vascular endothelial cells. Cell Counting Kit-8, migration, and tube formation assays showed that PVT1 overexpression promoted glioma vascular endothelial cells proliferation, migration, and angiogenesis. We also found that PVT1 overexpression upregulated the expression of the autophagy-related proteins Atg7 and Beclin1, which induced protective autophagy. Bioinformatics software and dual-luciferase system analysis confirmed that PVT1 acts by targeting miR-186. In addition, our study showed that miR-186 could target the 3' untranslated region of Atg7 and Beclin1 to decrease their expression levels, thereby inhibiting glioma-conditioned human cerebral microvascular endothelial cell autophagy. In conclusion, PVT1 overexpression increased the expression of Atg7 and Beclin1 by targeting miR-186, which induced protective autophagy, thus promoting glioma vascular endothelial cell proliferation, migration, and angiogenesis. Therefore, PVT1 and miR-186 can provide new therapeutic targets for future anti-angiogenic treatment of glioma.
Collapse
Affiliation(s)
- Yawen Ma
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
- 2 Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Ping Wang
- 3 Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- 4 Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Yixue Xue
- 3 Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- 4 Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Chengbin Qu
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
- 2 Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Jian Zheng
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
- 2 Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Xiaobai Liu
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
- 2 Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| | - Jun Ma
- 3 Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- 4 Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Yunhui Liu
- 1 Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
- 2 Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, People's Republic of China
| |
Collapse
|
62
|
Sud A, Hemminki K, Houlston RS. Candidate gene association studies and risk of Hodgkin lymphoma: a systematic review and meta-analysis. Hematol Oncol 2017; 35:34-50. [PMID: 26053036 PMCID: PMC6175040 DOI: 10.1002/hon.2235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/18/2015] [Accepted: 04/13/2015] [Indexed: 12/12/2022]
Abstract
To evaluate the contribution of association studies of candidate polymorphisms to inherited predisposition to Hodgkin lymphoma (HL), we conducted a systematic review and meta-analysis of published case-control studies. Of the variants examined more than once in candidate gene association studies, we identified 21 studies that reported on 12 polymorphic variants in 10 genes. Data were also extracted from a published genome wide association study to allow analysis of an additional 47 variants in a further 30 genes. Promising associations were seen in nine of the variants (p < 0.05). Given that the estimated false positive report probabilities (FPRPs) for all associations are high (i.e. FPRP > 0.2), these findings should be interpreted with caution. While studies of candidate polymorphisms may be an attractive means of identifying risk factors for HL, future studies should employ sample sizes adequately powered to identify variants having only modest effects on HL risk. Furthermore, because of aetiological heterogeneity within HL, stratification of genotyping according to age, tumour Epstein-Barr virus status and histology is essential. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Kari Hemminki
- German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| |
Collapse
|
63
|
Jones SJ, Voong J, Thomas R, English A, Schuetz J, Slack GW, Graham J, Connors JM, Brooks-Wilson A. Nonrandom occurrence of lymphoid cancer types in 140 families. Leuk Lymphoma 2017; 58:1-10. [PMID: 28278712 DOI: 10.1080/10428194.2017.1281412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied 140 families with two or more lymphoid cancers, including non-Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), for deviation from the population age of onset and lymphoid cancer co-occurrence patterns. Median familial NHL, HL, CLL and MM ages of onset are substantially earlier than comparable population data. NHL, HL and CLL (but not MM) also show earlier age of onset in later generations, known as anticipation. The co-occurrence of lymphoid cancers is significantly different from that expected based on population frequencies (p < .0001), and the pattern differs more in families with more affected members (p < .0001), suggesting specific lymphoid cancer combinations have a shared genetic basis. These families provide evidence for inherited factors that increase the risk of multiple lymphoid cancers. This study was approved by the BC Cancer Agency - University of British Columbia Clinical Research Ethics Board.
Collapse
Affiliation(s)
- Samantha J Jones
- a Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency , Vancouver , British Columbia , Canada.,b Department of Medical Genetics , University of British Columbia , Vancouver , British Columbia , Canada
| | - Jackson Voong
- c Department of Statistics and Actuarial Science , Simon Fraser University , Burnaby , British Columbia , Canada
| | - Ruth Thomas
- a Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency , Vancouver , British Columbia , Canada
| | - Amy English
- a Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency , Vancouver , British Columbia , Canada
| | - Johanna Schuetz
- a Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency , Vancouver , British Columbia , Canada
| | - Graham W Slack
- d Centre for Lymphoid Cancer, British Columbia Cancer Agency , Vancouver , British Columbia , Canada.,e Department of Pathology & Laboratory Medicine , British Columbia Cancer Agency , Vancouver , BC , Canada
| | - Jinko Graham
- c Department of Statistics and Actuarial Science , Simon Fraser University , Burnaby , British Columbia , Canada
| | - Joseph M Connors
- d Centre for Lymphoid Cancer, British Columbia Cancer Agency , Vancouver , British Columbia , Canada
| | - Angela Brooks-Wilson
- a Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency , Vancouver , British Columbia , Canada.,f Department of Biomedical Physiology and Kinesiology , Simon Fraser University , Burnaby , British Columbia , Canada
| |
Collapse
|
64
|
Law PJ, Sud A, Mitchell JS, Henrion M, Orlando G, Lenive O, Broderick P, Speedy HE, Johnson DC, Kaiser M, Weinhold N, Cooke R, Sunter NJ, Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Allsup DJ, Carmichael J, Bailey JR, Pratt G, Rahman T, Pepper C, Fegan C, von Strandmann EP, Engert A, Försti A, Chen B, Filho MIDS, Thomsen H, Hoffmann P, Noethen MM, Eisele L, Jöckel KH, Allan JM, Swerdlow AJ, Goldschmidt H, Catovsky D, Morgan GJ, Hemminki K, Houlston RS. Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci. Sci Rep 2017; 7:41071. [PMID: 28112199 PMCID: PMC5253627 DOI: 10.1038/srep41071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023] Open
Abstract
B-cell malignancies (BCM) originate from the same cell of origin, but at different maturation stages and have distinct clinical phenotypes. Although genetic risk variants for individual BCMs have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. We explored genome-wide association studies of chronic lymphocytic leukaemia (CLL, N = 1,842), Hodgkin lymphoma (HL, N = 1,465) and multiple myeloma (MM, N = 3,790). We identified a novel pleiotropic risk locus at 3q22.2 (NCK1, rs11715604, P = 1.60 × 10-9) with opposing effects between CLL (P = 1.97 × 10-8) and HL (P = 3.31 × 10-3). Eight established non-HLA risk loci showed pleiotropic associations. Within the HLA region, Ser37 + Phe37 in HLA-DRB1 (P = 1.84 × 10-12) was associated with increased CLL and HL risk (P = 4.68 × 10-12), and reduced MM risk (P = 1.12 × 10-2), and Gly70 in HLA-DQB1 (P = 3.15 × 10-10) showed opposing effects between CLL (P = 3.52 × 10-3) and HL (P = 3.41 × 10-9). By integrating eQTL, Hi-C and ChIP-seq data, we show that the pleiotropic risk loci are enriched for B-cell regulatory elements, as well as an over-representation of binding of key B-cell transcription factors. These data identify shared biological pathways influencing the development of CLL, HL and MM. The identification of these risk loci furthers our understanding of the aetiological basis of BCMs.
Collapse
Affiliation(s)
- Philip J. Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Jonathan S. Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Marc Henrion
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Oleg Lenive
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Helen E. Speedy
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - David C. Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Martin Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Niels Weinhold
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nicola J. Sunter
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Graham H. Jackson
- Department of Haematology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Geoffrey Summerfield
- Department of Haematology, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, UK
| | - Robert J. Harris
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R. Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - David J. Allsup
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, UK
| | - Jonathan Carmichael
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, UK
| | - James R. Bailey
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, UK
| | - Guy Pratt
- Department of Haematology, Birmingham Heartlands Hospital, Birmingham, UK
| | - Thahira Rahman
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Pepper
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Chris Fegan
- Cardiff and Vale National Health Service Trust, Heath Park, Cardiff, UK
| | | | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Bowang Chen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | | | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Switzerland
| | - Markus M. Noethen
- Institute of Human Genetics, University of Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Germany
| | | | | | - James M. Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Center of Tumor Diseases, Heidelberg, Germany
| | - Daniel Catovsky
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Gareth J. Morgan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
65
|
Dunkhase E, Ludwig KU, Knapp M, Skibola CF, Figueiredo JC, Hosking FJ, Ellinghaus E, Landi MT, Ma H, Nakagawa H, Kim JW, Han J, Yang P, Böhmer AC, Mattheisen M, Nöthen MM, Mangold E. Nonsyndromic cleft lip with or without cleft palate and cancer: Evaluation of a possible common genetic background through the analysis of GWAS data. GENOMICS DATA 2016; 10:22-9. [PMID: 27630819 PMCID: PMC5013250 DOI: 10.1016/j.gdata.2016.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023]
Abstract
Previous research suggests a genetic overlap between nonsyndromic cleft lip with or without cleft palate (NSCL/P) and cancer. The aim of the present study was to identify common genetic risk loci for NSCL/P and cancer entities that have been reported to co-occur with orofacial clefting. This was achieved through the investigation of large genome-wide association study datasets. Investigations of 12 NSCL/P single nucleotide polymorphisms (SNPs) in 32 cancer datasets, and 204 cancer SNPs in two NSCL/P datasets, were performed. The SNPs rs13041247 (20q12) and rs6457327 (6p21.33) showed suggestive evidence for an association with both NSCL/P and a specific cancer entity. These loci harbor genes of biological relevance to oncogenesis (MAFB and OCT4, respectively). This study is the first to characterize possible pleiotropic risk loci for NSCL/P and cancer in a systematic manner. The data represent a starting point for future research by identifying a genetic link between NSCL/P and cancer.
Collapse
Affiliation(s)
- Eva Dunkhase
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Michael Knapp
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Christine F. Skibola
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Boulevard, Birmingham, AL 35294, USA
| | - Jane C. Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Fay Julie Hosking
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, Surrey, UK
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Maria Teresa Landi
- National Cancer Institute, NIH, DHHS, 9609 Medical Center Dr, Rockville, MD 20850, USA
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 140 Hanzhong Rd, Gulou, Nanjing 210029, Jiangsu, China
| | - Hidewaki Nakagawa
- Laboratory for Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku,Yokohama, Kanagawa 230-0045, Japan
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, (06351) 81 Irwon-Ro Gangnam-gu. Seoul, Republic of Korea
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, 535 Barnhill Dr, Indianapolis, IN 46202, USA
| | - Ping Yang
- Mayo Clinic, 200 First St. SW Rochester, MN 55905, USA
| | - Anne C. Böhmer
- Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Manuel Mattheisen
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
- Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| |
Collapse
|
66
|
Mancini I, Ricaño-Ponce I, Pappalardo E, Cairo A, Gorski MM, Casoli G, Ferrari B, Alberti M, Mikovic D, Noris M, Wijmenga C, Peyvandi F. Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2016; 14:2356-2367. [PMID: 27762046 DOI: 10.1111/jth.13548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Essentials Genetic predisposition to acquired thrombotic thrombocytopenic purpura (aTTP) is mainly unknown. Genetic risk factors for aTTP were studied by Immunochip analysis and replication study. Human leukocyte antigen (HLA) variant rs6903608 conferred a 2.5-fold higher risk of developing aTTP. rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in aTTP. Click to hear Dr Cataland's presentation on acquired thrombotic thrombocytopenic purpura SUMMARY: Background Acquired thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy associated with the development of autoantibodies against the von Willebrand factor-cleaving protease ADAMTS-13. Similarly to what has been found for other autoimmune disorders, there is evidence of a genetic contribution, including the association of the human leukocyte antigen (HLA) class II complex with disease risk. Objective To identify novel genetic risk factors in acquired TTP. Patients/Methods We undertook a case-control genetic association study in 190 European-origin TTP patients and 1255 Italian healthy controls by using the Illumina Immunochip. Replication analysis in 88 Italian cases and 456 controls was performed with single-nucleotide polymorphism (SNP) TaqMan assays. Results and conclusion We identified one common variant (rs6903608) located within the HLA class II locus that was independently associated with acquired TTP at genome-wide significance and conferred a 2.6-fold increased risk of developing a TTP episode (95% confidence interval [CI] 2.02-3.27, P = 1.64 × 10-14 ). We also found five non-HLA variants mapping to chromosomes 2, 6, 8 and X that were suggestively associated with the disease: rs9490550, rs115265285, rs5927472, rs7823314, and rs1334768 (nominal P-values ranging from 1.59 × 10-5 to 7.60 × 10-5 ). Replication analysis confirmed the association of HLA variant rs6903608 with acquired TTP (pooled P = 3.95 × 10-19 ). Imputation of classic HLA genes followed by stepwise conditional analysis revealed that the combination of rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in acquired TTP. Our results refined the association of the HLA class II locus with acquired TTP, confirming its importance in the etiology of this autoimmune disease.
Collapse
Affiliation(s)
- I Mancini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - I Ricaño-Ponce
- Genetics Department, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - E Pappalardo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - A Cairo
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Gorski
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
| | - G Casoli
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - B Ferrari
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M Alberti
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Clinical Research Center for Rare Diseases, Aldo e Cele Daccò, Bergamo, Italy
| | - D Mikovic
- Hemostasis Department and Hemophilia Center, Blood Transfusion Institute of Serbia, Belgrade, Serbia
| | - M Noris
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Clinical Research Center for Rare Diseases, Aldo e Cele Daccò, Bergamo, Italy
| | - C Wijmenga
- Genetics Department, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - F Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, and Fondazione Luigi Villa, Milan, Italy
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
67
|
Grampp S, Platt JL, Lauer V, Salama R, Kranz F, Neumann VK, Wach S, Stöhr C, Hartmann A, Eckardt KU, Ratcliffe PJ, Mole DR, Schödel J. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nat Commun 2016; 7:13183. [PMID: 27774982 PMCID: PMC5079059 DOI: 10.1038/ncomms13183] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/08/2016] [Indexed: 12/26/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by loss of function of the von Hippel-Lindau tumour suppressor (VHL) and unrestrained activation of hypoxia-inducible transcription factors (HIFs). Genetic and epigenetic determinants have an impact on HIF pathways. A recent genome-wide association study on renal cancer susceptibility identified single-nucleotide polymorphisms (SNPs) in an intergenic region located between the oncogenes MYC and PVT1. Here using assays of chromatin conformation, allele-specific chromatin immunoprecipitation and genome editing, we show that HIF binding to this regulatory element is necessary to trans-activate MYC and PVT1 expression specifically in cells of renal tubular origins. Moreover, we demonstrate that the risk-associated polymorphisms increase chromatin accessibility and activity as well as HIF binding to the enhancer. These findings provide further evidence that genetic variation at HIF-binding sites modulates the oncogenic transcriptional output of the VHL-HIF axis and provide a functional explanation for the disease-associated effects of SNPs in ccRCC.
Collapse
MESH Headings
- Aryl Hydrocarbon Receptor Nuclear Translocator/genetics
- Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism
- Binding Sites
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 8
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Polymorphism, Single Nucleotide
- Protein Binding
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
Collapse
Affiliation(s)
- Steffen Grampp
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| | - James L. Platt
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Victoria Lauer
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| | - Rafik Salama
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Franziska Kranz
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
- Department of Computer Science 9, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Cauerstraße 11, 91058 Erlangen, Germany
| | - Viviana K. Neumann
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| | - Sven Wach
- Department of Urology, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Christine Stöhr
- Institute of Pathology, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstraße 8-10, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Krankenhausstraße 8-10, 91054 Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| | - Peter J. Ratcliffe
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David R. Mole
- Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
68
|
Abstract
The prognosis of patients with classical Hodgkin lymphoma following chemo- and radiotherapy has been excellent during the last 4 decades. However, the development of secondary malignancies is of major concern. Therefore, the reduction of radiotherapy application is a major objective of ongoing clinical trials. De-escalation of treatment may increase the risk of relapses and thus may lead to reappearance of prognostic factors. Prognostic biomarkers might help to identify patients who are at increased risk of relapse. This review summarizes the current knowledge about potential prognostic biomarkers for patients with classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Martin S Staege
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Stefanie Kewitz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Toralf Bernig
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Caspar Kühnöl
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Christine Mauz-Körholz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| |
Collapse
|
69
|
Li Z, Xia Y, Feng LN, Chen JR, Li HM, Cui J, Cai QQ, Sim KS, Nairismägi ML, Laurensia Y, Meah WY, Liu WS, Guo YM, Chen LZ, Feng QS, Pang CP, Chen LJ, Chew SH, Ebstein RP, Foo JN, Liu J, Ha J, Khoo LP, Chin ST, Zeng YX, Aung T, Chowbay B, Diong CP, Zhang F, Liu YH, Tang T, Tao M, Quek R, Mohamad F, Tan SY, Teh BT, Ng SB, Chng WJ, Ong CK, Okada Y, Raychaudhuri S, Lim ST, Tan W, Peng RJ, Khor CC, Bei JX. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol 2016; 17:1240-7. [PMID: 27470079 DOI: 10.1016/s1470-2045(16)30148-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extranodal natural killer T-cell lymphoma (NKTCL), nasal type, is a rare and aggressive malignancy that occurs predominantly in Asian and Latin American populations. Although Epstein-Barr virus infection is a known risk factor, other risk factors and the pathogenesis of NKTCL are not well understood. We aimed to identify common genetic variants affecting individual risk of NKTCL. METHODS We did a genome-wide association study of 189 patients with extranodal NKTCL, nasal type (WHO classification criteria; cases) and 957 controls from Guangdong province, southern China. We validated our findings in four independent case-control series, including 75 cases from Guangdong province and 296 controls from Hong Kong, 65 cases and 983 controls from Guangdong province, 125 cases and 1110 controls from Beijing (northern China), and 60 cases and 2476 controls from Singapore. We used imputation and conditional logistic regression analyses to fine-map the associations. We also did a meta-analysis of the replication series and of the entire dataset. FINDINGS Associations exceeding the genome-wide significance threshold (p<5 × 10(-8)) were seen at 51 single-nucleotide polymorphisms (SNPs) mapping to the class II MHC region on chromosome 6, with rs9277378 (located in HLA-DPB1) having the strongest association with NKTCL susceptibility (p=4·21 × 10(-19), odds ratio [OR] 1·84 [95% CI 1·61-2·11] in meta-analysis of entire dataset). Imputation-based fine-mapping across the class II MHC region suggests that four aminoacid residues (Gly84-Gly85-Pro86-Met87) in near-complete linkage disequilibrium at the edge of the peptide-binding groove of HLA-DPB1 could account for most of the association between the rs9277378*A risk allele and NKTCL susceptibility (OR 2·38, p value for haplotype 2·32 × 10(-14)). This association is distinct from MHC associations with Epstein-Barr virus infection. INTERPRETATION To our knowledge, this is the first time that a genetic variant conferring an NKTCL risk is noted at genome-wide significance. This finding underlines the importance of HLA-DP antigen presentation in the pathogenesis of NKTCL. FUNDING Top-Notch Young Talents Program of China, Special Support Program of Guangdong, Specialized Research Fund for the Doctoral Program of Higher Education (20110171120099), Program for New Century Excellent Talents in University (NCET-11-0529), National Medical Research Council of Singapore (TCR12DEC005), Tanoto Foundation Professorship in Medical Oncology, New Century Foundation Limited, Ling Foundation, Singapore National Cancer Centre Research Fund, and the US National Institutes of Health (1R01AR062886, 5U01GM092691-04, and 1R01AR063759-01A1).
Collapse
Affiliation(s)
- Zheng Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Genome Institute of Singapore, Singapore
| | - Yi Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Na Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie-Rong Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hong-Min Li
- State Key Laboratory of Molecular Oncology, Beijing, China; Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Cui
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qing-Qing Cai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Maarja-Liisa Nairismägi
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yurike Laurensia
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | | | - Wen-Sheng Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun-Miao Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Zhen Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Sheng Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Soo Hong Chew
- Department of Economics, National University of Singapore, Singapore
| | - Richard P Ebstein
- Department of Psychology, National University of Singapore, Singapore
| | | | | | - Jeslin Ha
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Lay Poh Khoo
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Suk Teng Chin
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yi-Xin Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Beijing Hospital, Beijing, China
| | - Tin Aung
- Singapore Eye Research Institute, Singapore
| | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore; Clinical Pharmacology, SingHealth, Singapore; Office of Clinical Sciences, Duke-National University of Singapore Medical School, Singapore
| | | | - Fen Zhang
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Yan-Hui Liu
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Miriam Tao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Richard Quek
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Farid Mohamad
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Soo Yong Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Department of Pathology, Singapore General Hospital, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia; Department of Pathology, National University of Singapore, Singapore
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Siok Bian Ng
- Department of Pathology, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soumya Raychaudhuri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Center for Personalized Genetic Medicine, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Soon Thye Lim
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Office of Education, Duke-National University of Singapore Medical School, Singapore
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Beijing, China; Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rou-Jun Peng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Singapore; Singapore Eye Research Institute, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Xin Bei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Genome Institute of Singapore, Singapore; Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
70
|
Mitchell JS, Li N, Weinhold N, Försti A, Ali M, van Duin M, Thorleifsson G, Johnson DC, Chen B, Halvarsson BM, Gudbjartsson DF, Kuiper R, Stephens OW, Bertsch U, Broderick P, Campo C, Einsele H, Gregory WA, Gullberg U, Henrion M, Hillengass J, Hoffmann P, Jackson GH, Johnsson E, Jöud M, Kristinsson SY, Lenhoff S, Lenive O, Mellqvist UH, Migliorini G, Nahi H, Nelander S, Nickel J, Nöthen MM, Rafnar T, Ross FM, da Silva Filho MI, Swaminathan B, Thomsen H, Turesson I, Vangsted A, Vogel U, Waage A, Walker BA, Wihlborg AK, Broyl A, Davies FE, Thorsteinsdottir U, Langer C, Hansson M, Kaiser M, Sonneveld P, Stefansson K, Morgan GJ, Goldschmidt H, Hemminki K, Nilsson B, Houlston RS. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun 2016; 7:12050. [PMID: 27363682 PMCID: PMC4932178 DOI: 10.1038/ncomms12050] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/24/2016] [Indexed: 02/08/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10(-8)), 6q21 (rs9372120, P=9.09 × 10(-15)), 7q36.1 (rs7781265, P=9.71 × 10(-9)), 8q24.21 (rs1948915, P=4.20 × 10(-11)), 9p21.3 (rs2811710, P=1.72 × 10(-13)), 10p12.1 (rs2790457, P=1.77 × 10(-8)), 16q23.1 (rs7193541, P=5.00 × 10(-12)) and 20q13.13 (rs6066835, P=1.36 × 10(-13)), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.
Collapse
Affiliation(s)
- Jonathan S. Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Ni Li
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Niels Weinhold
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany
| | - Asta Försti
- German Cancer Research Center, 69120 Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, SE-205 02 Malmo, Sweden
| | - Mina Ali
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
| | - Mark van Duin
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA Rotterdam, The Netherlands
| | | | - David C. Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, Surrey SM2 5NG, UK
| | - Bowang Chen
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - Britt-Marie Halvarsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
| | - Daniel F. Gudbjartsson
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, IS-101 Reykjavik, Iceland
| | - Rowan Kuiper
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA Rotterdam, The Netherlands
| | - Owen W. Stephens
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Uta Bertsch
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany
- National Centre of Tumor Diseases, 69120 Heidelberg, Germany
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Chiara Campo
- German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Walter A. Gregory
- Clinical Trials Research Unit, University of Leeds, Leeds LS2 9PH, UK
| | - Urban Gullberg
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
| | - Marc Henrion
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Jens Hillengass
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland
| | | | - Ellinor Johnsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
| | - Magnus Jöud
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
- Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Services, SE-221 85 Lund, Sweden
| | - Sigurður Y. Kristinsson
- Department of Hematology, Landspitali, National University Hospital of Iceland, IS-101 Reykjavik, Iceland
| | - Stig Lenhoff
- Hematology Clinic, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Oleg Lenive
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Ulf-Henrik Mellqvist
- Section of Hematology, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Gabriele Migliorini
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Hareth Nahi
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Sven Nelander
- Rudbeck Laboratory, Department of Immunology, Pathology and Genetics, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Jolanta Nickel
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, D-53127 Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, D-53127 Bonn, Germany
| | - Thorunn Rafnar
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland
| | - Fiona M. Ross
- Wessex Regional Genetics Laboratory, University of Southampton, Salisbury SP2 8BJ, UK
| | | | - Bhairavi Swaminathan
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
| | - Hauke Thomsen
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - Ingemar Turesson
- Hematology Clinic, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Annette Vangsted
- Department of Haematology, University Hospital of Copenhagen at Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Box 8905, N-7491 Trondheim, Norway
| | - Brian A. Walker
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Anna-Karin Wihlborg
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
| | - Annemiek Broyl
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA Rotterdam, The Netherlands
| | - Faith E. Davies
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland
| | - Christian Langer
- Department of Internal Medicine III, University of Ulm, D-89081 Ulm, Germany
| | - Markus Hansson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
- Hematology Clinic, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Martin Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, Surrey SM2 5NG, UK
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA Rotterdam, The Netherlands
| | | | - Gareth J. Morgan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany
- National Centre of Tumor Diseases, 69120 Heidelberg, Germany
| | - Kari Hemminki
- German Cancer Research Center, 69120 Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, SE-205 02 Malmo, Sweden
| | - Björn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, SE-221 84 Lund, Sweden
- Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Services, SE-221 85 Lund, Sweden
- Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
71
|
Hunter JE, Butterworth JA, Zhao B, Sellier H, Campbell KJ, Thomas HD, Bacon CM, Cockell SJ, Gewurz BE, Perkins ND. The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma. Oncogene 2016; 35:3476-84. [PMID: 26522720 PMCID: PMC4853301 DOI: 10.1038/onc.2015.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022]
Abstract
The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel-/- mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel-/- Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel-/- Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quantitative PCR and western blot analysis confirmed loss of Bach2 in c-Rel mutant Eμ-Myc tumours at both 4 weeks and the terminal stages of disease. Moreover, Bach2 expression was also downregulated in c-rel-/- TCL1-Tg mice and RelA Thr505Ala mutant Eμ-Myc mice. Analysis of wild-type Eμ-Myc mice demonstrated that the population expressing low levels of Bach2 exhibited the earlier onset of lymphoma seen in c-rel-/- mice. Confirming the relevance of these findings to human disease, analysis of chromatin immunoprecipitation sequencing data revealed that Bach2 is a c-Rel and NF-κB target gene in transformed human B cells, whereas treatment of Burkitt's lymphoma cells with inhibitors of the NF-κB/IκB kinase pathway or deletion of c-Rel or RelA resulted in loss of Bach2 expression. These data reveal a surprising tumour suppressor role for c-Rel in lymphoma development explained by regulation of Bach2 expression, underlining the context-dependent complexity of NF-κB signalling in cancer.
Collapse
Affiliation(s)
- J E Hunter
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - J A Butterworth
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - B Zhao
- Brigham and Women's Hospital, Boston, MA, USA
| | - H Sellier
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - K J Campbell
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - H D Thomas
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - C M Bacon
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - S J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - B E Gewurz
- Brigham and Women's Hospital, Boston, MA, USA
| | - N D Perkins
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| |
Collapse
|
72
|
Khankhanian P, Cozen W, Himmelstein DS, Madireddy L, Din L, van den Berg A, Matsushita T, Glaser SL, Moré JM, Smedby KE, Baranzini SE, Mack TM, Lizée A, de Sanjosé S, Gourraud PA, Nieters A, Hauser SL, Cocco P, Maynadié M, Foretová L, Staines A, Delahaye-Sourdeix M, Li D, Bhatia S, Melbye M, Onel K, Jarrett R, McKay JD, Oksenberg JR, Hjalgrim H. Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis. Int J Epidemiol 2016; 45:728-40. [PMID: 26971321 PMCID: PMC5005944 DOI: 10.1093/ije/dyv364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Based on epidemiological commonalities, multiple sclerosis (MS) and Hodgkin lymphoma (HL), two clinically distinct conditions, have long been suspected to be aetiologically related. MS and HL occur in roughly the same age groups, both are associated with Epstein-Barr virus infection and ultraviolet (UV) light exposure, and they cluster mutually in families (though not in individuals). We speculated if in addition to sharing environmental risk factors, MS and HL were also genetically related. Using data from genome-wide association studies (GWAS) of 1816 HL patients, 9772 MS patients and 25 255 controls, we therefore investigated the genetic overlap between the two diseases. METHODS From among a common denominator of 404 K single nucleotide polymorphisms (SNPs) studied, we identified SNPs and human leukocyte antigen (HLA) alleles independently associated with both diseases. Next, we assessed the cumulative genome-wide effect of MS-associated SNPs on HL and of HL-associated SNPs on MS. To provide an interpretational frame of reference, we used data from published GWAS to create a genetic network of diseases within which we analysed proximity of HL and MS to autoimmune diseases and haematological and non-haematological malignancies. RESULTS SNP analyses revealed genome-wide overlap between HL and MS, most prominently in the HLA region. Polygenic HL risk scores explained 4.44% of HL risk (Nagelkerke R(2)), but also 2.36% of MS risk. Conversely, polygenic MS risk scores explained 8.08% of MS risk and 1.94% of HL risk. In the genetic disease network, HL was closer to autoimmune diseases than to solid cancers. CONCLUSIONS HL displays considerable genetic overlap with MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Pouya Khankhanian
- Center for Neuroengineering and Thereapeutics at the University of Pennsylvania, Philadelphia, PA, USA University of California, San Francisco, CA, USA
| | - Wendy Cozen
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Lennox Din
- University of California, San Francisco, CA, USA
| | | | | | - Sally L Glaser
- Cancer Prevention Institute of California, Fremont, CA, USA
| | | | | | | | - Thomas M Mack
- University of Southern California, Los Angeles, CA, USA
| | | | - Silvia de Sanjosé
- Catalan Institute of Oncology, L'Hospitalet de Llobregat, Catalonia, Spain
| | | | | | | | | | - Marc Maynadié
- Centre Hospitalier Universitaire de Dijon, Dijon, France
| | | | | | | | - Dalin Li
- University of Southern California, Los Angeles, CA, USA
| | - Smita Bhatia
- City of Hope National Medical Center, Duarte, CA, USA
| | - Mads Melbye
- Statens Serum Institut, Copenhagen S, Denmark
| | | | - Ruth Jarrett
- MRC, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - James D McKay
- International Agency for Research on Cancer, Lyon, France
| | | | | |
Collapse
|
73
|
Weniger MA, Küppers R. NF-κB deregulation in Hodgkin lymphoma. Semin Cancer Biol 2016; 39:32-9. [PMID: 27221964 DOI: 10.1016/j.semcancer.2016.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, 45122 Essen, Germany.
| |
Collapse
|
74
|
Hunter JE, Leslie J, Perkins ND. c-Rel and its many roles in cancer: an old story with new twists. Br J Cancer 2016; 114:1-6. [PMID: 26757421 PMCID: PMC4716536 DOI: 10.1038/bjc.2015.410] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
When the genes encoding NF-κB subunits were first isolated, their homology to the previously identified c-Rel proto-oncogene and its viral homologue v-Rel was clear. This provided the first indication that these transcription factors also had a role in cancer. Because of its homology to v-Rel, which transforms chicken B cells together with the important role c-Rel can have as a regulator of B- and T-cell proliferation, most attention has focussed on its role in B-cell lymphomas, where the REL gene is frequently amplified. However, a growing number of reports now indicate that c-Rel has important functions in many solid tumours, although studies in mice suggest it may not always function as an oncogene. Moreover, c-Rel is a critical regulator of fibrosis, which provides an environment for tumour development in many settings. Overall, c-Rel is emerging as a complex regulator of tumorigenesis, and there is still much to learn about its functions in human malignancies and the response to cancer therapies.
Collapse
Affiliation(s)
- Jill E Hunter
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Jack Leslie
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
75
|
Thomsen H, Inacio da Silva Filho M, Fuchs M, Ponader S, Pogge von Strandmann E, Eisele L, Herms S, Hoffmann P, Engert A, Hemminki K, Försti A. Evidence of Inbreeding in Hodgkin Lymphoma. PLoS One 2016; 11:e0154259. [PMID: 27123581 PMCID: PMC4849743 DOI: 10.1371/journal.pone.0154259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/10/2016] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified several, mainly co-dominantly acting, single-nucleotide polymorphisms (SNPs) associated with Hodgkin lymphoma (HL). We searched for recessively acting disease loci by performing an analysis of runs of homozygosity (ROH) based on windows of homozygous SNP-blocks and by calculating genomic inbreeding coefficients on a SNP-wise basis. We used data from a previous GWAS with 906 cases and 1217 controls from a population with a long history of no matings between relatives. Ten recurrent ROHs were identified among 25 055 ROHs across all individuals but their association with HL was not genome-wide significant. All recurrent ROHs showed significant evidence for natural selection. As a novel finding genomic inbreeding among cases was significantly higher than among controls (P = 2.11*10-14) even after correcting for covariates. Higher inbreeding among the cases was mainly based on a group of individuals with a higher average length of ROHs per person. This result suggests a correlation of higher levels of inbreeding with higher cancer incidence and might reflect the existence of recessive alleles causing HL. Genomic inbreeding may result in a higher expression of deleterious recessive genes within a population.
Collapse
Affiliation(s)
- Hauke Thomsen
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
| | - Miguel Inacio da Silva Filho
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
| | - Michael Fuchs
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | - Sabine Ponader
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | | | - Lewin Eisele
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, 45122, Germany
| | - Stefan Herms
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, 53127, Germany
- Department of Biomedicine, Division of Medical Genetics, Basel, University of Basel, 4058, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, 53127, Germany
- Department of Biomedicine, Division of Medical Genetics, Basel, University of Basel, 4058, Switzerland
| | - Andreas Engert
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, 50924, Germany
| | - Kari Hemminki
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
- Center for Primary Health Care Research, Lund University, Malmö, 20502, Sweden
| | - Asta Försti
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology (C050), Heidelberg, 69120, Germany
- Center for Primary Health Care Research, Lund University, Malmö, 20502, Sweden
| |
Collapse
|
76
|
McAulay KA, Jarrett RF. Human leukocyte antigens and genetic susceptibility to lymphoma. ACTA ACUST UNITED AC 2016; 86:98-113. [PMID: 26189878 DOI: 10.1111/tan.12604] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Familial aggregation, coupled with ethnic variation in incidence, suggests that inherited susceptibility plays a role in the development of lymphoma, and the search for genetic risk factors has highlighted the contribution of the human leukocyte antigen (HLA) complex. In a landmark study published almost 50 years ago, Hodgkin lymphoma (HL) was the first disease to be associated with HLA variation. It is now clear that Epstein-Barr virus (EBV)-positive and -negative HL are strongly associated with specific HLA polymorphisms but these differ by EBV status of the tumours. HLA class I alleles are consistently associated with EBV-positive HL while a polymorphism in HLA class II is the strongest predictor of risk of EBV-negative HL. Recent investigations, particularly genome-wide association studies (GWAS), have also revealed associations between HLA and common types of non-Hodgkin lymphoma (NHL). Follicular lymphoma is strongly associated with two distinct haplotypes in HLA class II whereas diffuse large B-cell lymphoma is most strongly associated with HLA-B*08. Although chronic lymphocytic leukaemia is associated with variation in HLA class II, the strongest signals in GWAS are from non-HLA polymorphisms, suggesting that inherited susceptibility is explained by co-inheritance of multiple low risk variants. Associations between B-cell derived lymphoma and HLA variation suggest that antigen presentation, or lack of, plays an important role in disease pathogenesis but the precise mechanisms have yet to be elucidated.
Collapse
Affiliation(s)
- K A McAulay
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R F Jarrett
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
77
|
Hudnall SD, Meng H, Lozovatsky L, Li P, Strout M, Kleinstein SH. Recurrent genetic defects in classical Hodgkin lymphoma cell lines. Leuk Lymphoma 2016; 57:2890-2900. [PMID: 27121023 DOI: 10.1080/10428194.2016.1177179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Genetic analysis of classical Hodgkin lymphoma (cHL) has been hampered by the paucity of Hodgkin cells in biopsies and their poor growth in vitro. However, a wealth of information has been obtained from cHL cell lines. Here we report results of whole-exome sequencing and karyotypic analysis of five cHL cell lines. Four genes with potentially pathogenic single nucleotide variants (SNV) were detected in three cell lines. SNV were also detected in seventeen HL-related genes and three mitosis-related genes. Copy number variants were detected in four HL-related genes in all five cell lines. Given the high degree of aneuploidy in HL, mitosis-related genes were screened for defects. One mitotic gene (NCAPD2) was amplified in all five HL cell lines, and two genes (FAM190A, PLK4) were amplified in four cell lines. These results suggest that genomic instability of HL may be due to defects in genes involved in chromosome duplication and segregation.
Collapse
Affiliation(s)
- S David Hudnall
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA
| | - Hailong Meng
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA
| | - Larissa Lozovatsky
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA
| | - Peining Li
- b Department of Genetics, Yale School of Medicine , New Haven , CT , USA
| | - Matthew Strout
- c Yale Cancer Center, Yale School of Medicine , New Haven , CT , USA.,d Department of Medicine (Hematology), Yale School of Medicine , New Haven , CT , USA
| | - Steven H Kleinstein
- a Department of Pathology, Yale School of Medicine , New Haven , CT , USA.,e Interdepartmental Program in Computational Biology and Bioinformatics , Yale University , New Haven , CT , USA.,f Department of Immunobiology, Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
78
|
Toubiana J, Courtine E, Tores F, Asfar P, Daubin C, Rousseau C, Ouaaz F, Marin N, Cariou A, Chiche JD, Mira JP. Association of REL polymorphisms and outcome of patients with septic shock. Ann Intensive Care 2016; 6:28. [PMID: 27059500 PMCID: PMC4826362 DOI: 10.1186/s13613-016-0130-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
Background cRel, a subunit of NF-κB, is implicated in the inflammatory response observed in autoimmune disease. Hence, knocked-out mice for cRel had a significantly higher mortality, providing new and important functions of cRel in the physiopathology of septic shock. Whether genetic variants in the human REL gene are associated with severity of septic shock is unknown. Methods We genotyped a population of 1040 ICU patients with septic shock and 855 ICU controls for two known polymorphisms of REL; REL rs842647 and REL rs13031237. Outcome of patients according to the presence of REL variant alleles was compared. Results The distribution of REL variant alleles was not significantly different between patients and controls. Among the septic shock group, REL rs13031237*T minor allele was not associated with worse outcome. In contrast, REL rs842647*G minor allele was significantly associated with more multi-organ failure and early death [OR 1.4; 95 % CI (1.02–1.8)]. Conclusion In a large ICU population, we report a significant clinical association between a variation in the human REL gene and severity and mortality of septic shock, suggesting for the first time a new insight into the role of cRel in response to infection in humans.
Collapse
Affiliation(s)
- Julie Toubiana
- Medical School, Paris Descartes University, Paris, France. .,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France. .,Department of Pediatric and Infectious Diseases, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Emilie Courtine
- Medical School, Paris Descartes University, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Frederic Tores
- Bioinformatics Platform, Institut Imagine, Paris Descartes University- Sorbonne Paris Cité, 75015, Paris, France
| | - Pierre Asfar
- Medical Intensive Care Unit, Angers University Hospital, Angers, France
| | - Cédric Daubin
- Medical Intensive Care, Caen University Hospital, Caen, France
| | | | - Fatah Ouaaz
- INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Nathalie Marin
- Intensive Care Unit, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alain Cariou
- Medical School, Paris Descartes University, Paris, France.,Intensive Care Unit, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Daniel Chiche
- Medical School, Paris Descartes University, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France.,Intensive Care Unit, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Paul Mira
- Medical School, Paris Descartes University, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France.,Intensive Care Unit, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
79
|
Ohmura S, Mizuno S, Oishi H, Ku CJ, Hermann M, Hosoya T, Takahashi S, Engel JD. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs. J Clin Invest 2016; 126:865-78. [PMID: 26808502 DOI: 10.1172/jci83894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023] Open
Abstract
The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell-specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte-specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte-specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell-regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell-specific transcriptional activity.
Collapse
|
80
|
Askarian-Amiri ME, Leung E, Finlay G, Baguley BC. The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance. Methods Mol Biol 2016; 1395:207-27. [PMID: 26910076 DOI: 10.1007/978-1-4939-3347-1_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent genomic and transcriptomic analysis has revealed that the majority of the human genome is transcribed as nonprotein-coding RNA. These transcripts, known as long noncoding RNA, have structures similar to those of mRNA. Many of these transcripts are now thought to have regulatory roles in different biological pathways which provide cells with an additional layer of regulatory complexity in gene expression and proteome function in response to stimuli. A wide variety of cellular functions may thus depend on the fine-tuning of interactions between noncoding RNAs and other key molecules in cell signaling networks. Deregulation of many noncoding RNAs is thought to occur in a variety of human diseases, including neoplasia and cancer drug resistance. Here we discuss recent findings on the molecular functions of long noncoding RNAs in cellular pathways mediating resistance to anticancer drugs.
Collapse
Affiliation(s)
- Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand. .,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Graeme Finlay
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
81
|
Salipante SJ, Adey A, Thomas A, Lee C, Liu YJ, Kumar A, Lewis AP, Wu D, Fromm JR, Shendure J. Recurrent somatic loss of TNFRSF14 in classical Hodgkin lymphoma. Genes Chromosomes Cancer 2015; 55:278-87. [PMID: 26650888 DOI: 10.1002/gcc.22331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022] Open
Abstract
Investigation of the genetic lesions underlying classical Hodgkin lymphoma (CHL) has been challenging due to the rarity of Hodgkin and Reed-Sternberg (HRS) cells, the pathognomonic neoplastic cells of CHL. In an effort to catalog more comprehensively recurrent copy number alterations occurring during oncogenesis, we investigated somatic alterations involved in CHL using whole-genome sequencing-mediated copy number analysis of purified HRS cells. We performed low-coverage sequencing of small numbers of intact HRS cells and paired non-neoplastic B lymphocytes isolated by flow cytometric cell sorting from 19 primary cases, as well as two commonly used HRS-derived cell lines (KM-H2 and L1236). We found that HRS cells contain strikingly fewer copy number abnormalities than CHL cell lines. A subset of cases displayed nonintegral chromosomal copy number states, suggesting internal heterogeneity within the HRS cell population. Recurrent somatic copy number alterations involving known factors in CHL pathogenesis were identified (REL, the PD-1 pathway, and TNFAIP3). In eight cases (42%) we observed recurrent copy number loss of chr1:2,352,236-4,574,271, a region containing the candidate tumor suppressor TNFRSF14. Using flow cytometry, we demonstrated reduced TNFRSF14 expression in HRS cells from 5 of 22 additional cases (23%) and in two of three CHL cell lines. These studies suggest that TNFRSF14 dysregulation may contribute to the pathobiology of CHL in a subset of cases.
Collapse
Affiliation(s)
| | - Andrew Adey
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Anju Thomas
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Yajuan J Liu
- Department of Pathology, University of Washington, Seattle, WA
| | - Akash Kumar
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - David Wu
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Jonathan R Fromm
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
82
|
Delahaye-Sourdeix M, Urayama KY, Gaborieau V, Veenstra R, Foll M, Chabrier A, Benavente Y, Nieters A, Becker N, Foretova L, Maynadié M, Staines A, Smedby KE, Glimelius I, Lightfoot T, Cocco P, Galan P, Vatten LJ, Duell EJ, Kiemeney L, Roman E, de Sanjosé S, Lathrop M, Melbye M, Brennan P, Diepstra A, van den Berg A, Hjalgrim H, Jarrett RF, McKay JD. A Novel Risk Locus at 6p21.3 for Epstein-Barr Virus-Positive Hodgkin Lymphoma. Cancer Epidemiol Biomarkers Prev 2015; 24:1838-43. [PMID: 26404960 DOI: 10.1158/1055-9965.epi-15-0534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A proportion of the genetic variants involved in susceptibility to Hodgkin lymphoma differ by the tumor's Epstein-Barr virus (EBV) status, particularly within the MHC region. METHODS We have conducted an SNP imputation study of the MHC region, considering tumor EBV status in 1,200 classical Hodgkin lymphoma (cHL) cases and 5,726 control subjects of European origin. Notable findings were genotyped in an independent study population of 468 cHL cases and 551 controls. RESULTS We identified and subsequently replicated a novel association between a common genetic variant rs6457715 and cHL. Although strongly associated with EBV-positive cHL [OR, 2.33; 95% confidence interval (CI), 1.83-2.97; P = 7 × 10(-12)], there was little evidence for association between rs6457715 and the EBV-negative subgroup of cHL (OR, 1.06; 95% CI, 0.92-1.21), indicating that this association was specific to the EBV-positive subgroup (Phet < P = 10(-8)). Furthermore, the association was limited to EBV-positive cHL subgroups within mixed cell (MCHL) and nodular sclerosis subtypes (NSHL), suggesting that the association is independent of histologic subtype of cHL. CONCLUSIONS rs6457715, located near the HLA-DPB1 gene, is associated with EBV-positive cHL and suggests this region as a novel susceptibility locus for cHL. IMPACT This expands the number of genetic variants that are associated with cHL and provides additional evidence for a critical and specific role of EBV in the etiology of this disease.
Collapse
Affiliation(s)
| | - Kevin Y Urayama
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Rianne Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Amelie Chabrier
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Yolanda Benavente
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain. CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Alexandra Nieters
- Centre of Chronic Immunodeficiency Freiburg, University Medical Centre Freiburg, Freiburg, Germany
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marc Maynadié
- Registry of Hematological Malignancies, University of Burgundy, University Hospital of Dijon, Dijon, France
| | - Anthony Staines
- School of Nursing, Dublin City University, Glasnevin, Dublin, Ireland
| | - Karin Ekstrom Smedby
- Department of Medicine Solna, Clinical Epidemiology Unit, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Glimelius
- Clinical Epidemiology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. Department of Radiology, Oncology, and Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Tracy Lightfoot
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Pierluigi Cocco
- Department of Public Health, Occupational Health Section, University of Cagliari, Cagliari, Italy
| | - Pilar Galan
- Sorbonne Paris Cité Epidemiology and Biostatistics Research Center (CRESS), Nutritional Epidemiology Research Team (EREN), Inserm U1153, Inra U1125, Cnam, University Paris 13, University Paris 5, University Paris 7, Bobigny, France
| | - Lars J Vatten
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Eric J Duell
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain
| | - Lambertus Kiemeney
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Eve Roman
- Epidemiology and Genetics Unit, Department of Health Sciences, University of York, York, United Kingdom
| | - Silvia de Sanjosé
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain. CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ruth F Jarrett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - James D McKay
- International Agency for Research on Cancer (IARC), Lyon, France.
| |
Collapse
|
83
|
Thomsen H, da Silva Filho MI, Försti A, Fuchs M, Ponader S, von Strandmann EP, Eisele L, Herms S, Hofmann P, Sundquist J, Engert A, Hemminki K. Response. J Neurosurg Spine 2015; 23:824. [PMID: 26958672 PMCID: PMC4795060 DOI: 10.1038/ejhg.2014.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/06/2014] [Accepted: 08/10/2014] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies (GWASs) have identified several single-nucleotide polymorphisms (SNPs) influencing the risk of Hodgkin's lymphoma (HL) and demonstrated the association of common genetic variation for this type of cancer. Such evidence for inherited genetic risk is also provided by the family history and the very high concordance between monozygotic twins. However, little is known about the genetic and environmental contributions. A common measure for describing the phenotypic variation due to genetics is the heritability. Using GWAS data on 906 HL cases by considering all typed SNPs simultaneously, we have calculated that the common variance explained by SNPs accounts for >35% of the total variation on the liability scale in HL (95% confidence interval 6–62%). These findings are consistent with similar heritability estimates of ∼0.40 (95% confidence interval 0.17–0.58) based on Swedish population data. Our estimates support the underlying polygenic basis for susceptibility to HL, and show that heritability based on the population data is somehow larger than heritability based on the genomic data because of the possibility of some missing heritability in the GWAS data. Besides that there is still major evidence for multiple loci causing HL on chromosomes other than chromosome 6 that need to be detected. Because of limited findings in prior GWASs, it seems worth checking for more loci causing susceptibility to HL.
Collapse
Affiliation(s)
- Hauke Thomsen
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology, Heidelberg, Germany
| | | | - Asta Försti
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Michael Fuchs
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - Sabine Ponader
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | | | - Lewin Eisele
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Herms
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Per Hofmann
- Institute of Human Genetics and Department of Genomics, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Sundquist
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Engert
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - Kari Hemminki
- German Cancer Research Center (DKFZ), Division of Molecular Genetic Epidemiology, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| |
Collapse
|
84
|
Dai H, Ehrentraut S, Nagel S, Eberth S, Pommerenke C, Dirks WG, Geffers R, Kalavalapalli S, Kaufmann M, Meyer C, Faehnrich S, Chen S, Drexler HG, MacLeod RAF. Genomic Landscape of Primary Mediastinal B-Cell Lymphoma Cell Lines. PLoS One 2015; 10:e0139663. [PMID: 26599546 PMCID: PMC4657880 DOI: 10.1371/journal.pone.0139663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 12/02/2022] Open
Abstract
Primary mediastinal B-Cell lymphoma (PMBL) is a recently defined entity comprising ~2–10% non-Hodgkin lymphomas (NHL). Unlike most NHL subtypes, PMBL lacks recurrent gene rearrangements to serve as biomarkers or betray target genes. While druggable, late chemotherapeutic complications warrant the search for new targets and models. Well characterized tumor cell lines provide unlimited material to serve as preclinical resources for verifiable analyses directed at the discovery of new biomarkers and pathological targets using high throughput microarray technologies. The same cells may then be used to seek intelligent therapies directed at clinically validated targets. Four cell lines have emerged as potential PMBL models: FARAGE, KARPAS-1106P, MEDB-1 and U-2940. Transcriptionally, PMBL cell lines cluster near c(lassical)-HL and B-NHL examples showing they are related but separate entities. Here we document genomic alterations therein, by cytogenetics and high density oligonucleotide/SNP microarrays and parse their impact by integrated global expression profiling. PMBL cell lines were distinguished by moderate chromosome rearrangement levels undercutting cHL, while lacking oncogene translocations seen in B-NHL. In total 61 deletions were shared by two or more cell lines, together with 12 amplifications (≥4x) and 72 homozygous regions. Integrated genomic and transcriptional profiling showed deletions to be the most important class of chromosome rearrangement. Lesions were mapped to several loci associated with PMBL, e.g. 2p15 (REL/COMMD1), 9p24 (JAK2, CD274), 16p13 (SOCS1, LITAF, CIITA); plus new or tenuously associated loci: 2p16 (MSH6), 6q23 (TNFAIP3), 9p22 (CDKN2A/B), 20p12 (PTPN1). Discrete homozygous regions sometimes substituted focal deletions accompanied by gene silencing implying a role for epigenetic or mutational inactivation. Genomic amplifications increasing gene expression or gene-activating rearrangements were respectively rare or absent. Our findings highlight biallelic deletions as a major class of chromosomal lesion in PMBL cell lines, while endorsing the latter as preclinical models for hunting and testing new biomarkers and actionable targets.
Collapse
Affiliation(s)
- Haiping Dai
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Stefan Ehrentraut
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Nagel
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sonja Eberth
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wilhelm G. Dirks
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Robert Geffers
- Department of Genome Analysis, HZI, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Maren Kaufmann
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corrina Meyer
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Silke Faehnrich
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Suning Chen
- Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hans G. Drexler
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
85
|
Jones K, Wockner L, Brennan RM, Keane C, Chattopadhyay PK, Roederer M, Price DA, Cole DK, Hassan B, Beck K, Gottlieb D, Ritchie DS, Seymour JF, Vari F, Crooks P, Burrows SR, Gandhi MK. The impact of HLA class I and EBV latency-II antigen-specific CD8(+) T cells on the pathogenesis of EBV(+) Hodgkin lymphoma. Clin Exp Immunol 2015; 183:206-20. [PMID: 26422112 PMCID: PMC4711160 DOI: 10.1111/cei.12716] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/20/2022] Open
Abstract
In 40% of cases of classical Hodgkin lymphoma (cHL), Epstein–Barr virus (EBV) latency‐II antigens [EBV nuclear antigen 1 (EBNA1)/latent membrane protein (LMP)1/LMP2A] are present (EBV+cHL) in the malignant cells and antigen presentation is intact. Previous studies have shown consistently that HLA‐A*02 is protective in EBV+cHL, yet its role in disease pathogenesis is unknown. To explore the basis for this observation, gene expression was assessed in 33 cHL nodes. Interestingly, CD8 and LMP2A expression were correlated strongly and, for a given LMP2A level, CD8 was elevated markedly in HLA‐A*02–versus HLA‐A*02+ EBV+cHL patients, suggesting that LMP2A‐specific CD8+ T cell anti‐tumoral immunity may be relatively ineffective in HLA‐A*02– EBV+cHL. To ascertain the impact of HLA class I on EBV latency antigen‐specific immunodominance, we used a stepwise functional T cell approach. In newly diagnosed EBV+cHL, the magnitude of ex‐vivo LMP1/2A‐specific CD8+ T cell responses was elevated in HLA‐A*02+ patients. Furthermore, in a controlled in‐vitro assay, LMP2A‐specific CD8+ T cells from healthy HLA‐A*02 heterozygotes expanded to a greater extent with HLA‐A*02‐restricted compared to non‐HLA‐A*02‐restricted cell lines. In an extensive analysis of HLA class I‐restricted immunity, immunodominant EBNA3A/3B/3C‐specific CD8+ T cell responses were stimulated by numerous HLA class I molecules, whereas the subdominant LMP1/2A‐specific responses were confined largely to HLA‐A*02. Our results demonstrate that HLA‐A*02 mediates a modest, but none the less stronger, EBV‐specific CD8+ T cell response than non‐HLA‐A*02 alleles, an effect confined to EBV latency‐II antigens. Thus, the protective effect of HLA‐A*02 against EBV+cHL is not a surrogate association, but reflects the impact of HLA class I on EBV latency‐II antigen‐specific CD8+ T cell hierarchies.
Collapse
Affiliation(s)
- K Jones
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - L Wockner
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - R M Brennan
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - C Keane
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| | - P K Chattopadhyay
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - D K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - B Hassan
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - K Beck
- Tissue Engineering and Reparative Dentistry, Cardiff University School of Dentistry, Cardiff, UK
| | - D Gottlieb
- Blood and Marrow Transplant Service, Westmead Hospital, Sydney, Australia
| | - D S Ritchie
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - J F Seymour
- University of Melbourne, Melbourne, Australia
| | - F Vari
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - P Crooks
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - S R Burrows
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - M K Gandhi
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
86
|
Bassig BA, Cerhan JR, Au WY, Kim HN, Sangrajrang S, Hu W, Tse J, Berndt S, Zheng T, Zhang H, Pornsopone P, Lee JJ, Kim HJ, Skibola CF, Vijai J, Burdette L, Yeager M, Brennan P, Shin MH, Liang R, Chanock S, Lan Q, Rothman N. Genetic susceptibility to diffuse large B-cell lymphoma in a pooled study of three Eastern Asian populations. Eur J Haematol 2015; 95:442-8. [PMID: 25611436 DOI: 10.1111/ejh.12513] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Diffuse large B-cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and is the most common NHL subtype diagnosed worldwide. The first large-scale genome-wide association study (GWAS) of DLBCL with over 4000 cases conducted among individuals of European ancestry recently identified five independent SNPs that achieved genome-wide significance, and two SNPs that showed a suggestive association with DLBCL risk. METHODS To evaluate whether Eastern Asians and individuals of European ancestry share similar genetic risk factors for this disease, we attempted to replicate these GWAS findings in a pooled series of 1124 DLBCL cases and 3596 controls from Hong Kong, South Korea, and Thailand. RESULTS Three of the five genome-wide significant SNPs from the DLBCL GWAS were significantly associated with DLBCL in our study population, including the top finding from the GWAS, EXOC2 rs116446171, which achieved genome-wide significance in our data (per allele OR = 2.04, 95% CI = 1.63-2.56; ptrend = 3.9 × 10(-10)). Additionally, we observed a significant association with PVT1 rs13255292 (per allele OR = 1.34, 95% CI = 1.19-1.52; ptrend = 2.1 × 10(-6)), which was the second strongest finding in the GWAS, and with HLA-B rs2523607 (per allele OR = 3.05, 95% CI = 1.32-7.05; ptrend = 0.009). CONCLUSIONS Our study, which provides the first evaluation in Eastern Asians of SNPs definitively associated with DLBCL risk in individuals of European ancestry, indicates that at least some of the genetic factors associated with risk of DLBCL are similar between these populations.
Collapse
Affiliation(s)
- Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - James R Cerhan
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Wing-Yan Au
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Hee Nam Kim
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do, South Korea
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
| | | | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Jovic Tse
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | | | - Heping Zhang
- Yale University School of Public Health, New Haven, CT, USA
| | | | - Je-Jung Lee
- Department of Hematology/Oncology, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyeoung-Joon Kim
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do, South Korea
- Department of Hematology/Oncology, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Christine F Skibola
- Department of Epidemiology, The University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, NIH, DHHS, Gaithersburg, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, NIH, DHHS, Gaithersburg, MD, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Min-Ho Shin
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Raymond Liang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
87
|
Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements. PLoS One 2015; 10:e0139360. [PMID: 26422229 PMCID: PMC4589387 DOI: 10.1371/journal.pone.0139360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022] Open
Abstract
Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin's lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well.
Collapse
|
88
|
Li W, Espinal-Enríquez J, Simpfendorfer KR, Hernández-Lemus E. A survey of disease connections for CD4+ T cell master genes and their directly linked genes. Comput Biol Chem 2015; 59 Pt B:78-90. [PMID: 26411796 DOI: 10.1016/j.compbiolchem.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies and other genetic analyses have identified a large number of genes and variants implicating a variety of disease etiological mechanisms. It is imperative for the study of human diseases to put these genetic findings into a coherent functional context. Here we use system biology tools to examine disease connections of five master genes for CD4+ T cell subtypes (TBX21, GATA3, RORC, BCL6, and FOXP3). We compiled a list of genes functionally interacting (protein-protein interaction, or by acting in the same pathway) with the master genes, then we surveyed the disease connections, either by experimental evidence or by genetic association. Embryonic lethal genes (also known as essential genes) are over-represented in master genes and their interacting genes (55% versus 40% in other genes). Transcription factors are significantly enriched among genes interacting with the master genes (63% versus 10% in other genes). Predicted haploinsufficiency is a feature of most these genes. Disease-connected genes are enriched in this list of genes: 42% of these genes have a disease connection according to Online Mendelian Inheritance in Man (OMIM) (versus 23% in other genes), and 74% are associated with some diseases or phenotype in a Genome Wide Association Study (GWAS) (versus 43% in other genes). Seemingly, not all of the diseases connected to genes surveyed were immune related, which may indicate pleiotropic functions of the master regulator genes and associated genes.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA.
| | - Jesús Espinal-Enríquez
- Computational Genomics Department, National Institute of Genomic Medicine, México, D.F., Mexico; Complexity in Systems Biology, Center for Complexity Sciences, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | - Kim R Simpfendorfer
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA
| | - Enrique Hernández-Lemus
- Computational Genomics Department, National Institute of Genomic Medicine, México, D.F., Mexico; Complexity in Systems Biology, Center for Complexity Sciences, Universidad Nacional Autónoma de México, México, D.F., Mexico
| |
Collapse
|
89
|
Familial predisposition and genetic risk factors for lymphoma. Blood 2015; 126:2265-73. [PMID: 26405224 DOI: 10.1182/blood-2015-04-537498] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
Our understanding of familial predisposition to lymphoma (collectively defined as non-Hodgkin lymphoma [NHL], Hodgkin lymphoma [HL], and chronic lymphocytic leukemia [CLL]) outside of rare hereditary syndromes has progressed rapidly during the last decade. First-degree relatives of NHL, HL, and CLL patients have an ∼1.7-fold, 3.1-fold, and 8.5-fold elevated risk of developing NHL, HL, and CLL, respectively. These familial risks are elevated for multiple lymphoma subtypes and do not appear to be confounded by nongenetic risk factors, suggesting at least some shared genetic etiology across the lymphoma subtypes. However, a family history of a specific subtype is most strongly associated with risk for that subtype, supporting subtype-specific genetic factors. Although candidate gene studies have had limited success in identifying susceptibility loci, genome-wide association studies (GWAS) have successfully identified 67 single nucleotide polymorphisms from 41 loci, predominately associated with specific subtypes. In general, these GWAS-discovered loci are common (minor allele frequency >5%), have small effect sizes (odds ratios, 0.60-2.0), and are of largely unknown function. The relatively low incidence of lymphoma, modest familial risk, and the lack of a screening test and associated intervention, all argue against active clinical surveillance for lymphoma in affected families at this time.
Collapse
|
90
|
Sud A, Cooke R, Swerdlow AJ, Houlston RS. Genome-wide homozygosity signature and risk of Hodgkin lymphoma. Sci Rep 2015; 5:14315. [PMID: 26391888 PMCID: PMC4585760 DOI: 10.1038/srep14315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that regions of homozygosity (ROH) in the genome are detectable in outbred populations and can be associated with an increased risk of malignancy. To examine whether homozygosity is associated with an increased risk of developing Hodgkin lymphoma (HL) we analysed 589 HL cases and 5,199 controls genotyped for 484,072 tag single nucleotide polymorphisms (SNPs). Across the genome the cumulative distribution of ROH was not significantly different between cases and controls. Seven ROH at 4q22.3, 4q32.2, 7p12.3-14.1, 7p22.2, 10p11.22-23, 19q13.12-2 and 19p13.2 were associated with HL risk at P < 0.01. Intriguingly 4q22.3 harbours an ROH to which the nuclear factor NF-kappa-B p105 subunit (NFKB1) maps (P = 0.002). The ROH at 19q13.12-2 has previously been implicated in B-cell precursor acute lymphoblastic leukaemia. Aside from these observations which require validation, it is unlikely that levels of measured homozygosity caused by autozygosity, uniparental isodisomy or hemizygosity play a major role in defining HL risk in predominantly outbred populations.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| |
Collapse
|
91
|
Rao PH, Zhao S, Zhao YJ, Yu A, Rainusso N, Trucco M, Allen-Rhoades W, Satterfield L, Fuja D, Borra VJ, Man TK, Donehower LA, Yustein JT. Coamplification ofMyc/Pvt1and homozygous deletion ofNlrp1locus are frequent genetics changes in mouse osteosarcoma. Genes Chromosomes Cancer 2015; 54:796-808. [DOI: 10.1002/gcc.22291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/19/2015] [Accepted: 07/29/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Pulivarthi H. Rao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Shuying Zhao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Yi-Jue Zhao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Alexander Yu
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Nino Rainusso
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Matteo Trucco
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Wendy Allen-Rhoades
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Laura Satterfield
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| | - Daniel Fuja
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| | - Vishnupriya J. Borra
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Tsz-Kwong Man
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
| | - Lawrence A. Donehower
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
- Department of Molecular & Cellular Biology; Baylor College of Medicine; Houston TX 77030
- Department of Molecular Virology & Microbiology; Baylor College of Medicine; Houston TX 77030
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| | - Jason T. Yustein
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics; Baylor College of Medicine; Houston TX 77030
- Department of Molecular & Cellular Biology; Baylor College of Medicine; Houston TX 77030
- Integrative Molecular and Biological Sciences Program; Baylor College of Medicine; Houston TX 77030
| |
Collapse
|
92
|
Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: a joint study from five Nordic countries. Blood 2015; 126:1990-5. [PMID: 26311361 DOI: 10.1182/blood-2015-04-639781] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
We aimed to provide the familial risk of classical Hodgkin lymphoma (HL) by relationship, histology, age at diagnosis, and sex. A cohort of 57,475 first-degree relatives of 13,922 HL patients diagnosed between 1955 and 2009 in 5 European countries was observed for HL incidence. The overall lifetime cumulative risk (CR) of HL in first-degree relatives of a patient with HL was 0.6%, which represents a threefold (standardized incidence ratio [SIR], 3.3; 95% confidence interval [CI], 2.8-3.9) increased risk over the general population risk. The risk in siblings (6.0-fold; 95% CI, 4.8- to 7.4-fold) was significantly higher than in parents and/or children (2.1-fold; 95% CI, 1.6- to 2.6-fold). Very high lifetime risk of HL was found for those with multiple affected first-degree relatives (13-fold; 95% CI, 2.8- to 39-fold) and for same-sex twins (57-fold; 95% CI, 21- to 125-fold). We found high familial risks between some concordant histologic subtypes of HL such as lymphocyte-rich (81-fold; 95% CI, 30- to 177-fold) and nodular sclerosis (4.6-fold; 95% CI, 2.9- to 7.0-fold) and also between some discordant subtypes. The familial risk in sisters (9.4-fold; 95% CI, 5.9- to 14-fold) was higher than in brothers (4.5-fold; 95% CI, 2.9- to 6.7-fold) or unlike-sex siblings (5.9-fold; 95% CI, 4.3- to 8.1-fold). The lifetime risk of HL was higher when first-degree relatives were diagnosed at early ages (before age 30 years). This study provides tangible absolute risk estimates for relatives of HL patients, which can be used as a sex-, age-, and family history-based risk calculator for classical HL by oncologists and genetic counselors.
Collapse
|
93
|
Zhang Y, Qian J, Wu M, Liu M, Zhang K, Lin Y, Guo X, Zhou Z, Hu Z, Sha J. A susceptibility locus rs7099208 is associated with non-obstructive azoospermia via reduction in the expression of FAM160B1. J Biomed Res 2015; 29:491-500. [PMID: 26668583 PMCID: PMC4662211 DOI: 10.7555/jbr.29.20150034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/08/2015] [Accepted: 05/06/2015] [Indexed: 12/25/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a severe defect in male reproductive health that occurs in 1% of adult men. In a previous study, we identified that rs7099208 is located within the last intron of FAM160B1 at 10q25.3. In this study, we analysed expression Quantitative Trait Loci (eQTL) of FAM160B1, ABLIM1 and TRUB1, the three genes surrounding rs7099208. Only the expression level of FAM160B1 was reduced for the homozygous alternate genotype (GG) of rs7099208, but not for the homozygous reference or heterozygous genotypes. FAM160B1 is predominantly expressed in human testes, where it is found in spermatocytes and round spermatids. From 17 patients with NOA and five with obstructive azoospermia (OA), immunohistochemistry revealed that expression of FAM160B1 is reduced, or undetectable in NOA patients, but not in OA cases or normal men. We conclude that rs7099208 is associated with NOA via a reduction in the expression of FAM160B1.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Reproductive Medicine ; The Center for Reproductive Medicine, The Second Affiliated Hospital of Nanjing Medical University , Nanjing, Jiangsu 210011 , China
| | - Jing Qian
- State Key Laboratory of Reproductive Medicine ; Department of Histology and Embryology
| | - Minghui Wu
- State Key Laboratory of Reproductive Medicine ; Department of Histology and Embryology
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine ; Department of Histology and Embryology
| | - Kai Zhang
- State Key Laboratory of Reproductive Medicine ; Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education Nanjing Medical University , Nanjing, Jiangsu 210029 , China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine ; Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education Nanjing Medical University , Nanjing, Jiangsu 210029 , China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine ; Department of Histology and Embryology
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine ; Department of Histology and Embryology
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine ; Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education Nanjing Medical University , Nanjing, Jiangsu 210029 , China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine ; Department of Histology and Embryology
| |
Collapse
|
94
|
|
95
|
Linabery AM, Erhardt EB, Richardson MR, Ambinder RF, Friedman DL, Glaser SL, Monnereau A, Spector LG, Ross JA, Grufferman S. Family history of cancer and risk of pediatric and adolescent Hodgkin lymphoma: A Children's Oncology Group study. Int J Cancer 2015; 137:2163-74. [PMID: 25940226 DOI: 10.1002/ijc.29589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/22/2015] [Indexed: 01/02/2023]
Abstract
Family history of lymphoid neoplasm (LN) is a strong and consistently observed Hodgkin lymphoma (HL) risk factor, although it has been only marginally examined in pediatric/adolescent patients. Here, healthy control children identified by random digit dialing were matched on sex, race/ethnicity and age to HL cases diagnosed at 0-14 years at Children's Oncology Group institutions in 1989-2003. Detailed histories were captured by structured telephone interviews with parents of 517 cases and 783 controls. Epstein-Barr virus (EBV) RNA detection was performed for 355 available case tumors. Two analytic strategies were applied to estimate associations between family cancer history and pediatric/adolescent HL. In a standard case-control approach, multivariate conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (CIs). In a reconstructed cohort approach, each relative was included as a separate observation, and multivariate proportional hazards regression was used to produce hazard ratios (HRs) and 95% CIs. Using the latter, pediatric/adolescent HL was associated with a positive family history (HR = 1.20, 95% CI: 1.06-1.36), particularly early-onset cancers (HR = 1.30, 95% CI: 1.06-1.59) and those in the paternal lineage (HR = 1.38, 95% CI: 1.16-1.65), with a suggested association for LN in first-degree relatives (HR = 3.61, 95% CI: 0.87-15.01). There were no discernable patterns for EBV+ versus EBV- HL. The clustering of LN within pedigrees may signal shared genetic susceptibility or common environmental exposures. Heritable genetic risk variants have only recently begun to be discovered, however. These results are consistent with other studies and provide a compelling rationale for family-based studies to garner information about genetic susceptibility to HL.
Collapse
Affiliation(s)
- Amy M Linabery
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| | - Michaela R Richardson
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Richard F Ambinder
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Debra L Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Sally L Glaser
- Cancer Prevention Institute of California, Fremont, CA.,Department of Health Research and Policy (Epidemiology), Stanford University, Stanford, CA
| | - Alain Monnereau
- Registre Des Hémopathies Malignes De La Gironde, Institut Bergonié, Bordeaux, France.,Centre INSERM U897, CIC 1401, Centre D'investigation Clinique, Bordeaux, France
| | - Logan G Spector
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Julie A Ross
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Seymour Grufferman
- Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM
| |
Collapse
|
96
|
Chang ET, Boffetta P, Adami HO, Mandel JS. A critical review of the epidemiology of Agent Orange or 2,3,7,8-tetrachlorodibenzo-p-dioxin and lymphoid malignancies. Ann Epidemiol 2015; 25:275-292.e30. [DOI: 10.1016/j.annepidem.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
|
97
|
PVT1: a rising star among oncogenic long noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:304208. [PMID: 25883951 PMCID: PMC4391155 DOI: 10.1155/2015/304208] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning.
Collapse
|
98
|
Abstract
With the development of genome-wide sequencing technology, 195 types of functional, long non-coding RNAs (lncRNAs) have been identified so far, and their cellular roles are gradually being revealed. LncRNAs have now become a hotspot in the field of life sciences. These small molecules exist in almost all higher eukaryotes and play very important regulatory roles in these organisms. This review briefly summarizes the recent progress in research on plasmacytoma variant translocation 1 gene (PVT1), an lncRNA.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory, Panyu Central Hospital, Guangzhou 511400, China
| | - Jin-hua He
- Department of Laboratory, Panyu Central Hospital, Guangzhou 511400, China
| | - Ze-ping Han
- Department of Laboratory, Panyu Central Hospital, Guangzhou 511400, China
| |
Collapse
|
99
|
Johnson PCD, McAulay KA, Montgomery D, Lake A, Shield L, Gallagher A, Little AM, Shah A, Marsh SGE, Taylor GM, Jarrett RF. Modeling HLA associations with EBV-positive and -negative Hodgkin lymphoma suggests distinct mechanisms in disease pathogenesis. Int J Cancer 2015; 137:1066-75. [PMID: 25648508 PMCID: PMC4737225 DOI: 10.1002/ijc.29467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 01/08/2023]
Abstract
HLA genotyping and genome wide association studies provide strong evidence for associations between Human Leukocyte Antigen (HLA) alleles and classical Hodgkin lymphoma (cHL). Analysis of these associations is complicated by the extensive linkage disequilibrium within the major histocompatibility region and recent data suggesting that associations with EBV‐positive and EBV‐negative cHL are largely distinct. To distinguish independent and therefore potentially causal associations from associations confounded by linkage disequilibrium, we applied a variable selection regression modeling procedure to directly typed HLA class I and II genes and selected SNPs from EBV‐stratified patient subgroups. In final models, HLA‐A*01:01 and B*37:01 were associated with an increased risk of EBV‐positive cHL whereas DRB1*15:01 and DPB1*01:01 were associated with decreased risk. Effects were independent of a prior history of infectious mononucleosis. For EBV‐negative cHL the class II SNP rs6903608 remained the strongest predictor of disease risk after adjusting for the effects of common HLA alleles. Associations with “all cHL” and differences by case EBV status reflected the subgroup analysis. In conclusion, this study extends previous findings by identifying novel HLA associations with EBV‐stratified subgroups of cHL, highlighting those alleles likely to be biologically relevant and strengthening evidence implicating genetic variation associated with the SNP rs6903608. What's new? Strong evidence exists for associations between HLA alleles and classical Hodgkin lymphoma (cHL). Analysis is however complicated by the linkage disequilibrium within the MHC region and data suggesting that associations with Epstein‐Barr virus (EBV)‐positive and negative cHL are distinct. In the largest study to date to investigate associations between EBV‐stratified cHL subgroups and directly typed HLA alleles, the authors extend associations with EBV‐positive cHL to novel HLA class II alleles, which are associated with decreased disease risk. For EBV‐negative disease, the class II SNP rs6903608 remains the strongest predictor of risk after adjusting for the effects of common HLA alleles.
Collapse
Affiliation(s)
- Paul C D Johnson
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Karen A McAulay
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dorothy Montgomery
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Annette Lake
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lesley Shield
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alice Gallagher
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ann-Margaret Little
- Histocompatibility and Immunogenetics Laboratory, Gartnavel General Hospital, Glasgow, United Kingdom
| | - Anila Shah
- Anthony Nolan, Royal Free Hospital, Hampstead, London, United Kingdom
| | - Steven G E Marsh
- Anthony Nolan, Royal Free Hospital, Hampstead, London, United Kingdom.,Cancer Institute, University College London, Royal Free Campus, London, United Kingdom
| | - G Malcolm Taylor
- Immunogenetics Group, University of Manchester, St Mary's Hospital, Manchester, United Kingdom
| | - Ruth F Jarrett
- MRC - University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
100
|
Perez-Andreu V, Roberts KG, Xu H, Smith C, Zhang H, Yang W, Harvey RC, Payne-Turner D, Devidas M, Cheng IM, Carroll WL, Heerema NA, Carroll AJ, Raetz EA, Gastier-Foster JM, Marcucci G, Bloomfield CD, Mrózek K, Kohlschmidt J, Stock W, Kornblau SM, Konopleva M, Paietta E, Rowe JM, Luger SM, Tallman MS, Dean M, Burchard EG, Torgerson DG, Yue F, Wang Y, Pui CH, Jeha S, Relling MV, Evans WE, Gerhard DS, Loh ML, Willman CL, Hunger SP, Mullighan CG, Yang JJ. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood 2015; 125:680-6. [PMID: 25468567 PMCID: PMC4304112 DOI: 10.1182/blood-2014-09-595744] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/13/2014] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) in adolescents and young adults (AYA) is characterized by distinct presenting features and inferior prognosis compared with pediatric ALL. We performed a genome-wide association study (GWAS) to comprehensively identify inherited genetic variants associated with susceptibility to AYA ALL. In the discovery GWAS, we compared genotype frequency at 635 297 single nucleotide polymorphisms (SNPs) in 308 AYA ALL cases and 6,661 non-ALL controls by using a logistic regression model with genetic ancestry as a covariate. SNPs that reached P ≤ 5 × 10(-8) in GWAS were tested in an independent cohort of 162 AYA ALL cases and 5,755 non-ALL controls. We identified a single genome-wide significant susceptibility locus in GATA3: rs3824662, odds ratio (OR), 1.77 (P = 2.8 × 10(-10)) and rs3781093, OR, 1.73 (P = 3.2 × 10(-9)). These findings were validated in the replication cohort. The risk allele at rs3824662 was most frequent in Philadelphia chromosome (Ph)-like ALL but also conferred susceptibility to non-Ph-like ALL in AYAs. In 1,827 non-selected ALL cases, the risk allele frequency at this SNP was positively correlated with age at diagnosis (P = 6.29 × 10(-11)). Our results from this first GWAS of AYA ALL susceptibility point to unique biology underlying leukemogenesis and potentially distinct disease etiology by age group.
Collapse
Affiliation(s)
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Heng Xu
- Department of Pharmaceutical Sciences and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | - Hui Zhang
- Department of Pharmaceutical Sciences and
| | | | | | | | - Meenakshi Devidas
- Department of Biostatistics, Colleges of Medicine, Public Health & Health Professions, University of Florida, Gainesville, FL
| | - I-Ming Cheng
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - William L Carroll
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Nyla A Heerema
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth A Raetz
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | | | - Guido Marcucci
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | | | - Krzysztof Mrózek
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jessica Kohlschmidt
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH; Alliance of Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester
| | - Wendy Stock
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Steven M Kornblau
- Section of Molecular Hematology & Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Elisabeth Paietta
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Yeshiva University, New York, NY
| | | | - Selina M Luger
- Hematologic Malignancies Program, Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA
| | - Martin S Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Dean
- Laboratory of Experimental Immunology, National Cancer Institute, Frederick, MD
| | - Esteban G Burchard
- Department of Bioengineering & Therapeutic Science and Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Dara G Torgerson
- Department of Bioengineering & Therapeutic Science and Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Feng Yue
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yanli Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | - Mignon L Loh
- Department of Pediatrics and the Helen Diller Family Cancer Center, University of California, San Francisco, San Francisco, CA; and
| | - Cheryl L Willman
- Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - Stephen P Hunger
- School of Medicine and Children's Hospital, University of Colorado School of Medicine, Aurora, CO
| | | | - Jun J Yang
- Department of Pharmaceutical Sciences and
| |
Collapse
|