51
|
Mendieta-Esteban J, Di Stefano M, Castillo D, Farabella I, Marti-Renom MA. 3D reconstruction of genomic regions from sparse interaction data. NAR Genom Bioinform 2021; 3:lqab017. [PMID: 33778492 PMCID: PMC7985034 DOI: 10.1093/nargab/lqab017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Chromosome conformation capture (3C) technologies measure the interaction frequency between pairs of chromatin regions within the nucleus in a cell or a population of cells. Some of these 3C technologies retrieve interactions involving non-contiguous sets of loci, resulting in sparse interaction matrices. One of such 3C technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to probe only interactions involving gene promoters. As such, pcHi-C provides sparse interaction matrices that are suitable to characterize short- and long-range enhancer-promoter interactions. Here, we introduce a new method to reconstruct the chromatin structural (3D) organization from sparse 3C-based datasets such as pcHi-C. Our method allows for data normalization, detection of significant interactions and reconstruction of the full 3D organization of the genomic region despite of the data sparseness. Specifically, it builds, with as low as the 2-3% of the data from the matrix, reliable 3D models of similar accuracy of those based on dense interaction matrices. Furthermore, the method is sensitive enough to detect cell-type-specific 3D organizational features such as the formation of different networks of active gene communities.
Collapse
Affiliation(s)
- Julen Mendieta-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Marco Di Stefano
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Irene Farabella
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| |
Collapse
|
52
|
Baietti MF, Zhao P, Crowther J, Sewduth RN, De Troyer L, Debiec-Rychter M, Sablina AA. Loss of 9p21 Regulatory Hub Promotes Kidney Cancer Progression by Upregulating HOXB13. Mol Cancer Res 2021; 19:979-990. [PMID: 33619226 DOI: 10.1158/1541-7786.mcr-20-0705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/24/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
Loss of chromosome 9p21 is observed in one-thirds of clear-cell renal cell carcinoma (ccRCC) and is associated with poorer patient survival. Unexpectedly, 9p21 LOH does not lead to decreased expression of the 9p21 tumor suppressor genes, CDKN2A and CDKN2B, suggesting alternative mechanisms of 9p-mediated tumorigenesis. Concordantly, CRISPR-mediated 9p21 deletion promotes growth of immortalized human embryonic kidney epithelial cells independently of the CDKN2A/B pathway inactivation. The 9p21 locus has a highly accessible chromatin structure, suggesting that 9p21 loss might contribute to kidney cancer progression by dysregulating genes distal to the 9p21 locus. We identified several 9p21 regulatory hubs by assessing which of the 9p21-interacting genes are dysregulated in 9p21-deleted kidney cells and ccRCCs. By focusing on the analysis of the homeobox gene 13 (HOXB13) locus, we found that 9p21 loss relieves the HOXB13 locus, decreasing HOXB13 methylation and promoting its expression. Upregulation of HOXB13 facilitates cell growth and is associated with poorer survival of patients with ccRCC. IMPLICATIONS: The results of our study propose a novel tumor suppressive mechanism on the basis of coordinated expression of physically associated genes, providing a better understanding of the role of chromosomal deletions in cancer.
Collapse
Affiliation(s)
- Maria Francesca Baietti
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peihua Zhao
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jonathan Crowther
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Linde De Troyer
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
53
|
Three-dimensional genome rewiring during the development of antibody-secreting cells. Biochem Soc Trans 2021; 48:1109-1119. [PMID: 32453419 PMCID: PMC7329350 DOI: 10.1042/bst20191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
The development of B lymphocytes into antibody-secreting plasma cells is central to the adaptive immune system in that it confers protective and specific antibody response against invading pathogen. This developmental process involves extensive morphological and functional alterations that begin early after antigenic stimulation. These include chromatin restructuring that is critical in regulating gene expression, DNA rearrangement and other cellular processes. Here we outline the recent understanding of the three-dimensional architecture of the genome, specifically focused on its contribution to the process of B cell activation and terminal differentiation into antibody-secreting cells.
Collapse
|
54
|
Reed KSM, Ulici V, Kim C, Chubinskaya S, Loeser RF, Phanstiel DH. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthritis Cartilage 2021; 29:235-247. [PMID: 33248223 PMCID: PMC7870543 DOI: 10.1016/j.joca.2020.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fibronectin is a matrix protein that is fragmented during cartilage degradation in osteoarthritis (OA). Treatment of chondrocytes with fibronectin fragments (FN-f) has been used to model OA in vitro, but the system has not been fully characterized. This study sought to define the transcriptional response of chondrocytes to FN-f, and directly compare it to responses traditionally observed in OA. DESIGN Normal human femoral chondrocytes isolated from tissue donors were treated with either FN-f or PBS (control) for 3, 6, or 18 h. RNA-seq libraries were compared between time-matched FN-f and control samples in order to identify changes in gene expression over time. Differentially expressed genes were compared to a published OA gene set and used for pathway, transcription factor motif, and kinome analysis. RESULTS FN-f treatment resulted in 3,914 differentially expressed genes over the time course. Genes that are up- or downregulated in OA were significantly up- (P < 0.00001) or downregulated (P < 0.0004) in response to FN-f. Early response genes were involved in proinflammatory pathways, whereas many late response genes were involved in ferroptosis. The promoters of upregulated genes were enriched for NF-κB, AP-1, and IRF motifs. Highly upregulated kinases included CAMK1G, IRAK2, and the uncharacterized kinase DYRK3, while growth factor receptors TGFBR2 and FGFR2 were downregulated. CONCLUSIONS FN-f treatment of normal human articular chondrocytes recapitulated many key aspects of the OA chondrocyte phenotype. This in vitro model is promising for future OA studies, especially considering its compatibility with genomics and genome-editing techniques.
Collapse
Affiliation(s)
- K S M Reed
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - V Ulici
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - C Kim
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - R F Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
55
|
Davis SZ, Hollin T, Lenz T, Le Roch KG. Three-dimensional chromatin in infectious disease-A role for gene regulation and pathogenicity? PLoS Pathog 2021; 17:e1009207. [PMID: 33539484 PMCID: PMC7861443 DOI: 10.1371/journal.ppat.1009207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recent Coronavirus Disease 2019 pandemic has once again reminded us the importance of understanding infectious diseases. One important but understudied area in infectious disease research is the role of nuclear architecture or the physical arrangement of the genome in the nucleus in controlling gene regulation and pathogenicity. Recent advances in research methods, such as Genome-wide chromosome conformation capture using high-throughput sequencing (Hi-C), have allowed for easier analysis of nuclear architecture and chromosomal reorganization in both the infectious disease agents themselves as well as in their host cells. This review will discuss broadly on what is known about nuclear architecture in infectious disease, with an emphasis on chromosomal reorganization, and briefly discuss what steps are required next in the field.
Collapse
Affiliation(s)
- Sage Z. Davis
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| |
Collapse
|
56
|
Fugazza C, Barbarani G, Elangovan S, Marini MG, Giolitto S, Font-Monclus I, Marongiu MF, Manunza L, Strouboulis J, Cantù C, Gasparri F, Barabino SML, Nakamura Y, Ottolenghi S, Moi P, Ronchi AE. The Coup-TFII orphan nuclear receptor is an activator of the γ-globin gene. Haematologica 2021; 106:474-482. [PMID: 32107331 PMCID: PMC7849756 DOI: 10.3324/haematol.2019.241224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
The human fetal γ-globin gene is repressed in adulthood through complex regulatory mechanisms involving transcription factors and epigenetic modifiers. Reversing γ-globin repression, or maintaining its expression by manipulating regulatory mechanisms, has become a major clinical goal in the treatment of β-hemoglobinopathies. Here we identify the orphan nuclear receptor Coup-TFII (NR2F2/ARP- 1) as an embryonic/fetal stage activator of γ-globin expression. We show that Coup-TFII is expressed in early erythropoiesis of yolk sac origin, together with embryonic/fetal globins. When overexpressed in adult cells (including peripheral blood cells from human healthy donors and β039 thalassemic patients) Coup-TFII activates the embryonic/fetal globin genes, overcoming the repression imposed by the adult erythroid environment. Conversely, the knockout of Coup-TFII increases the β/γ+β globin ratio. Molecular analysis indicates that Coup-TFII binds in vivo to the β-locus and contributes to its three-dimensional conformation. Overall, our data identify Coup-TFII as a specific activator of the γ- globin gene.
Collapse
Affiliation(s)
- Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Sudharshan Elangovan
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Maria Giuseppina Marini
- Istituto di Ricerca Genetica e Biomedica del Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Serena Giolitto
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Isaura Font-Monclus
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Maria Franca Marongiu
- Istituto di Ricerca Genetica e Biomedica del Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Laura Manunza
- Dip. di Sanità Pubblica, Medicina Clinica e Molecolare, Universita degli Studi di Cagliari
| | - John Strouboulis
- School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linkoping University, Linköping, Sweden
| | - Fabio Gasparri
- Department of Biology, Nerviano Medical Sciences S.r.l., Nerviano, Milano, Italy
| | - Silvia M L Barabino
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Sergio Ottolenghi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Paolo Moi
- Dip. di Sanità Pubblica, Medicina Clinica e Molecolare, Universita degli Studi di Cagliari
| | | |
Collapse
|
57
|
TCF7L2 silencing results in altered gene expression patterns accompanied by local genomic reorganization. Neoplasia 2021; 23:257-269. [PMID: 33422939 PMCID: PMC7809436 DOI: 10.1016/j.neo.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 11/27/2022] Open
Abstract
Canonical Wnt signaling is crucial for intestinal homeostasis as TCF4, the major Wnt signaling effector in the intestines, is required for stem cell maintenance. The capability of TCF4 to maintain the stem cell phenotype is contingent upon β-catenin, a potent transcriptional activator, which interacts with histone acetyltransferases and chromatin remodeling complexes. We used RNAi to explore the influence of TCF4 on chromatin structure (Hi-C) and gene expression (RNA sequencing) across a 72-hour time series in colon cancer. We found that TCF4 reduction results in a disproportionate up-regulation of gene expression, including a powerful induction of SOX2. Integration of RNA sequencing and Hi-C data revealed a TAD boundary loss, which occurred concomitantly with the over-expression of a cluster of CEACAM genes on chromosome 19. We identified EMT and E2F as the 2 most deregulated pathways upon TCF4 depletion and LUM, TMPO, and AURKA as highly influential genes in these networks using measures of centrality. Results from gene expression, chromatin structure, and centrality analyses were integrated to generate a list of candidate transcription factors crucial for colon cancer cell homeostasis. The top ranked factor was c-JUN, an oncoprotein known to interact with TCF4 and β-catenin, confirming the usefulness of this approach.
Collapse
|
58
|
When basic science reaches into rational therapeutic design: from historical to novel leads for the treatment of β-globinopathies. Curr Opin Hematol 2021; 27:141-148. [PMID: 32167946 DOI: 10.1097/moh.0000000000000577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW β-hemoglobinopathies, such as β-Thalassemias (β-Thal) and sickle cell disease (SCD) are among the most common inherited genetic disorders in humans worldwide. These disorders are characterized by a quantitative (β-Thal) or qualitative (SCD) defects in adult hemoglobin production, leading to anemia, ineffective erythropoiesis and severe secondary complications. Reactivation of the fetal globin genes (γ-globin), making-up fetal hemoglobin (HbF), which are normally silenced in adults, represents a major strategy to ameliorate anemia and disease severity. RECENT FINDINGS Following the identification of the first 'switching factors' for the reactivation of fetal globin gene expression more than 10 years ago, a multitude of novel leads have recently been uncovered. SUMMARY Recent findings provided invaluable functional insights into the genetic and molecular networks controlling globin genes expression, revealing that complex repression systems evolved in erythroid cells to maintain HbF silencing in adults. This review summarizes these unique and exciting discoveries of the regulatory factors controlling the globin switch. New insights and novel leads for therapeutic strategies based on the pharmacological induction of HbF are discussed. This represents a major breakthrough for rational drug design in the treatment of β-Thal and SCD.
Collapse
|
59
|
Chen L, Cao W, Aita R, Aldea D, Flores J, Gao N, Bonder EM, Ellison CE, Verzi MP. Three-dimensional interactions between enhancers and promoters during intestinal differentiation depend upon HNF4. Cell Rep 2021; 34:108679. [PMID: 33503426 PMCID: PMC7899294 DOI: 10.1016/j.celrep.2020.108679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Cells in renewing tissues exhibit dramatic transcriptional changes as they differentiate. The contribution of chromatin looping to tissue renewal is incompletely understood. Enhancer-promoter interactions could be relatively stable as cells transition from progenitor to differentiated states; alternatively, chromatin looping could be as dynamic as the gene expression from their loci. The intestinal epithelium is the most rapidly renewing mammalian tissue. Proliferative cells in crypts of Lieberkühn sustain a stream of differentiated cells that are continually shed into the lumen. We apply chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) and sequencing to measure enhancer-promoter interactions in progenitor and differentiated cells of the intestinal epithelium. Despite dynamic gene regulation across the differentiation axis, we find that enhancer-promoter interactions are relatively stable. Functionally, we find HNF4 transcription factors are required for chromatin looping at target genes. Depletion of HNF4 disrupts local chromatin looping, histone modifications, and target gene expression. This study provides insights into transcriptional regulatory mechanisms governing homeostasis in renewing tissues. Chen et al. provide a survey of enhancer-promoter 3D looping in the intestinal epithelium by HiChIP, in vivo. They find that enhancer-promoter interactions are highly dependent upon the key intestinal transcription factor HNF4. Their findings provide insights into transcriptional regulatory mechanisms governing homeostasis in renewing tissues.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Dennis Aldea
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
60
|
A Brief Review of Current 3D Genomics Research. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
61
|
Oudelaar AM, Higgs DR. The relationship between genome structure and function. Nat Rev Genet 2020; 22:154-168. [PMID: 33235358 DOI: 10.1038/s41576-020-00303-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Precise patterns of gene expression in metazoans are controlled by three classes of regulatory elements: promoters, enhancers and boundary elements. During differentiation and development, these elements form specific interactions in dynamic higher-order chromatin structures. However, the relationship between genome structure and its function in gene regulation is not completely understood. Here we review recent progress in this field and discuss whether genome structure plays an instructive role in regulating gene expression or is a reflection of the activity of the regulatory elements of the genome.
Collapse
Affiliation(s)
| | - Douglas R Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
62
|
Costantino L, Hsieh THS, Lamothe R, Darzacq X, Koshland D. Cohesin residency determines chromatin loop patterns. eLife 2020; 9:e59889. [PMID: 33170773 PMCID: PMC7655110 DOI: 10.7554/elife.59889] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
63
|
Abstract
The organization of chromatin into higher order structures is essential for chromosome segregation, the repair of DNA-damage, and the regulation of gene expression. Using Micro-C XL to detect chromosomal interactions, we observed the pervasive presence of cohesin-dependent loops with defined positions throughout the genome of budding yeast, as seen in mammalian cells. In early S phase, cohesin stably binds to cohesin associated regions (CARs) genome-wide. Subsequently, positioned loops accumulate with CARs at the bases of the loops. Cohesin regulators Wpl1 and Pds5 alter the levels and distribution of cohesin at CARs, changing the pattern of positioned loops. From these observations, we propose that cohesin with loop extrusion activity is stopped by preexisting CAR-bound cohesins, generating positioned loops. The patterns of loops observed in a population of wild-type and mutant cells can be explained by this mechanism, coupled with a heterogeneous residency of cohesin at CARs in individual cells.
Collapse
Affiliation(s)
- Lorenzo Costantino
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tsung-Han S Hsieh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rebecca Lamothe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
64
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
65
|
Acemel RD, Tena JJ, Gomez-Skarmeta JL, Fibla J, Royo JL. Straightforward protocol for allele-specific chromatin conformation capture. Gene 2020; 767:145185. [PMID: 32998049 DOI: 10.1016/j.gene.2020.145185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
A key advance in our understanding of gene regulation came with the finding that the genome undergoes three-dimensional nuclear folding in a genetically determined process. This 3D conformation directly influences the association between enhancers and their target promoters. This complex interplay has been proven to be essential for gene regulation, and genetic variants affecting this process have been associated to human diseases. The development of new technologies that quantify these DNA interactions represented a revolution in the field. High throughput techniques like HiC provide a general picture of chromatin topology. However, they often lack resolution to evidence subtle effects that single nucleotide polymorphisms exert over the contacts between cis-regulatory regions and target promoters. Here we propose a cost-efficient approach to perform allele-specific chromatin conformation analysis. As a proof of concept, we analyzed the impact of a common deletion mapping between SIRPB1 promoter and one of its downstream enhancers.
Collapse
Affiliation(s)
- R D Acemel
- Andalusian Centre for Developmental Biology, University Pablo de Olavide-CSIC-Junta de Andalucia, Sevilla, Spain
| | - J J Tena
- Andalusian Centre for Developmental Biology, University Pablo de Olavide-CSIC-Junta de Andalucia, Sevilla, Spain
| | - J L Gomez-Skarmeta
- Andalusian Centre for Developmental Biology, University Pablo de Olavide-CSIC-Junta de Andalucia, Sevilla, Spain
| | - J Fibla
- Institute of Biomedical Research of Lleida, University of Lleida, Lleida, Spain
| | - J L Royo
- Department of Surgery, Biochemistry, and Immunology, School of Medicine, University of Malaga, 29071 Malaga, Spain.
| |
Collapse
|
66
|
Kim YW, Kang Y, Kang J, Kim A. GATA-1-dependent histone H3K27 acetylation mediates erythroid cell-specific chromatin interaction between CTCF sites. FASEB J 2020; 34:14736-14749. [PMID: 32924169 DOI: 10.1096/fj.202001526r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
CCCTC-binding factor (CTCF) sites interact with each other in the chromatin environment, establishing chromatin domains. Our previous study showed that interaction between CTCF sites is cell type-specific around the β-globin locus and is dependent on erythroid-specific activator GATA-1. To find out molecular mechanisms of the cell type-specific interaction, we directly inhibited GATA-1 binding to the β-globin enhancers by deleting its binding motifs and found that histone H3K27 acetylation (H3K27ac) was decreased at CTCF sites surrounding the β-globin locus, even though CTCF binding itself was maintained at the sites. Forced H3K27ac by Trichostatin A treatment or CBP/p300 KD affected the interactions between CTCF sites around the β-globin locus without changes in CTCF binding. Analysis of public ChIA-PET data revealed that H3K27ac is higher at CTCF sites forming short interactions than long interactions. GATA-1 was identified as a representative transcription factor that relates with genes present inside the short interactions in erythroid K562 cells. Depletion of GATA-1-reduced H3K27ac at CTCF sites near erythroid-specific enhancers. These results indicate that H3K27ac at CTCF sites is required for cell type-specific chromatin interactions between them. Tissue-specific activator GATA-1 appears to play a role in H3K27ac at CTCF sites in erythroid cells.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
67
|
Kantidze OL, Razin SV. Weak interactions in higher-order chromatin organization. Nucleic Acids Res 2020; 48:4614-4626. [PMID: 32313950 PMCID: PMC7229822 DOI: 10.1093/nar/gkaa261] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The detailed principles of the hierarchical folding of eukaryotic chromosomes have been revealed during the last two decades. Along with structures composing three-dimensional (3D) genome organization (chromatin compartments, topologically associating domains, chromatin loops, etc.), the molecular mechanisms that are involved in their establishment and maintenance have been characterized. Generally, protein-protein and protein-DNA interactions underlie the spatial genome organization in eukaryotes. However, it is becoming increasingly evident that weak interactions, which exist in biological systems, also contribute to the 3D genome. Here, we provide a snapshot of our current understanding of the role of the weak interactions in the establishment and maintenance of the 3D genome organization. We discuss how weak biological forces, such as entropic forces operating in crowded solutions, electrostatic interactions of the biomolecules, liquid-liquid phase separation, DNA supercoiling, and RNA environment participate in chromosome segregation into structural and functional units and drive intranuclear functional compartmentalization.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
68
|
Sánchez-Gaya V, Mariner-Faulí M, Rada-Iglesias A. Rare or Overlooked? Structural Disruption of Regulatory Domains in Human Neurocristopathies. Front Genet 2020; 11:688. [PMID: 32765580 PMCID: PMC7379850 DOI: 10.3389/fgene.2020.00688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few years, the role of non-coding regulatory elements and their involvement in human disease have received great attention. Among the non-coding regulatory sequences, enhancers are particularly important for the proper establishment of cell type-specific gene-expression programs. Furthermore, the disruption of enhancers can lead to human disease through two main mechanisms: (i) Mutations or copy number variants can directly alter the enhancer sequences and thereby affect expression of their target genes; (ii) structural variants can provoke changes in 3-D chromatin organization that alter neither the enhancers nor their target genes, but rather the physical communication between them. In this review, these pathomechanisms are mostly discussed in the context of neurocristopathies, congenital disorders caused by defects that occur during neural crest development. We highlight why, due to its contribution to multiple tissues and organs, the neural crest represents an important, yet understudied, cell type involved in multiple congenital disorders. Moreover, we discuss currently available resources and experimental models for the study of human neurocristopathies. Last, we provide some practical guidelines that can be followed when investigating human neurocristopathies caused by structural variants. Importantly, these guidelines can be useful not only to uncover the etiology of human neurocristopathies, but also of other human congenital disorders in which enhancer disruption is involved.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
69
|
Abstract
MOTIVATION The structure of chromatin impacts gene expression. Its alteration has been shown to coincide with the occurrence of cancer. A key challenge is in understanding the role of chromatin structure (CS) in cellular processes and its implications in diseases. RESULTS We propose a comparative pipeline to analyze CSs and apply it to study chronic lymphocytic leukemia (CLL). We model the chromatin of the affected and control cells as networks and analyze the network topology by state-of-the-art methods. Our results show that CSs are a rich source of new biological and functional information about DNA elements and cells that can complement protein-protein and co-expression data. Importantly, we show the existence of structural markers of cancer-related DNA elements in the chromatin. Surprisingly, CLL driver genes are characterized by specific local wiring patterns not only in the CS network of CLL cells, but also of healthy cells. This allows us to successfully predict new CLL-related DNA elements. Importantly, this shows that we can identify cancer-related DNA elements in other cancer types by investigating the CS network of the healthy cell of origin, a key new insight paving the road to new therapeutic strategies. This gives us an opportunity to exploit chromosome conformation data in healthy cells to predict new drivers. AVAILABILITY AND IMPLEMENTATION Our predicted CLL genes and RNAs are provided as a free resource to the community at https://life.bsc.es/iconbi/chromatin/index.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- N Malod-Dognin
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
- Department of Computer Science, University College London, London WC1E 6BT, UK
| | - V Pancaldi
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse 31037, France
- University Paul Sabatier III, Toulouse 31330, France
| | - A Valencia
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
- Coordination Node, Spanish National Bioinformatics Institute, ELIXIR-Spain (INB, ELIXIR-ES), Madrid 28029, Spain
| | - N Pržulj
- Department of Life Sciences, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
- Department of Computer Science, University College London, London WC1E 6BT, UK
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
70
|
Oudelaar AM, Beagrie RA, Gosden M, de Ornellas S, Georgiades E, Kerry J, Hidalgo D, Carrelha J, Shivalingam A, El-Sagheer AH, Telenius JM, Brown T, Buckle VJ, Socolovsky M, Higgs DR, Hughes JR. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat Commun 2020; 11:2722. [PMID: 32483172 PMCID: PMC7264236 DOI: 10.1038/s41467-020-16598-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
Mammalian gene expression patterns are controlled by regulatory elements, which interact within topologically associating domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. Here, we present Tiled-C, a low-input chromosome conformation capture (3C) technique. We use this approach to study chromatin architecture at high spatial and temporal resolution through in vivo mouse erythroid differentiation. Integrated analysis of chromatin accessibility and single-cell expression data shows that regulatory elements gradually become accessible within pre-existing TADs during early differentiation. This is followed by structural re-organization within the TAD and formation of specific contacts between enhancers and promoters. Our high-resolution data show that these enhancer-promoter interactions are not established prior to gene expression, but formed gradually during differentiation, concomitant with progressive upregulation of gene activity. Together, these results provide new insight into the close, interdependent relationship between chromatin architecture and gene regulation during development.
Collapse
Affiliation(s)
- A Marieke Oudelaar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew Gosden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara de Ornellas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Emily Georgiades
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jon Kerry
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School Worcester, Massachusetts, USA
| | - Joana Carrelha
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt
| | - Jelena M Telenius
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School Worcester, Massachusetts, USA
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
71
|
Ben Zouari Y, Platania A, Molitor AM, Sexton T. 4See: A Flexible Browser to Explore 4C Data. Front Genet 2020; 10:1372. [PMID: 32038719 PMCID: PMC6985583 DOI: 10.3389/fgene.2019.01372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
It is established that transcription of many metazoan genes is regulated by distal regulatory sequences beyond the promoter. Enhancers have been identified at up to megabase distances from their regulated genes, and/or proximal to or within the introns of unregulated genes. The unambiguous identification of the target genes of newly identified regulatory elements can thus be challenging. Well-studied enhancers have been found to come into direct physical proximity with regulated genes, presumably by the formation of chromatin loops. Chromosome conformation capture (3C) derivatives that assess the frequency of proximity between different genetic elements is thus a popular method for exploring gene regulation by distal regulatory elements. For studies of chromatin loops and promoter-enhancer communication, 4C (circular chromosome conformation capture) is one of the methods of choice, optimizing cost (required sequencing depth), throughput, and resolution. For ease of visual inspection of 4C data we present 4See, a versatile and user-friendly browser. 4See allows 4C profiles from the same bait to be flexibly plotted together, allowing biological replicates to either be compared, or pooled for comparisons between different cell types or experimental conditions. 4C profiles can be integrated with gene tracks, linear epigenomic profiles, and annotated regions of interest, such as called significant interactions, allowing rapid data exploration with limited computational resources or bioinformatics expertise.
Collapse
Affiliation(s)
- Yousra Ben Zouari
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Angeliki Platania
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Anne M Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| |
Collapse
|
72
|
Robson MI, Ringel AR, Mundlos S. Regulatory Landscaping: How Enhancer-Promoter Communication Is Sculpted in 3D. Mol Cell 2020; 74:1110-1122. [PMID: 31226276 DOI: 10.1016/j.molcel.2019.05.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
During embryogenesis, precise gene transcription in space and time requires that distal enhancers and promoters communicate by physical proximity within gene regulatory landscapes. To achieve this, regulatory landscapes fold in nuclear space, creating complex 3D structures that influence enhancer-promoter communication and gene expression and that, when disrupted, can cause disease. Here, we provide an overview of how enhancers and promoters construct regulatory landscapes and how multiple scales of 3D chromatin structure sculpt their communication. We focus on emerging views of what enhancer-promoter contacts and chromatin domains physically represent and how two antagonistic fundamental forces-loop extrusion and homotypic attraction-likely form them. We also examine how these same forces spatially separate regulatory landscapes by functional state, thereby creating higher-order compartments that reconfigure during development to enable proper enhancer-promoter communication.
Collapse
Affiliation(s)
- Michael I Robson
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alessa R Ringel
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
73
|
Zhou R, Gao YQ. Polymer models for the mechanisms of chromatin 3D folding: review and perspective. Phys Chem Chem Phys 2020; 22:20189-20201. [DOI: 10.1039/d0cp01877e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this perspective paper, classical physical models for mammalian interphase chromatin folding are reviewed.
Collapse
Affiliation(s)
- Rui Zhou
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
| | - Yi Qin Gao
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
- Beijing Advanced Innovation Center for Genomics
| |
Collapse
|
74
|
Razin SV, Ulianov SV, Gavrilov AA. 3D Genomics. Mol Biol 2019; 53:802-812. [DOI: 10.1134/s0026893319060153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 08/30/2023]
|
75
|
Dall'Agnese A, Caputo L, Nicoletti C, di Iulio J, Schmitt A, Gatto S, Diao Y, Ye Z, Forcato M, Perera R, Bicciato S, Telenti A, Ren B, Puri PL. Transcription Factor-Directed Re-wiring of Chromatin Architecture for Somatic Cell Nuclear Reprogramming toward trans-Differentiation. Mol Cell 2019; 76:453-472.e8. [PMID: 31519520 DOI: 10.1016/j.molcel.2019.07.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.
Collapse
Affiliation(s)
- Alessandra Dall'Agnese
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Luca Caputo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Anthony Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Sole Gatto
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yarui Diao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Ranjan Perera
- Analytical Genomics and Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
76
|
Abstract
Structural and quantitative chromosomal rearrangements, collectively referred to as structural variation (SV), contribute to a large extent to the genetic diversity of the human genome and thus are of high relevance for cancer genetics, rare diseases and evolutionary genetics. Recent studies have shown that SVs can not only affect gene dosage but also modulate basic mechanisms of gene regulation. SVs can alter the copy number of regulatory elements or modify the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains. As a result of these position effects, SVs can influence the expression of genes distant from the SV breakpoints, thereby causing disease. The impact of SVs on the 3D genome and on gene expression regulation has to be considered when interpreting the pathogenic potential of these variant types.
Collapse
Affiliation(s)
- Malte Spielmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
77
|
Ben Zouari Y, Molitor AM, Sikorska N, Pancaldi V, Sexton T. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C. Genome Biol 2019; 20:102. [PMID: 31118054 PMCID: PMC6532271 DOI: 10.1186/s13059-019-1706-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for flexible visualization of CHi-C profiles alongside epigenomic tracks.
Collapse
Affiliation(s)
- Yousra Ben Zouari
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Anne M Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Natalia Sikorska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, Toulouse, France
- University Paul Sabatier III, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- INSERM U1258, Illkirch, France.
- University of Strasbourg, Illkirch, France.
| |
Collapse
|
78
|
Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency. Nat Cell Biol 2019; 21:568-578. [PMID: 31036938 DOI: 10.1038/s41556-019-0310-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023]
Abstract
The mechanisms underlying enhancer activation and the extent to which enhancer-promoter rewiring contributes to spatiotemporal gene expression are not well understood. Using integrative and time-resolved analyses we show that the extensive transcriptome and epigenome resetting during the conversion between 'serum' and '2i' states of mouse embryonic stem cells (ESCs) takes place with minimal enhancer-promoter rewiring that becomes more evident in primed-state pluripotency. Instead, differential gene expression is strongly linked to enhancer activation via H3K27ac. Conditional depletion of transcription factors and allele-specific enhancer analysis reveal an essential role for Esrrb in H3K27 acetylation and activation of 2i-specific enhancers. Restoration of a polymorphic ESRRB motif using CRISPR-Cas9 in a hybrid ESC line restores ESRRB binding and enhancer H3K27ac in an allele-specific manner but has no effect on chromatin interactions. Our study shows that enhancer activation in serum- and 2i-ESCs is largely driven by transcription factor binding and epigenetic marking in a hardwired network of chromatin interactions.
Collapse
|
79
|
|
80
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
81
|
DNA·RNA triple helix formation can function as a cis-acting regulatory mechanism at the human β-globin locus. Proc Natl Acad Sci U S A 2019; 116:6130-6139. [PMID: 30867287 DOI: 10.1073/pnas.1900107116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have identified regulatory mechanisms in which an RNA transcript forms a DNA duplex·RNA triple helix with a gene or one of its regulatory elements, suggesting potential auto-regulatory mechanisms in vivo. We describe an interaction at the human β-globin locus, in which an RNA segment embedded in the second intron of the β-globin gene forms a DNA·RNA triplex with the HS2 sequence within the β-globin locus control region, a major regulator of globin expression. We show in human K562 cells that the triplex is stable in vivo. Its formation causes displacement from HS2 of major transcription factors and RNA Polymerase II, and consequently in loss of factors and polymerase that bind to the human ε- and γ-globin promoters, which are activated by HS2 in K562 cells. This results in reduced expression of these genes. These effects are observed when a small length of triplex-forming RNA is introduced into cells, or when a full-length intron-containing human β-globin transcript is expressed. Related results are obtained in human umbilical cord blood-derived erythroid progenitor-2 cells, in which β-globin expression is similarly affected by triplex formation. These results suggest a model in which RNAs conforming to the strict sequence rules for DNA·RNA triplex formation may participate in feedback regulation of genes in cis.
Collapse
|
82
|
Tang B, Li F, Li J, Zhao W, Zhang Z. Delta: a new web-based 3D genome visualization and analysis platform. Bioinformatics 2019; 34:1409-1410. [PMID: 29253110 DOI: 10.1093/bioinformatics/btx805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Summary Delta is an integrative visualization and analysis platform to facilitate visually annotating and exploring the 3D physical architecture of genomes. Delta takes Hi-C or ChIA-PET contact matrix as input and predicts the topologically associating domains and chromatin loops in the genome. It then generates a physical 3D model which represents the plausible consensus 3D structure of the genome. Delta features a highly interactive visualization tool which enhances the integration of genome topology/physical structure with extensive genome annotation by juxtaposing the 3D model with diverse genomic assay outputs. Finally, by visually comparing the 3D model of the β-globin gene locus and its annotation, we speculated a plausible transitory interaction pattern in the locus. Experimental evidence was found to support this speculation by literature survey. This served as an example of intuitive hypothesis testing with the help of Delta. Availability and implementation Delta is freely accessible from http://delta.big.ac.cn, and the source code is available at https://github.com/zhangzhwlab/delta. Contact zhangzhihua@big.ac.cn. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bixia Tang
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 101300, China.,BIG Data Center (BIGD), Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Li
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 101300, China
| | - Jing Li
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 101300, China
| | - Wenming Zhao
- BIG Data Center (BIGD), Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Chinese Academy of Sciences, Beijing 101300, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
83
|
Tanimoto K, Matsuzaki H, Okamura E, Ushiki A, Fukamizu A, Engel JD. Transvection-like interchromosomal interaction is not observed at the transcriptional level when tested in the Rosa26 locus in mouse. PLoS One 2019; 14:e0203099. [PMID: 30763343 PMCID: PMC6375575 DOI: 10.1371/journal.pone.0203099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/30/2019] [Indexed: 11/19/2022] Open
Abstract
Long-range associations between enhancers and their target gene promoters have been shown to play critical roles in executing genome function. Recent variations of chromosome capture technology have revealed a comprehensive view of intra- and interchromosomal contacts between specific genomic sites. The locus control region of the β-globin genes (β-LCR) is a super-enhancer that is capable of activating all of the β-like globin genes within the locus in cis through physical interaction by forming DNA loops. CTCF helps to mediate loop formation between LCR-HS5 and 3’HS1 in the human β-globin locus, in this way thought to contribute to the formation of a “chromatin hub”. The β-globin locus is also in close physical proximity to other erythrocyte-specific genes located long distances away on the same chromosome. In this case, erythrocyte-specific genes gather together at a shared “transcription factory” for co-transcription. Theoretically, enhancers could also activate target gene promoters at the identical loci, yet on different chromosomes in trans, a phenomenon originally described as transvection in Drosophilla. Although close physical proximity has been reported for the β-LCR and the β-like globin genes when integrated at the mouse homologous loci in trans, their structural and functional interactions were found to be rare, possibly because of a lack of suitable regulatory elements that might facilitate such trans interactions. Therefore, we re-evaluated presumptive transvection-like enhancer-promoter communication by introducing CTCF binding sites and erythrocyte-specific transcription units into both LCR-enhancer and β-promoter alleles, each inserted into the mouse ROSA26 locus on separate chromosomes. Following cross-mating of mice to place the two mutant loci at the identical chromosomal position and into active chromation in trans, their transcriptional output was evaluated. The results demonstrate that there was no significant functional association between the LCR and the β-globin gene in trans even in this idealized experimental context.
Collapse
Affiliation(s)
- Keiji Tanimoto
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Eiichi Okamura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Aki Ushiki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
84
|
Singh K, Jha NK, Thakur A. Spatiotemporal chromatin dynamics - A telltale of circadian epigenetic gene regulation. Life Sci 2019; 221:377-391. [PMID: 30721705 DOI: 10.1016/j.lfs.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
Over the course of evolution, nature has forced organisms under selection pressure to hardwire an internal time keeping device that defines 24 h of a daily cycle of physiological and behavioral rhythms, known as circadian rhythms. At the cellular level, the cycle is governed by significant fractions of transcriptomes, which are under the control of transcriptional and translational feedback loop of clock genes. Intriguingly, this feedback loop is regulated at multiple stratums such as at the transcriptional and translational levels, which direct a cell towards producing a robust rhythm by sustaining the repeated stoichiometry of protein products. Moreover, with the advent of state of the art paradigms, epigenetic regulation of circadian rhythms has been becoming more evident at present time. Light-induced recurring fluctuations in chromatin acetylation concurrent with the binding of RNA Pol II and integration of miRNAs monitor the chromatin modifiers or clock genes expression to drive temporal rhythmicity. Furthermore, CLOCK protein intrinsic histone acetyl transferase activity, the interaction of CLOCK-BMAL-1 with HAT enzymes, and the involvement of many histone deacetylases also maintain the rhythmic protein profile. Additionally, the critical role of the rhythmic methylation pattern of clock genes in battery of cancer and metabolic disorders also defines its importance. Therefore, in this review, we focused on accumulating all the present data available on epigenetics and circadian rhythms. Interestingly, we also gathered evidence from the available literature pinpointing towards the dynamic nature of chromatin architecture governed by long and short-range regulatory elements DNA contacts arising daily, that was thought to be steady otherwise.
Collapse
Affiliation(s)
- Kunal Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
85
|
Vermunt MW, Zhang D, Blobel GA. The interdependence of gene-regulatory elements and the 3D genome. J Cell Biol 2019; 218:12-26. [PMID: 30442643 PMCID: PMC6314554 DOI: 10.1083/jcb.201809040] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023] Open
Abstract
Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy data of architectural proteins have revealed that genome topology is tightly intertwined with gene expression. Cross-talk between gene-regulatory elements is often organized within insulated neighborhoods, and regulatory cues that induce transcriptional changes can reshape chromatin folding patterns and gene positioning within the nucleus. The cause-consequence relationship of genome architecture and gene expression is intricate, and its molecular mechanisms are under intense investigation. Here, we review the interdependency of transcription and genome organization with emphasis on enhancer-promoter contacts in gene regulation.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
86
|
Gurumurthy A, Shen Y, Gunn E, Bungert J. Phase Separation and Transcription Regulation: Are Super-Enhancers and Locus Control Regions Primary Sites of Transcription Complex Assembly? Bioessays 2019; 41:e1800164. [PMID: 30500078 PMCID: PMC6484441 DOI: 10.1002/bies.201800164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Indexed: 01/10/2023]
Abstract
It is proposed that the multiple enhancer elements associated with locus control regions and super-enhancers recruit RNA polymerase II and efficiently assemble elongation competent transcription complexes that are transferred to target genes by transcription termination and transient looping mechanisms. It is well established that transcription complexes are recruited not only to promoters but also to enhancers, where they generate enhancer RNAs. Transcription at enhancers is unstable and frequently aborted. Furthermore, the Integrator and WD-domain containing protein 82 mediate transcription termination at enhancers. Abortion and termination of transcription at the multiple enhancers of locus control regions and super-enhancers provide a large pool of elongation competent transcription complexes. These are efficiently captured by strong basal promoter elements at target genes during transient looping interactions.
Collapse
Affiliation(s)
- Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Eliot Gunn
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine,
UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center,
University of Florida, Gainesville, Florida, 32610, U.S.A., Phone: 352-273-8098,
Fax: 352-3f92-2953
| |
Collapse
|
87
|
Davis R, Gurumurthy A, Hossain MA, Gunn EM, Bungert J. Engineering Globin Gene Expression. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:102-110. [PMID: 30603654 PMCID: PMC6310746 DOI: 10.1016/j.omtm.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemoglobinopathies, including sickle cell disease and thalassemia, are among the most common inherited genetic diseases worldwide. Due to the relative ease of isolating and genetically modifying hematopoietic stem and progenitor cells, recent gene editing and gene therapy strategies have progressed to clinical trials with promising outcomes; however, challenges remain and necessitate the continued exploration of new gene engineering and cell transplantation protocols. Current gene engineering strategies aim at reactivating the expression of the fetal γ-globin genes in adult erythroid cells. The γ-globin proteins exhibit anti-sickling properties and can functionally replace adult β-globin. Here, we describe and compare the current genetic engineering procedures that may develop into safe and efficient therapies for hemoglobinopathies in the near future.
Collapse
Affiliation(s)
- Rachael Davis
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Eliot M Gunn
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
88
|
Abstract
Developmental enhancers mediate on/off patterns of gene expression in specific cell types at particular stages during metazoan embryogenesis. They typically integrate multiple signals and regulatory determinants to achieve precise spatiotemporal expression. Such enhancers can map quite far-one megabase or more-from the genes they regulate. How remote enhancers relay regulatory information to their target promoters is one of the central mysteries of genome organization and function. A variety of contrasting mechanisms have been proposed over the years, including enhancer tracking, linking, looping, and mobilization to transcription factories. We argue that extreme versions of these mechanisms cannot account for the transcriptional dynamics and precision seen in living cells, tissues, and embryos. We describe emerging evidence for dynamic three-dimensional hubs that combine different elements of the classical models.
Collapse
Affiliation(s)
- Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08540, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
89
|
Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood 2018; 132:1963-1973. [PMID: 30150205 DOI: 10.1182/blood-2018-07-862003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being appreciated as participants in regulation of important cellular processes, including transcription. Because lncRNAs are highly cell type specific, they have the potential to contribute to the unique transcriptional repertoire of diverse cells, but underlying mechanisms are unclear. We studied BGLT3, an erythroid lncRNA encoded downstream of Aγ-globin (HBG1). BGLT3 and γ-globin genes are dynamically cotranscribed in erythroid cells in vivo. Deletion of BGLT3 using CRISPR/Cas9 editing shows that it specifically contributes to regulation of γ-globin genes. We used reduction or overexpression of the RNA and inhibition of transcription through the locus by CRISPRi to distinguish functions of the transcript vs the underlying sequence. Transcription of the BGLT3 locus is critical for looping between the γ-globin genes and BGLT3 sequences. In contrast, the BGLT3 transcript is dispensable for γ-globin/BGLT3 looping but interacts with the mediator complex on chromatin. Manipulation of the BGLT3 locus does not compromise γ-globin gene long-range looping interactions with the β-globin locus control region (LCR). These data reveal that BGLT3 regulates γ-globin transcription in a developmental stage-specific fashion together with the LCR by serving as a separate means to increase RNA Pol II density at the γ-globin promoters.
Collapse
|
90
|
Trac-looping measures genome structure and chromatin accessibility. Nat Methods 2018; 15:741-747. [PMID: 30150754 DOI: 10.1038/s41592-018-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/15/2018] [Indexed: 12/22/2022]
Abstract
Long-range chromatin interactions play critical roles in genome organization and regulation of transcription. We now report transposase-mediated analysis of chromatin looping (Trac-looping) for simultaneous detection of multiscale genome-wide chromatin interactions among regulatory elements and chromatin accessibility. With this technique, a bivalent oligonucleotide linker is inserted between two interacting regions such that the chromatin interactions are captured without prior chromatin fragmentation and proximity-based ligation. Application of Trac-looping to human CD4+ T cells revealed substantial reorganization of enhancer-promoter interactions associated with changes in gene expression after T cell receptor stimulation.
Collapse
|
91
|
Batugedara G, Le Roch KG. Unraveling the 3D genome of human malaria parasites. Semin Cell Dev Biol 2018; 90:144-153. [PMID: 30009946 DOI: 10.1016/j.semcdb.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/31/2023]
Abstract
The chromosomes within the eukaryotic cell nucleus are highly dynamic and adopt complex hierarchical structures. Understanding how this three-dimensional (3D) nuclear architectureaffects gene regulation, cell cycle progression and disease pathogenesis are important biological questions in development and disease. Recently, many genome-wide technologies including chromosome conformation capture (3C) and 3C-based methodologies (4C, 5C, and Hi-C) have been developed to investigate 3D chromatin structure. In this review, we introduce 3D genome methodologies, with a focus on their application for understanding the nuclear architecture of the human malaria parasite, Plasmodium falciparum. An increasing amount of evidence now suggests that gene regulation in the parasite is largely regulated by epigenetic mechanisms and nuclear reorganization. Here, we explore the 3D genome architecture of P. falciparum, including local and global chromatin structure. In addition, molecular components important for maintaining 3D chromatin organization including architectural proteins and long non-coding RNAs are discussed. Collectively, these studies contribute to our understanding of how the plasticity of 3D genome architecture regulates gene expression and cell cycle progression in this deadly parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
92
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
93
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
94
|
Rickels R, Shilatifard A. Enhancer Logic and Mechanics in Development and Disease. Trends Cell Biol 2018; 28:608-630. [PMID: 29759817 DOI: 10.1016/j.tcb.2018.04.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Enhancers are distally located genomic cis-regulatory elements that integrate spatiotemporal cues to coordinate gene expression in a tissue-specific manner during metazoan development. Enhancer function depends on a combination of bound transcription factors and cofactors that regulate local chromatin structure, as well as on the topological interactions that are necessary for their activity. Numerous genome-wide studies concur that the vast majority of disease-associated variations occur within non-coding genomic sequences, in other words the 'cis-regulome', and this underscores their relevance for human health. Advances in DNA sequencing and genome-editing technologies have dramatically expanded our ability to identify enhancers and investigate their properties in vivo, revealing an extraordinary level of interconnectivity underlying cis-regulatory networks. We discuss here these recently developed methodologies, as well as emerging trends and remaining questions in the field of enhancer biology, and how perturbation of enhancer activities/functions results in enhanceropathies.
Collapse
Affiliation(s)
- Ryan Rickels
- Simpson Querrey Center for Epigenetics, and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
95
|
Philipsen S, Hardison RC. Evolution of hemoglobin loci and their regulatory elements. Blood Cells Mol Dis 2018; 70:2-12. [PMID: 28811072 PMCID: PMC5807248 DOI: 10.1016/j.bcmd.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.
Collapse
Affiliation(s)
- Sjaak Philipsen
- Department of Cell Biology Ee1071b, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institute for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
96
|
Abstract
Lineage-specific transcription factors are critical for long-range enhancer interactions, but direct or indirect contributions of architectural proteins such as CCCTC-binding factor (CTCF) to enhancer function remain less clear. The LDB1 complex mediates enhancer-gene interactions at the β-globin locus through LDB1 self-interaction. We find that an LDB1-bound enhancer upstream of carbonic anhydrase 2 (Car2) activates its expression by interacting directly with CTCF at the gene promoter. Both LDB1 and CTCF are required for enhancer-Car2 looping, and the domain of LDB1 contacted by CTCF is necessary to rescue Car2 transcription in LDB1-deficient cells. Genome-wide studies and CRISPR/Cas9 genome editing indicate that LDB1-CTCF enhancer looping underlies activation of a substantial fraction of erythroid genes. Our results provide a mechanism by which long-range interactions of architectural protein CTCF can be tailored to achieve a tissue-restricted pattern of chromatin loops and gene expression.
Collapse
|
97
|
Mermet J, Yeung J, Hurni C, Mauvoisin D, Gustafson K, Jouffe C, Nicolas D, Emmenegger Y, Gobet C, Franken P, Gachon F, Naef F. Clock-dependent chromatin topology modulates circadian transcription and behavior. Genes Dev 2018; 32:347-358. [PMID: 29572261 PMCID: PMC5900709 DOI: 10.1101/gad.312397.118] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/02/2018] [Indexed: 12/27/2022]
Abstract
The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which underlie 24-h rhythms in behavior and physiology. Several studies have shown the possible roles of transcription factors and chromatin marks in controlling cyclic gene expression. However, how daily active enhancers modulate rhythmic gene transcription in mammalian tissues is not known. Using circular chromosome conformation capture (4C) combined with sequencing (4C-seq), we discovered oscillatory promoter-enhancer interactions along the 24-h cycle in the mouse liver and kidney. Rhythms in chromatin interactions were abolished in arrhythmic Bmal1 knockout mice. Deleting a contacted intronic enhancer element in the Cryptochrome 1 (Cry1) gene was sufficient to compromise the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of Cry1 transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor activity rhythms. Our results establish oscillating and clock-controlled promoter-enhancer looping as a regulatory layer underlying circadian transcription and behavior.
Collapse
Affiliation(s)
- Jérôme Mermet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jake Yeung
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Clémence Hurni
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daniel Mauvoisin
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kyle Gustafson
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Céline Jouffe
- Nestle Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Damien Nicolas
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Cédric Gobet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Nestle Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Frédéric Gachon
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Nestle Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Félix Naef
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
98
|
Abstract
It is well known that the chromosomes are organized in the nucleus and this spatial arrangement of genome play a crucial role in gene regulation and genome stability. Different techniques have been developed and applied to uncover the intrinsic mechanism of genome architecture, especially the chromosome conformation capture (3C) and 3C-derived methods. 3C and 3C-derived techniques provide us approaches to perform high-throughput chromatin architecture assays at the genome scale. However, the advantage and disadvantage of current methodologies of C-technologies have not been discussed extensively. In this review, we described and compared the methodologies of C-technologies used in genome organization studies with an emphasis on Hi-C method. We also discussed the crucial challenges facing current genome architecture studies based on 3C and 3C-derived technologies and the direction of future technologies to address currently outstanding questions in the field. These latest news contribute to our current understanding of genome structure, and provide a comprehensive reference for researchers to choose the appropriate method in future application. We consider that these constantly improving technologies will offer a finer and more accurate contact profiles of entire genome and ultimately reveal specific molecular machines govern its shape and function.
Collapse
|
99
|
Hnisz D, Schuijers J, Li CH, Young RA. Regulation and Dysregulation of Chromosome Structure in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer arises from genetic alterations that produce dysregulated gene expression programs. Normal gene regulation occurs in the context of chromosome loop structures called insulated neighborhoods, and recent studies have shown that these structures are altered and can contribute to oncogene dysregulation in various cancer cells. We review the types of genetic and epigenetic alterations that influence neighborhood structures and contribute to gene dysregulation in cancer, present models for insulated neighborhoods associated with the most prominent human oncogenes, and discuss how such models may lead to further advances in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;,
| | - Jurian Schuijers
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;,
| | - Charles H. Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;,
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA;,
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
100
|
Kolovos P, Brouwer RWW, Kockx CEM, Lesnussa M, Kepper N, Zuin J, Imam AMA, van de Werken HJG, Wendt KS, Knoch TA, van IJcken WFJ, Grosveld F. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C. Nat Protoc 2018; 13:459-477. [DOI: 10.1038/nprot.2017.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|