51
|
Bustos BI, Billingsley K, Blauwendraat C, Gibbs JR, Gan-Or Z, Krainc D, Singleton AB, Lubbe SJ. Genome-wide contribution of common short-tandem repeats to Parkinson's disease genetic risk. Brain 2023; 146:65-74. [PMID: 36347471 PMCID: PMC10060720 DOI: 10.1093/brain/awac301] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is a complex neurodegenerative disorder with a strong genetic component, for which most known disease-associated variants are single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels). DNA repetitive elements account for >50% of the human genome; however, little is known of their contribution to Parkinson's disease aetiology. While select short tandem repeats (STRs) within candidate genes have been studied in Parkinson's disease, their genome-wide contribution remains unknown. Here we present the first genome-wide association study of STRs in Parkinson's disease. Through a meta-analysis of 16 imputed genome-wide association study cohorts from the International Parkinson's Disease Genomic Consortium (IPDGC), totalling 39 087 individuals (16 642 cases and 22 445 controls of European ancestry), we identified 34 genome-wide significant STR loci (P < 5.34 × 10-6), with the strongest signal located in KANSL1 [chr17:44 205 351:[T]11, P = 3 × 10-39, odds ratio = 1.31 (95% confidence interval = 1.26-1.36)]. Conditional-joint analyses suggested that four significant STRs mapping nearby NDUFAF2, TRIML2, MIRNA-129-1 and NCOR1 were independent from known risk SNPs. Including STRs in heritability estimates increased the variance explained by SNPs alone. Gene expression analysis of STRs (eSTRs) in RNA sequencing data from 13 brain regions identified significant associations of STRs influencing the expression of multiple genes, including known Parkinson's disease genes. Further functional annotation of candidate STRs revealed that significant eSTRs within NUDFAF2 and ZSWIM7 overlap with regulatory features and are associated with change in the expression levels of nearby genes. Here, we show that STRs at known and novel candidate loci contribute to Parkinson's disease risk and have functional effects in disease-relevant tissues and pathways, supporting previously reported disease-associated genes and giving further evidence for their functional prioritization. These data represent a valuable resource for researchers currently dissecting Parkinson's disease risk loci.
Collapse
Affiliation(s)
- Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
52
|
Jin X, Tanaka H, Jin M, Fujita K, Homma H, Inotsume M, Yong H, Umeda K, Kodera N, Ando T, Okazawa H. PQBP5/NOL10 maintains and anchors the nucleolus under physiological and osmotic stress conditions. Nat Commun 2023; 14:9. [PMID: 36599853 PMCID: PMC9813255 DOI: 10.1038/s41467-022-35602-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Polyglutamine binding protein 5 (PQBP5), also called nucleolar protein 10 (NOL10), binds to polyglutamine tract sequences and is expressed in the nucleolus. Using dynamic imaging of high-speed atomic force microscopy, we show that PQBP5/NOL10 is an intrinsically disordered protein. Super-resolution microscopy and correlative light and electron microscopy method show that PQBP5/NOL10 makes up the skeletal structure of the nucleolus, constituting the granule meshwork in the granular component area, which is distinct from other nucleolar substructures, such as the fibrillar center and dense fibrillar component. In contrast to other nucleolar proteins, which disperse to the nucleoplasm under osmotic stress conditions, PQBP5/NOL10 remains in the nucleolus and functions as an anchor for reassembly of other nucleolar proteins. Droplet and thermal shift assays show that the biophysical features of PQBP5/NOL10 remain stable under stress conditions, explaining the spatial role of this protein. PQBP5/NOL10 can be functionally depleted by sequestration with polyglutamine disease proteins in vitro and in vivo, leading to the pathological deformity or disappearance of the nucleolus. Taken together, these findings indicate that PQBP5/NOL10 is an essential protein needed to maintain the structure of the nucleolus.
Collapse
Affiliation(s)
- Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Huang Yong
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenichi Umeda
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
53
|
Liu Y, Wan L, Ngai CK, Wang Y, Lam SL, Guo P. Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1584-1592. [PMID: 36874156 PMCID: PMC9975016 DOI: 10.1016/j.csbj.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs.
Collapse
Affiliation(s)
- Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liqi Wan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
54
|
The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference. Cell Death Dis 2022; 13:1078. [PMID: 36585400 PMCID: PMC9803637 DOI: 10.1038/s41419-022-05494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Extended CAG trinucleotide repeats (TNR) in the genes huntingtin (HTT) and androgen receptor (AR) are the cause of two progressive neurodegenerative disorders: Huntington's disease (HD) and Spinal and Bulbar Muscular Atrophy (SBMA), respectively. Anyone who inherits the mutant gene in the complete penetrance range (>39 repeats for HD and 44 for SBMA) will develop the disease. An inverse correlation exists between the length of the CAG repeat and the severity and age of onset of the diseases. Growing evidence suggests that it is the length of uninterrupted CAG repeats in the mRNA rather than the length of poly glutamine (polyQ) in mutant (m)HTT protein that determines disease progression. One variant of mHTT (loss of inhibition; LOI) causes a 25 year earlier onset of HD when compared to a reference sequence, despite both coding for a protein that contains an identical number of glutamines. Short 21-22 nt CAG repeat (sCAGs)-containing RNAs can cause disease through RNA interference (RNAi). RNA hairpins (HPs) forming at the CAG TNRs are stabilized by adjacent CCG (in HD) or CUG repeats (in SBMA) making them better substrates for Dicer, the enzyme that processes CAG HPs into sCAGs. We now show that cells deficient in Dicer or unable to mediate RNAi are resistant to the toxicity of the HTT and AR derived HPs. Expression of a small HP that mimics the HD LOI variant is more stable and more toxic than a reference HP. We report that the LOI HP is processed by Dicer, loaded into the RISC more efficiently, and gives rise to a higher quantity of RISC-bound 22 nt sCAGs. Our data support the notion that RNAi contributes to the cell death seen in HD and SBMA and provide an explanation for the dramatically reduced onset of disease in HD patients that carry the LOI variant.
Collapse
|
55
|
Huntingtin and Other Neurodegeneration-Associated Proteins in the Development of Intracellular Pathologies: Potential Target Search for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232415533. [PMID: 36555175 PMCID: PMC9779313 DOI: 10.3390/ijms232415533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are currently incurable. Numerous experimental data accumulated over the past fifty years have brought us closer to understanding the molecular and cell mechanisms responsible for their development. However, these data are not enough for a complete understanding of the genesis of these diseases, nor to suggest treatment methods. It turns out that many cellular pathologies developing during neurodegeneration coincide from disease to disease. These observations give hope to finding a common intracellular target(s) and to offering a universal method of treatment. In this review, we attempt to analyze data on similar cellular disorders among neurodegenerative diseases in general, and polyglutamine neurodegenerative diseases in particular, focusing on the interaction of various proteins involved in the development of neurodegenerative diseases with various cellular organelles. The main purposes of this review are: (1) to outline the spectrum of common intracellular pathologies and to answer the question of whether it is possible to find potential universal target(s) for therapeutic intervention; (2) to identify specific intracellular pathologies and to speculate about a possible general approach for their treatment.
Collapse
|
56
|
Miceli M, Deriu MA, Grasso G. Toward the design and development of peptidomimetic inhibitors of the Ataxin-1 aggregation pathway. Biophys J 2022; 121:4679-4688. [PMID: 36262042 PMCID: PMC9748251 DOI: 10.1016/j.bpj.2022.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/09/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia type 1 is a degenerative disorder caused by polyglutamine expansions and aggregation of Ataxin-1. The interaction between Capicua (CIC) and the AXH domain of Ataxin-1 protein has been suggested as a possible driver of aggregation for the expanded Ataxin-1 protein and the subsequent onset of spinocerebellar ataxia 1. Experimental studies have demonstrated that short constructs of CIC may prevent such aggregation and suggested this as a possible candidate to inspire the rational design of peptidomimetics. In this work, molecular modeling techniques, namely the alchemical mutation and force field-based molecular dynamics, have been employed to propose a pipeline for the rational design of a CIC-inspired inhibitor of the ataxin-1 aggregation pathway. In particular, this study has shown that the alchemical mutation can estimate the affinity between AXH and CIC with good correlation with experimental data, while molecular dynamics shed light on molecular mechanisms that occur for stabilization of the interaction between the CIC-inspired construct and the AXH domain of Ataxin-1. This work lays the foundation for a rational methodology for the in silico screening and design of peptidomimetics, which can expedite and streamline experimental studies to identify strategies for inhibiting the ataxin-1 aggregation pathway.
Collapse
Affiliation(s)
- Marcello Miceli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco A Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence Research, Scuola Universitaria Professionale della Svizzera Italiana, Lugano-Viganello, Switzerland.
| |
Collapse
|
57
|
Mohaupt P, Roucou X, Delaby C, Vialaret J, Lehmann S, Hirtz C. The alternative proteome in neurobiology. Front Cell Neurosci 2022; 16:1019680. [PMID: 36467612 PMCID: PMC9712206 DOI: 10.3389/fncel.2022.1019680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 10/13/2023] Open
Abstract
Translation involves the biosynthesis of a protein sequence following the decoding of the genetic information embedded in a messenger RNA (mRNA). Typically, the eukaryotic mRNA was considered to be inherently monocistronic, but this paradigm is not in agreement with the translational landscape of cells, tissues, and organs. Recent ribosome sequencing (Ribo-seq) and proteomics studies show that, in addition to currently annotated reference proteins (RefProt), other proteins termed alternative proteins (AltProts), and microproteins are encoded in regions of mRNAs thought to be untranslated or in transcripts annotated as non-coding. This experimental evidence expands the repertoire of functional proteins within a cell and potentially provides important information on biological processes. This review explores the hitherto overlooked alternative proteome in neurobiology and considers the role of AltProts in pathological and healthy neuromolecular processes.
Collapse
Affiliation(s)
- Pablo Mohaupt
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Jérôme Vialaret
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
58
|
Borgenheimer E, Hamel K, Sheeler C, Moncada FL, Sbrocco K, Zhang Y, Cvetanovic M. Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Front Cell Neurosci 2022; 16:998408. [PMID: 36457352 PMCID: PMC9706545 DOI: 10.3389/fncel.2022.998408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells constitute half the population of the human brain and are essential for normal brain function. Most, if not all, brain diseases are characterized by reactive gliosis, a process by which glial cells respond and contribute to neuronal pathology. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease characterized by a severe degeneration of cerebellar Purkinje cells (PCs) and cerebellar gliosis. SCA1 is caused by an abnormal expansion of CAG repeats in the gene Ataxin1 (ATXN1). While several studies reported the effects of mutant ATXN1 in Purkinje cells, it remains unclear how cerebellar glia respond to dysfunctional Purkinje cells in SCA1. To address this question, we performed single nuclei RNA sequencing (snRNA seq) on cerebella of early stage Pcp2-ATXN1[82Q] mice, a transgenic SCA1 mouse model expressing mutant ATXN1 only in Purkinje cells. We found no changes in neuronal and glial proportions in the SCA1 cerebellum at this early disease stage compared to wild-type controls. Importantly, we observed profound non-cell autonomous and potentially neuroprotective reactive gene and pathway alterations in Bergmann glia, velate astrocytes, and oligodendrocytes in response to Purkinje cell dysfunction.
Collapse
Affiliation(s)
- Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
59
|
Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom Med 2022; 7:62. [PMID: 36289212 PMCID: PMC9606279 DOI: 10.1038/s41525-022-00331-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
We developed a diagnostic method for repeat expansion diseases using a long-read sequencer to improve currently available, low throughput diagnostic methods. We employed the real-time target enrichment system of the nanopore GridION sequencer using the adaptive sampling option, in which software-based target assignment is available without prior sample enrichment, and built an analysis pipeline that prioritized the disease-causing loci. Twenty-two patients with various neurological and neuromuscular diseases, including 12 with genetically diagnosed repeat expansion diseases and 10 manifesting cerebellar ataxia, but without genetic diagnosis, were analyzed. We first sequenced the 12 molecularly diagnosed patients and accurately confirmed expanded repeats in all with uniform depth of coverage across the loci. Next, we applied our method and a conventional method to 10 molecularly undiagnosed patients. Our method corrected inaccurate diagnoses of two patients by the conventional method. Our method is superior to conventional diagnostic methods in terms of speed, accuracy, and comprehensiveness.
Collapse
|
60
|
Spatial and Temporal Diversity of Astrocyte Phenotypes in Spinocerebellar Ataxia Type 1 Mice. Cells 2022; 11:cells11203323. [PMID: 36291186 PMCID: PMC9599982 DOI: 10.3390/cells11203323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
While astrocyte heterogeneity is an important feature of the healthy brain, less is understood about spatiotemporal heterogeneity of astrocytes in brain disease. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by a CAG repeat expansion in the gene Ataxin1 (ATXN1). We characterized astrocytes across disease progression in the four clinically relevant brain regions, cerebellum, brainstem, hippocampus, and motor cortex, of Atxn1154Q/2Q mice, a knock-in mouse model of SCA1. We found brain region-specific changes in astrocyte density and GFAP expression and area, early in the disease and prior to neuronal loss. Expression of astrocytic core homeostatic genes was also altered in a brain region-specific manner and correlated with neuronal activity, indicating that astrocytes may compensate or exacerbate neuronal dysfunction. Late in disease, expression of astrocytic homeostatic genes was reduced in all four brain regions, indicating loss of astrocyte functions. We observed no obvious correlation between spatiotemporal changes in microglia and spatiotemporal astrocyte alterations, indicating a complex orchestration of glial phenotypes in disease. These results support spatiotemporal diversity of glial phenotypes as an important feature of the brain disease that may contribute to SCA1 pathogenesis in a brain region and disease stage-specific manner.
Collapse
|
61
|
Pihlstrøm L. Kavlipris til fire pionerer i nevrogenetikk. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2022; 142:22-0604. [DOI: 10.4045/tidsskr.22.0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
62
|
Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Corrigendum: Assessment of cerebral and cerebellar white matter microstructure in spinocerebellar ataxias 1, 2, 3, and 6 using diffusion MRI. Front Neurol 2022; 13:1038298. [PMID: 36247785 PMCID: PMC9559733 DOI: 10.3389/fneur.2022.1038298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Young Woo Park
| | - James M. Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Isaac M. Adanyeguh
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Christophe Lenglet
| |
Collapse
|
63
|
Johnson SL, Tsou WL, Prifti MV, Harris AL, Todi SV. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front Mol Neurosci 2022; 15:974167. [PMID: 36187346 PMCID: PMC9515312 DOI: 10.3389/fnmol.2022.974167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 01/20/2023] Open
Abstract
The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation—the abnormal elongation of a polyQ repeat in nine different proteins—which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.
Collapse
Affiliation(s)
- Sean L. Johnson
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Matthew V. Prifti
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Autumn L. Harris
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Maximizing Access to Research Careers (MARC) Program, Wayne State University, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
- *Correspondence: Sokol V. Todi,
| |
Collapse
|
64
|
Luttik K, Olmos V, Owens A, Khan A, Yun J, Driessen T, Lim J. Identifying Disease Signatures in the Spinocerebellar Ataxia Type 1 Mouse Cortex. Cells 2022; 11:2632. [PMID: 36078042 PMCID: PMC9454518 DOI: 10.3390/cells11172632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is known to lead to the progressive degeneration of specific neuronal populations, including cerebellar Purkinje cells (PCs), brainstem cranial nerve nuclei and inferior olive nuclei, and spinocerebellar tracts. The disease-causing protein ataxin-1 is fairly ubiquitously expressed throughout the brain and spinal cord, but most studies have primarily focused on the role of ataxin-1 in the cerebellum and brainstem. Therefore, the functions of ataxin-1 and the effects of SCA1 mutations in other brain regions including the cortex are not well-known. Here, we characterized pathology in the motor cortex of a SCA1 mouse model and performed RNA sequencing in this brain region to investigate the impact of mutant ataxin-1 towards transcriptomic alterations. We identified progressive cortical pathology and significant transcriptomic changes in the motor cortex of a SCA1 mouse model. We also identified progressive, region-specific, colocalization of p62 protein with mutant ataxin-1 aggregates in broad brain regions, but not the cerebellum or brainstem. A cross-regional comparison of the SCA1 cortical and cerebellar transcriptomic changes identified both common and unique gene expression changes between the two regions, including shared synaptic dysfunction and region-specific kinase regulation. These findings suggest that the cortex is progressively impacted via both shared and region-specific mechanisms in SCA1.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Victor Olmos
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ashley Owens
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Joy Yun
- Yale College, New Haven, CT 06510, USA
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
65
|
Luttik K, Tejwani L, Ju H, Driessen T, Smeets CJLM, Edamakanti CR, Khan A, Yun J, Opal P, Lim J. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1. Proc Natl Acad Sci U S A 2022; 119:e2208513119. [PMID: 35969780 PMCID: PMC9407543 DOI: 10.1073/pnas.2208513119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-β-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-β-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-β-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-β-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-β-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-β-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Hyoungseok Ju
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | | | | | | | - Joy Yun
- Yale College, New Haven, CT 06510
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
66
|
Spinocerebellar ataxia in a cohort of patients from Rio de Janeiro. Neurol Sci 2022; 43:4997-5005. [DOI: 10.1007/s10072-022-06084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
67
|
Ma Q, Oksenberg JR, Didonna A. Epigenetic control of ataxin-1 in multiple sclerosis. Ann Clin Transl Neurol 2022; 9:1186-1194. [PMID: 35903875 PMCID: PMC9380165 DOI: 10.1002/acn3.51618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE ATXN1 encodes the polyglutamine protein ataxin-1, which we have demonstrated exerting an immunomodulatory function in the context of central nervous system (CNS) autoimmunity, in addition to its classical role in the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). In this study, we dissected the contribution of DNA methylation to the regulation of ATXN1 in multiple sclerosis (MS). METHODS We interrogated a DNA methylation dataset previously generated via bisulfate DNA sequencing (BS-seq) in sorted peripheral immune cytotypes (CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes) isolated from untreated MS patients at symptoms onset. RESULTS Here, we report that ATXN1 undergoes hypo-methylation at four distinct regions upon MS, exclusively in B cells. We also highlight how these differentially methylated sites overlap with other regulatory epigenetic marks and MS risk variants. Lastly, we employ luciferase assays to assess the functionality of these regions, showing that the loss of methylation leads to an increase in ATXN1 expression. INTERPRETATION Altogether, these findings provide biological insights into ataxin-1 regulation in the immune system as well as into the molecular mechanisms underlying MS risk.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
- Department of Anatomy and Cell BiologyEast Carolina UniversityGreenvilleNorth Carolina27834USA
| |
Collapse
|
68
|
Scarabino D, Veneziano L, Fiore A, Nethisinghe S, Mantuano E, Garcia-Moreno H, Bellucci G, Solanky N, Morello M, Zanni G, Corbo RM, Giunti P. Leukocyte Telomere Length Variability as a Potential Biomarker in Patients with PolyQ Diseases. Antioxidants (Basel) 2022; 11:1436. [PMID: 35892638 PMCID: PMC9332235 DOI: 10.3390/antiox11081436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
SCA1, SCA2, and SCA3 are the most common forms of SCAs among the polyglutamine disorders, which include Huntington's Disease (HD). We investigated the relationship between leukocyte telomere length (LTL) and the phenotype of SCA1, SCA2, and SCA3, comparing them with HD. The results showed that LTL was significantly reduced in SCA1 and SCA3 patients, while LTL was significantly longer in SCA2 patients. A significant negative relationship between LTL and age was observed in SCA1 but not in SCA2 subjects. LTL of SCA3 patients depend on both patient's age and disease duration. The number of CAG repeats did not affect LTL in the three SCAs. Since LTL is considered an indirect marker of an inflammatory response and oxidative damage, our data suggest that in SCA1 inflammation is present already at an early stage of disease similar to in HD, while in SCA3 inflammation and impaired antioxidative processes are associated with disease progression. Interestingly, in SCA2, contrary to SCA1 and SCA3, the length of leukocyte telomeres does not reduce with age. We have observed that SCAs and HD show a differing behavior in LTL for each subtype, which could constitute relevant biomarkers if confirmed in larger cohorts and longitudinal studies.
Collapse
Affiliation(s)
- Daniela Scarabino
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Liana Veneziano
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy;
| | - Alessia Fiore
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (A.F.); (R.M.C.)
| | - Suran Nethisinghe
- Ataxia Center, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College, London WC1N 3BG, UK; (S.N.); (H.G.-M.); (N.S.); (P.G.)
| | - Elide Mantuano
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy;
| | - Hector Garcia-Moreno
- Ataxia Center, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College, London WC1N 3BG, UK; (S.N.); (H.G.-M.); (N.S.); (P.G.)
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, 00185 Rome, Italy;
| | - Nita Solanky
- Ataxia Center, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College, London WC1N 3BG, UK; (S.N.); (H.G.-M.); (N.S.); (P.G.)
| | - Maria Morello
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy;
| | - Ginevra Zanni
- Unit of Neuromuscolar and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Research Hospital, IRCCS, 00100 Rome, Italy;
| | - Rosa Maria Corbo
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (A.F.); (R.M.C.)
| | - Paola Giunti
- Ataxia Center, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College, London WC1N 3BG, UK; (S.N.); (H.G.-M.); (N.S.); (P.G.)
| |
Collapse
|
69
|
Olmos V, Gogia N, Luttik K, Haidery F, Lim J. The extra-cerebellar effects of spinocerebellar ataxia type 1 (SCA1): looking beyond the cerebellum. Cell Mol Life Sci 2022; 79:404. [PMID: 35802260 PMCID: PMC9993484 DOI: 10.1007/s00018-022-04419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is one of nine polyglutamine (polyQ) diseases and is characterized as an adult late-onset, progressive, dominantly inherited genetic disease. SCA1 is caused by an increase in the number of CAG repeats in the ATXN1 gene leading to an expanded polyQ tract in the ATAXIN-1 protein. ATAXIN-1 is broadly expressed throughout the brain. However, until recently, SCA1 research has primarily centered on the cerebellum, given the characteristic cerebellar Purkinje cell loss observed in patients, as well as the progressive motor deficits, including gait and limb incoordination, that SCA1 patients present with. There are, however, also other symptoms such as respiratory problems, cognitive defects and memory impairment, anxiety, and depression observed in SCA1 patients and mouse models, which indicate that there are extra-cerebellar effects of SCA1 that cannot be explained solely through changes in the cerebellar region of the brain alone. The existing gap between human and mouse model studies of extra-cerebellar regions in SCA1 makes it difficult to answer many important questions in the field. This review will cover both the cerebellar and extra-cerebellar effects of SCA1 and highlight the need for further investigations into the impact of mutant ATXN1 expression in these regions. This review will also discuss implications of extra-cerebellar effects not only for SCA1 but other neurodegenerative diseases showing diverse pathology as well.
Collapse
Affiliation(s)
- Victor Olmos
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
| | - Neha Gogia
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA
| | | | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale School of Medicine, 295 Congress Avenue, BCMM 154E, New Haven, CT, 06510, USA.
| |
Collapse
|
70
|
Gogia N, Ni L, Olmos V, Haidery F, Luttik K, Lim J. Exploring the Role of Posttranslational Modifications in Spinal and Bulbar Muscular Atrophy. Front Mol Neurosci 2022; 15:931301. [PMID: 35726299 PMCID: PMC9206542 DOI: 10.3389/fnmol.2022.931301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an X-linked adult-onset progressive neuromuscular disease that affects the spinal and bulbar motor neurons and skeletal muscles. SBMA is caused by expansion of polymorphic CAG trinucleotide repeats in the Androgen Receptor (AR) gene, resulting in expanded glutamine tract in the AR protein. Polyglutamine (polyQ) expansion renders the mutant AR protein toxic, resulting in the formation of mutant protein aggregates and cell death. This classifies SBMA as one of the nine known polyQ diseases. Like other polyQ disorders, the expansion of the polyQ tract in the AR protein is the main genetic cause of the disease; however, multiple other mechanisms besides the polyQ tract expansion also contribute to the SBMA disease pathophysiology. Posttranslational modifications (PTMs), including phosphorylation, acetylation, methylation, ubiquitination, and SUMOylation are a category of mechanisms by which the functionality of AR has been found to be significantly modulated and can alter the neurotoxicity of SBMA. This review summarizes the different PTMs and their effects in regulating the AR function and discusses their pathogenic or protective roles in context of SBMA. This review also includes the therapeutic approaches that target the PTMs of AR in an effort to reduce the mutant AR-mediated toxicity in SBMA.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Victor Olmos
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Fatema Haidery
- Yale College, Yale University, New Haven, CT, United States
| | - Kimberly Luttik
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
71
|
PQBP1: The Key to Intellectual Disability, Neurodegenerative Diseases, and Innate Immunity. Int J Mol Sci 2022; 23:ijms23116227. [PMID: 35682906 PMCID: PMC9180999 DOI: 10.3390/ijms23116227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The idea that a common pathology underlies various neurodegenerative diseases and dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglutamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability, whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated over more than 20 years has given rise to a new concept that shifts in the equilibrium between physiological and pathological processes have their basis in the dysregulation of common protein structure-linked molecular mechanisms.
Collapse
|
72
|
Lee WS, Al-Ramahi I, Jeong HH, Jang Y, Lin T, Adamski CJ, Lavery LA, Rath S, Richman R, Bondar VV, Alcala E, Revelli JP, Orr HT, Liu Z, Botas J, Zoghbi HY. Cross-species genetic screens identify transglutaminase 5 as a regulator of polyglutamine-expanded ataxin-1. J Clin Invest 2022; 132:e156616. [PMID: 35499073 PMCID: PMC9057624 DOI: 10.1172/jci156616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Many neurodegenerative disorders are caused by abnormal accumulation of misfolded proteins. In spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded (polyQ-expanded) ataxin-1 (ATXN1) causes neuronal toxicity. Lowering total ATXN1, especially the polyQ-expanded form, alleviates disease phenotypes in mice, but the molecular mechanism by which the mutant ATXN1 is specifically modulated is not understood. Here, we identified 22 mutant ATXN1 regulators by performing a cross-species screen of 7787 and 2144 genes in human cells and Drosophila eyes, respectively. Among them, transglutaminase 5 (TG5) preferentially regulated mutant ATXN1 over the WT protein. TG enzymes catalyzed cross-linking of ATXN1 in a polyQ-length-dependent manner, thereby preferentially modulating mutant ATXN1 stability and oligomerization. Perturbing Tg in Drosophila SCA1 models modulated mutant ATXN1 toxicity. Moreover, TG5 was enriched in the nuclei of SCA1-affected neurons and colocalized with nuclear ATXN1 inclusions in brain tissue from patients with SCA1. Our work provides a molecular insight into SCA1 pathogenesis and an opportunity for allele-specific targeting for neurodegenerative disorders.
Collapse
Affiliation(s)
- Won-Seok Lee
- Integrative Molecular and Biomedical Science Program, and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Hyun-Hwan Jeong
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pediatrics-Neurology, and
| | - Youjin Jang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn J. Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Howard Hughes Medical Institute, Houston, Texas, USA
| | - Laura A. Lavery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Smruti Rath
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Howard Hughes Medical Institute, Houston, Texas, USA
| | - Vitaliy V. Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Elizabeth Alcala
- Exceptional Research Opportunities Program, Howard Hughes Medical Institute, Houston, Texas, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Harry T. Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pediatrics-Neurology, and
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
| | - Huda Y. Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Houston, Texas, USA
- Department of Pediatrics-Neurology, and
- Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|
73
|
Fang L, Liu Q, Monteys AM, Gonzalez-Alegre P, Davidson BL, Wang K. DeepRepeat: direct quantification of short tandem repeats on signal data from nanopore sequencing. Genome Biol 2022; 23:108. [PMID: 35484600 PMCID: PMC9052667 DOI: 10.1186/s13059-022-02670-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Despite recent improvements in basecalling accuracy, nanopore sequencing still has higher error rates on short-tandem repeats (STRs). Instead of using basecalled reads, we developed DeepRepeat which converts ionic current signals into red-green-blue channels, thus transforming the repeat detection problem into an image recognition problem. DeepRepeat identifies and accurately quantifies telomeric repeats in the CHM13 cell line and achieves higher accuracy in quantifying repeats in long STRs than competing methods. We also evaluate DeepRepeat on genome-wide or candidate region datasets from seven different sources. In summary, DeepRepeat enables accurate quantification of long STRs and complements existing methods relying on basecalled reads.
Collapse
Affiliation(s)
- Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,School of Life Sciences, College of Science, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA. .,Nevada Institute of Personalized Medicine, College of Science, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA.
| | - Alex Mas Monteys
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pedro Gonzalez-Alegre
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
74
|
Marsili L, Duque KR, Bode RL, Kauffman MA, Espay AJ. Uncovering Essential Tremor Genetics: The Promise of Long-Read Sequencing. Front Neurol 2022; 13:821189. [PMID: 35401394 PMCID: PMC8983820 DOI: 10.3389/fneur.2022.821189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Long-read sequencing (LRS) technologies have been recently introduced to overcome intrinsic limitations of widely-used next-generation sequencing (NGS) technologies, namely the sequencing limited to short-read fragments (150–300 base pairs). Since its introduction, LRS has permitted many successes in unraveling hidden mutational mechanisms. One area in clinical neurology in need of rethinking as it applies to genetic mechanisms is essential tremor (ET). This disorder, among the most common in neurology, is a syndrome often exhibiting an autosomal dominant pattern of inheritance whose large phenotypic spectrum suggest a multitude of genetic etiologies. Exome sequencing has revealed the genetic etiology only in rare ET families (FUS, SORT1, SCN4A, NOS3, KCNS2, HAPLN4/BRAL2, and USP46). We hypothesize that a reason for this shortcoming may be non-classical genetic mechanism(s) underpinning ET, among them trinucleotide, tetranucleotide, or pentanucleotide repeat disorders. In support of this hypothesis, trinucleotide (e.g., GGC repeats in NOTCH2NLC) and pentanucleotide repeat disorders (e.g., ATTTC repeats in STARD7) have been revealed as pathogenic in patients with a past history of what has come to be referred to as “ET plus,” bilateral hand tremor associated with epilepsy and/or leukoencephalopathy. A systematic review of LRS in neurodegenerative disorders showed that 10 of the 22 (45%) genetic etiologies ascertained by LRS include tremor in their phenotypic spectrum, suggesting that future clinical applications of LRS for tremor disorders may uncover genetic subtypes of familial ET that have eluded NGS, particularly those with associated leukoencephalopathy or family history of epilepsy. LRS provides a pathway for potentially uncovering novel genes and genetic mechanisms, helping narrow the large proportion of “idiopathic” ET.
Collapse
Affiliation(s)
- Luca Marsili
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Kevin R. Duque
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Rachel L. Bode
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| | - Alberto J. Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Alberto J. Espay
| |
Collapse
|
75
|
Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, Tchan M, Fung V, Ng K, Cortese A, Houlden H, Dobson-Stone C, Fitzpatrick L, Halliday G, Ravenscroft G, Davis MR, Laing NG, Fellner A, Kennerson M, Kumar KR, Deveson IW. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. SCIENCE ADVANCES 2022; 8:eabm5386. [PMID: 35245110 PMCID: PMC8896783 DOI: 10.1126/sciadv.abm5386] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
More than 50 neurological and neuromuscular diseases are caused by short tandem repeat (STR) expansions, with 37 different genes implicated to date. We describe the use of programmable targeted long-read sequencing with Oxford Nanopore's ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of STR sites, from a list of predetermined candidates. This correctly diagnoses all individuals in a small cohort (n = 37) including patients with various neurogenetic diseases (n = 25). Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing and identifies noncanonical STR motif conformations and internal sequence interruptions. We observe a diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of repeat disorders. Last, we show how the inclusion of pharmacogenomic genes as secondary ReadUntil targets can further inform patient care.
Collapse
Affiliation(s)
- Igor Stevanovski
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sanjog R. Chintalaphani
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hasindu Gamaarachchi
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - James M. Ferguson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Carolin K. Scriba
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Michel Tchan
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Victor Fung
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Andrea Cortese
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carol Dobson-Stone
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Lauren Fitzpatrick
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Glenda Halliday
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Avi Fellner
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Neurology Department, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
- Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
76
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
77
|
Kolkwitz PE, Mohrlüder J, Willbold D. Inhibition of Polyglutamine Misfolding with D-Enantiomeric Peptides Identified by Mirror Image Phage Display Selection. Biomolecules 2022; 12:biom12020157. [PMID: 35204656 PMCID: PMC8961585 DOI: 10.3390/biom12020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Nine heritable diseases are known that are caused by unphysiologically elongated polyglutamine tracts in human proteins leading to misfolding, aggregation and neurodegeneration. Current therapeutic strategies include efforts to inhibit the expression of the respective gene coding for the polyglutamine-containing proteins. There are, however, concerns that this may interfere with the physiological function of the respective protein. We aim to stabilize the protein’s native conformation by D-enantiomeric peptide ligands to prevent misfolding and aggregation, shift the equilibrium between aggregates and monomers towards monomers and dissolve already existing aggregates into non-toxic and functional monomers. Here, we performed a mirror image phage display selection on the polyglutamine containing a fragment of the androgen receptor. An elongated polyglutamine tract in the androgen receptor causes spinal and bulbar muscular atrophy (SBMA). The selected D-enantiomeric peptides were tested for their ability to inhibit polyglutamine-induced androgen receptor aggregation. We identified D-enantiomeric peptide QF2D-2 (sqsqwstpqGkwshwprrr) as the most promising candidate. It binds to an androgen receptor fragment with 46 consecutive glutamine residues and decelerates its aggregation, even in seeded experiments. Therefore, QF2D-2 may be a promising drug candidate for SBMA treatment or even for all nine heritable polyglutamine diseases, since its aggregation-inhibiting property was shown also for a more general polyglutamine target.
Collapse
Affiliation(s)
- Pauline Elisabeth Kolkwitz
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (P.E.K.); (J.M.)
| | - Jeannine Mohrlüder
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (P.E.K.); (J.M.)
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (P.E.K.); (J.M.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
78
|
Loureiro JR, Castro AF, Figueiredo AS, Silveira I. Molecular Mechanisms in Pentanucleotide Repeat Diseases. Cells 2022; 11:cells11020205. [PMID: 35053321 PMCID: PMC8773600 DOI: 10.3390/cells11020205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The number of neurodegenerative diseases resulting from repeat expansion has increased extraordinarily in recent years. In several of these pathologies, the repeat can be transcribed in RNA from both DNA strands producing, at least, one toxic RNA repeat that causes neurodegeneration by a complex mechanism. Recently, seven diseases have been found caused by a novel intronic pentanucleotide repeat in distinct genes encoding proteins highly expressed in the cerebellum. These disorders are clinically heterogeneous being characterized by impaired motor function, resulting from ataxia or epilepsy. The role that apparently normal proteins from these mutant genes play in these pathologies is not known. However, recent advances in previously known spinocerebellar ataxias originated by abnormal non-coding pentanucleotide repeats point to a gain of a toxic function by the pathogenic repeat-containing RNA that abnormally forms nuclear foci with RNA-binding proteins. In cells, RNA foci have been shown to be formed by phase separation. Moreover, the field of repeat expansions has lately achieved an extraordinary progress with the discovery that RNA repeats, polyglutamine, and polyalanine proteins are crucial for the formation of nuclear membraneless organelles by phase separation, which is perturbed when they are expanded. This review will cover the amazing advances on repeat diseases.
Collapse
Affiliation(s)
- Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana S. Figueiredo
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.R.L.); (A.F.C.); (A.S.F.)
- Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-2240-8800
| |
Collapse
|
79
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
80
|
|
81
|
Marchiano F, Haering M, Habermann BH. OUP accepted manuscript. Nucleic Acids Res 2022; 50:W490-W499. [PMID: 35524562 PMCID: PMC9252804 DOI: 10.1093/nar/gkac306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are subcellular organelles present in almost all eukaryotic cells, which play a central role in cellular metabolism. Different tissues, health and age conditions are characterized by a difference in mitochondrial structure and composition. The visual data mining platform mitoXplorer 1.0 was developed to explore the expression dynamics of genes associated with mitochondrial functions that could help explain these differences. It, however, lacked functions aimed at integrating mitochondria in the cellular context and thus identifying regulators that help mitochondria adapt to cellular needs. To fill this gap, we upgraded the mitoXplorer platform to version 2.0 (mitoXplorer 2.0). In this upgrade, we implemented two novel integrative functions, network analysis and transcription factor enrichment, to specifically help identify signalling or transcriptional regulators of mitochondrial processes. In addition, we implemented several other novel functions to allow the platform to go beyond simple data visualization, such as an enrichment function for mitochondrial processes, a function to explore time-series data, the possibility to compare datasets across species and an IDconverter to help facilitate data upload. We demonstrate the usefulness of these functions in three specific use cases. mitoXplorer 2.0 is freely available without login at http://mitoxplorer2.ibdm.univ-mrs.fr.
Collapse
Affiliation(s)
- Fabio Marchiano
- Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| | - Margaux Haering
- Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| | | |
Collapse
|
82
|
The molecular pathogenesis of repeat expansion diseases. Biochem Soc Trans 2021; 50:119-134. [PMID: 34940797 DOI: 10.1042/bst20200143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Expanded short tandem repeats in the genome cause various monogenic diseases, particularly neurological disorders. Since the discovery of a CGG repeat expansion in the FMR1 gene in 1991, more than 40 repeat expansion diseases have been identified to date. In the coding repeat expansion diseases, in which the expanded repeat sequence is located in the coding regions of genes, the toxicity of repeat polypeptides, particularly misfolding and aggregation of proteins containing an expanded polyglutamine tract, have been the focus of investigation. On the other hand, in the non-coding repeat expansion diseases, in which the expanded repeat sequence is located in introns or untranslated regions, the toxicity of repeat RNAs has been the focus of investigation. Recently, these repeat RNAs were demonstrated to be translated into repeat polypeptides by the novel mechanism of repeat-associated non-AUG translation, which has extended the research direction of the pathological mechanisms of this disease entity to include polypeptide toxicity. Thus, a common pathogenesis has been suggested for both coding and non-coding repeat expansion diseases. In this review, we briefly outline the major pathogenic mechanisms of repeat expansion diseases, including a loss-of-function mechanism caused by repeat expansion, repeat RNA toxicity caused by RNA foci formation and protein sequestration, and toxicity by repeat polypeptides. We also discuss perturbation of the physiological liquid-liquid phase separation state caused by these repeat RNAs and repeat polypeptides, as well as potential therapeutic approaches against repeat expansion diseases.
Collapse
|
83
|
RNA-binding protein dysfunction in neurodegeneration. Essays Biochem 2021; 65:975-986. [PMID: 34927200 DOI: 10.1042/ebc20210024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Protein homeostasis (proteostasis) is a prerequisite for cellular viability and plasticity. In particular, post-mitotic cells such as neurons rely on a tightly regulated safeguard system that allows for regulated protein expression. Previous investigations have identified RNA-binding proteins (RBPs) as crucial regulators of protein expression in nerve cells. However, during neurodegeneration, their ability to control the proteome is progressively disrupted. In this review, we examine the malfunction of key RBPs such as TAR DNA-binding protein 43 (TDP-43), Fused in Sarcoma (FUS), Staufen, Pumilio and fragile-X mental retardation protein (FMRP). Therefore, we focus on two key aspects of RBP dysfunctions in neurodegeneration: protein aggregation and dysregulation of their target RNAs. Moreover, we discuss how the chaperone system responds to changes in the RBP-controlled transcriptome. Based on recent findings, we propose a two-hit model in which both, harmful RBP deposits and target mRNA mistranslation contribute to neurodegeneration observed in RBPathologies.
Collapse
|
84
|
Huang H, Toker N, Burr E, Okoro J, Moog M, Hearing C, Lagalwar S. Intercellular Propagation and Aggregate Seeding of Mutant Ataxin-1. J Mol Neurosci 2021; 72:708-718. [PMID: 34826062 PMCID: PMC8986690 DOI: 10.1007/s12031-021-01944-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Intercellular propagation of aggregated protein inclusions along actin-based tunneling nanotubes (TNTs) has been reported as a means of pathogenic spread in Alzheimer’s, Parkinson’s, and Huntington’s diseases. Propagation of oligomeric-structured polyglutamine-expanded ataxin-1 (Atxn1[154Q]) has been reported in the cerebellum of a Spinocerebellar ataxia type 1 (SCA1) knock-in mouse to correlate with disease propagation. In this study, we investigated whether a physiologically relevant polyglutamine-expanded ATXN1 protein (ATXN1[82Q]) could propagate intercellularly. Using a cerebellar-derived live cell model, we observed ATXN1 aggregates form in the nucleus, subsequently form in the cytoplasm, and finally, propagate to neighboring cells along actin-based intercellular connections. Additionally, we observed the facilitation of aggregate-resistant proteins into aggregates given the presence of aggregation-prone proteins within cells. Taken together, our results support a pathogenic role of intercellular propagation of polyglutamine-expanded ATXN1 inclusions.
Collapse
Affiliation(s)
- Haoyang Huang
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | - Nicholas Toker
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | - Eliza Burr
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | - Jeff Okoro
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | - Maia Moog
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | - Casey Hearing
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | - Sarita Lagalwar
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA.
| |
Collapse
|
85
|
Macular Morpho-Functional and Visual Pathways Functional Assessment in Patients with Spinocerebellar Type 1 Ataxia with or without Neurological Signs. J Clin Med 2021; 10:jcm10225271. [PMID: 34830553 PMCID: PMC8625180 DOI: 10.3390/jcm10225271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA-ATXN1) is an autosomal dominant, neurodegenerative disease, caused by CAG repeat expansion in the ataxin-1 gene (ATXN1). In isolated reports of patients with neurological signs [symptomatic patients (SP)], macular abnormalities have been described. However, no reports exist about macular anomalies in SCA1 subjects carrying the ATXN1 mutation without neurological signs [not symptomatic carriers (NSC)]. Therefore, the main aim of our work was to evaluate whether the macular functional and morphological abnormalities could be detectable in SP, genetically confirmed and with neurological signs, as well as in SCA-ATXN1-NSC, harboring pathogenic CAG expansion in ATXN1. In addition, we investigated whether the macular involvement could be associated or not to an impairment of RGCs and of their fibers and of the neural conduction along the visual pathways. Herein, nine SCA-ATXN1 subjects (6 SP and 3 NSC) underwent the following examinations: visual acuity and chromatic test assessments, fundus oculi (FO) examination, macular and peripapillary retinal nerve fiber layer thickness (RNFL-T) analysis by Spectral domain-Optical Coherence Tomography (Sd-OCT) acquisition, multifocal electroretinogram (mfERG), pattern reversal electroretinogram (PERG) and visual evoked potentials (VEP) recordings. In four eyes of two SP, visual acuity reduction and chromatic abnormalities were observed; in three of them FO changes associated with macular thinning and outer retinal defects were also detected. In three NSC eyes, slight FO abnormalities were associated with qualitative macular morphological changes. By contrast, abnormal mfERG responses (exclusively from foveal and parafoveal areas) were detected in all SP and NSC (18 eyes). No abnormalities of PERG values, RNFL-T, and VEP responses were found, but in one SP, presenting abnormal papillo-macular bundle neural conduction. Results from our SCA-ATXN1 cohort suggest that a macular dysfunction, detectable by mfERG recordings, may occur in the overt disorder, and unexpectedly in the stage of the disease in which there is still an absence of neurological signs. In NSC, an exclusive dysfunction of preganglionic macular elements can be observed, and this is associated with both normal RGCs function and neural conduction along the visual pathways.
Collapse
|
86
|
Structural Analysis and Spatiotemporal Expression of Atxn1 Genes in Zebrafish Embryos and Larvae. Int J Mol Sci 2021; 22:ijms222111348. [PMID: 34768779 PMCID: PMC8583371 DOI: 10.3390/ijms222111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish have come into focus to model cerebellar diseases such as spinocerebellar ataxias (SCAs), which is caused by an expansion of translated CAG repeats in several unrelated genes. In spinocerebellar ataxia type 1 (SCA1), gain-of-function in the mutant ATXN1 contributes to SCA1’s neuropathy. Human ATXN1 and its paralog ATXN1L are chromatin-binding factors, act as transcriptional repressors, and have similar expression patterns. However, little is known about atxn1 genes in zebrafish. Recently, two family members, atxn1a and atxn1b, were identified as duplicate orthologs of ATXN1, as was atxn1l, the ortholog of ATXN1L. In this study, we analyzed the phylogenetic relationship of the atxn1 family members in zebrafish, compared their genetic structures, and verified the predicted transcripts by both RT-PCR and whole-mount in situ hybridization. All three genes, atxn1a, atxn1b, and atxn1l, show overlapping, but also distinct, expression domains during embryonic and larval development. While atxn1a and atxn1l display similar spatiotemporal embryonic expression, atxn1b expression is initiated during the onset of brain development and is predominantly expressed in the cerebellum throughout zebrafish development. These results provide new insights into atxn1 genes and their expression patterns in zebrafish during embryonic and late-larval development and may contribute importantly to future experiments in disease modeling of SCAs.
Collapse
|
87
|
Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K, Mysore JS, Grote Urtubey DM, Parwez CR, von Hein SM, Clark HB, Nguyen HP, Förster E, Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1. Hum Mol Genet 2021; 29:2551-2567. [PMID: 32761094 PMCID: PMC7471505 DOI: 10.1093/hmg/ddaa139] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Collapse
Affiliation(s)
- Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - James V Giordano
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pedram Razghandi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Constanze R Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Sarah M von Hein
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Allison Beller
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Suman Jayadaev
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.,Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Geriatrics Research Education and Clinical Center, VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry Orr
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
88
|
Sidtis JJ, Gomez CM. Genotypic Differences in Networks Supporting Regional Predictors of Speech Rate in Spinocerebellar Ataxia: Preliminary Observations. Brain Connect 2021; 11:408-417. [PMID: 34030481 PMCID: PMC8388246 DOI: 10.1089/brain.2020.0972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Disordered speech production, dysarthria, is a common characteristic of the spinocerebellar ataxias (SCAs). Although dysarthric features differ across SCAs, a previous analysis revealed that a combination of regional cerebral blood flow (rCBF) in the left inferior frontal region and the right caudate predicted syllable rate, a pattern reported in normal speakers. This study examined the relationships between primary predictor brain regions and other areas of the brain in three SCA groups. The regions associated with the primary predictors are considered as elements of secondary networks since they are associated with regional speech predictors rather than directly with speech performance. Methods: Speech and rCBF data from 9 SCA1, 8 SCA5, and 5 SCA6 individuals were analyzed. Partial correlations were used to identify brain regions associated with the primary predictors. Results: Secondary networks differed across SCA genotypes. SCA1 and SCA6 demonstrated both positive and negative associations between primary and secondary areas, whereas the associations in the SCA5 genotype were only positive. The SCA5 associations were also largely bilaterally symmetrical. Both SCA1 and SCA5 demonstrated secondary associations with the right caudate, whereas the SCA6 group had no such associations. Conclusions: These results demonstrate that although primary aspects of a brain network may remain functional, pathophysiological processes associated with different SCA genotypes may express themselves in alterations of broader, secondary brain networks. These secondary networks may reflect generic functional associations with the primary predictor regions, compensatory activity in the presence of an SCA, SCA pathology, or some combination of these factors.
Collapse
Affiliation(s)
- John J Sidtis
- Brain and Behavior Laboratory, Geriatrics Division, The Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
89
|
Nigri A, Sarro L, Mongelli A, Castaldo A, Porcu L, Pinardi C, Grisoli M, Ferraro S, Canafoglia L, Visani E, Bruzzone MG, Nanetti L, Taroni F, Mariotti C. Spinocerebellar Ataxia Type 1: One-Year Longitudinal Study to Identify Clinical and MRI Measures of Disease Progression in Patients and Presymptomatic Carriers. THE CEREBELLUM 2021; 21:133-144. [PMID: 34106418 DOI: 10.1007/s12311-021-01285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Spinocerebellar ataxias type 1 (SCA1) is an autosomal dominant disease usually manifesting in adulthood. We performed a prospective 1-year longitudinal study in 14 presymptomatic mutation carriers (preSCA1), 11 ataxic patients, and 21 healthy controls. SCA1 patients had a median disease duration of 6 years (range 2-16) and SARA score of 7 points (range 3.5-20). PreSCA1 had an estimated time before disease onset of 9.7 years (range 4-30), and no signs of ataxia. At baseline, SCA1 patients significantly differed from controls in SARA score (Scale for Assessment and Rating of Ataxia), cognitive tests, and structural MRI measures. Significant volume loss was found in cerebellum, brainstem, basal ganglia, and cortical thinning in frontal, temporal, and occipital regions. PreSCA1 did not differ from controls. At 1-year follow-up, SCA1 patients showed significant increase in SARA score, and decreased volume of cerebellum (- 0.6%), pons (- 5.5%), superior cerebellar peduncles (- 10.7%), and midbrain (- 3.0%). Signs of disease progression were also observed in preSCA1 subjects, with increased SARA score and reduced total cerebellar volume. Our exploratory study suggests that clinical scores and MRI measures provide valuable data to monitor and quantify the earliest changes associated with the preclinical and the symptomatic phases of SCA1 disease.
Collapse
Affiliation(s)
- Anna Nigri
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lidia Sarro
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy.,Neurology Unit, Martini Hospital, Turin, Italy
| | - Alessia Mongelli
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Anna Castaldo
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Luca Porcu
- Methodology for Clinical Research Laboratory, Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Chiara Pinardi
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Grisoli
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Ferraro
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Visani
- Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Lorenzo Nanetti
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Franco Taroni
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy
| | - Caterina Mariotti
- Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
90
|
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun 2021; 9:98. [PMID: 34034831 PMCID: PMC8145836 DOI: 10.1186/s40478-021-01201-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. MAIN BODY STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. CONCLUSION We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
Collapse
Affiliation(s)
- Sanjog R. Chintalaphani
- School of Medicine, University of New South Wales, Sydney, 2052 Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050 Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010 Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Molecular Medicine Laboratory and Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2137 Australia
| |
Collapse
|
91
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
92
|
Marshall JN, Lopez AI, Pfaff AL, Koks S, Quinn JP, Bubb VJ. Variable number tandem repeats - Their emerging role in sickness and health. Exp Biol Med (Maywood) 2021; 246:1368-1376. [PMID: 33794697 PMCID: PMC8239992 DOI: 10.1177/15353702211003511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms regulating tissue specific and stimulus inducible
regulation is at the heart of understanding human biology and how this
translates to wellbeing, the ageing process, and disease progression.
Polymorphic DNA variation is superimposed as an extra layer of complexity in
such processes which underpin our individuality and are the focus of
personalized medicine. This review focuses on the role and action of repetitive
DNA, specifically variable number tandem repeats and
SINE-VNTR-Alu domains, highlighting their role in
modification of gene structure and gene expression in addition to their
polymorphic nature being a genetic modifier of disease risk and progression.
Although the literature focuses on their role in disease, it illustrates their
potential to be major contributors to normal physiological function. To date,
these elements have been under-reported in genomic analysis due to the
difficulties in their characterization with short read DNA sequencing methods.
However, recent advances in long read sequencing methods should resolve these
problems allowing for a greater understanding of their contribution to a host of
genomic and functional mechanisms underlying physiology and disease.
Collapse
Affiliation(s)
- Jack Ng Marshall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ana Illera Lopez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Vivien J Bubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
93
|
Nakamura N, Tsunoda K, Mitsutake A, Shibata S, Mano T, Nagashima Y, Ishiura H, Iwata A, Toda T, Tsuji S, Sawamura H. Clinical Characteristics of Neuronal Intranuclear Inclusion Disease-Related Retinopathy With CGG Repeat Expansions in the NOTCH2NLC Gene. Invest Ophthalmol Vis Sci 2021; 61:27. [PMID: 32931575 PMCID: PMC7500143 DOI: 10.1167/iovs.61.11.27] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose To report the ocular characteristics of neuronal intranuclear inclusion disease (NIID)–related retinopathy with expansion of the CGG repeats in the NOTCH2NLC gene. Methods Seven patients from six families (aged 66–81 years) diagnosed with adult-onset NIID were studied. Ophthalmologic examinations, including the best-corrected visual acuity (BCVA), Goldmann perimetry, fundus photography, fundus autofluorescence (FAF) imaging, optical coherence tomography (OCT), and full-field electroretinography (ERGs), were performed. The expansion of the CGG repeats in the NOTCH2NLC gene was determined. Results All patients had an expansion of the CGG repeats (length approximately from 330–520 bp) in the NOTCH2NLC gene. The most common symptoms of the five symptomatic cases were reduced BCVA and night blindness. The other two cases did not have any ocular symptoms. The decimal BCVA varied from 0.15 to 1.2. Goldmann perimetry was constricted in all four cases tested; physiological blind spot was enlarged in two of the cases. The FAF images showed an absence of autofluorescence (AF) around the optic disc in all cases and also showed mild hypo-AF or extinguished AF in the midperiphery. In all cases, the OCT images showed an absence of the ellipsoid zone of the photoreceptors in the peripapillary region, and hyperreflective dots were also present between the retinal ganglion cell layer and outer nuclear layer. The macular region was involved in the late stage of the retinopathy. The full-field ERGs showed rod-cone dysfunction. Conclusions Patients with adult-onset NIID with CGG repeats expansions in the NOTCH2NLC gene had similar ophthalmologic features, including rod-cone dysfunction with progressive retinal degeneration in the peripapillary and midperipheral regions. The primary site is most likely the photoreceptors. Because the ocular symptoms are often overlooked due to dementia and occasionally precede the onset of dementia, detailed ophthalmological examinations are important for the early diagnosis of NIID-related retinopathy.
Collapse
Affiliation(s)
- Natsuko Nakamura
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan.,Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | | - Shota Shibata
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Yu Nagashima
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | | | - Atsushi Iwata
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | | |
Collapse
|
94
|
Suart CE, Perez AM, Al-Ramahi I, Maiuri T, Botas J, Truant R. Spinocerebellar Ataxia Type 1 protein Ataxin-1 is signaled to DNA damage by ataxia-telangiectasia mutated kinase. Hum Mol Genet 2021; 30:706-715. [PMID: 33772540 DOI: 10.1093/hmg/ddab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the ataxin-1 protein. Recent genetic correlational studies have implicated DNA damage repair pathways in modifying the age at onset of disease symptoms in SCA1 and Huntington's Disease, another polyglutamine expansion disease. We demonstrate that both endogenous and transfected ataxin-1 localizes to sites of DNA damage, which is impaired by polyglutamine expansion. This response is dependent on ataxia-telangiectasia mutated (ATM) kinase activity. Further, we characterize an ATM phosphorylation motif within ataxin-1 at serine 188. We show reduction of the Drosophila ATM homolog levels in a ATXN1[82Q] Drosophila model through shRNA or genetic cross ameliorates motor symptoms. These findings offer a possible explanation as to why DNA repair was implicated in SCA1 pathogenesis by past studies. The similarities between the ataxin-1 and the huntingtin responses to DNA damage provide further support for a shared pathogenic mechanism for polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Celeste E Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Alma M Perez
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Juan Botas
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
95
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
96
|
Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders. Biochem Soc Trans 2021; 49:775-792. [PMID: 33729487 PMCID: PMC8106499 DOI: 10.1042/bst20200690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Repeat-associated non-AUG (RAN) translation was discovered in 2011 in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1). This non-canonical form of translation occurs in all reading frames from both coding and non-coding regions of sense and antisense transcripts carrying expansions of trinucleotide to hexanucleotide repeat sequences. RAN translation has since been reported in 7 of the 53 known microsatellite expansion disorders which mainly present with neurodegenerative features. RAN translation leads to the biosynthesis of low-complexity polymeric repeat proteins with aggregating and cytotoxic properties. However, the molecular mechanisms and protein factors involved in assembling functional ribosomes in absence of canonical AUG start codons remain poorly characterised while secondary repeat RNA structures play key roles in initiating RAN translation. Here, we briefly review the repeat expansion disorders, their complex pathogenesis and the mechanisms of physiological translation initiation together with the known factors involved in RAN translation. Finally, we discuss research challenges surrounding the understanding of pathogenesis and future directions that may provide opportunities for the development of novel therapeutic approaches for this group of incurable neurodegenerative diseases.
Collapse
|
97
|
Lee WS, Lavery L, Rousseaux MWC, Rutledge EB, Jang Y, Wan YW, Wu SR, Kim W, Al-Ramahi I, Rath S, Adamski CJ, Bondar VV, Tewari A, Soleimani S, Mota S, Yalamanchili HK, Orr HT, Liu Z, Botas J, Zoghbi HY. Dual targeting of brain region-specific kinases potentiates neurological rescue in Spinocerebellar ataxia type 1. EMBO J 2021; 40:e106106. [PMID: 33709453 DOI: 10.15252/embj.2020106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.
Collapse
Affiliation(s)
- Won-Seok Lee
- Integrative Molecular and Biomedical Science Program, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Laura Lavery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maxime W C Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Eric B Rutledge
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Youjin Jang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wonho Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Smruti Rath
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Vitaliy V Bondar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ambika Tewari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Hari K Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
98
|
Lian M, Zhao M, Phang GP, Soong YT, Yoon CS, Lee CG, Law HY, Chong SS. Rapid Molecular Screen of Spinocerebellar Ataxia Types 1, 2, and 3 by Triplet-Primed PCR and Melting Curve Analysis. J Mol Diagn 2021; 23:565-576. [PMID: 33618058 DOI: 10.1016/j.jmoldx.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/02/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
The autosomal dominantly inherited spinocerebellar ataxias (SCAs) can be caused by dynamic mutations of short tandem repeats within various genes. Because of the significant clinical overlap among the various SCA types, molecular screening of multiple genetic loci by fluorescent PCR and capillary electrophoresis is necessary to identify the causative repeat expansion. We describe a simple, rapid, and inexpensive strategy to screen for CAG repeat expansion mutations at the ATXN1, ATXN2, and ATXN3 loci using melting curve analysis of triplet-primed PCR products. Plasmid DNAs of known repeat sizes were used to generate threshold melt peak temperatures, which rapidly and effectively distinguish samples carrying an expanded allele from those carrying nonexpanded alleles. Melting curve analysis-positive samples were confirmed by capillary electrophoresis sizing of the triplet-primed PCR products. All three assays achieved 100% sensitivity, with 95% CIs of 67.86% to 100% (SCA1), 74.65% to 100% (SCA2), and 91.58% to 100% (SCA3). The SCA1 assay also achieved 100% specificity (95% CI, 97.52%-100%), whereas the SCA2 and SCA3 assays achieved specificity of 99.46% (95% CI, 96.56%-99.97%) and 99.32% (95% CI, 95.70%-99.96%), respectively. These screening assays provide robust and highly accurate detection of expanded alleles and are amenable to large-scale screening while minimizing the need for capillary electrophoresis sizing for every sample.
Collapse
Affiliation(s)
- Mulias Lian
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Mingjue Zhao
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gui-Ping Phang
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yun-Ting Soong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chui-Sheun Yoon
- Department of Pediatric Medicine, KK Women's and Children's Hospital, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore; Division of Medical Sciences, National Cancer Center Singapore, Singapore
| | - Hai-Yang Law
- Department of Pediatric Medicine, KK Women's and Children's Hospital, Singapore; Pediatrics Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Samuel S Chong
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore.
| |
Collapse
|
99
|
Hong EP, MacDonald ME, Wheeler VC, Jones L, Holmans P, Orth M, Monckton DG, Long JD, Kwak S, Gusella JF, Lee JM. Huntington's Disease Pathogenesis: Two Sequential Components. J Huntingtons Dis 2021; 10:35-51. [PMID: 33579862 PMCID: PMC7990433 DOI: 10.3233/jhd-200427] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Historically, Huntington's disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades. This familial neurodegenerative disorder involves variable onset followed by consistent worsening of characteristic abnormal movements along with cognitive decline and psychiatric disturbances. HD was the first autosomal disease for which the genetic defect was assigned to a position on the human chromosomes using only genetic linkage analysis with common DNA polymorphisms. This discovery set off a multitude of similar studies in other diseases, while the HD gene, later renamed HTT, and its vicinity in chromosome 4p16.3 then acted as a proving ground for development of technologies to clone and sequence genes based upon their genomic location, with the growing momentum of such advances fueling the Human Genome Project. The identification of the HD gene has not yet led to an effective treatment, but continued human genetic analysis of genotype-phenotype relationships in large HD subject populations, first at the HTT locus and subsequently genome-wide, has provided insights into pathogenesis that divide the course of the disease into two sequential, mechanistically distinct components.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Lesley Jones
- Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter Holmans
- Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael Orth
- Department of Neurology, University of Ulm, Germany
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Seung Kwak
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| |
Collapse
|
100
|
Nitschke L, Coffin SL, Xhako E, El-Najjar DB, Orengo JP, Alcala E, Dai Y, Wan YW, Liu Z, Orr HT, Zoghbi HY. Modulation of ATXN1 S776 phosphorylation reveals the importance of allele-specific targeting in SCA1. JCI Insight 2021; 6:144955. [PMID: 33554954 PMCID: PMC7934855 DOI: 10.1172/jci.insight.144955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disorder characterized by motor incoordination, mild cognitive decline, respiratory dysfunction, and early lethality. It is caused by the expansion of the polyglutamine (polyQ) tract in Ataxin-1 (ATXN1), which stabilizes the protein, leading to its toxic accumulation in neurons. Previously, we showed that serine 776 (S776) phosphorylation is critical for ATXN1 stability and contributes to its toxicity in cerebellar Purkinje cells. Still, the therapeutic potential of disrupting S776 phosphorylation on noncerebellar SCA1 phenotypes remains unstudied. Here, we report that abolishing S776 phosphorylation specifically on the polyQ-expanded ATXN1 of SCA1-knockin mice reduces ATXN1 throughout the brain and not only rescues the cerebellar motor incoordination but also improves respiratory function and extends survival while not affecting the hippocampal learning and memory deficits. As therapeutic approaches are likely to decrease S776 phosphorylation on polyQ-expanded and WT ATXN1, we further disrupted S776 phosphorylation on both alleles and observed an attenuated rescue, demonstrating a potential protective role of WT allele. This study not only highlights the role of S776 phosphorylation to regulate ATXN1 levels throughout the brain but also suggests distinct brain region–specific disease mechanisms and demonstrates the importance of developing allele-specific therapies for maximal benefits in SCA1.
Collapse
Affiliation(s)
- Larissa Nitschke
- Program in Integrative Molecular and Biomedical Sciences and.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Stephanie L Coffin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Program in Genetics and Genomics
| | - Eder Xhako
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Program in Genetics and Genomics
| | - Dany B El-Najjar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - James P Orengo
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Neurology, and
| | - Elizabeth Alcala
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Yanwan Dai
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Harry T Orr
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Huda Y Zoghbi
- Program in Integrative Molecular and Biomedical Sciences and.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA.,Program in Genetics and Genomics.,Department of Neurology, and.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Howard Hughes Medical Institute, Houston, Texas, USA
| |
Collapse
|