51
|
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20:629-651. [PMID: 34145432 PMCID: PMC8212082 DOI: 10.1038/s41573-021-00219-z] [Citation(s) in RCA: 829] [Impact Index Per Article: 276.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represents an attractive approach for the treatment of cancers, as well as many other diseases. Over the past decade, substantial effort has been made towards the clinical application of RNA-based therapeutics, employing mostly antisense oligonucleotides and small interfering RNAs, with several gaining FDA approval. However, trial results have so far been ambivalent, with some studies reporting potent effects whereas others demonstrated limited efficacy or toxicity. Alternative entities such as antimiRNAs are undergoing clinical testing, and lncRNA-based therapeutics are gaining interest. In this Perspective, we discuss key challenges facing ncRNA therapeutics - including issues associated with specificity, delivery and tolerability - and focus on promising emerging approaches that aim to boost their success.
Collapse
Affiliation(s)
- Melanie Winkle
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division - Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences - National Research Centre, Cairo, Egypt
| | - Muller Fabbri
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - George A Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
- The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
| |
Collapse
|
52
|
Abdelhady AM, Hirano Y, Onizuka K, Okamura H, Komatsu Y, Nagatsugi F. Synthesis of crosslinked 2'-OMe RNA duplexes and their application for effective inhibition of miRNA function. Bioorg Med Chem Lett 2021; 48:128257. [PMID: 34246752 DOI: 10.1016/j.bmcl.2021.128257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
The interstrand crosslinking of nucleic acids is one of the strategies to create the stable complex between an oligonucleotide and RNA by covalent bond formation. We previously reported that fully 2'-O-methylated (2'-OMe) RNAs having the 2-amino-6-vinylpurine (AVP) exhibited an efficient crosslinking to uracil in the target RNA. In this study, we established a chemical method to efficiently synthesize the crosslinked 2'-OMe RNA duplexes using AVP and prepared the anti-miRNA oligonucleotides (AMOs) containing the antisense targeting miR-21 and crosslinked duplex at the terminal sequences. These AMOs showed a markedly higher anti miRNA activity than that of the commercially-available miR-21 inhibitor which has locked nucleic acid (LNA) residues.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
53
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
54
|
Hong M, Sun H, Yang Q, Cheng S, Yu S, Fan S, Li C, Cui C, Tan W. A microRNA-21-responsive doxorubicin-releasing sticky-flare for synergistic anticancer with silencing of microRNA and chemotherapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Yamamoto T, Mukai Y, Wada F, Terada C, Kayaba Y, Oh K, Yamayoshi A, Obika S, Harada–Shiba M. Highly Potent GalNAc-Conjugated Tiny LNA Anti-miRNA-122 Antisense Oligonucleotides. Pharmaceutics 2021; 13:817. [PMID: 34072682 PMCID: PMC8228246 DOI: 10.3390/pharmaceutics13060817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
The development of clinically relevant anti-microRNA antisense oligonucleotides (anti-miRNA ASOs) remains a major challenge. One promising configuration of anti-miRNA ASOs called "tiny LNA (tiny Locked Nucleic Acid)" is an unusually small (~8-mer), highly chemically modified anti-miRNA ASO with high activity and specificity. Within this platform, we achieved a great enhancement of the in vivo activity of miRNA-122-targeting tiny LNA by developing a series of N-acetylgalactosamine (GalNAc)-conjugated tiny LNAs. Specifically, the median effective dose (ED50) of the most potent construct, tL-5G3, was estimated to be ~12 nmol/kg, which is ~300-500 times more potent than the original unconjugated tiny LNA. Through in vivo/ex vivo imaging studies, we have confirmed that the major advantage of GalNAc over tiny LNAs can be ascribed to the improvement of their originally poor pharmacokinetics. We also showed that the GalNAc ligand should be introduced into its 5' terminus rather than its 3' end via a biolabile phosphodiester bond. This result suggests that tiny LNA can unexpectedly be recognized by endogenous nucleases and is required to be digested to liberate the parent tiny LNA at an appropriate time in the body. We believe that our strategy will pave the way for the clinical application of miRNA-targeting small ASO therapy.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (C.T.); (Y.K.); (K.O.); (A.Y.)
| | - Yahiro Mukai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; (Y.M.); (F.W.); (S.O.)
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan;
| | - Fumito Wada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; (Y.M.); (F.W.); (S.O.)
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan;
| | - Chisato Terada
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (C.T.); (Y.K.); (K.O.); (A.Y.)
| | - Yukina Kayaba
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (C.T.); (Y.K.); (K.O.); (A.Y.)
| | - Kaho Oh
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (C.T.); (Y.K.); (K.O.); (A.Y.)
| | - Asako Yamayoshi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (C.T.); (Y.K.); (K.O.); (A.Y.)
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; (Y.M.); (F.W.); (S.O.)
| | - Mariko Harada–Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan;
| |
Collapse
|
56
|
Schell SL, Rahman ZSM. miRNA-Mediated Control of B Cell Responses in Immunity and SLE. Front Immunol 2021; 12:683710. [PMID: 34079558 PMCID: PMC8165268 DOI: 10.3389/fimmu.2021.683710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Loss of B cell tolerance is central to autoimmune diseases such as systemic lupus erythematosus (SLE). As such, the mechanisms involved in B cell development, maturation, activation, and function that are aberrantly regulated in SLE are of interest in the design of targeted therapeutics. While many factors are involved in the generation and regulation of B cell responses, miRNAs have emerged as critical regulators of these responses within the last decade. To date, miRNA involvement in B cell responses has largely been studied in non-autoimmune, immunization-based systems. However, miRNA profiles have also been strongly associated with SLE in human patients and these molecules have proven critical in both the promotion and regulation of disease in mouse models and in the formation of autoreactive B cell responses. Functionally, miRNAs are small non-coding RNAs that bind to complementary sequences located in target mRNA transcripts to mediate transcript degradation or translational repression, invoking a post-transcriptional level of genetic regulation. Due to their capacity to target a diverse range of transcripts and pathways in different immune cell types and throughout the various stages of development and response, targeting miRNAs is an interesting potential therapeutic avenue. Herein, we focus on what is currently known about miRNA function in both normal and SLE B cell responses, primarily highlighting miRNAs with confirmed functions in mouse models. We also discuss areas that should be addressed in future studies and whether the development of miRNA-centric therapeutics may be a viable alternative for the treatment of SLE.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
57
|
Abu-Izneid T, AlHajri N, Ibrahim AM, Javed MN, Salem KM, Pottoo FH, Kamal MA. Micro-RNAs in the regulation of immune response against SARS CoV-2 and other viral infections. J Adv Res 2021; 30:133-145. [PMID: 33282419 PMCID: PMC7708232 DOI: 10.1016/j.jare.2020.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Micro-RNAs (miRNAS) are non-coding, small RNAs that have essential roles in different biological processes through silencing genes, they consist of 18-24 nucleotide length RNA molecules. Recently, miRNAs have been viewed as important modulators of viral infections they can function as suppressors of gene expression by targeting cellular or viral RNAs during infection. Aim of review We describe the biological roles and effects of miRNAs on SARS-CoV-2 life-cycle and pathogenicity, and we discuss the modulation of the immune system with micro-RNAs which would serve as a new foundation for the treatment of SARS-CoV-2 and other viral infections. Key scientific concepts of review miRNAs are the key players that regulate the expression of the gene in the post-transcriptional phase and have important effects on viral infections, thus are potential targets in the development of novel therapeutics for the treatment of viral infections. Besides, micro-RNAs (miRNAs) modulation of immune-pathogenesis responses to viral infection is one of the most-known indirect effects, which leads to suppressing of the interferon (IFN-α/β) signalling cascade or upregulation of the IFN-α/β production another IFN-stimulated gene (ISGs) that inhibit replication of the virus. These virus-mediated alterations in miRNA levels lead to an environment that might either enhance or inhibit virus replication.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Noora AlHajri
- Department of Epidemiology and Population Health, College of Medicine, Khalifa University, United Arab Emirates
| | - Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department, College of Nursing, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Md. Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India
| | - Khairi Mustafa Salem
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
58
|
Olmo IG, Olmo RP, Gonçalves ANA, Pires RGW, Marques JT, Ribeiro FM. High-Throughput Sequencing of BACHD Mice Reveals Upregulation of Neuroprotective miRNAs at the Pre-Symptomatic Stage of Huntington's Disease. ASN Neuro 2021; 13:17590914211009857. [PMID: 33906482 PMCID: PMC8718118 DOI: 10.1177/17590914211009857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntington’s disease (HD) is a genetic disorder marked by transcriptional alterations that result in neuronal impairment and death. MicroRNAs (miRNAs) are non-coding RNAs involved in post-transcriptional regulation and fine-tuning of gene expression. Several studies identified altered miRNA expression in HD and other neurodegenerative diseases, however their roles in early stages of HD remain elusive. Here, we deep-sequenced miRNAs from the striatum of the HD mouse model, BACHD, at the age of 2 and 8 months, representing the pre-symptomatic and symptomatic stages of the disease. Our results show that 44 and 26 miRNAs were differentially expressed in 2- and 8-month-old BACHD mice, respectively, as compared to wild-type controls. Over-representation analysis suggested that miRNAs up-regulated in 2-month-old mice control the expression of genes crucial for PI3K-Akt and mTOR cell signaling pathways. Conversely, miRNAs regulating genes involved in neuronal disorders were down-regulated in 2-month-old BACHD mice. Interestingly, primary striatal neurons treated with anti-miRs targeting two up-regulated miRNAs, miR-449c-5p and miR-146b-5p, showed higher levels of cell death. Therefore, our results suggest that the miRNAs altered in 2-month-old BACHD mice regulate genes involved in the promotion of cell survival. Notably, over-representation suggested that targets of differentially expressed miRNAs at the age of 8 months were not significantly enriched for the same pathways. Together, our data shed light on the role of miRNAs in the initial stages of HD, suggesting a neuroprotective role as an attempt to maintain or reestablish cellular homeostasis.
Collapse
Affiliation(s)
- Isabella G Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| | - Roenick P Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil.,CNRS UPR9022, Inserm U1257, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - André N A Gonçalves
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rita G W Pires
- Department of Physiological Sciences, Center for Health Sciences, Universidade Federal do Espirito Santo, Vitoria, Brazil
| | - João T Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil.,CNRS UPR9022, Inserm U1257, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Fabíola M Ribeiro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Brazil
| |
Collapse
|
59
|
Grixti JM, Ayers D, Day PJR. An Analysis of Mechanisms for Cellular Uptake of miRNAs to Enhance Drug Delivery and Efficacy in Cancer Chemoresistance. Noncoding RNA 2021; 7:27. [PMID: 33923485 PMCID: PMC8167612 DOI: 10.3390/ncrna7020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Up until recently, it was believed that pharmaceutical drugs and their metabolites enter into the cell to gain access to their targets via simple diffusion across the hydrophobic lipid cellular membrane, at a rate which is based on their lipophilicity. An increasing amount of evidence indicates that the phospholipid bilayer-mediated drug diffusion is in fact negligible, and that drugs pass through cell membranes via proteinaceous membrane transporters or carriers which are normally used for the transportation of nutrients and intermediate metabolites. Drugs can be targeted to specific cells and tissues which express the relevant transporters, leading to the design of safe and efficacious treatments. Furthermore, transporter expression levels can be manipulated, systematically and in a high-throughput manner, allowing for considerable progress in determining which transporters are used by specific drugs. The ever-expanding field of miRNA therapeutics is not without its challenges, with the most notable one being the safe and effective delivery of the miRNA mimic/antagonist safely to the target cell cytoplasm for attaining the desired clinical outcome, particularly in miRNA-based cancer therapeutics, due to the poor efficiency of neo-vascular systems revolting around the tumour site, brought about by tumour-induced angiogenesis. This acquisition of resistance to several types of anticancer drugs can be as a result of an upregulation of efflux transporters expression, which eject drugs from cells, hence lowering drug efficacy, resulting in multidrug resistance. In this article, the latest available data on human microRNAs has been reviewed, together with the most recently described mechanisms for miRNA uptake in cells, for future therapeutic enhancements against cancer chemoresistance.
Collapse
Affiliation(s)
- Justine M. Grixti
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD 2080, Malta
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| | - Philip J. R. Day
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| |
Collapse
|
60
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
61
|
Jung JH, Ikeda G, Tada Y, von Bornstädt D, Santoso MR, Wahlquist C, Rhee S, Jeon YJ, Yu AC, O'brien CG, Red-Horse K, Appel EA, Mercola M, Woo J, Yang PC. miR-106a-363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Res Cardiol 2021; 116:19. [PMID: 33742276 PMCID: PMC8601755 DOI: 10.1007/s00395-021-00858-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/05/2021] [Indexed: 01/18/2023]
Abstract
Endogenous capability of the post-mitotic human heart holds great promise to restore the injured myocardium. Recent evidence indicates that the extracellular vesicles (EVs) regulate cardiac homeostasis and regeneration. Here, we investigated the molecular mechanism of EVs for self-repair. We isolated EVs from human iPSC-derived cardiomyocytes (iCMs), which were exposed to hypoxic (hEVs) and normoxic conditions (nEVs), and examined their roles in in vitro and in vivo models of cardiac injury. hEV treatment significantly improved the viability of hypoxic iCMs in vitro and cardiac function of severely injured murine myocardium in vivo. Microarray analysis of the EVs revealed significantly enriched expression of the miR-106a-363 cluster (miR cluster) in hEVs vs. nEVs. This miR cluster preserved survival and contractility of hypoxia-injured iCMs and maintained murine left-ventricular (LV) chamber size, improved LV ejection fraction, and reduced myocardial fibrosis of the injured myocardium. RNA-Seq analysis identified Jag1-Notch3-Hes1 as a target intracellular pathway of the miR cluster. Moreover, the study found that the cell cycle activator and cytokinesis genes were significantly up-regulated in the iCMs treated with miR cluster and Notch3 siRNA. Together, these results suggested that the miR cluster in the EVs stimulated cardiomyocyte cell cycle re-entry by repressing Notch3 to induce cell proliferation and augment myocardial self-repair. The miR cluster may represent an effective therapeutic approach for ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Ji-Hye Jung
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gentaro Ikeda
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel von Bornstädt
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michelle R Santoso
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Christine Wahlquist
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Anthony C Yu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Connor G O'brien
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phillip C Yang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford University School of Medicine, 240 Pasteur Dr, BMI 3053, Palo Alto, CA, 94304, USA.
| |
Collapse
|
62
|
Le P, Romano G, Nana-Sinkam P, Acunzo M. Non-Coding RNAs in Cancer Diagnosis and Therapy: Focus on Lung Cancer. Cancers (Basel) 2021; 13:cancers13061372. [PMID: 33803619 PMCID: PMC8003033 DOI: 10.3390/cancers13061372] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, clinical evaluation and treatment of lung cancers have largely improved with the classification of genetic drivers of the disease, such as EGFR, ALK, and ROS1. There are numerous regulatory factors that exert cellular control over key oncogenic pathways involved in lung cancers. In particular, non-coding RNAs (ncRNAs) have a diversity of regulatory roles in lung cancers such that they have been shown to be involved in inducing proliferation, suppressing apoptotic pathways, increasing metastatic potential of cancer cells, and acquiring drug resistance. The dysregulation of various ncRNAs in human cancers has prompted preclinical studies examining the therapeutic potential of restoring and/or inhibiting these ncRNAs. Furthermore, ncRNAs demonstrate tissue-specific expression in addition to high stability within biological fluids. This makes them excellent candidates as cancer biomarkers. This review aims to discuss the relevance of ncRNAs in cancer pathology, diagnosis, and therapy, with a focus on lung cancer.
Collapse
|
63
|
Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes. Methods Mol Biol 2021; 2161:37-50. [PMID: 32681504 DOI: 10.1007/978-1-0716-0680-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Splice-switching oligonucleotides (SSOs) have been used to modulate gene expression by interfering with pre-mRNA splicing with the intent to treat disease. For Duchenne muscular dystrophy, splicing modulation has been used to induce the skipping of exon 51 of the dystrophin transcript, allowing the production of a truncated but functional protein. Although oligonucleotide-based therapies are promising, the rapid degradation of oligonucleotides (ONs) by intracellular nucleases has been a major obstacle. Locked nucleic acid (LNA) substitution in SSOs protects oligonucleotides from nuclease degradation and enhances the hybridization properties of the oligo. However, the best optimum size of the oligo depends on the LNA substitution rate. Here we show that 16-mer DNA SSOs with 60% LNA substitution and full phosphorothioate (PS) linkage backbone efficiently induce exon 51 skipping in myogenic cells derived from a DMD patient, allowing expression of the dystrophin protein.
Collapse
|
64
|
Derbis M, Kul E, Niewiadomska D, Sekrecki M, Piasecka A, Taylor K, Hukema RK, Stork O, Sobczak K. Short antisense oligonucleotides alleviate the pleiotropic toxicity of RNA harboring expanded CGG repeats. Nat Commun 2021; 12:1265. [PMID: 33627639 PMCID: PMC7904788 DOI: 10.1038/s41467-021-21021-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/24/2020] [Indexed: 01/31/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an incurable neurodegenerative disorder caused by expansion of CGG repeats in the FMR1 5'UTR. The RNA containing expanded CGG repeats (rCGGexp) causes cell damage by interaction with complementary DNA, forming R-loop structures, sequestration of nuclear proteins involved in RNA metabolism and initiation of translation of polyglycine-containing protein (FMRpolyG), which forms nuclear insoluble inclusions. Here we show the therapeutic potential of short antisense oligonucleotide steric blockers (ASOs) targeting directly the rCGGexp. In nuclei of FXTAS cells ASOs affect R-loop formation and correct miRNA biogenesis and alternative splicing, indicating that nuclear proteins are released from toxic sequestration. In cytoplasm, ASOs significantly decrease the biosynthesis and accumulation of FMRpolyG. Delivery of ASO into a brain of FXTAS mouse model reduces formation of inclusions, improves motor behavior and corrects gene expression profile with marginal signs of toxicity after a few weeks from a treatment.
Collapse
Affiliation(s)
- Magdalena Derbis
- grid.5633.30000 0001 2097 3545Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, Poland
| | - Emre Kul
- grid.5807.a0000 0001 1018 4307Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto von Guericke University, Magdeburg, Germany
| | - Daria Niewiadomska
- grid.5633.30000 0001 2097 3545Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, Poland
| | - Michał Sekrecki
- grid.5633.30000 0001 2097 3545Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, Poland
| | - Agnieszka Piasecka
- grid.5633.30000 0001 2097 3545Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, Poland
| | - Katarzyna Taylor
- grid.5633.30000 0001 2097 3545Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, Poland
| | - Renate K. Hukema
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, CA Rotterdam, The Netherlands ,grid.450253.50000 0001 0688 0318Present Address: Department of Health Care Studies, Rotterdam University of Applied Sciences, HR Rotterdam, The Netherlands
| | - Oliver Stork
- grid.5807.a0000 0001 1018 4307Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto von Guericke University, Magdeburg, Germany
| | - Krzysztof Sobczak
- grid.5633.30000 0001 2097 3545Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, Poland
| |
Collapse
|
65
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
66
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA‐PROTACs: Degraders of RNA‐Binding Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Antoine Cléry
- Department of Biology ETH Zurich Hönggerbergring 64 8093 Zurich Switzerland
| | - François Halloy
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
67
|
Ghidini A, Cléry A, Halloy F, Allain FHT, Hall J. RNA-PROTACs: Degraders of RNA-Binding Proteins. Angew Chem Int Ed Engl 2021; 60:3163-3169. [PMID: 33108679 PMCID: PMC7898822 DOI: 10.1002/anie.202012330] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Defects in the functions of RNA binding proteins (RBPs) are at the origin of many diseases; however, targeting RBPs with conventional drugs has proven difficult. PROTACs are a new class of drugs that mediate selective degradation of a target protein through a cell's ubiquitination machinery. PROTACs comprise a moiety that binds the selected protein, conjugated to a ligand of an E3 ligase. Herein, we introduce RNA-PROTACs as a new concept in the targeting of RBPs. These chimeric structures employ small RNA mimics as targeting groups that dock the RNA-binding site of the RBP, whereupon a conjugated E3-recruiting peptide derived from the HIF-1α protein directs the RBP for proteasomal degradation. We performed a proof-of-concept demonstration with the degradation of two RBPs-a stem cell factor LIN28 and a splicing factor RBFOX1-and showed their use in cancer cell lines. The RNA-PROTAC approach opens the way to rapid, selective targeting of RBPs in a rational and general fashion.
Collapse
Affiliation(s)
- Alice Ghidini
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Antoine Cléry
- Department of BiologyETH ZurichHönggerbergring 648093ZurichSwitzerland
| | - François Halloy
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| |
Collapse
|
68
|
Xie Z, Chen J, Wang C, Zhang J, Wu Y, Yan X. Current knowledge of Krüppel-like factor 5 and vascular remodeling: providing insights for therapeutic strategies. J Mol Cell Biol 2021; 13:79-90. [PMID: 33493334 PMCID: PMC8104942 DOI: 10.1093/jmcb/mjaa080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular remodeling is a pathological basis of various disorders. Therefore, it is necessary to understand the occurrence, prevention, and treatment of vascular remodeling. Krüppel-like factor 5 (KLF5) has been identified as a significant factor in cardiovascular diseases during the last two decades. This review provides a mechanism network of function and regulation of KLF5 in vascular remodeling based on newly published data and gives a summary of its potential therapeutic applications. KLF5 modulates numerous biological processes, which play essential parts in the development of vascular remodeling, such as cell proliferation, phenotype switch, extracellular matrix deposition, inflammation, and angiogenesis by altering downstream genes and signaling pathways. Considering its essential functions, KLF5 could be developed as a potent therapeutic target in vascular disorders.
Collapse
Affiliation(s)
- Ziyan Xie
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenyu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
69
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
70
|
Pham KM, Suter SR, Lu SS, Beal PA. Ester modification at the 3' end of anti-microRNA oligonucleotides increases potency of microRNA inhibition. Bioorg Med Chem 2021; 29:115894. [PMID: 33290908 PMCID: PMC8610567 DOI: 10.1016/j.bmc.2020.115894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that play a fundamental role in gene regulation. Deregulation of miRNA expression has a strong correlation with disease and antisense oligonucleotides that bind and inhibit miRNAs associated with disease have therapeutic potential. Current research on the chemical modification of anti-miRNA oligonucleotides (anti-miRs) is focused on alterations of the phosphodiester-ribose backbone to improve nuclease resistance and binding affinity to miRNA strands. Here we describe a structure-guided approach for modification of the 3'-end of anti-miRs by screening for modifications compatible with a nucleotide-binding pocket present on human Argonaute2 (hAgo2). We computationally screened a library of 190 triazole-modified nucleoside analogs for complementarity to the t1A-binding pocket of hAgo2. Seventeen top scoring triazoles were then incorporated into the 3' end of anti-miR21 and potency was evaluated for each in a cell-based assay for anti-miR activity. Four triazole-modified anti-miRs showed higher potency than anti-miR21 bearing a 3' adenosine. In particular, a triazole-modified nucleoside bearing an ester substituent imparted a nine-fold and five-fold increase in activity for both anti-miR21 and anti-miR122 at 300 and 5 nM, respectively. The ester group was shown to be critical as a similar carboxylic acid and amide were inactive. Furthermore, anti-miR 3' end modification with triazole-modified nucleoside analogs improved resistance to snake venom phosphodiesterase, a 3'-exonuclease. Thus, the modifications described here are good candidates for improvement of anti-miR activity.
Collapse
Affiliation(s)
- Kevin M Pham
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Scott R Suter
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Shannon S Lu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Peter A Beal
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
71
|
Moccia M, Mercurio FA, Langella E, Piacenti V, Leone M, Adamo MFA, Saviano M. Structural Insights on Tiny Peptide Nucleic Acid (PNA) Analogues of miRNA-34a: An in silico and Experimental Integrated Approach. Front Chem 2020; 8:568575. [PMID: 33330358 PMCID: PMC7719796 DOI: 10.3389/fchem.2020.568575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
In the present work, structural features of the interaction between peptide nucleic acid (PNA)-based analogs of the tumor-suppressor microRNA-34a with both its binding sites on MYCN mRNA were investigated. In particular, the region from base 1 to 8 ("seed" region) of miR-34a was reproduced in the form of an 8-mer PNA fragment (tiny PNA), and binding to target 3'UTR MYCN mRNA, was studied by a seldom reported and detailed NMR characterization, providing evidence for the formation of anti-parallel duplexes with a well-organized structural core. The formation of PNA-3'UTR duplexes was also confirmed by Circular Dichroism, and their melting curves were measured by UV spectroscopy. Nevertheless, this study offered a valuable comparison between molecular dynamics predictions and experimental evidence, which showed great correlation. Preliminary uptake assays were carried out in Neuroblastoma Kelly cells, using short peptide conjugates as carriers and FITC fluorescent tag for subcellular localization. Moderate internalization was observed without the use of transfecting agents. The reported results corroborate the interest toward the design and development of chimeric PNA/RNA sequences as effective RNA-targeting agents.
Collapse
Affiliation(s)
- Maria Moccia
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Bari, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Valerio Piacenti
- Royal College of Surgeons in Ireland, Department of Pharmaceutical and Medicinal Chemistry, Dublin, Ireland
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Mauro F. A. Adamo
- Royal College of Surgeons in Ireland, Department of Pharmaceutical and Medicinal Chemistry, Dublin, Ireland
| | - Michele Saviano
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Bari, Italy
| |
Collapse
|
72
|
Dai B, Wang F, Nie X, Du H, Zhao Y, Yin Z, Li H, Fan J, Wen Z, Wang DW, Chen C. The Cell Type-Specific Functions of miR-21 in Cardiovascular Diseases. Front Genet 2020; 11:563166. [PMID: 33329700 PMCID: PMC7714932 DOI: 10.3389/fgene.2020.563166] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are one of the prime reasons for disability and death worldwide. Diseases and conditions, such as hypoxia, pressure overload, infection, and hyperglycemia, might initiate cardiac remodeling and dysfunction by inducing hypertrophy or apoptosis in cardiomyocytes and by promoting proliferation in cardiac fibroblasts. In the vascular system, injuries decrease the endothelial nitric oxide levels and affect the phenotype of vascular smooth muscle cells. Understanding the underlying mechanisms will be helpful for the development of a precise therapeutic approach. Various microRNAs are involved in mediating multiple pathological and physiological processes in the heart. A cardiac enriched microRNA, miR-21, which is essential for cardiac homeostasis, has been demonstrated to act as a cell–cell messenger with diverse functions. This review describes the cell type–specific functions of miR-21 in different cardiovascular diseases and its prospects in clinical therapy.
Collapse
Affiliation(s)
- Beibei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hengzhi Du
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
73
|
Peters LJF, Floege J, Biessen EAL, Jankowski J, van der Vorst EPC. MicroRNAs in Chronic Kidney Disease: Four Candidates for Clinical Application. Int J Mol Sci 2020; 21:E6547. [PMID: 32906849 PMCID: PMC7555601 DOI: 10.3390/ijms21186547] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
There are still major challenges regarding the early diagnosis and treatment of chronic kidney disease (CKD), which is in part due to the fact that its pathophysiology is very complex and not clarified in detail. The diagnosis of CKD commonly is made after kidney damage has occurred. This highlights the need for better mechanistic insight into CKD as well as improved clinical tools for both diagnosis and treatment. In the last decade, many studies have focused on microRNAs (miRs) as novel diagnostic tools or clinical targets. MiRs are small non-coding RNA molecules that are involved in post-transcriptional gene regulation and many have been studied in CKD. A wide array of pre-clinical and clinical studies have highlighted the potential role for miRs in the pathogenesis of hypertensive nephropathy, diabetic nephropathy, glomerulonephritis, kidney tubulointerstitial fibrosis, and some of the associated cardiovascular complications. In this review, we will provide an overview of the miRs studied in CKD, especially highlighting miR-103a-3p, miR-192-5p, the miR-29 family and miR-21-5p as these have the greatest potential to result in novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Linsey J. F. Peters
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Erik A. L. Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.J.F.P.); (E.A.L.B.); (J.J.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074 Aachen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
74
|
Nakamura A, Ali SA, Kapoor M. Antisense oligonucleotide-based therapies for the treatment of osteoarthritis: Opportunities and roadblocks. Bone 2020; 138:115461. [PMID: 32485363 DOI: 10.1016/j.bone.2020.115461] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Osteoarthritis (OA) is a debilitating disease with no approved disease-modifying therapies. Among the challenges for developing treatment is achieving targeted drug delivery to affected joints. This has contributed to the failure of several drug candidates for the treatment of OA. Over the past 20 years, significant advances have been made in antisense oligonucleotide (ASO) technology for achieving targeted delivery to tissues and cells both in vitro and in vivo. Since ASOs are able to bind specific gene regions and regulate protein translation, they are useful for correcting aberrant endogenous mechanisms associated with certain diseases. ASOs can be delivered locally through intra-articular injection, and can enter cells through natural cellular uptake mechanisms. Despite this, ASOs have yet to be successfully tested in clinical trials for the treatment of OA. Recent chemical modification to ASOs have further improved cellular uptake and reduced toxicity. Among these are locked nucleic acid (LNA)-based ASOs, which have shown promising results in clinical trials for diseases such as hepatitis and dyslipidemia. Recently, LNA-based ASOs have been tested both in vitro and in vivo for their therapeutic potential in OA, and some have shown promising joint-protective effects in preclinical OA animal models. In order to accelerate the testing of ASO therapies in a clinical trial setting for OA, further investigation into delivery mechanisms is required. In this review article, we discuss opportunities for viral-, particle-, biomaterial-, and chemical modification-based therapies, which are currently in preclinical testing. We also address potential roadblocks in the clinical translation of ASO-based therapies for the treatment of OA, such as the limitations associated with OA animal models and the challenges with drug toxicity. Taken together, we review what is known and what would be useful to accelerate translation of ASO-based therapies for the treatment of OA.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Ontario, Canada; Division of Rheumatology, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Shabana Amanda Ali
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Bone & Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
| |
Collapse
|
75
|
Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. J Control Release 2020; 327:406-419. [PMID: 32835710 DOI: 10.1016/j.jconrel.2020.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Selective inhibition of microRNAs (miRNAs) offers a new avenue for cancer therapeutics. While most of the current anti-miRNA (antimiR) reagents target full length miRNAs, here we investigate novel nanoparticle-delivered short PNA probes containing cationic domains targeting the seed region of the miRNA for effective antimiR therapy. For proof of concept, we tested PNAs targeting miRNA-155 and employed poly(lactic-co-glycolic acid) (PLGA)-based nanoparticle formulation for delivery. A comprehensive evaluation of PLGA nanoparticles (NPs) containing short PNA probes showed significantly superior loading, release profile, and uniform size distribution, compared to conventional non-cationic PNA probes. Confocal microscopy and flow cytometry analyses showed efficient transfection efficiency and uniform distribution of PLGA NPs containing short PNA probes in the cytoplasm. Functional analysis also confirmed efficient miRNA-155 inhibition including an effect on its downstream target proteins. Further, reduced tumor growth was observed after systemic delivery of PLGA nanoparticles containing short PNA probes in vivo in a xenograft mouse model following inhibition of miR-155. There was no evidence of acute or chronic toxicity associated with systemic delivery of PLGA NPs containing short PNA probes in the mice. Overall, in this paper we present a novel antimiR strategy based on PLGA nanoparticle delivered short PNA probes for potential cancer therapy.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Jihoon Lim
- Department of Pathology, BIDMC Cancer Center, Harvard Medical School, 330, Brookline Ave, Boston, MA 02215, USA
| | - Frank J Slack
- Department of Pathology, BIDMC Cancer Center, Harvard Medical School, 330, Brookline Ave, Boston, MA 02215, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
76
|
Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol 2020; 72:1732-1749. [PMID: 32783235 DOI: 10.1111/jphp.13351] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are a type of small noncoding RNA employed by the cells for gene regulation. A single miRNA, typically 22 nucleotides in length, can regulate the expression of numerous genes. Over the past decade, the study of miRNA biology in the context of cancer has led to the development of new diagnostic and therapeutic opportunities. KEY FINDINGS MicroRNA dysregulation is commonly associated with cancer, in part because miRNAs are actively involved in the mechanisms like genomic instabilities, aberrant transcriptional control, altered epigenetic regulation and biogenesis machinery defects. MicroRNAs can regulate oncogenes or tumour suppressor genes and thus when altered can lead to tumorigenesis. Expression profiling of miRNAs has boosted the possibilities of application of miRNAs as potential cancer biomarkers and therapeutic targets, although the feasibility of these approaches will require further validation. SUMMARY In this review, we will focus on how miRNAs regulate tumour development and the potential applications of targeting miRNAs for cancer therapy.
Collapse
Affiliation(s)
- Vandit Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
77
|
Abstract
Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches - including chemical modification, bioconjugation and the use of nanocarriers - which aim to address the delivery challenge.
Collapse
|
78
|
Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee JM, Moore K, Musunuru K, Wang DZ, Xiao J, Yin KJ. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2020; 13:e000062. [PMID: 32812806 DOI: 10.1161/hcg.0000000000000062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The discovery that much of the non-protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. METHODS The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. RESULTS Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. CONCLUSIONS The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.
Collapse
MESH Headings
- American Heart Association
- Biomarkers/metabolism
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/pathology
- Humans
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- United States
Collapse
|
79
|
Coskun FS, Srivastava S, Raj P, Dozmorov I, Belkaya S, Mehra S, Golden NA, Bucsan AN, Chapagain ML, Wakeland EK, Kaushal D, Gumbo T, van Oers NSC. sncRNA-1 Is a Small Noncoding RNA Produced by Mycobacterium tuberculosis in Infected Cells That Positively Regulates Genes Coupled to Oleic Acid Biosynthesis. Front Microbiol 2020; 11:1631. [PMID: 32849337 PMCID: PMC7399025 DOI: 10.3389/fmicb.2020.01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Nearly one third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). While much work has focused on the role of different Mtb encoded proteins in pathogenesis, recent studies have revealed that Mtb also transcribes many noncoding RNAs whose functions remain poorly characterized. We performed RNA sequencing and identified a subset of Mtb H37Rv-encoded small RNAs (<30 nts in length) that were produced in infected macrophages. Designated as smaller noncoding RNAs (sncRNAs), three of these predominated the read counts. Each of the three, sncRNA-1, sncRNA-6, and sncRNA-8 had surrounding sequences with predicted stable secondary RNA stem loops. Site-directed mutagenesis of the precursor sequences suggest the existence of a hairpin loop dependent RNA processing mechanism. A functional assessment of sncRNA-1 suggested that it positively regulated two mycobacterial transcripts involved in oleic acid biosynthesis. Complementary loss- and gain- of-function approaches revealed that sncRNA-1 positively supports Mtb growth and survival in nutrient-depleted cultures as well as in infected macrophages. Overall, the findings reveal that Mtb produces sncRNAs in infected cells, with sncRNA-1 modulating mycobacterial gene expression including genes coupled to oleic acid biogenesis.
Collapse
Affiliation(s)
- Fatma S Coskun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Serkan Belkaya
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Smriti Mehra
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Nadia A Golden
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Allison N Bucsan
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Moti L Chapagain
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Deepak Kaushal
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
80
|
microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol 2020; 111:104916. [PMID: 32711289 DOI: 10.1016/j.oraloncology.2020.104916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Oral cancer is the thirteenth most common cancer in the world, with India contributing to 33% of the global burden. Lack of specific non-invasive markers, non-improvement in patient survival and tumor recurrence remain a major clinical challenge in oral cancer. Epigenetic regulation in the form of microRNAs (miRs) that act as tumor suppressor miRs or oncomiRs has gained significant momentum with the advancement in the field, suggesting the potential for clinical application of miRs in oral cancer. The current review of literature identified miR-21, miR-27a(-3p), miR-31, miR-93, miR-134, miR-146, miR-155, miR-196a, miR-196b, miR-211, miR-218, miR-222, miR-372 and miR-373 to be up-regulated and let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-26a, miR-99a-5p, miR-137, miR-139-5p, miR-143-3p, miR-184 and miR-375 to be down-regulated in oral cancer. Mechanistic studies have uncovered several miRs that are deregulated at varying levels and in different stages of oral cancer progression, thus providing clinical utility in better diagnosis as well as usefulness in prognosis by identifying patients with poor prognosis or stratifying patients based on responsiveness to chemo- and radio-therapy. Lastly, exogenous modulation of miR expression using miRNA-based drugs in combination with first-line agents may be adopted as a new therapeutic modality to treat oral cancer. Knowledge of miRs and their involvement in key molecular processes, clinical association, responsiveness to therapy and clinical advancement may highlight additional avenues in order to improve patient morbidity and mortality. Furthermore, combinatorial approaches with miR-therapy may be efficacious in oral cancer.
Collapse
|
81
|
The pHLIP system as a vehicle for microRNAs in the kidney. Nefrologia 2020; 40:491-498. [PMID: 32693933 DOI: 10.1016/j.nefro.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression through post-transcriptional repression of their target messenger RNAs. A study of changes in expression of certain miRNAs in the kidney has supplied evidence on their pathogenic role and therapeutic potential in nephrology. This review proposes a nanotechnology approach based on the binding of analogs or inhibitors of miRNAs formed by peptide nucleic acids (PNAs) to peptides with a transmembrane structure sensitive to a low pH, called pHLIPs (pH [low] insertion peptides). The review draws on the concept that an acidic pH in the microenvironment of the renal tubule may facilitate concentration and distribution of the pHLIP-PNA complex in this organ. In this context, we have demonstrated for the first time that targeted administration of miR-33 inhibitors with the pHLIP system effectively prevents the development of renal fibrosis, thus opening up this technology to new strategies for diagnosis and treatment of kidney diseases.
Collapse
|
82
|
Yan J, Wei R, Li H, Dou Y, Wang J. miR-452-5p and miR-215-5p expression levels in colorectal cancer tissues and their relationship with clinicopathological features. Oncol Lett 2020; 20:2955-2961. [PMID: 32782612 PMCID: PMC7400294 DOI: 10.3892/ol.2020.11845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2020] [Indexed: 01/07/2023] Open
Abstract
The aim of the study was to investigate the expression levels of miR-452-5p and miR-215-5p in colorectal cancer tissues and their relationship with clinicopathological features. A total of 50 specimens of cancerous and adjacent normal tissues were collected from patients with colorectal cancer who underwent surgical resection at the Xingtai People's Hospital from March 2012 to February 2014. All specimens were confirmed by the Department of Pathology. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression levels of miR-452-5p and miR-215-5p in cancerous and adjacent normal tissues. Moreover, the relationship of the expression levels of miR-452-5p and miR-215-5p with the clinicopathological features of patients with colorectal cancer was explored. The expression levels of both miR-452-5p and miR-215-5p in colorectal cancer tissues were significantly lower than those in adjacent normal tissues (P<0.05). miR-452-5p expression was related to tumor-node-metastasis (TNM) staging and differentiation degree in colorectal cancer tissues, and the expression of miR-215-5p was associated with TNM staging, lymph node metastasis and infiltration depth (P<0.05). The 5-year overall survival (OS) rate in the miR-452-5p high-expression group was significantly higher than that in the low-expression group (P<0.05). The 5-year OS rates in the miR-215-5p high- and low-expression groups were 53.57% (15/28) and 40.91% (9/22), respectively, indicating that the 5-year OS rate in the miR-215-5p high-expression group was significantly higher than that in the low-expression group. Cox proportional hazards regression model showed that TNM staging, lymph node metastasis, as well as miR-452-5p and miR-215-5p expression levels were independent risk factors affecting colorectal cancer prognosis (P<0.05), whereas the differentiation degree and infiltration depth were not (P>0.05). In conclusion, the expression levels of miR-452-5p and miR-215-5p were significantly downregulated in colorectal cancer tissues promoting the occurrence, progression, invasion and metastasis of colorectal cancer, which suggests that miR-452-5p and miR-215-5p could be used as prognostic indicators for patients with colorectal cancer.
Collapse
Affiliation(s)
- Jingbo Yan
- Department of Pathology, Xingtai People's Hospital, Xingtai, Hebei 054031, P.R. China
| | - Ru Wei
- Department of Microbiology and Immunology, Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Hui Li
- Department of Surgery, Xingtai People's Hospital, Xingtai, Hebei 054031, P.R. China
| | - Yan Dou
- Department of Pathology, Xingtai People's Hospital, Xingtai, Hebei 054031, P.R. China
| | - Junhui Wang
- Medical Records Room, Xingtai People's Hospital, Xingtai, Hebei 054031, P.R. China
| |
Collapse
|
83
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
84
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
85
|
Jiang ZF, Zhang L, Shen J. MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol 2020; 39:1429-1442. [PMID: 32495695 DOI: 10.1177/0960327120926254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs stretching over 18-22 nucleotides and considered to be modifiers of many respiratory diseases. They are highly evolutionary conserved and have been implicated in several biological processes, including cell proliferation, apoptosis, differentiation, among others. Acute lung injury (ALI) is a fatal disease commonly caused by direct or indirect injury factors and has a high mortality rate in intensive care unit. Changes in expression of several types of miRNAs have been reported in patients with ALI. Some miRNAs suppress cellular injury and accelerate the recovery of ALI by targeting specific molecules and decreasing excessive immune response. For this reason, miRNAs are proposed as potential biomarkers for ALI and as therapeutic targets for this disease. This review summarizes current evidence supporting the role of miRNAs in ALI.
Collapse
Affiliation(s)
- Z-F Jiang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Zhang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - J Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
86
|
Li J, Wang L, Hua X, Tang H, Chen R, Yang T, Das S, Xiao J. CRISPR/Cas9-Mediated miR-29b Editing as a Treatment of Different Types of Muscle Atrophy in Mice. Mol Ther 2020; 28:1359-1372. [PMID: 32222157 PMCID: PMC7210721 DOI: 10.1016/j.ymthe.2020.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle atrophy is the loss of skeletal muscle mass and strength in response to diverse catabolic stimuli. At present, no effective treatments except exercise have been shown to reduce muscle atrophy clinically. Here, we report that CRISPR/Cas9-mediated genome editing through local injection into gastrocnemius muscles or tibialis anterior muscle efficiently targets the biogenesis processing sites in pre-miR-29b. In vivo, this CRISPR-based treatment prevented the muscle atrophy induced by angiotensin II (AngII), immobilization, and denervation via activation of the AKT-FOXO3A-mTOR signaling pathway and protected against AngII-induced myocyte apoptosis in mice, leading to significantly increased exercise capacity. Our work establishes CRISPR/Cas9-based gene targeting on miRNA as a potential durable therapy for the treatment of muscle atrophy and expands the strategies available interrogating miRNA function in vivo.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuejiao Hua
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
87
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
88
|
Glazier DA, Liao J, Roberts BL, Li X, Yang K, Stevens CM, Tang W. Chemical Synthesis and Biological Application of Modified Oligonucleotides. Bioconjug Chem 2020; 31:1213-1233. [PMID: 32227878 DOI: 10.1021/acs.bioconjchem.0c00060] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA plays a myriad of roles in the body including the coding, decoding, regulation, and expression of genes. RNA oligonucleotides have garnered significant interest as therapeutics via antisense oligonucleotides or small interfering RNA strategies for the treatment of diseases ranging from hyperlipidemia, HCV, and others. Additionally, the recently developed CRISPR-Cas9 mediated gene editing strategy also relies on Cas9-associated RNA strands. However, RNA presents numerous challenges as both a synthetic target and a potential therapeutic. RNA is inherently unstable, difficult to deliver into cells, and potentially immunogenic by itself or upon modification. Despite these challenges, with the help of chemically modified oligonucleotides, multiple RNA-based drugs have been approved by the FDA. The progress is made possible due to the nature of chemically modified oligonucleotides bearing advantages of nuclease stability, stronger binding affinity, and some other unique properties. This review will focus on the chemical synthesis of RNA and its modified versions. How chemical modifications of the ribose units and of the phosphatediester backbone address the inherent issues with using native RNA for biological applications will be discussed along the way.
Collapse
Affiliation(s)
- Daniel A Glazier
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junzhuo Liao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Brett L Roberts
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ka Yang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher M Stevens
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
89
|
Wilson JP, Ipsaro JJ, Del Giudice SN, Turna NS, Gauss CM, Dusenbury KH, Marquart K, Rivera KD, Pappin DJ. Tryp-N: A Thermostable Protease for the Production of N-terminal Argininyl and Lysinyl Peptides. J Proteome Res 2020; 19:1459-1469. [PMID: 32141294 DOI: 10.1021/acs.jproteome.9b00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bottom-up proteomics is a mainstay in protein identification and analysis. These studies typically employ proteolytic treatment of biological samples to generate suitably sized peptides for tandem mass spectrometric (MS) analysis. In MS, fragmentation of peptides is largely driven by charge localization. Consequently, peptides with basic centers exclusively on their N-termini produce mainly b-ions. Thus, it was long ago realized that proteases that yield such peptides would be valuable proteomic tools for achieving simplified peptide fragmentation patterns and peptide assignment. Work by several groups has identified such proteases, however, structural analysis of these suggested that enzymatic optimization was possible. We therefore endeavored to find enzymes that could provide enhanced activity and versatility while maintaining specificity. Using these previously described proteases as informatic search templates, we discovered and then characterized a thermophilic metalloprotease with N-terminal specificity for arginine and lysine. This enzyme, dubbed Tryp-N, affords many advantages including improved thermostability, solvent and detergent tolerance, and rapid digestion time.
Collapse
Affiliation(s)
- John P Wilson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Jonathan J Ipsaro
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Samantha N Del Giudice
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Nikita Saha Turna
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Carla M Gauss
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Katharine H Dusenbury
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Krisann Marquart
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Keith D Rivera
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, United States
| |
Collapse
|
90
|
Scharner J, Ma WK, Zhang Q, Lin KT, Rigo F, Bennett CF, Krainer AR. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides. Nucleic Acids Res 2020; 48:802-816. [PMID: 31802121 PMCID: PMC6954394 DOI: 10.1093/nar/gkz1132] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Splice-switching antisense oligonucleotides (ASOs), which bind specific RNA-target sequences and modulate pre-mRNA splicing by sterically blocking the binding of splicing factors to the pre-mRNA, are a promising therapeutic modality to treat a range of genetic diseases. ASOs are typically 15–25 nt long and considered to be highly specific towards their intended target sequence, typically elements that control exon definition and/or splice-site recognition. However, whether or not splice-modulating ASOs also induce hybridization-dependent mis-splicing of unintended targets has not been systematically studied. Here, we tested the in vitro effects of splice-modulating ASOs on 108 potential off-targets predicted on the basis of sequence complementarity, and identified 17 mis-splicing events for one of the ASOs tested. Based on analysis of data from two overlapping ASO sequences, we conclude that off-target effects are difficult to predict, and the choice of ASO chemistry influences the extent of off-target activity. The off-target events caused by the uniformly modified ASOs tested in this study were significantly reduced with mixed-chemistry ASOs of the same sequence. Furthermore, using shorter ASOs, combining two ASOs, and delivering ASOs by free uptake also reduced off-target activity. Finally, ASOs with strategically placed mismatches can be used to reduce unwanted off-target splicing events.
Collapse
Affiliation(s)
| | - Wai Kit Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Qian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | |
Collapse
|
91
|
Sheervalilou R, Shahraki O, Hasanifard L, Shirvaliloo M, Mehranfar S, Lotfi H, Pilehvar-Soltanahmadi Y, Bahmanpour Z, Zadeh SS, Nazarlou Z, Kangarlou H, Ghaznavi H, Zarghami N. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr Mol Med 2019; 20:13-35. [DOI: 10.2174/1566524019666191001114941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In both men and women around the world, lung cancer accounts as the
principal cause of cancer-related death after breast cancer. Therefore, early detection of
the disease is a cardinal step in improving prognosis and survival of patients. Today, the
newly-defined microRNAs regulate about 30 to 60 percent of the gene expression.
Changes in microRNA Profiles are linked to numerous health conditions, making them
sophisticated biomarkers for timely, if not early, detection of cancer. Though evaluation
of microRNAs in real samples has proved to be rather challenging, which is largely
attributable to the unique characteristics of these molecules. Short length, sequence
similarity, and low concentration stand among the factors that define microRNAs.
Recently, diagnostic technologies with a focus on wide-scale point of care have recently
garnered attention as great candidates for early diagnosis of cancer. Electrochemical
nano-biosensors have recently garnered much attention as a molecular method,
showing great potential in terms of sensitivity, specificity and reproducibility, and last but
not least, adaptability to point-of-care testing. Application of nanoscale materials in
electrochemical devices as promising as it is, brings multiplexing potential for conducting
simultaneous evaluations on multiple cancer biomarkers. Thanks to their enthralling
properties, these materials can be used to improve the efficiency of cancer diagnostics,
offer more accurate predictions of prognosis, and monitor response to therapy in a more
efficacious way. This article presents a concise overview of recent advances in the
expeditiously evolving area of electrochemical biosensors for microRNA detection in
lung cancer.
Collapse
Affiliation(s)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leili Hasanifard
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Sarraf Zadeh
- Neurosciences Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey
| | - Haleh Kangarlou
- Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
92
|
Yoshioka K, Kunieda T, Asami Y, Guo H, Miyata H, Yoshida-Tanaka K, Sujino Y, Piao W, Kuwahara H, Nishina K, Hara RI, Nagata T, Wada T, Obika S, Yokota T. Highly efficient silencing of microRNA by heteroduplex oligonucleotides. Nucleic Acids Res 2019; 47:7321-7332. [PMID: 31214713 PMCID: PMC6698647 DOI: 10.1093/nar/gkz492] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
AntimiR is an antisense oligonucleotide that has been developed to silence microRNA (miRNA) for the treatment of intractable diseases. Enhancement of its in vivo efficacy and improvement of its toxicity are highly desirable but remain challenging. We here design heteroduplex oligonucleotide (HDO)-antimiR as a new technology comprising an antimiR and its complementary RNA. HDO-antimiR binds targeted miRNA in vivo more efficiently by 12-fold than the parent single-stranded antimiR. HDO-antimiR also produced enhanced phenotypic effects in mice with upregulated expression of miRNA-targeting messenger RNAs. In addition, we demonstrated that the enhanced potency of HDO-antimiR was not explained by its bio-stability or delivery to the targeted cell, but reflected an improved intracellular potency. Our findings provide new insights into biology of miRNA silencing by double-stranded oligonucleotides and support the in vivo potential of this technology based on a new class of for the treatment of miRNA-related diseases.
Collapse
Affiliation(s)
- Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Taiki Kunieda
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yutaro Asami
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Huijia Guo
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Haruka Miyata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yumiko Sujino
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Wenying Piao
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Hiroya Kuwahara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Kazutaka Nishina
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Rintaro Iwata Hara
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Takeshi Wada
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoshi Obika
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.,Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
93
|
Khachigian LM. Transcription Factors Targeted by miRNAs Regulating Smooth Muscle Cell Growth and Intimal Thickening after Vascular Injury. Int J Mol Sci 2019; 20:ijms20215445. [PMID: 31683712 PMCID: PMC6861964 DOI: 10.3390/ijms20215445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Neointima formation after percutaneous coronary intervention (PCI) is a manifestation of “phenotype switching” by vascular smooth muscle cells (SMC), a process that involves de-differentiation from a contractile quiescent phenotype to one that is richly synthetic. In response to injury, SMCs migrate, proliferate, down-regulate SMC-specific differentiation genes, and later, can revert to the contractile phenotype. The vascular response to injury is regulated by microRNAs (or miRNAs), small non-coding RNAs that control gene expression. Interactions between miRNAs and transcription factors impact gene regulatory networks. This article briefly reviews the roles of a range of miRNAs in molecular and cellular processes that control intimal thickening, focusing mainly on transcription factors, some of which are encoded by immediate-early genes. Examples include Egr-1, junB, KLF4, KLF5, Elk-1, Ets-1, HMGB1, Smad1, Smad3, FoxO4, SRF, Rb, Sp1 and c-Myb. Such mechanistic information could inform the development of strategies that block SMC growth, neointima formation, and potentially overcome limitations of lasting efficacy following PCI.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
94
|
Dai X, Kaushik AC, Zhang J. The Emerging Role of Major Regulatory RNAs in Cancer Control. Front Oncol 2019; 9:920. [PMID: 31608229 PMCID: PMC6771296 DOI: 10.3389/fonc.2019.00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Alterations and personal variations of RNA interactions have been mechanistically coupled with disease etiology and phenotypical variations. RNA biomarkers, RNA mimics, and RNA antagonists have been developed for diagnostic, prognostic, and therapeutic uses. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two major types of RNA molecules with regulatory roles, deregulation of which has been implicated in the initiation and progression of many human malignancies. Accumulating evidence indicated the clinical roles of regulatory RNAs in cancer control, stimulating a surge in exploring the functionalities of regulatory RNAs for improved understanding on disease pathogenesis and management. In this review, we highlight the critical roles of lncRNAs and miRNAs played in tumorigenesis, scrutinize their potential functionalities as diagnostic/prognostic biomarkers and/or therapeutic targets in clinics, outline opportunities that ncRNAs may bring to complement current clinical practice for improved cancer management and identify challenges faced by translating frontier knowledge on non-coding RNAs (ncRNAs) to bedside clinics as well as possible solutions.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianying Zhang
- Henan Key Laboratory of Tumor Epidemiology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
95
|
Ma W, Chen B, Zou S, Jia R, Cheng H, Huang J, Wang H, He X, Wang K. I-Motif-Based in Situ Bipedal Hybridization Chain Reaction for Specific Activatable Imaging and Enhanced Delivery of Antisense Oligonucleotides. Anal Chem 2019; 91:12538-12545. [PMID: 31476869 DOI: 10.1021/acs.analchem.9b03420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The efficient and precise delivery of antisense oligonucleotides (ASOs) to target cells is of great value in gene silencing. However, the specificity and packaging capacity of delivery system still remains challenging. Here, we designed an i-motif forming-initiated in situ bipedal hybridization chain reaction (pH-Apt-BiHCR) amplification strategy for specific target cells imaging and enhanced gene delivery of ASOs. As a proof of concept, an 8-nt ASO modified with locked nucleic acid (LNA) which is complementary to the seed region of microRNA21 (miR-21) was used for gene silencing studies. Benefiting from the design of hairpin-contained i-motif, the stimuli-responsive assembly of pH-Apt-BiHCR was successfully achieved on MCF-7 cells surface based on the specific recognition of aptamer. Using this strategy, the pH-Apt-BiHCR not only contains repeated fluorescence resonance energy transfer (FRET) units for activatable tumor imaging with high contrast but also arrays with plenty of LNA ASOs as interference molecules for cancer cells inhibition. An in vitro assay showed that this strategy presented an excellent response ability in buffer within a narrow pH range (6.0-7.0) with a transition midpoint (pHT) of 6.44 ± 0.06. Moreover, live cell studies revealed that it realized a specific activatable imaging of target cells, while the ASOs arrayed pH-Apt-BiHCR exhibited improved internalization via an endocytosis pathway and enhanced gene silencing to MCF-7 cells compared to single ASO alone. We believe that this design will inspire the development of novel probes for early diagnosis and therapy of cancer cells.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Shanzi Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
96
|
Lee EC, Valencia T, Allerson C, Schairer A, Flaten A, Yheskel M, Kersjes K, Li J, Gatto S, Takhar M, Lockton S, Pavlicek A, Kim M, Chu T, Soriano R, Davis S, Androsavich JR, Sarwary S, Owen T, Kaplan J, Liu K, Jang G, Neben S, Bentley P, Wright T, Patel V. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun 2019; 10:4148. [PMID: 31515477 PMCID: PMC6742637 DOI: 10.1038/s41467-019-11918-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in either PKD1 or PKD2 genes, is one of the most common human monogenetic disorders and the leading genetic cause of end-stage renal disease. Unfortunately, treatment options for ADPKD are limited. Here we report the discovery and characterization of RGLS4326, a first-in-class, short oligonucleotide inhibitor of microRNA-17 (miR-17), as a potential treatment for ADPKD. RGLS4326 is discovered by screening a chemically diverse and rationally designed library of anti-miR-17 oligonucleotides for optimal pharmaceutical properties. RGLS4326 preferentially distributes to kidney and collecting duct-derived cysts, displaces miR-17 from translationally active polysomes, and de-represses multiple miR-17 mRNA targets including Pkd1 and Pkd2. Importantly, RGLS4326 demonstrates a favorable preclinical safety profile and attenuates cyst growth in human in vitro ADPKD models and multiple PKD mouse models after subcutaneous administration. The preclinical characteristics of RGLS4326 support its clinical development as a disease-modifying treatment for ADPKD. Autosomal dominant polycystic kidney disease (ADPKD) is a leading genetic cause of end-stage renal disease with limited treatment options. Here the authors discover and characterize a microRNA inhibitor as a potential treatment for ADPKD.
Collapse
Affiliation(s)
- Edmund C Lee
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA.
| | | | | | | | - Andrea Flaten
- Department of Internal Medicine and Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matanel Yheskel
- Department of Internal Medicine and Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kara Kersjes
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Jian Li
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Sole Gatto
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | | | | | - Adam Pavlicek
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Michael Kim
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Tiffany Chu
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Randy Soriano
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Scott Davis
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | | | - Salma Sarwary
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Tate Owen
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Julia Kaplan
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Kai Liu
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Graham Jang
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Steven Neben
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | | | | | - Vishal Patel
- Department of Internal Medicine and Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
97
|
Gasparello J, Papi C, Zurlo M, Corradini R, Gambari R, Finotti A. Demonstrating specificity of bioactive peptide nucleic acids (PNAs) targeting microRNAs for practical laboratory classes of applied biochemistry and pharmacology. PLoS One 2019; 14:e0221923. [PMID: 31509554 PMCID: PMC6738603 DOI: 10.1371/journal.pone.0221923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Practical laboratory classes teaching molecular pharmacology approaches employed in the development of therapeutic strategies are of great interest for students of courses in Biotechnology, Applied Biology, Pharmaceutic and Technology Chemistry, Translational Oncology. Unfortunately, in most cases the technology to be transferred to learning students is complex and requires multi-step approaches. In this respect, simple and straightforward experimental protocols might be of great interest. This study was aimed at presenting a laboratory exercise focusing (a) on a very challenging therapeutic strategy, i.e. microRNA therapeutics, and (b) on the employment of biomolecules of great interest in applied biology and pharmacology, i.e. peptide nucleic acids (PNAs). The aims of the practical laboratory were to determine: (a) the possible PNA-mediated arrest in RT-qPCR, to be eventually used to demonstrate PNA targeting of selected miRNAs; (b) the possible lack of activity on mutated PNA sequences; (c) the effects (if any) on the amplification of other unrelated miRNA sequences. The results which can be obtained support the following conclusions: PNA-mediated arrest in RT-qPCR can be analyzed in a easy way; mutated PNA sequences are completely inactive; the effects of the employed PNAs are specific and no inhibitory effect occurs on other unrelated miRNA sequences. This activity is simple (cell culture, RNA extraction, RT-qPCR are all well-established technologies), fast (starting from isolated and characterized RNA, few hours are just necessary), highly reproducible (therefore easily employed by even untrained students). On the other hand, these laboratory lessons require some facilities, the most critical being the availability of instruments for PCR. While this might be a problem in the case these instruments are not available, we would like to underline that determination of the presence or of a lack of amplified product can be also obtained using standard analytical approaches based on agarose gel electrophoresis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Interuniversity Consortium for Biotechnology (CIB), Trieste, Italy
- * E-mail:
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
98
|
Kabekkodu SP, Shukla V, Varghese VK, Adiga D, Vethil Jishnu P, Chakrabarty S, Satyamoorthy K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1563. [PMID: 31436881 DOI: 10.1002/wrna.1563] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
MiRNAs are class of noncoding RNA important for gene expression regulation in many plants, animals and viruses. MiRNA clusters contain a set of two or more miRNA encoding genes, transcribed together as polycistronic miRNAs. Currently, there are approximately 159 miRNA clusters reported in the human genome consisting of miRNAs ranging from two or more miRNA genes. A large proportion of clustered miRNAs resides in and around the fragile sites or cancer associated genomic hotspots and plays an important role in carcinogenesis. Altered expression of miRNA cluster can be pro-tumorigenic or anti-tumorigenic and can be targeted for clinical management of cancer. Over the past few years, manipulation of miRNA clusters expression is attempted for experimental purpose as well as for diagnostic, prognostic and therapeutic applications in cancer. Re-expression of miRNAs by epigenetic therapy, genome editing such as clustered regulatory interspaced short palindromic repeats (CRISPR) and miRNA mowers showed promising results in cancer therapy. In this review, we focused on the potential of miRNA clusters as a biomarker for diagnosis, prognosis, targeted therapy as well as strategies for modulating their expression in a therapeutic context. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Processing > Processing of Small RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
99
|
Salem ESB, Vonberg AD, Borra VJ, Gill RK, Nakamura T. RNAs and RNA-Binding Proteins in Immuno-Metabolic Homeostasis and Diseases. Front Cardiovasc Med 2019; 6:106. [PMID: 31482095 PMCID: PMC6710452 DOI: 10.3389/fcvm.2019.00106] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing prevalence of worldwide obesity has emerged as a major risk factor for type 2 diabetes (T2D), hepatosteatosis, and cardiovascular disease. Accumulating evidence indicates that obesity has strong inflammatory underpinnings tightly linked to the development of metabolic diseases. However, the molecular mechanisms by which obesity induces aberrant inflammation associated with metabolic diseases are not yet clearly defined. Recently, RNAs have emerged as important regulators of stress responses and metabolism. RNAs are subject to changes in modification status, higher-order structure, and cellular localization; all of which could affect the affinity for RNA-binding proteins (RBPs) and thereby modify the RNA-RBP networks. Proper regulation and management of RNA characteristics are fundamental to cellular and organismal homeostasis, as well as paramount to health. Identification of multiple single nucleotide polymorphisms (SNPs) within loci of fat mass- and obesity-associated protein (FTO) gene, an RNA demethylase, through genome-wide association studies (GWAS) of T2D, and functional assessments of FTO in mice, support the concept that disruption in RNA modifications leads to the development of human diseases including obesity and metabolic disorder. In obesity, dynamic alterations in modification and localization of RNAs appear to modulate the RNA-RBP networks and activate proinflammatory RBPs, such as double-stranded RNA (dsRNA)-dependent protein kinase (PKR), Toll-like receptor (TLR) 3 and TLR7, and RNA silencing machinery. These changes induce aberrant inflammation and the development of metabolic diseases. This review will describe the current understanding of the underlying causes of these common and altered characteristics of RNA-RBP networks which will pave the way for developing novel approaches to tackle the pandemic issue of obesity.
Collapse
Affiliation(s)
- Esam S B Salem
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew D Vonberg
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
100
|
Costales MG, Suresh B, Vishnu K, Disney MD. Targeted Degradation of a Hypoxia-Associated Non-coding RNA Enhances the Selectivity of a Small Molecule Interacting with RNA. Cell Chem Biol 2019; 26:1180-1186.e5. [PMID: 31130520 PMCID: PMC6697612 DOI: 10.1016/j.chembiol.2019.04.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Small-molecule targeted recruitment of nucleases to RNA is a powerful method to affect RNA biology. Inforna, a sequence-based design approach to target RNA, enables the design of small molecules that bind to and cleave RNA in a selective and substoichiometric manner. Here, we investigate the ability of RNA-targeted degradation to improve the selectivity of small molecules targeting RNA. The microRNA-210 hairpin precursor (pre-miR-210) is overexpressed in hypoxic cancers. Previously, a small molecule (Targapremir-210 [TGP-210]) targeted this RNA in cells, but with a 5-fold window for DNA binding. Appendage of a nuclease recruitment module onto TGP-210 locally recruited ribonuclease L onto pre-miR-210, triggering its degradation. The chimera has enhanced selectivity compared with TGP-210 with nanomolar binding to the pre-miR-210, but no DNA binding, and is broadly selective for affecting RNA function in cells. Importantly, it cleaved pre-miR-210 substoichiometrically and induced apoptosis in breast cancer cells.
Collapse
Affiliation(s)
| | - Blessy Suresh
- Department of Chemistry, Scripps Research, Jupiter, FL 33458, USA
| | | | - Matthew D Disney
- Department of Chemistry, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|