51
|
Pinho JD, Silva GEB, Teixeira Júnior AAL, Belfort MRDC, Macedo JM, da Cunha IW, Quintana LG, Calixto JDRR, Nogueira LR, Coelho RWP, Khayat AS. MIR-107, MIR-223-3P and MIR-21-5P Reveals Potential Biomarkers in Penile Cancer. Asian Pac J Cancer Prev 2020; 21:391-397. [PMID: 32102516 PMCID: PMC7332144 DOI: 10.31557/apjcp.2020.21.2.391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inguinal lymph node involvement is the main prognostic factor in patients with penile cancer. However, there is a lack of marker/s for lymph node metastasis. microRNAs have been investigated as potential markers for prognosis of various types of cancer. Taking this into consideration, our main goal was to determine the association of miR-223-3p, miR-107, and miR-21-5p expression with clinicopathological characteristics, as well as presence of lymph node metastasis in patients with penile cancer. METHODS Formalin-fixed paraffin-embedded penile squamous cell carcinoma specimens from 50 patients, at diagnosis and prior to any cancer treatment, were obtained. Tissue samples comprising at least 70% malignant cells and adjacent non-tumor tissues were evaluated by using qRT-PCR for expression level of miR-223-3p, miR-107 and miR-21-5p. Additionally, molecular identification of HPV was performed by PCR, and the expression levels of PTEN were analyzed by immunohistochemistry. RESULTS Penile squamous cell carcinoma primary tumors presented higher expression of miR-223-3p, miR-107, and miR-21-5p when compared to non-tumor adjacent tissues. Upregulation of miR-223-3p was associated lymph node metastasis. Higher expression of miR-107 was associated with worsening of prognosis (as observed by histological grade II and III, tumors bigger than 2.0 cm, stage III and IV, and lower disease-free survival). In addition, higher expression of miR-107 and miR-21-5p was correlated to the absence of PTEN protein expression. CONCLUSIONS Our data demonstrate that higher expression of miR-223-3p, miR-107, and miR-21-5p is correlated with poor prognosis in penile cancer. The upregulation of these microRNAs potentially affect critical cancer pathways and may be important for the prognosis and response to therapy in penile cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabela Wernerck da Cunha
- Laboratory Immunofluorescence and Electron Microscopy, University Hospital Universitário Presidente Dutra,
| | | | | | | | | | - André Salim Khayat
- Oncologist, Maranhense Institute of Oncology Aldenora Belo, São Luís, MA, Brazil.
| |
Collapse
|
52
|
Tapeh BEG, Alivand MR, Solali S. The role of microRNAs in acute lymphoblastic leukaemia: From biology to applications. Cell Biochem Funct 2019; 38:334-346. [PMID: 31833074 DOI: 10.1002/cbf.3466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) that are characterized by small, noncoding RNA have an essential role in the pathogenesis of human diseases, including cancer. Furthermore, miRNAs, as a new paradigm of epigenetic regulators, play an important role in normal development and cellular function. This literature review summarizes the recurrent mechanism of gene regulation through miRNAs and, consequently, the impact of regulated genes on different cellular processes, including proliferation, metastasis, prognosis, and apoptosis. Additionally, what is important to note is that the expression of miRNAs in various cancer cells is different, and miRNAs have various target genes in various cancers. Accordingly, a proper understanding of gene regulation by miRNAs contributes to new perspectives in miRNA-based therapeutic strategies. SIGNIFICANCE OF THE STUDY: MiRNAs are considered as a crucial regulator of gene expression. The genes also play an important role in the expression of miRNAs; as a result, there is a relationship between them. In recent years, targeted therapy with miRNAs has been a significant challenge. Studying the mechanisms through which miRNAs regulate various cancer cell processes, including apoptosis, proliferation, and metastasis, is very critical in the treatment of cancer through miRNAs. Definitely, a proper understanding of the impacts of aberrant expression of miRNAs on cancer cell processes leads to new therapeutic strategies in the targeted therapy with miRNAs.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
53
|
miR-26a promotes hepatocellular carcinoma invasion and metastasis by inhibiting PTEN and inhibits cell growth by repressing EZH2. J Transl Med 2019; 99:1484-1500. [PMID: 31201367 DOI: 10.1038/s41374-019-0270-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
A previous study revealed that therapeutic miR-26a delivery suppresses tumorigenesis in a murine liver cancer model, whereas we found that forced miR-26a expression increased hepatocellular carcinoma (HCC) cell migration and invasion, which prompted us to characterize the causes and mechanisms underlying enhanced invasion due to ectopic miR-26a expression. Gain-of-function and loss-of-function experiments demonstrated that miR-26a promoted migration and invasion of BEL-7402 and HepG2 cells in vitro and positively modulated matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and MMP-10 expression. In addition, exogenous miR-26a expression significantly enhanced the metastatic ability of HepG2 cells in vivo. miR-26a negatively regulated in vitro proliferation of HCC cells, and miR-26a overexpression suppressed HepG2 cell tumor growth in nude mice. Further studies revealed that miR-26a inhibited cell growth by repressing the methyltransferase EZH2 and promoted cell migration and invasion by inhibiting the phosphatase PTEN. Furthermore, PTEN expression negatively correlated with miR-26a expression in HCC specimens from patients with and without metastasis. Thus, our findings suggest for the first time that miR-26a promotes invasion/metastasis by inhibiting PTEN and inhibits cell proliferation by repressing EZH2 in HCC. More importantly, our data also suggest caution if miR-26a is used as a target for cancer therapy in the future.
Collapse
|
54
|
Lv J, Liu J, Guo L, Zhang J, Cheng Y, Chen C, Zhao H, Wang J. Bioinformatic analyses of microRNA-targeted genes and microarray-identified genes correlated with Barrett's esophagus. Cell Cycle 2019; 17:792-800. [PMID: 29417867 DOI: 10.1080/15384101.2018.1431597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Barrett's esophagus (BE) is defined as a metaplasia condition in the distal esophagus, in which the native squamous epithelium lining is replaced by a columnar epithelium with or without intestinal metaplasia. It is commonly accepted that BE is a precancerous lesion for esophageal adenocarcinoma. The aim of this study was to investigate the aberrant microRNAs (miRNAs) and differentially expressed genes (DEGs) associated with BE based on online microarray datasets. One miRNA and five gene expression profiling datasets were retrieved from the Gene Expression Omnibus Database. Aberrant microRNAs and DEGs were obtained using R/Bioconductor statistical analysis language and software. 23 dysregulated miRNAs and 632 DEGs demonstrating consistent expression tendencies in the five gene microarrays were identified in BE. Moreover, 1962 target genes of aberrant miRNAs were predicted using three bioinformatic tools, namely TargetScan, RNA22-HSA and miRDB. Ultimately, 93 target DEGs were obtained, after which functional annotation was performed on DAVID Bioinformatics Resources. Among Gene Ontology (GO) biological processes, digestive tract development and epithelial cell differentiation have demonstrated significant associations with BE pathogenesis. In addition, analysis of the KEGG pathways has revealed associations with cancer. To enable further study, one miRNA-target DEGs regulatory network was constructed using Cytoscape. 6 target DEGs demonstrated higher-degree distributions in the network, and ROC analysis indicated that FNDC3B may be the best potential biomarker for BE diagnosis. The data presented herein may provide new perspectives for exploring BE pathogenesis and may offer hits with regard to potential biomarkers in BE diagnosis, prediction and therapeutic evaluation.
Collapse
Affiliation(s)
- Jing Lv
- a Honghui Hospital , Xi'an Jiaotong University , Xi'an , China.,b Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jijun Liu
- a Honghui Hospital , Xi'an Jiaotong University , Xi'an , China
| | - Lei Guo
- a Honghui Hospital , Xi'an Jiaotong University , Xi'an , China
| | - Jun Zhang
- b Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Yan Cheng
- b Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Chu Chen
- a Honghui Hospital , Xi'an Jiaotong University , Xi'an , China
| | - Heping Zhao
- a Honghui Hospital , Xi'an Jiaotong University , Xi'an , China
| | - Jihan Wang
- a Honghui Hospital , Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
55
|
Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 2019; 47:7753-7766. [PMID: 31340025 PMCID: PMC6735922 DOI: 10.1093/nar/gkz638] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression by suppressing mRNA translation and reducing mRNA stability. A miRNA can potentially bind many mRNAs, thereby affecting the expression of oncogenes and tumor suppressor genes as well as the activity of whole pathways. The promise of miRNA therapeutics in cancer is to harness this evolutionarily conserved mechanism for the coordinated regulation of gene expression, and thus restoring a normal cell phenotype. However, the promiscuous binding of miRNAs can provoke unwanted off-target effects, which are usually caused by high-dose single-miRNA treatments. Thus, it is desirable to develop miRNA therapeutics with increased specificity and efficacy. To achieve that, we propose the concept of miRNA cooperativity in order to exert synergistic repression on target genes, thus lowering the required total amount of miRNAs. We first review miRNA therapies in clinical application. Next, we summarize the knowledge on the molecular mechanism and biological function of miRNA cooperativity and discuss its application in cancer therapies. We then propose and discuss a systems biology approach to investigate miRNA cooperativity for the clinical setting. Altogether, we point out the potential of miRNA cooperativity to reduce off-target effects and to complement conventional, targeted, or immune-based therapies for cancer.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Sydney Medical School, The University of Sydney, 2006 Camperdown, Australia
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
56
|
Correia NC, Barata JT. MicroRNAs and their involvement in T-ALL: A brief overview. Adv Biol Regul 2019; 74:100650. [PMID: 31548132 PMCID: PMC6899521 DOI: 10.1016/j.jbior.2019.100650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in which the transformed clone is arrested during T-cell development. Several genetic and epigenetic events have been implicated in this transformation. MicroRNAs (miRNAs) are small, non-coding RNAs that primarily function as endogenous translational repressors of protein-coding genes. The involvement of miRNAs in the regulation of cancer progression is well-established, namely by down-regulating the expression of key oncogenes or tumor suppressors and thereby preventing or promoting tumorigenesis, respectively. Similar to other cancers, several miRNA genes have been identified and implicated in the context of T-ALL. In this review we focused on the most studied microRNAs associated with T-ALL pathogenesis.
Collapse
Affiliation(s)
- Nádia C Correia
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
57
|
D'Antona P, Cattoni M, Dominioni L, Poli A, Moretti F, Cinquetti R, Gini E, Daffrè E, Noonan DM, Imperatori A, Rotolo N, Campomenosi P. Serum miR-223: A Validated Biomarker for Detection of Early-Stage Non-Small Cell Lung Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:1926-1933. [PMID: 31488416 DOI: 10.1158/1055-9965.epi-19-0626] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The published circulating miRNA signatures proposed for early-stage non-small cell lung cancer (NSCLC) detection are inconsistent and difficult to replicate. Reproducibility and validation of an miRNA simple signature of NSCLC are prerequisites for translation to clinical application. METHODS The serum level of miR-223 and miR-29c, emerging from published studies, respectively, as a highly sensitive and a highly specific biomarker of early-stage NSCLC, was measured with droplet digital PCR (ddPCR) technique in an Italian cohort of 75 patients with stage I-II NSCLC and 111 tumor-free controls. By ROC curve analysis we evaluated the miR-223 and miR-29c performance in discerning NSCLC cases from healthy controls. RESULTS Reproducibility and robust measurability of the two miRNAs using ddPCR were documented. In a training set (40 stage I-II NSCLCs and 56 controls), miR-223 and miR-29c, respectively, showed an AUC of 0.753 [95% confidence interval (CI), 0.655-0.836] and 0.632 (95% CI, 0.527-0.729) in identifying NSCLC. Combination of miR-223 with miR-29c yielded an AUC of 0.750, not improved over that of miR-223 alone. Furthermore, in an independent blind set (35 stage I-II NSCLCs and 55 controls), we validated serum miR-223 as an effective biomarker of stage I-II NSCLC (AUC = 0.808; 95% CI, 0.712-0.884), confirming the miR-223 diagnostic performance reported by others in Chinese cohorts. CONCLUSIONS Using ddPCR technology, miR-223 was externally validated as a reproducible, effective serum biomarker of early-stage NSCLC in ethnically different subjects. Combination with miR-29c did not improve the miR-223 diagnostic performance. IMPACT Serum miR-223 determination may be proposed as a tool for refining NSCLC risk stratification, independent of smoking habit and age.
Collapse
Affiliation(s)
- Paola D'Antona
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Maria Cattoni
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy.,Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Lorenzo Dominioni
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Albino Poli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesca Moretti
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Elisa Daffrè
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy.,Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Andrea Imperatori
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Nicola Rotolo
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy.
| |
Collapse
|
58
|
Luan Z, Liu B, Shi L. Angiotensin II-induced micro RNA-21 culprit for non-small-cell lung adenocarcinoma. Drug Dev Res 2019; 80:1031-1039. [PMID: 31823412 DOI: 10.1002/ddr.21597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Lung cancer is among the most complicated cancers, with an estimated 1.6 million deaths each year for both men and women. However, the proportion of lung cancer patients in developing nations has increased from 31% to 49.9% in the last two decades. There are two main subtypes of lung cancer, small-cell lung carcinoma and non-small-cell lung carcinoma (NSCLC), accounting for 15% and 85% of all lung cancer, respectively. Adenocarcinoma is the most common type of lung cancer in smokers and nonsmokers in men and women regardless of their age. Chemicals in cigarette smoke and nicotine enter our bloodstream and can then affect the entire body and finally lead to the activation of several important, pro-survival signaling pathways. The biologically active peptide of RAAS on overstimulation enhance Ang II mediates cell proliferation, fibrosis and inflammatory effects via AT1 receptor. Very few studies highlight the diagnostic and therapeutic potential of miRNAs with the EGFR-regulated miRNA-21.
Collapse
Affiliation(s)
- Zhaoji Luan
- Department of Respiratory and Critical Care Medicine, ZiBo First Hospital, Zibo, Shandong Province, China
| | - Baoliang Liu
- Department of Respiratory and Critical Care Medicine, ZiBo First Hospital, Zibo, Shandong Province, China
| | - Lina Shi
- Department of Hematology, ZiBo First Hospital, Boshan District, Zibo, Shandong Province, China
| |
Collapse
|
59
|
Integrating microRNA and mRNA expression in rapamycin-treated T-cell acute lymphoblastic leukemia. Pathol Res Pract 2019; 215:152494. [PMID: 31229277 DOI: 10.1016/j.prp.2019.152494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) has a relatively improved remission rate, but the poor outcomes are primarily due to resistance and relapse. Moreover, organs infiltration trends to occur during remission. Rapamycin was applied to treat malignancies for decades. In this investigation, we aimed to explore the molecular mechanisms and pathway changes during the T-ALL therapeutic process. T-ALL cell line Molt-4 cells were treated with rapamycin and performed microarray analysis to identify the deregulated miRNAs and mRNAs (log2 fold change>2 or <-2). To obtain regulatory miRNA/mRNA network, miRNA target prediction softwares and Cytoscape were used to plot and modularize the rapamycin treatment-related network. Surprisingly, the enriched pathways were not involved in mediating either cell death or apoptosis but were responsible for angiogenesis, cell survival, and anti-apoptosis, which is consistent with the Gene Ontology analysis and PPI network based on all deregulated mRNAs, indicating that these elements likely play a role in promoting Molt-4 cell survival or escaping from rapamycin. The expression of 3 miRNAs (miR-149-3p, miR-361-3p, and miR-944) and their putative targets, which play central roles in their module, were validated by qRT-PCR. These results provide novel insight into potentially relevant biological pathways for T-ALL cells escaping from chemotherapy or developing central nervous system infiltration.
Collapse
|
60
|
Song M, Sun M, Xia L, Chen W, Yang C. miR-19b-3p promotes human pancreatic cancer Capan-2 cells proliferation by targeting phosphatase and tension homolog. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:236. [PMID: 31317006 DOI: 10.21037/atm.2019.04.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Pancreatic cancer is a common cancer with a poor prognosis and an increasing morbidity. miR-19b-3p has been implicated in some cancers, however, its role in pancreatic cancer is unclear. Methods Human pancreatic cancer cell line Capan-2 cells were transfected with miR-19b-3p mimic and inhibitor. Cell proliferation was measured by 5-Ethynyl-2'-deoxyuridine (EdU) staining assays. Cell cycle of Capan-2 cells was examined by flow cytometry. The expression of phosphatase and tension homolog (PTEN) was determined by real-time quantitative polymerase chain reaction (PCR) and western blotting analysis. Functional rescue experiments were performed through PTEN overexpression and miR-19b-3p mimic by using EdU staining assays. Results miR-19b-3p mimic significantly increased miR-19b-3p while miR-19b-3p inhibitor decreased that. EdU staining showed that miR-19b-3p overexpression promoted Capan-2 cells proliferation while miR-19b-3p inhibition decreased that. Flow cytometry analysis of cell cycle indicated that miR-19b-3p overexpression increased the percentage of Capan-2 cells in S phase while miR-19b-3p inhibition decreased that. PTEN was confirmed to be a target gene of miR-19b-3p and PTEN overexpression eliminated the pro-proliferation effects of miR-19b-3p in Capan-2 cells. Conclusions Our study demonstrates that miR-19b-3p promotes Capan-2 cells proliferation by targeting PTEN.
Collapse
Affiliation(s)
- Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Mengxue Sun
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lu Xia
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wei Chen
- Emergency Department, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
61
|
Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The Key Roles of PTEN in T-Cell Acute Lymphoblastic Leukemia Development, Progression, and Therapeutic Response. Cancers (Basel) 2019; 11:cancers11050629. [PMID: 31064074 PMCID: PMC6562458 DOI: 10.3390/cancers11050629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer that comprises 10–15% of pediatric and ~25% of adult ALL cases. Although the curative rates have significantly improved over the past 10 years, especially in pediatric patients, T-ALL remains a challenge from a therapeutic point of view, due to the high number of early relapses that are for the most part resistant to further treatment. Considerable advances in the understanding of the genes, signaling networks, and mechanisms that play crucial roles in the pathobiology of T-ALL have led to the identification of the key drivers of the disease, thereby paving the way for new therapeutic approaches. PTEN is critical to prevent the malignant transformation of T-cells. However, its expression and functions are altered in human T-ALL. PTEN is frequently deleted or mutated, while PTEN protein is often phosphorylated and functionally inactivated by casein kinase 2. Different murine knockout models recapitulating the development of T-ALL have demonstrated that PTEN abnormalities are at the hub of an intricate oncogenic network sustaining and driving leukemia development by activating several signaling cascades associated with drug-resistance and poor outcome. These aspects and their possible therapeutic implications are highlighted in this review.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
62
|
Prognostic and predictive value of a microRNA signature in adults with T-cell lymphoblastic lymphoma. Leukemia 2019; 33:2454-2465. [PMID: 30953029 DOI: 10.1038/s41375-019-0466-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
New prognostic factors are needed to establish indications for haematopoietic stem cell transplantation (HSCT) in first complete remission (CR1) for T-cell lymphoblastic lymphoma (T-LBL) patients. We used microarray to compare T-LBL tissue samples (n = 75) and fetal thymus tissues (n = 20), and identified 35 differentially expressed miRNAs. Using 107 subjects as the training group, we developed a five-miRNA-based classifier to predict patient survival with LASSO Cox regression: lower risk was associated with better prognosis (disease-free survival (DFS): hazard ratio (HR) 4.548, 95% CI 2.433-8.499, p < 0.001; overall survival (OS): HR 5.030, 95% CI 2.407-10.513, p < 0.001). This classifier displayed good performance in the internal testing set (n = 106) and the independent external set (n = 304). High risk was associated with more favorable response to HSCT (DFS: HR 1.675, 95% CI 1.127-2.488, p = 0.011; OS: HR 1.602, 95% CI 1.055-2.433, p = 0.027). When combined with ECOG-PS and/or NOTCH1/FBXW7 status, this classifier had even better prognostic performance in patients receiving HSCT (DFS: HR 2.088, 95% CI 1.290-3.379, p = 0.003; OS: HR 1.996, 95% CI 1.203-3.311, p = 0.007). The five-miRNA classifier may be a useful prognostic biomarker for T-LBL adults, and could identify subjects who could benefit from HSCT.
Collapse
|
63
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
64
|
Yu Q, Yin L, Jian Y, Li P, Zeng W, Zhou J. Downregulation of PHF6 Inhibits Cell Proliferation and Migration in Hepatocellular Carcinoma. Cancer Biother Radiopharm 2019; 34:245-251. [PMID: 30888215 DOI: 10.1089/cbr.2018.2671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The plant homeodomain finger 6 (PHF6) was originally identified as single gene mutated in Börjeson-Forssman-Lehmann syndrome, which was reported to be a tumor suppressor in T-cell acute lymphoblastic leukemia. However, the biological function of PHF6 in hepatocellular carcinoma (HCC) has been poorly characterized. Materials and Methods: In this study, we first determined the mRNA levels of PHF6 in HCC tissues and adjacent normal tissues using quantitative real-time PCR. Then the expression of PHF6 was knocked down in HCC cell lines (HepG2, SMMC-7721, and Bel-7402) by siRNA transfection. A series of functional experiments, including EdU proliferation assay, colony formation assay, and Transwell assay, were performed in HCC cells. Western blot analysis was used to detect the expression of PHF6, E-cadherin, and Vimentin. Results: We found that PHF6 was significantly elevated in HCC tissues and positively correlated with TNM stage, differentiation, and lymph node metastasis. Silencing PHF6 significantly inhibited cell proliferation, colony formation, and migration in HCC cells. Furthermore, silencing PHF6 obviously increased E-cadherin and decreased Vimentin expression. Conclusions: These findings suggest that PHF6 plays a positive role in the growth of HCC cells, and targeting PHF6 could serve as a promising therapeutic strategy for human HCC.
Collapse
Affiliation(s)
- Qiangfeng Yu
- 1 Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Longyan, China.,2 Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Libo Yin
- 3 Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral & Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yizeng Jian
- 1 Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Longyan, China
| | - Pengtao Li
- 4 Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Wenlong Zeng
- 1 Department of Hepatobiliary Surgery, the Second Hospital of Longyan, Longyan, China
| | - Jianyin Zhou
- 4 Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
65
|
Sabarimurugan S, Madurantakam Royam M, Kumarasamy C, Kodiveri Muthukaliannan G, Samiappan S, Jayaraj R. Prognostic miRNA classifiers in t cell acute lymphoblastic leukemia: Study protocol for a systematic review and meta-analysis of observational clinical studies. Medicine (Baltimore) 2019; 98:e14569. [PMID: 30817574 PMCID: PMC6831106 DOI: 10.1097/md.0000000000014569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The prognostic value of microRNA (miRNA) expression in T-cell acute lymphoblastic leukemia (T-ALL) has generated significant research interest in recent years. However, most diagnostic and prognostic studies with regards to miRNA expression have been focused on combined B cell and T cell lymphoblastic leukemia. There are very few studies reporting the prognostic effects of miRNA expression on T-ALL. Therefore, a pioneer systematic review and meta-analysis was proposed to explore the possibilities of miRNAs as viable prognostic markers in T-ALL. This study is intended to be useful as a guideline for future research into drug evaluation and targeting miRNA as a biomarker for the treatment and prognosis of T-ALL. METHODS The systematic review will be reported according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The study search will be conducted by using Cochrane, EMBASE, Medline, Science Direct, and SCOPUS bibliographic databases. The reference lists of included studies will be manually searched to further bolster the search results. A combination of keywords will be used to search the databases. DISCUSSION To explore the effect of miRNA on prognosis, forest plots will be generated to assess pooled HR and 95% CI. Upregulation, downregulation, and deregulation of specific miRNAs will be individually noted and used to extrapolate patient prognosis when associated with risk factors involved in T-ALL. Subgroup analysis will be carried out to analyze the effect of deregulation of miRNA expression on patient prognosis. A fixed or random-effects model of meta-analysis will be used depending upon between-study heterogeneity. This systematic review and meta-analysis will identify and synthesize evidence to determine the prognosis of miRNA in T-ALL and suggest the possible miRNA from meta-analysis results to predict as a biomarker for further detection and treatment of T-ALL.
Collapse
Affiliation(s)
- Shanthi Sabarimurugan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | | | | | | | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Rama Jayaraj
- College of Health and Human Sciences, Charles Darwin University, Casuarina, Northern Territory, Australia
| |
Collapse
|
66
|
Dawidowska M, Jaksik R, Drobna M, Szarzyńska-Zawadzka B, Kosmalska M, Sędek Ł, Machowska L, Lalik A, Lejman M, Ussowicz M, Kałwak K, Kowalczyk JR, Szczepański T, Witt M. Comprehensive Investigation of miRNome Identifies Novel Candidate miRNA-mRNA Interactions Implicated in T-Cell Acute Lymphoblastic Leukemia. Neoplasia 2019; 21:294-310. [PMID: 30763910 PMCID: PMC6372882 DOI: 10.1016/j.neo.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy originating from T-cell precursors. The genetic landscape of T-ALL has been largely characterized by next-generation sequencing. Yet, the transcriptome of miRNAs (miRNome) of T-ALL has been less extensively studied. Using small RNA sequencing, we characterized the miRNome of 34 pediatric T-ALL samples, including the expression of isomiRs and the identification of candidate novel miRNAs (not previously annotated in miRBase). For the first time, we show that immunophenotypic subtypes of T-ALL present different miRNA expression profiles. To extend miRNome characteristics in T-ALL (to 82 T-ALL cases), we combined our small RNA-seq results with data available in Gene Expression Omnibus. We report on miRNAs most abundantly expressed in pediatric T-ALL and miRNAs differentially expressed in T-ALL versus normal mature T-lymphocytes and thymocytes, representing candidate oncogenic and tumor suppressor miRNAs. Using eight target prediction algorithms and pathway enrichment analysis, we identified differentially expressed miRNAs and their predicted targets implicated in processes (defined in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) of potential importance in pathogenesis of T-ALL, including interleukin-6-mediated signaling, mTOR signaling, and regulation of apoptosis. We finally focused on hsa-mir-106a-363 cluster and functionally validated direct interactions of hsa-miR-20b-5p and hsa-miR-363-3p with 3' untranslated regions of their predicted targets (PTEN, SOS1, LATS2), overrepresented in regulation of apoptosis. hsa-mir-106a-363 is a paralogue of prototypic oncogenic hsa-mir-17-92 cluster with yet unestablished role in the pathogenesis of T-ALL. Our study provides a firm basis and data resource for functional analyses on the role of miRNA-mRNA interactions in T-ALL.
Collapse
Key Words
- all, acute lymphoblastic leukemia
- egil, european group for immunological classification of leukemias
- geo, gene expression omnibus
- go, gene ontology
- isomir, isoform of mirna
- kegg, kyoto encyclopedia of genes and genomes
- mirnome, transcriptome of mirnas
- mre, mirna response element
- or, odds ratio
- rt-qpcr, quantitative reverse transcription polymerase chain reaction
- small rna-seq, next-generation sequencing of small rnas
- t-all, t-cell acute lymphoblastic leukemia
- 3′utr, 3′ untranslated region
Collapse
Affiliation(s)
- Małgorzata Dawidowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Roman Jaksik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Drobna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Bronisława Szarzyńska-Zawadzka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Maria Kosmalska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Ludomiła Machowska
- Clinic of Pediatric Oncology Hematology and Transplantology, Poznań University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland.
| | - Anna Lalik
- Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Children's University Hospital, Gębali 6, 20-093 Lublin, Poland.
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland.
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia in Katowice, 3 Maja 13-15, 41-800 Zabrze, Poland.
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland.
| |
Collapse
|
67
|
Downregulation of specific FBXW7 isoforms with differential effects in T-cell lymphoblastic lymphoma. Oncogene 2019; 38:4620-4636. [DOI: 10.1038/s41388-019-0746-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/26/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
|
68
|
MicroRNA-19b-1 reverses ischaemia-induced heart failure by inhibiting cardiomyocyte apoptosis and targeting Bcl2 l11/BIM. Heart Vessels 2019; 34:1221-1229. [DOI: 10.1007/s00380-018-01336-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/28/2018] [Indexed: 11/26/2022]
|
69
|
Shu Y, Wu K, Zeng Z, Huang S, Ji X, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Luo W, Wang X, Liu B, Lei Y, Ye Z, Zhao L, Cao D, Yang L, Chen X, Luu HH, Reid RR, Wolf JM, Lee MJ, He TC. A Simplified System to Express Circularized Inhibitors of miRNA for Stable and Potent Suppression of miRNA Functions. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:556-567. [PMID: 30414569 PMCID: PMC6226557 DOI: 10.1016/j.omtn.2018.09.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 12/09/2022]
Abstract
MicroRNAs (miRNAs) are an evolutionarily conserved class of small regulatory noncoding RNAs, binding to complementary target mRNAs and resulting in mRNA translational inhibition or degradation, and they play an important role in regulating many aspects of physiologic and pathologic processes in mammalian cells. Thus, efficient manipulations of miRNA functions may be exploited as promising therapeutics for human diseases. Two commonly used strategies to inhibit miRNA functions include direct transfection of chemically synthesized miRNA inhibitors and delivery of a gene vector that instructs intracellular transcription of miRNA inhibitors. While most miRNA inhibitors are based on antisense molecules to bind and sequester miRNAs from their natural targets, it is challenging to achieve effective and stable miRNA inhibition. Here we develop a user-friendly system to express circular inhibitors of miRNA (CimiRs) by exploiting the noncanonical head-to-tail backsplicing mechanism for generating endogenous circular RNA sponges. In our proof-of-principle experiments, we demonstrate that the circular forms of the hsa-miR223-binding site of human β-arrestin1 (ARRB1) 3' UTR sponge RNA (BUTR), the bulged anti-miR223 (cirBulg223) and bulged anti-miR21 (cirBulg21), exhibit more potent suppression of miRNA functions than their linear counterparts. Therefore, the engineered CimiR expression system should be a valuable tool to target miRNAs for basic and translational research.
Collapse
Affiliation(s)
- Yi Shu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China.
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Xiaojuan Ji
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang 443002, China
| | - Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China; Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Key Laboratory of Orthopaedic Surgery of Gansu Province, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China; Departments of Orthopaedic Surgery and Obstetrics and Gynecology, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Bo Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400046, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Key Laboratory of Orthopaedic Surgery of Gansu Province, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China; Departments of Orthopaedic Surgery and Obstetrics and Gynecology, First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Clinical Laboratory Medicine, Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.
| |
Collapse
|
70
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
71
|
Zheng X, Wu K, Liao S, Pan Y, Sun Y, Chen X, Zhang Y, Xia S, Hu Y, Zhang J. MicroRNA-transcription factor network analysis reveals miRNAs cooperatively suppress RORA in oral squamous cell carcinoma. Oncogenesis 2018; 7:79. [PMID: 30293994 PMCID: PMC6174157 DOI: 10.1038/s41389-018-0089-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 12/26/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents over 90% of oral cancer incidence, while its mechanisms of tumorigenesis remain poorly characterized. In this study, we applied RNA-seq and microRNA-seq methodologies in four pairs of cancer and adjacent normal tissues to profile the contribution of miRNAs to tumorigenesis-altered functional pathways by constructing a comprehensive miRNA-mediated mRNA regulatory network. There were 213 differentially expressed (DE) miRNAs and 2172 DE mRNAs with the involvement of negative miRNA-mRNA interactions identified by at least two pairs of cancerous tissues. GO analysis revealed that the upregulated microRNAs significantly contributed to a global down-regulation of a number of transcription factors (TFs) in OSCC. Among the negative regulatory networks between the selected miRNAs (133) and TFs (167), circadian rhythm genes (RORA, RORB, RORC, and CLOCK) simultaneously regulated by multiple microRNAs were of particular interest. For instance, RORA transcript was predicted to be targeted by 25 co-upregulated miRNAs, of which, miR-503-5p, miR-450b-5p, miR-27a-3p, miR-181a-5p and miR-183-5p were further validated to directly target RORA, resulting in a stronger effect on RORA suppression together. In addition, we showed that the mRNA and protein expression levels of RORα were significantly decreased in most OSCC samples, associated with advanced clinical stage and poor prognosis. RORα significantly suppressed the proliferation of OSCC cells in vitro and in vivo. Attenuated RORα decreased p53 protein expression and suppressed p53 phosphorylation activity. Altogether, our results strongly suggest the importance of the role of miRNAs in regulating the activity of circadian rhythm-related TFs network during OSCC tumorigenesis, and provide further clues to understand the clinical link between circadian rhythm and cancer therapy.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kejing Wu
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Shengjie Liao
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Yuemei Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yanan Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinming Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc, Wuhan, Hubei, 430075, China.,Laboratory for Genome Regulation and Human Health, ABLife Inc, Wuhan, Hubei, 430075, China
| | - Shu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. .,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
72
|
The ambiguous role of microRNA-205 and its clinical potential in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2018; 144:2419-2431. [DOI: 10.1007/s00432-018-2755-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022]
|
73
|
Drobna M, Szarzyńska-Zawadzka B, Daca-Roszak P, Kosmalska M, Jaksik R, Witt M, Dawidowska M. Identification of Endogenous Control miRNAs for RT-qPCR in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2018; 19:ijms19102858. [PMID: 30241379 PMCID: PMC6212946 DOI: 10.3390/ijms19102858] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
Optimal endogenous controls enable reliable normalization of microRNA (miRNA) expression in reverse-transcription quantitative PCR (RT-qPCR). This is particularly important when miRNAs are considered as candidate diagnostic or prognostic biomarkers. Universal endogenous controls are lacking, thus candidate normalizers must be evaluated individually for each experiment. Here we present a strategy that we applied to the identification of optimal control miRNAs for RT-qPCR profiling of miRNA expression in T-cell acute lymphoblastic leukemia (T-ALL) and in normal cells of T-lineage. First, using NormFinder for an iterative analysis of miRNA stability in our miRNA-seq data, we established the number of control miRNAs to be used in RT-qPCR. Then, we identified optimal control miRNAs by a comprehensive analysis of miRNA stability in miRNA-seq data and in RT-qPCR by analysis of RT-qPCR amplification efficiency and expression across a variety of T-lineage samples and T-ALL cell line culture conditions. We then showed the utility of the combination of three miRNAs as endogenous normalizers (hsa-miR-16-5p, hsa-miR-25-3p, and hsa-let-7a-5p). These miRNAs might serve as first-line candidate endogenous controls for RT-qPCR analysis of miRNAs in different types of T-lineage samples: T-ALL patient samples, T-ALL cell lines, normal immature thymocytes, and mature T-lymphocytes. The strategy we present is universal and can be transferred to other RT-qPCR experiments.
Collapse
Affiliation(s)
- Monika Drobna
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | | | | | - Maria Kosmalska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Roman Jaksik
- Department, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Michał Witt
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | | |
Collapse
|
74
|
Giri BR, Mahato RI, Cheng G. Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Med Res Rev 2018; 39:706-732. [PMID: 30272819 DOI: 10.1002/med.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
T cell immunity plays a vital role in pathogen infections. MicroRNA (miRNAs) are small, single-stranded noncoding RNAs that regulate T cell immunity by targeting key transcriptional factors, signaling proteins, and cytokines associated with T cell activation, differentiation, and function. The dysregulation of miRNA expression in T cells may lead to specific immune responses and can provide new therapeutic opportunities against various infectious diseases. Here, we summarize recent studies that focus on the roles of miRNAs in T cell immunity and highlight miRNA functions in prevalent infectious diseases. Additionally, we also provide insights into the functions of extracellular vesicle miRNAs and attempt to delineate the mechanism of miRNA sorting into extracellular vesicles and their immunomodulatory functions. Moreover, methodologies and strategies for miRNA delivery against infectious diseases are summarized. Finally, potential strategies for miRNA-based therapies are proposed.
Collapse
Affiliation(s)
- Bikash R Giri
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guofeng Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
75
|
Li W, Zhang T, Guo L, Huang L. Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 2018; 37:223. [PMID: 30217221 PMCID: PMC6138891 DOI: 10.1186/s13046-018-0898-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) triggers a battery of intracellular signaling pathways, especially PI3K/Akt, playing important roles in the pathogenesis of multiple diseases, such as cancer, neurodevelopmental disorders, cardiovascular dysfunction and so on. Therefore PTEN might be a biomarker for various diseases, and targeting the abnormal expression level of PTEN is anticipated to offer novel therapeutic avenues. Recently, noncoding RNAs (ncRNAs) have been reported to regulate protein expression, and it is definite that PTEN expression is controlled by ncRNAs epigenetically or posttranscriptionally as well. Herein, we provide a review on current understandings of the regulation of PTEN by ncRNAs, which could contribute to the development of novel approaches to the diseases with abnormal expression of PTEN.
Collapse
Affiliation(s)
- Wang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| |
Collapse
|
76
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
77
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
78
|
Hirschberger S, Hinske LC, Kreth S. MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer. Cancer Lett 2018; 431:11-21. [PMID: 29800684 DOI: 10.1016/j.canlet.2018.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed.
Collapse
Affiliation(s)
- Simon Hirschberger
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, Germany; Walter-Brendel-Center of Experimental Medicine, LMU Munich, Germany.
| |
Collapse
|
79
|
He Z, Liao Z, Chen S, Li B, Yu Z, Luo G, Yang L, Zeng C, Li Y. Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2018; 14:e259-e265. [PMID: 29749698 DOI: 10.1111/ajco.12979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
AIM BCL11B overexpression is a characteristic of most T cell acute lymphoblastic leukemia (T-ALL) cases, and downregulated BCL11B in leukemic T cells inhibits cell proliferation and induces apoptosis. The purpose of this study was to analyze the miRNA expression pattern that may be related to BCL11B regulation in T-ALL. METHODS Quantitative real-time PCR was used to detect the miRNAs miR-17-3p, miR-17-5p, miR-29c-3p, miR-92a-3p, miR-214-3p and miR-214-5p, the BCL11B expression level in peripheral blood mononuclear cells which was obtained from 17 de novo and untreated T-ALL patients, and 15 healthy individuals (HIs) served as control. Correlations between the relative miRNA expression levels and BCL11B were analyzed. RESULTS Based on the computational prediction that certain miRNAs bind the BCL11B 3'-UTR, miR-17-3p, miR-17-5p, miR-29c-3p, miR-92a-3p, miR-214-3p and miR-214-5p were found to be candidates for regulating BCL11B. The expression levels of the six miRNAs were decreased compared with HIs, and with the exception of miR-17-5p, statistically significant differences in expression levels were found in the T-ALL group. Moreover, while significantly higher BCL11B expression was found in the T-ALL group, a negative trend in the correlation level for all six miRNAs could be found in all groups; however, statistical significance was only found for miR-214-3p in the T-ALL group. CONCLUSION miRNA downregulation together with BCL11B upregulation suggests that miR-17, miR-29c, miR-92a and miR-214 might be involved in BCL11B regulation. The therapeutic promise of regulating the expression of these miRNAs for T-ALL therapy may be considered in the future.
Collapse
Affiliation(s)
- Zifan He
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziwei Liao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Bo Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lijian Yang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
80
|
Drobna M, Szarzyńska-Zawadzka B, Dawidowska M. T-cell acute lymphoblastic leukemia from miRNA perspective: Basic concepts, experimental approaches, and potential biomarkers. Blood Rev 2018; 32:457-472. [PMID: 29703513 DOI: 10.1016/j.blre.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive and heterogeneous malignancy originating from T-cell precursors. The mechanisms of T-ALL pathogenesis related to non-protein coding part of the genome are currently intensively studied. miRNAs are short, non-coding molecules acting as negative regulators of gene expression which shape phenotype of cells in a complex and context-specific manner. miRNAs may act as oncogenes or tumor suppressors; several miRNAs have been related to drug resistance and treatment response in various malignancies. Here we present the review of the state-of-the-art knowledge on the role of miRNAs in T-ALL pathogenesis, with detailed overview of the studies reporting on miRNAs with oncogenic and tumor suppressor potential. We discuss whether miRNAs might be considered candidate biomarkers of prognosis in T-ALL and leukemia subtype-specific markers. We also describe experimental approaches and a typical workflow applied in research on the involvement of miRNAs in oncogenesis.
Collapse
Affiliation(s)
- Monika Drobna
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland.
| | | | | |
Collapse
|
81
|
Van Peer G, Mets E, Claeys S, De Punt I, Lefever S, Ongenaert M, Rondou P, Speleman F, Mestdagh P, Vandesompele J. A high-throughput 3' UTR reporter screening identifies microRNA interactomes of cancer genes. PLoS One 2018. [PMID: 29522551 PMCID: PMC5844555 DOI: 10.1371/journal.pone.0194017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction Despite the established contribution of deregulated microRNA (miRNA) function to carcinogenesis, relatively few miRNA-cancer gene interactions have been validated, making it difficult to appreciate the true complexity of miRNA-cancer gene regulatory networks. Results In this effort, we identify miRNA interactomes of 17 well-established cancer genes, involved in various cancer types, through a miRNome-wide 3’ UTR reporter screening. Using a novel and performant strategy for high-throughput screening data analysis, we identify 390 interactions, quadrupling the size of the known miRNA interactome for the cancer genes under investigation. Clear enrichments of established and predicted interactions underscore the validity of the interactome data set. Interactomes appear to be primarily driven by canonical binding site interactions. Nonetheless, non-canonical binding sites, such as offset 6mer and seed-mismatched or G:U wobble sites, also have regulatory activity, albeit clearly less pronounced. Furthermore, we observe enhanced regulation in the presence of 3’ supplementary pairing for both canonical and non-canonical binding sites. Conclusions Altogether, the cancer gene-miRNA interactome data set represents a unique resource that will aid in the unraveling of regulatory miRNA networks and the dynamic regulation of key protein-coding cancer genes. In addition, it uncovers aspects of the functional miRNA binding site’s architecture and the relative contributions of different binding site types.
Collapse
Affiliation(s)
- Gert Van Peer
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
- * E-mail:
| | - Evelien Mets
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Shana Claeys
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Ines De Punt
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Maté Ongenaert
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Pieter Rondou
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
82
|
miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis. Oncotarget 2018; 8:472-489. [PMID: 27888798 PMCID: PMC5352135 DOI: 10.18632/oncotarget.13447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/12/2016] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future.
Collapse
|
83
|
Hu T, Chong Y, Qin H, Kitamura E, Chang CS, Silva J, Ren M, Cowell JK. The miR-17/92 cluster is involved in the molecular etiology of the SCLL syndrome driven by the BCR-FGFR1 chimeric kinase. Oncogene 2018; 37:1926-1938. [PMID: 29367757 PMCID: PMC5889328 DOI: 10.1038/s41388-017-0091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/13/2017] [Accepted: 11/28/2017] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) have pathogenic roles in the development of a variety of leukemias. Here we identify miRNAs that have important roles in the development of B lymphomas resulting from the expression of the chimeric BCR-FGFR1 kinase. The miR-17/92 cluster was particularly implicated and forced expression resulted in increased cell proliferation, while inhibiting its function using miRNA sponges reduced cell growth and induced apoptosis. Cells treated with the potent BGJ389 FGFR1 inhibitor led to miR-17/92 downregulation, suggesting regulation by FGFR1. Transient luciferase reporter assays and qRT-PCR detection of endogenous miR-17/92 expression in stable transduced cell lines demonstrated that BCR-FGFR1 can regulate miR-17/92 expression. This positive association of miR-17/92 with BCR-FGFR1 was also confirmed in primary mouse SCLL tissues and primary human CLL samples. miR-17/92 promotes cell proliferation and survival by targeting CDKN1A and PTEN in B-lymphoma cell lines and primary tumors. An inverse correlation in expression levels was seen between miR-17/92 and both CDKN1A and PTEN in two cohorts of CLL patients. Finally, in vivo engraftment studies demonstrated that manipulation of miR-17/92 was sufficient to affect BCR-FGFR1-driven leukemogenesis. Overall, our results define miR-17/92 as a downstream effector of FGFR1 in BCR-FGFR1-driven B-cell lymphoblastic leukemia.
Collapse
Affiliation(s)
- Tianxiang Hu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Yating Chong
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Haiyan Qin
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | - Jeane Silva
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Mingqiang Ren
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - John K Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA. .,Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
84
|
Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget 2018; 7:38892-38907. [PMID: 26646588 PMCID: PMC5122439 DOI: 10.18632/oncotarget.6476] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/22/2015] [Indexed: 01/17/2023] Open
Abstract
The highly conserved RAS-mitogen activated protein kinase (MAPK) signaling pathway is involved in a wide range of cellular processes including differentiation, proliferation, and survival. Somatic mutations in genes encoding RAS-MAPK components frequently occur in many tumors, making the RAS-MAPK a critical pathway in human cancer. Since the pioneering study reporting that let-7 miRNA acted as tumor suppressor by repressing the RAS oncogene, growing evidence has suggested the importance of miRNAs targeting the RAS-MAPK in oncogenesis. MiRNAs alterations in human cancers may act as a rheostat of the oncogenic RAS signal that is often amplified as cancers progress. However, specific mechanisms leading to miRNAs deregulation and their functional consequences in cancer are far from being fully elucidated. In this review, we provide an experimental-validated map of RAS-MAPK oncomiRs and tumor suppressor miRNAs from transmembrane receptor to downstream ERK proteins. MiRNAs could be further considered as potential genetic biomarkers for diagnosis, prognosis, or therapeutic purpose.
Collapse
Affiliation(s)
- Julien Masliah-Planchon
- Unité de Génétique Somatique, Département de Génétique Oncologique, Institut Curie, Paris, France.,INSERM_U830, Institut Curie, Paris, France
| | - Simon Garinet
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Pasmant
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,EA7331, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
85
|
Ye F. MicroRNA expression and activity in T-cell acute lymphoblastic leukemia. Oncotarget 2017; 9:5445-5458. [PMID: 29435192 PMCID: PMC5797063 DOI: 10.18632/oncotarget.23539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a lymphoid malignancy caused by the oncogenic transformation of immature T-cell progenitors. Many biologically relevant genetic and epigenetic alterations have been identified as driving factors for this transformation. Recently, microRNAs (miRNAs) have been shown to influence various leukemias, including T-ALL. Aberrant expression of miRNAs can function as either oncogenes or tumor suppressors in T-ALL through the regulation of cell migration, invasion, proliferation, apoptosis, and chemoresistance. This occurs by targeting key signaling pathways or transcriptional factors that play a critical role in T-ALL pathology and progression. Different miRNA expression profiles have been linked to specific genetic subtypes of human T-ALL. Furthermore, miRNAs can also act as independent prognostic factors to predict clinical outcomes for T-ALL patients. In the current review, we will focus on the role of miRNAs in the development and progression of T-ALL.
Collapse
Affiliation(s)
- Fang Ye
- Department of Hematology, Beijing Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing, China
| |
Collapse
|
86
|
Shao Y, Li P, Zhu ST, Yue JP, Ji XJ, Ma D, Wang L, Wang YJ, Zong Y, Wu YD, Zhang ST. MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2. Oncotarget 2017; 7:15173-86. [PMID: 26959737 PMCID: PMC4924778 DOI: 10.18632/oncotarget.7908] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
The altered expression of miRNAs is involved in carcinogenesis of esophageal squamous cell carcinoma (ESCC), but whether miRNAs regulate COX-2 expression in ESCC is not clear. To this end, the expression levels of miR-26a and miR-144 in ESCC clinical tissues and cell lines were investigated by qRT-PCR. COX-2 and PEG2 were quantified by western blot and ELISA. Decrease in miR-26a and miR-144 expression in ESCC was found by a comparison between 30 pairs of ESCC tumor and adjacent normal tissues as well as in 11 ESCC cell lines (P < 0.001). Co-transfection of miR-26a and miR-144 in ESCC cell lines more significantly suppressed cell proliferation, migration, and invasion than did either miR-26a or miR-144 alone (all P < 0.001), as shown by assays of CCK8, migration and invasion and flow cytometry. The inhibitory effect of these two miRNAs in vivo was also verified in nude mice xenograft models. COX-2 was confirmed as a target of miR-26a and miR-144. In conclusion, miR-26a and miR-144 expression is downregulated in ESCC. Co-expression of miR-26a and miR-144 in ESCC cells resulted in inhibition of proliferation and metastasis in vitro and in vivo, suggesting that targeting COX-2 may be the mechanism of these two miRNAs.
Collapse
Affiliation(s)
- Ying Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ji-Ping Yue
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Xiao-Jun Ji
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Li Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-Jun Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Yong-Dong Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| |
Collapse
|
87
|
Pomari E, Lovisa F, Carraro E, Primerano S, D'Amore ESG, Bonvini P, Nigro LL, Vito RD, Vinti L, Farruggia P, Pillon M, Basso G, Basso K, Mussolin L. Clinical impact of miR-223 expression in pediatric T-Cell lymphoblastic lymphoma. Oncotarget 2017; 8:107886-107898. [PMID: 29296210 PMCID: PMC5746112 DOI: 10.18632/oncotarget.22386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/28/2017] [Indexed: 01/24/2023] Open
Abstract
Although probability of event-free survival in pediatric lymphoblastic T-cell lymphoma (T-LBL) is about 75%, survival in relapsed patients is very poor, so the identification of new molecular markers is crucial for treatment optimization. Here, we demonstrated that the over-expression of miR-223 promotes tumor T-LBL cell growth, migration and invasion in vitro. We found out that SIK1, an anti-metastatic protein, is a direct target of miR-223 and consequently is significantly reduced in miR-223-overexpressing tumor cells. We measured miR-223 expression levels at diagnosis in tumor biopsies from 67 T-LBL pediatric patients for whom complete clinical and follow up data were available, and we found that high miR-223 expression (above the median value) is associated with worse prognosis (PFS 66% vs 94%, P=0.0036). In addition, the multivariate analysis, conducted taking into account miR-223 expression level and other molecular and clinical characteristics, showed that only high level of miR-223 is an independent factor for worse prognosis. MiR-223 represents a promising marker for treatment stratification in pediatric patients with T-LBL and we provide the first evidence of miR-223 potential role as oncomir by SIK1 repression.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Centre for Tropical Diseases, Ospedale Sacro Cuore-Don Calabria, 37024 Negrar, Italy
| | - Federica Lovisa
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Elisa Carraro
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy
| | - Simona Primerano
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | | | - Paolo Bonvini
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| | - Luca Lo Nigro
- Center of Paediatric Haematology, Azienda Policlinico-OVE, 95123 Catania, Italy
| | - Rita De Vito
- Department of Paediatric Haemato-Oncology, IRCCS Ospedale Bambino Gesù, 00165 Roma, Italy
| | - Luciana Vinti
- Department of Paediatric Haemato-Oncology, IRCCS Ospedale Bambino Gesù, 00165 Roma, Italy
| | - Piero Farruggia
- Department of Paediatric Haemato-Oncology, ARNAS Ospedali Civico, G Di Cristina, 90127 Palermo, Italy
| | - Marta Pillon
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy
| | - Giuseppe Basso
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy
| | - Katia Basso
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, NY 10027, New York, USA
| | - Lara Mussolin
- Department of Women's and Children's Health, Clinic of Pediatric Hemato-Oncology, University of Padova, 35128 Padova, Italy.,Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
88
|
Comprehensive miRNA expression profiling in human T-cell acute lymphoblastic leukemia by small RNA-sequencing. Sci Rep 2017; 7:7901. [PMID: 28801656 PMCID: PMC5554241 DOI: 10.1038/s41598-017-08148-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease that can be classified into different molecular genetic subtypes according to their mRNA gene expression profile. In this study, we applied RNA sequencing to investigate the full spectrum of miRNA expression in primary T-ALL patient samples, T-ALL leukemia cell lines and healthy donor thymocytes. Notably, this analysis revealed that genetic subtypes of human T-ALL also display unique miRNA expression signatures, which are largely conserved in human T-ALL cell lines with corresponding genetic background. Furthermore, small RNA-sequencing also unraveled the variety of isoforms that are expressed for each miRNA in T-ALL and showed that a significant number of miRNAs are actually represented by an alternative isomiR. Finally, comparison of CD34+ and CD4+CD8+ healthy donor thymocytes and T-ALL miRNA profiles allowed identifying several novel miRNAs with putative oncogenic or tumor suppressor functions in T-ALL. Altogether, this study provides a comprehensive overview of miRNA expression in normal and malignant T-cells and sets the stage for functional evaluation of novel miRNAs in T-ALL disease biology.
Collapse
|
89
|
Kim C, Kang D, Lee EK, Lee JS. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2062384. [PMID: 28811863 PMCID: PMC5547732 DOI: 10.1155/2017/2062384] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized. RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage, turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs, separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases. Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence, and age-related diseases.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
90
|
Krzanowski J, Madzio J, Pastorczak A, Tracz A, Braun M, Tabarkiewicz J, Pluta A, Młynarski W, Zawlik I. Selected miRNA levels are associated with IKZF1 microdeletions in pediatric acute lymphoblastic leukemia. Oncol Lett 2017; 14:3853-3861. [PMID: 28927157 DOI: 10.3892/ol.2017.6599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/28/2017] [Indexed: 01/19/2023] Open
Abstract
The clinical outcome of children with high-risk relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is poor. The present study assessed the utility and prognostic value of selected microRNA (miRNA/miR) in BCP-ALL. The changes in the expression levels of these miRNAs regarding known gene lesions affecting lymphoid development [early B-cell factor 1 (EBF1), ETS variant 6 (ETV6), IKAROS family zinc finger 1 (IKZF1), paired box 5 (PAX5), cyclin dependent kinase inhibitor (CDKN) 2A/CDKN2B, retinoblastoma 1 (RB1), pseudoautosomal region 1 (PAR1), B-cell translocation gene 1 protein (BTG1)] were analyzed. The following miRNAs were analyzed: miR-24, miR-31, miR-128, miR-542, and miR-708. The present study focused on patients with deletions of the IKAROS transcriptional factor gene IKZF1, which is currently considered to be an independent negative prognostic factor for ALL outcome. It was demonstrated that the expression level of miR-128 was significantly lower in patients with IKZF1 deletion compared with patients without IKZF1 deletion. Additionally, low expression of miR-542 was associated with CDKN2A/B and miR-31deletions, and low expression of miR-24 was associated with miR-31 deletion. Low expression of miR-31, miR-24, miR-708 and miR-128 was associated with PAX5 deletion, high expression of miR-24 and miR-542 was associated with PAR1 deletion and high expression of miR-708 was associated with ETV6 deletion. The expression of the selected miRNAs was not associated with deletions of BTG1, EBF1 and RB1. These data, by emphasizing the association of miRNAs expression level with microdeletions, may assist to elucidate ALL biology and contribute to future studies on the possible applications of the miRNA profile for diagnosis.
Collapse
Affiliation(s)
- J Krzanowski
- Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - J Madzio
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, 91-738 Łódź, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - A Pastorczak
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, 91-738 Łódź, Poland
| | - A Tracz
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, 91-738 Łódź, Poland
| | - M Braun
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, 91-738 Łódź, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.,Department of Pathology, Chair of Oncology, Medical University of Łódź, 92-213 Łódź, Poland
| | - J Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, 35-959 Rzeszów, Poland.,Department of Immunology, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszów, 35-959 Rzeszów, Poland
| | - A Pluta
- Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - W Młynarski
- Department of Pediatrics, Hematology, Oncology and Diabetology, Medical University of Łódź, 91-738 Łódź, Poland
| | - I Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, 35-959 Rzeszów, Poland.,Department of Genetics, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
91
|
Kurkewich JL, Hansen J, Klopfenstein N, Zhang H, Wood C, Boucher A, Hickman J, Muench DE, Grimes HL, Dahl R. The miR-23a~27a~24-2 microRNA cluster buffers transcription and signaling pathways during hematopoiesis. PLoS Genet 2017; 13:e1006887. [PMID: 28704388 PMCID: PMC5531666 DOI: 10.1371/journal.pgen.1006887] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/27/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNA cluster mirn23a has previously been shown to promote myeloid development at the expense of lymphoid development in overexpression and knockout mouse models. This polarization is observed early in hematopoietic development, with an increase in common lymphoid progenitors (CLPs) and a decrease in all myeloid progenitor subsets in adult bone marrow. The pool size of multipotential progenitors (MPPs) is unchanged; however, in this report we observe by flow cytometry that polarized subsets of MPPs are changed in the absence of mirn23a. Additionally, in vitro culture of MPPs and sorted MPP transplants showed that these cells have decreased myeloid and increased lymphoid potential in vitro and in vivo. We investigated the mechanism by which mirn23a regulates hematopoietic differentiation and observed that mirn23a promotes myeloid development of hematopoietic progenitors through regulation of hematopoietic transcription factors and signaling pathways. Early transcription factors that direct the commitment of MPPs to CLPs (Ikzf1, Runx1, Satb1, Bach1 and Bach2) are increased in the absence of mirn23a miRNAs as well as factors that commit the CLP to the B cell lineage (FoxO1, Ebf1, and Pax5). Mirn23a appears to buffer transcription factor levels so that they do not stochastically reach a threshold level to direct differentiation. Intriguingly, mirn23a also inversely regulates the PI3 kinase (PI3K)/Akt and BMP/Smad signaling pathways. Pharmacological inhibitor studies, coupled with dominant active/dominant negative biochemical experiments, show that both signaling pathways are critical to mirn23a’s regulation of hematopoietic differentiation. Lastly, consistent with mirn23a being a physiological inhibitor of B cell development, we observed that the essential B cell transcription factor EBF1 represses expression of mirn23a. In summary, our data demonstrates that mirn23a regulates a complex array of transcription and signaling pathways to modulate adult hematopoiesis. MicroRNAs (miRNAs) are small ~22 nucleotide long RNA molecules that are involved in regulating multiple cellular processes through inhibiting the expression of target proteins. We previously identified a gene (mirn23a) that codes for 3 miRNAs that control the development of immune cells in the bone marrow. The miRNAs promote the development of innate immune cells, macrophages and granulocytes, while repressing the development of B cells. Here we show that mirn23a miRNAs negatively affect the expression of multiple proteins that are involved in directing blood progenitor cells to become B cells. Additionally, we observed that modulation of FoxO1 and Smad proteins, downstream effectors of two signaling pathways (PI3 kinase/ Akt and BMP/ Smad), is critical to direct immune cell development. This is the first observation that these pathways are potentially coregulated during the commitment of blood progenitors to mature cells of the immune system. Consistent with mirn23a being a critical gene for committing progenitors to innate immune cells at the expense of B cells, we observed that a critical B cell protein represses the expression of mirn23a. In conclusion, we demonstrate the mirn23a regulation of blood development is due to a complex regulation of both transcription factors and signaling pathways.
Collapse
Affiliation(s)
- Jeffrey L. Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Justin Hansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
| | - Helen Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Christian Wood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Austin Boucher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - Joseph Hickman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
| | - David E. Muench
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - H. Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Harper Cancer Research Institute, South Bend, IN, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, IN, United States of America
- * E-mail:
| |
Collapse
|
92
|
Regev K, Healy BC, Khalid F, Paul A, Chu R, Tauhid S, Tummala S, Diaz-Cruz C, Raheja R, Mazzola MA, von Glehn F, Kivisakk P, Dupuy SL, Kim G, Chitnis T, Weiner HL, Gandhi R, Bakshi R. Association Between Serum MicroRNAs and Magnetic Resonance Imaging Measures of Multiple Sclerosis Severity. JAMA Neurol 2017; 74:275-285. [PMID: 28114622 DOI: 10.1001/jamaneurol.2016.5197] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance MicroRNAs (miRNAs) are promising multiple sclerosis (MS) biomarkers. Establishing the association between miRNAs and magnetic resonance imaging (MRI) measures of disease severity will help define their significance and potential impact. Objective To correlate circulating miRNAs in the serum of patients with MS to brain and spinal MRI. Design, Setting, and Participants A cross-sectional study comparing serum miRNA samples with MRI metrics was conducted at a tertiary MS referral center. Two independent cohorts (41 and 79 patients) were retrospectively identified from the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital. Expression of miRNA was determined by locked nucleic acid-based quantitative real-time polymerase chain reaction. Spearman correlation coefficients were used to test the association between miRNA and brain lesions (T2 hyperintense lesion volume [T2LV]), the ratio of T1 hypointense lesion volume [T1LV] to T2LV [T1:T2]), brain atrophy (whole brain and gray matter), and cervical spinal cord lesions (T2LV) and atrophy. The study was conducted from December 2013 to April 2016. Main Outcomes and Measures miRNA expression. Results Of the 120 patients included in the study, cohort 1 included 41 participants (7 [17.1%] men), with mean (SD) age of 47.7 (9.5) years; cohort 2 had 79 participants (26 [32.9%] men) with a mean (SD) age of 43.0 (7.5) years. Associations between miRNAs and MRIs were both protective and pathogenic. Regarding miRNA signatures, a topographic specificity differed for the brain vs the spinal cord, and the signature differed between T2LV and atrophy/destructive measures. Four miRNAs showed similar significant protective correlations with T1:T2 in both cohorts, with the highest for hsa.miR.143.3p (cohort 1: Spearman correlation coefficient rs = -0.452, P = .003; cohort 2: rs = -0.225, P = .046); the others included hsa.miR.142.5p (cohort 1: rs = -0.424, P = .006; cohort 2: rs = -0.226, P = .045), hsa.miR.181c.3p (cohort 1: rs = -0.383, P = .01; cohort 2: rs = -0.222, P = .049), and hsa.miR.181c.5p (cohort 1: rs = -0.433, P = .005; cohort 2: rs = -0.231, P = .04). In the 2 cohorts, hsa.miR.486.5p (cohort 1: rs = 0.348, P = .03; cohort 2: rs = 0.254, P = .02) and hsa.miR.92a.3p (cohort 1: rs = 0.392, P = .01; cohort 2: rs = 0.222, P = .049) showed similar significant pathogenic correlations with T1:T2; hsa.miR.375 (cohort 1: rs = -0.345, P = .03; cohort 2: rs = -0.257, P = .022) and hsa.miR.629.5p (cohort 1: rs = -0.350, P = .03; cohort 2: rs = -0.269, P = .02) showed significant pathogenic correlations with brain atrophy. Although we found several miRNAs associated with MRI outcomes, none of these associations remained significant when correcting for multiple comparisons, suggesting that further validation of our findings is needed. Conclusions and Relevance Serum miRNAs may serve as MS biomarkers for monitoring disease progression and act as surrogate markers to identify underlying disease processes.
Collapse
Affiliation(s)
- Keren Regev
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian C Healy
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts2Biostatistics Center, Massachusetts General Hospital, Boston
| | - Fariha Khalid
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Renxin Chu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Subhash Tummala
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Camilo Diaz-Cruz
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Mazzola
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Felipe von Glehn
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pia Kivisakk
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sheena L Dupuy
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gloria Kim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts3Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts4Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
93
|
Ye M, Zhang Y, Zhang X, Zhang J, Jing P, Cao L, Li N, Li X, Yao L, Zhang J, Zhang J. Targeting FBW7 as a Strategy to Overcome Resistance to Targeted Therapy in Non–Small Cell Lung Cancer. Cancer Res 2017; 77:3527-3539. [PMID: 28522751 DOI: 10.1158/0008-5472.can-16-3470] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/27/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Mingxiang Ye
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xinxin Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Cao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Nan Li
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Libo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Jian Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Xi'an, China.
| |
Collapse
|
94
|
Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia. Blood Adv 2017; 1:733-747. [PMID: 29296717 DOI: 10.1182/bloodadvances.2017005538] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/27/2017] [Indexed: 11/20/2022] Open
Abstract
The oncogenic mechanisms driven by aberrantly expressed transcription factors in T-cell acute leukemia (T-ALL) are still elusive. MicroRNAs (miRNAs) play an important role in normal development and pathologies. Here, we examined the expression of 738 miRNA species in 41 newly diagnosed pediatric T-ALLs and in human thymus-derived cells. We found that expression of 2 clustered miRNAs, miR-125b/99a, peaks in primitive T cells and is upregulated in the T leukemia homeobox 3 (TLX3)-positive subtype of T-ALL. Using loss- and gain-of-function approaches, we established functional relationships between TLX3 and miR-125b. Both TLX3 and miR-125b support in vitro cell growth and in vivo invasiveness of T-ALL. Besides, ectopic expression of TLX3 or miR-125b in human hematopoietic progenitor cells enhances production of T-cell progenitors and favors their accumulation at immature stages of T-cell development resembling the differentiation arrest observed in TLX3 T-ALL. Ectopic miR-125b also remarkably accelerated leukemia in a xenograft model, suggesting that miR125b is an important mediator of the TLX3-mediated transformation program that takes place in immature T-cell progenitors. Mechanistically, TLX3-mediated activation of miR-125b may impact T-cell differentiation in part via repression of Ets1 and CBFβ genes, 2 regulators of T-lineage. Finally, we established that TLX3 directly regulates miR-125b production through binding and transactivation of LINC00478, a long noncoding RNA gene, which is the host of miR-99a/Let-7c/miR-125b. Altogether, our results reveal an original functional link between TLX3 and oncogenic miR-125b in T-ALL development.
Collapse
|
95
|
Gao Y, Lin L, Li T, Yang J, Wei Y. The role of miRNA-223 in cancer: Function, diagnosis and therapy. Gene 2017; 616:1-7. [PMID: 28322994 DOI: 10.1016/j.gene.2017.03.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/28/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) constitute a large family of small, non-coding RNAs with the capacity to regulate gene expression post-transcriptionally. miRNAs appear to hold promise of mechanistic explanations for various physiological and pathological processes. miRNA-223 is highly conserved and preferentially expressed in the hematopoietic system in regulation of myeloid differentiation. Recently, increasing evidence suggests that miRNA-223 may also play an essential part in both hematological malignancies and solid tumors. miRNA-223 can function as either an oncogene or a tumor suppressor gene, which is achieved by targeting a wide range of genes and regulating downstream signal transduction. As yet, the function of miR-223 in cancer has not been fully characterized and understood. To make it more clear, this review firstly summarizes the present understanding of the regulation of miR-223 at the molecular level, its crucial role in oncogenesis, development, and metastasis, its function as a diagnostic and prognostic biomarker and finally, its potential applications in monitoring and therapy of diverse types of malignancies.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Le Lin
- Department of Urology, Fujian Medical University Teaching Hospital, Fujian Provincial Hospital, Fuzhou 350001, PR China
| | - Tao Li
- Department of Urology, Fujian Medical University Teaching Hospital, Fujian Provincial Hospital, Fuzhou 350001, PR China
| | - Jinrui Yang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Yongbao Wei
- Department of Urology, Fujian Medical University Teaching Hospital, Fujian Provincial Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
96
|
Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia 2017; 31:2355-2364. [PMID: 28280276 PMCID: PMC5986278 DOI: 10.1038/leu.2017.80] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/07/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic
malignancy, and T-ALL patients are prone to early disease relapse and suffer
from poor outcomes. The PTEN, PI3K/AKT, and Notch pathways are frequently
altered in T-ALL. PTEN is a tumor suppressor that inactivates the PI3K pathway.
We profiled miRNAs in Pten-deficient mouse T-ALL and identified
miR-26b as a potentially dysregulated gene. We validated decreased expression
levels of miR-26b in mouse and human T-ALL cells. In addition, expression of
exogenous miR-26b reduced proliferation and promoted apoptosis of T-ALL cells
in vitro, and hindered progression of T-ALL in
vivo. Furthermore, miR-26b inhibited the PI3K/AKT pathway by
directly targeting PIK3CD, the gene encoding PI3Kδ, in
human T-ALL cell lines. ShRNA for PIK3CD and CAL-101, a PIK3CD
inhibitor, reduced the growth and increased apoptosis of T-ALL cells. Finally,
we showed that PTEN induced miR-26b expression by regulating the differential
expression of Ikaros isoforms that are transcriptional regulators of miR-26b.
These results suggest that miR-26b functions as a tumor suppressor in the
development of T-ALL. Further characterization of targets and regulators of
miR-26b may be promising for the development of novel therapies.
Collapse
|
97
|
Wallaert A, Durinck K, Taghon T, Van Vlierberghe P, Speleman F. T-ALL and thymocytes: a message of noncoding RNAs. J Hematol Oncol 2017; 10:66. [PMID: 28270163 PMCID: PMC5341419 DOI: 10.1186/s13045-017-0432-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
In the last decade, the role for noncoding RNAs in disease was clearly established, starting with microRNAs and later expanded towards long noncoding RNAs. This was also the case for T cell acute lymphoblastic leukemia, which is a malignant blood disorder arising from oncogenic events during normal T cell development in the thymus. By studying the transcriptomic profile of protein-coding genes, several oncogenic events leading to T cell acute lymphoblastic leukemia (T-ALL) could be identified. In recent years, it became apparent that several of these oncogenes function via microRNAs and long noncoding RNAs. In this review, we give a detailed overview of the studies that describe the noncoding RNAome in T-ALL oncogenesis and normal T cell development.
Collapse
Affiliation(s)
- Annelynn Wallaert
- Center for Medical Genetics, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| | - Kaat Durinck
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
98
|
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129:1113-1123. [PMID: 28115373 PMCID: PMC5363819 DOI: 10.1182/blood-2016-10-706465] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy caused by the accumulation of genomic lesions that affect the development of T cells. For many years, it has been established that deregulated expression of transcription factors, impairment of the CDKN2A/2B cell-cycle regulators, and hyperactive NOTCH1 signaling play prominent roles in the pathogenesis of this leukemia. In the past decade, systematic screening of T-ALL genomes by high-resolution copy-number arrays and next-generation sequencing technologies has revealed that T-cell progenitors accumulate additional mutations affecting JAK/STAT signaling, protein translation, and epigenetic control, providing novel attractive targets for therapy. In this review, we provide an update on our knowledge of T-ALL pathogenesis, the opportunities for the introduction of targeted therapy, and the challenges that are still ahead.
Collapse
Affiliation(s)
- Tiziana Girardi
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Carmen Vicente
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jan Cools
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|
99
|
Jin HY, Oda H, Chen P, Yang C, Zhou X, Kang SG, Valentine E, Kefauver JM, Liao L, Zhang Y, Gonzalez-Martin A, Shepherd J, Morgan GJ, Mondala TS, Head SR, Kim PH, Xiao N, Fu G, Liu WH, Han J, Williamson JR, Xiao C. Differential Sensitivity of Target Genes to Translational Repression by miR-17~92. PLoS Genet 2017; 13:e1006623. [PMID: 28241004 PMCID: PMC5348049 DOI: 10.1371/journal.pgen.1006623] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/13/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. MicroRNAs (miRNAs) are small RNAs encoded by our genome. Each miRNA binds hundreds of target mRNAs and performs specific functions. It is thought that miRNAs exert their function by reducing the expression of all these target genes and each to a small degree. However, these target genes often have very diverse functions. It has been unclear how small changes in hundreds of target genes with diverse functions are translated into the specific function of a miRNA. Here we take advantage of recent technical advances to globally examine the mRNA and protein levels of 868 target genes regulated by miR-17~92, the first oncogenic miRNA, in mutant mice with transgenic overexpression or deletion of this miRNA gene. We show that miR-17~92 regulates target gene expression mainly at the protein level, with little effect on mRNA. Surprisingly, only a small fraction of target genes respond to miR-17~92 expression changes. Further studies show that the sensitivity of target genes to miR-17~92 is determined by a non-coding region of target mRNA. Our findings demonstrate that not every target gene is equal, and suggest that the function of a miRNA is mediated by a small number of key target genes.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hiroyo Oda
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaojuan Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Seung Goo Kang
- Division of Biomedical Convergence/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Elizabeth Valentine
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jennifer M. Kefauver
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gareth J. Morgan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tony S. Mondala
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience/Institute of Bioscience & Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
100
|
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem 2017; 8:45-56. [PMID: 28289518 PMCID: PMC5329714 DOI: 10.4331/wjbc.v8.i1.45] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are pervasively expressed and regulate most biological functions. They function by modulating transcriptional and translational programs and therefore they orchestrate both physiological and pathological processes, such as development, cell differentiation, proliferation, apoptosis and tumor growth. miRNAs work as small guide molecules in RNA silencing, by negatively regulating the expression of several genes both at mRNA and protein level, by degrading their mRNA target and/or by silencing translation. One of the most recent advances in the field is the comprehension of their role in oncogenesis. The number of miRNA genes is increasing and an alteration in the level of miRNAs is involved in the initiation, progression and metastases formation of several tumors. Some tumor types show a distinct miRNA signature that distinguishes them from normal tissues and from other cancer types. Genetic and biochemical evidence supports the essential role of miRNAs in tumor development. Although the abnormal expression of miRNAs in cancer cells is a widely accepted phenomenon, the cause of this dysregulation is still unknown. Here, we discuss the biogenesis of miRNAs, focusing on the mechanisms by which they regulate protein synthesis. In addition we debate on their role in cancer, highlighting their potential to become therapeutic targets.
Collapse
|